1
|
Kubota N, Scribner MR, Cooper VS. Filamentous cheater phages drive bacterial and phage populations to lower fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646652. [PMID: 40236058 PMCID: PMC11996451 DOI: 10.1101/2025.04.01.646652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Many bacteria carry phage genome(s) in their chromosome (i.e., prophage), and this intertwines the fitness of the bacterium and the phage. Most Pseudomonas aeruginosa strains carry filamentous phages called Pf that establish chronic infections and do not require host lysis to spread. However, spontaneous mutations in the Pf repressor gene ( pf5r ) can allow extreme phage production that slows bacterial growth and increases cell death, violating an apparent détente between bacterium and phage. We observed this paradoxical outcome in an evolution experiment with P. aeruginosa in media simulating nutrients from the cystic fibrosis airway. Bacteria containing pf5r mutant phage grow to a lower density but directly outcompete their ancestor and convert them into pf5r mutants via phage superinfection. Reduced fitness therefore spreads throughout the bacterial population, driven by weaponized Pf. Yet high intracellular phage replication facilitates another evolutionary conflict: "cheater miniphages" lacking capsid genes invade populations of full-length phages within cells. Although bacteria containing both full-length phages and miniphages are most immune to superinfection by limiting the Pf receptor, this hybrid vigor is extremely unstable, as a classic Tragedy of the Commons scenario ensues that results in complete prophage loss. The entire cycle - from phage hyperactivation to miniphage invasion to prophage loss - can occur within 24h, showcasing rapid coevolution between bacteria and their filamentous phages. This study demonstrates that P. aeruginosa , and potentially many other bacterial species that carry filamentous prophages, risk being exploited by these phages in a runaway process that reduces fitness of both host and virus.
Collapse
|
2
|
Guo Y, Lin S, Chen R, Gu J, Tang K, Nie Z, Huang Z, Weng J, Lin J, Liu T, Waldor MK, Wang X. A reverse transcriptase controls prophage genome reduction to promote phage dissemination in Pseudomonas aeruginosa biofilms. Cell Rep 2024; 43:114883. [PMID: 39427316 DOI: 10.1016/j.celrep.2024.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Filamentous bacteriophages play a critical role in biofilm formation and virulence in the opportunistic pathogen Pseudomonas aeruginosa. Here, studies of the filamentous Pf4 prophage life cycle within P. aeruginosa biofilms revealed that the prophage-encoded reverse transcriptase (RT) regulates phage genome dynamics. The RT and the non-coding RNA PhrD collaborate to edit the Pf4 phage genome to generate superinfective Pf4 variants capable of rapid propagation within biofilms by preserving genes essential for virion assembly and reconstituting a promoter for the phage excisionase gene. Mutant cells emerge in biofilms where intact Pf4 prophages are replaced by these reduced-genome phage variants, further enhancing virion production. The discovery of RT's role in phage genome reduction expands understanding of RT functions and of the versatility of phage biology and its impact on microbial community dynamics within biofilms.
Collapse
Affiliation(s)
- Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Zhaolong Nie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Zixian Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juehua Weng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, 15 Francis Street, Boston, MA 02115, USA; Howard Hughes Medical Institute, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Guo Y, Tang K, Sit B, Gu J, Chen R, Shao X, Lin S, Huang Z, Nie Z, Lin J, Liu X, Wang W, Gao X, Liu T, Liu F, Luo HR, Waldor MK, Wang X. Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module. Nat Commun 2024; 15:7244. [PMID: 39174532 PMCID: PMC11341870 DOI: 10.1038/s41467-024-51617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The filamentous 'Pf' bacteriophages of Pseudomonas aeruginosa play roles in biofilm formation and virulence, but mechanisms governing Pf prophage activation in biofilms are unclear. Here, we identify a prophage regulatory module, KKP (kinase-kinase-phosphatase), that controls virion production of co-resident Pf prophages and mediates host defense against diverse lytic phages. KKP consists of Ser/Thr kinases PfkA and PfkB, and phosphatase PfpC. The kinases have multiple host targets, one of which is MvaU, a host nucleoid-binding protein and known prophage-silencing factor. Characterization of KKP deletion and overexpression strains with transcriptional, protein-level and prophage-based approaches indicates that shifts in the balance between kinase and phosphatase activities regulate phage production by controlling MvaU phosphorylation. In addition, KKP acts as a tripartite toxin-antitoxin system that provides defense against some lytic phages. A conserved lytic phage replication protein inhibits the KKP phosphatase PfpC, stimulating toxic kinase activity and blocking lytic phage production. Thus, KKP represents a phosphorylation-based mechanism for prophage regulation and antiphage defense. The conservation of KKP gene clusters in >1000 diverse temperate prophages suggests that integrated control of temperate and lytic phage infection by KKP-like regulatory modules may play a widespread role in shaping host cell physiology.
Collapse
Grants
- R01 AI042347 NIAID NIH HHS
- This work was supported by the National Science Foundation of China (42188102, 92451302, 31625001, 91951203, 42376128 and 31970037), by the Science & Technology Fundamental Resources Investigation Program (2022FY100600), by the National Science Foundation of Guangdong Province (2024A1515011146), by the Guangdong Major Project of Basic and Applied Basic Research (2019B030302004), by the Guangdong Local Innovation Team Program (2019BT02Y262), by the Tianjin Municipal Science and Technology Commission Grant (21JCQNJC01550), and by the Haihe Laboratory of Cell Ecosystem Innovation Fund (HH22KYZX0019).
Collapse
Affiliation(s)
- Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Brandon Sit
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xinqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixian Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolong Nie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Boston Children's Hospital, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Bethesda, MD, USA.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Copeland CJ, Roddy JW, Schmidt AK, Secor P, Wheeler T. VIBES: a workflow for annotating and visualizing viral sequences integrated into bacterial genomes. NAR Genom Bioinform 2024; 6:lqae030. [PMID: 38584872 PMCID: PMC10993291 DOI: 10.1093/nargab/lqae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists. Some prophages have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES (Viral Integrations in Bacterial genomES), a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab-separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES's primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1072 Pseudomonas spp. genomes.
Collapse
Affiliation(s)
- Conner J Copeland
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Jack W Roddy
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Amelia K Schmidt
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
6
|
Schmidt AK, Schwartzkopf CM, Pourtois JD, Burgener EB, Faith DR, Joyce A, Lamma T, Kumar G, Bollyky PL, Secor PR. Targeted deletion of Pf prophages from diverse Pseudomonas aeruginosa isolates has differential impacts on quorum sensing and virulence traits. J Bacteriol 2024; 206:e0040223. [PMID: 38687034 PMCID: PMC11112994 DOI: 10.1128/jb.00402-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous virulence phenotypes. Most work on Pf phages has focused on Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf phages infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. The pflM gene shows diversity among different Pf phage isolates; however, all examined pflM alleles encode the DUF5447 domain. We demonstrate that pflM deletion results in prophage excision but not replication, leading to total prophage loss, indicating a role for lysis/lysogeny decisions for the DUF5447 domain. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, pigment production, and virulence against the bacterivorous nematode Caenorhabditis elegans. We find that Pf phages have strain-specific impacts on quorum sensing and biofilm formation, but nearly all suppress pigment production and increase C. elegans avoidance behavior. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.IMPORTANCEPseudomonas aeruginosa is an opportunistic bacterial pathogen that is frequently infected by filamentous Pf phages (viruses) that integrate into its chromosome, affecting behavior. Although prior work has focused on Pf4 and PAO1, this study investigates diverse Pf in clinical isolates. A simple method targeting the deletion of the Pf lysogeny maintenance gene pflM (PA0718) effectively eliminates Pf prophages from clinical isolates. The research evaluates the impact Pf prophages have on bacterial quorum sensing, biofilm formation, and virulence phenotypes. This work introduces a valuable tool to eliminate Pf prophages from clinical isolates and advances our understanding of P. aeruginosa and filamentous Pf phage interactions.
Collapse
Affiliation(s)
- Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | - Julie D. Pourtois
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth B. Burgener
- Division of Pediatric Pulmonology and Sleep Medicine, Children’s Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Alex Joyce
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tyrza Lamma
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Geetha Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Paul L. Bollyky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
7
|
Ruhluel D, Fisher L, Barton TE, Leighton H, Kumar S, Amores Morillo P, O’Brien S, Fothergill JL, Neill DR. Secondary messenger signalling influences Pseudomonas aeruginosa adaptation to sinus and lung environments. THE ISME JOURNAL 2024; 18:wrae065. [PMID: 38647527 PMCID: PMC11102083 DOI: 10.1093/ismejo/wrae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Pseudomonas aeruginosa is a cause of chronic respiratory tract infections in people with cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Prolonged infection allows the accumulation of mutations and horizontal gene transfer, increasing the likelihood of adaptive phenotypic traits. Adaptation is proposed to arise first in bacterial populations colonizing upper airway environments. Here, we model this process using an experimental evolution approach. Pseudomonas aeruginosa PAO1, which is not airway adapted, was serially passaged, separately, in media chemically reflective of upper or lower airway environments. To explore whether the CF environment selects for unique traits, we separately passaged PAO1 in airway-mimicking media with or without CF-specific factors. Our findings demonstrated that all airway environments-sinus and lungs, under CF and non-CF conditions-selected for loss of twitching motility, increased resistance to multiple antibiotic classes, and a hyper-biofilm phenotype. These traits conferred increased airway colonization potential in an in vivo model. CF-like conditions exerted stronger selective pressures, leading to emergence of more pronounced phenotypes. Loss of twitching was associated with mutations in type IV pili genes. Type IV pili mediate surface attachment, twitching, and induction of cAMP signalling. We additionally identified multiple evolutionary routes to increased biofilm formation involving regulation of cyclic-di-GMP signalling. These included the loss of function mutations in bifA and dipA phosphodiesterase genes and activating mutations in the siaA phosphatase. These data highlight that airway environments select for traits associated with sessile lifestyles and suggest upper airway niches support emergence of phenotypes that promote establishment of lung infection.
Collapse
Affiliation(s)
- Dilem Ruhluel
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Lewis Fisher
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Thomas E Barton
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Sumit Kumar
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Paula Amores Morillo
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Siobhan O’Brien
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, 2, Ireland
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool, United Kingdom
| | - Daniel R Neill
- Division of Molecular Microbiology, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
8
|
Pei TT, Luo H, Wang Y, Li H, Wang XY, Zhang YQ, An Y, Wu LL, Ma J, Liang X, Yan A, Yang L, Chen C, Dong T. Filamentous prophage Pf4 promotes genetic exchange in Pseudomonas aeruginosa. THE ISME JOURNAL 2024; 18:wrad025. [PMID: 38365255 PMCID: PMC10837833 DOI: 10.1093/ismejo/wrad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
Filamentous prophages are widespread among bacteria and play crucial functions in virulence, antibiotic resistance, and biofilm structures. The filamentous Pf4 particles, extruded by an important pathogen Pseudomonas aeruginosa, can protect producing cells from adverse conditions. Contrary to the conventional belief that the Pf4-encoding cells resist reinfection, we herein report that the Pf4 prophage is reciprocally and commonly exchanged within P. aeruginosa colonies, which can repair defective Pf4 within the community. By labeling the Pf4 locus with antibiotic resistance and fluorescence markers, we demonstrate that the Pf4 locus is frequently exchanged within colony biofilms, in artificial sputum media, and in infected mouse lungs. We further show that Pf4 trafficking is a rapid process and capable of rescuing Pf4-defective mutants. The Pf4 phage is highly adaptable and can package additional DNA doubling its genome size. We also report that two clinical P. aeruginosa isolates are susceptible to the Pf4-mediated exchange, and the Pf5 prophage can be exchanged between cells as well. These findings suggest that the genetic exchanging interactions by filamentous prophages may facilitate defect rescue and the sharing of prophage-dependent benefits and costs within the P. aeruginosa community.
Collapse
Affiliation(s)
- Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Wang
- Unit of Pathogenic Fungal Infection and Host Immunity, Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing-Yu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Qiu Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying An
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Li Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhua Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoye Liang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection and Host Immunity, Key Laboratory of Molecular Virology and Immunology, Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- Nanjing Advanced Academy of Life and Health, Nanjing 211135, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Tang M, Yang R, Zhuang Z, Han S, Sun Y, Li P, Fan K, Cai Z, Yang Q, Yu Z, Yang L, Li S. Divergent molecular strategies drive evolutionary adaptation to competitive fitness in biofilm formation. THE ISME JOURNAL 2024; 18:wrae135. [PMID: 39052320 PMCID: PMC11307329 DOI: 10.1093/ismejo/wrae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Biofilm is a group of heterogeneously structured and densely packed bacteria with limited access to nutrients and oxygen. These intrinsic features can allow a mono-species biofilm to diversify into polymorphic subpopulations, determining the overall community's adaptive capability to changing ecological niches. However, the specific biological functions underlying biofilm diversification and fitness adaptation are poorly demonstrated. Here, we launched and monitored the experimental evolution of Pseudomonas aeruginosa biofilms, finding that two divergent molecular trajectories were adopted for adaptation to higher competitive fitness in biofilm formation: one involved hijacking bacteriophage superinfection to aggressively inhibit kin competitors, whereas the other induced a subtle change in cyclic dimeric guanosine monophosphate signaling to gain a positional advantage via enhanced early biofilm adhesion. Bioinformatics analyses implicated that similar evolutionary strategies were prevalent among clinical P. aeruginosa strains, indicative of parallelism between natural and experimental evolution. Divergence in the molecular bases illustrated the adaptive values of genomic plasticity for gaining competitive fitness in biofilm formation. Finally, we demonstrated that these fitness-adaptive mutations reduced bacterial virulence. Our findings revealed how the mutations intrinsically generated from the biofilm environment influence the evolution of P. aeruginosa.
Collapse
Affiliation(s)
- Mingxing Tang
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
| | - Ruixue Yang
- Community Health Service Center of Southern University of Science and Technology, Nanshan Medical Group Headquarters, Shenzhen 518055, China
| | - Zilin Zhuang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuhong Han
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunke Sun
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyu Li
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Kewei Fan
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Zhao Cai
- Department of Research and Development, Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen 518057, China
| | - Qiong Yang
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuo Li
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
- Allergy Prevention and Control Center, Nanshan People’s Hospital, Shenzhen 518052, China
| |
Collapse
|
10
|
Song W, Zhang S, Majzoub ME, Egan S, Kjelleberg S, Thomas T. The impact of interspecific competition on the genomic evolution of Phaeobacter inhibens and Pseudoalteromonas tunicata during biofilm growth. Environ Microbiol 2024; 26:e16553. [PMID: 38062568 DOI: 10.1111/1462-2920.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Interspecific interactions in biofilms have been shown to cause the emergence of community-level properties. To understand the impact of interspecific competition on evolution, we deep-sequenced the dispersal population of mono- and co-culture biofilms of two antagonistic marine bacteria (Phaeobacter inhibens 2.10 and Pseudoalteromononas tunicata D2). Enhanced phenotypic and genomic diversification was observed in the P. tunicata D2 populations under both mono- and co-culture biofilms in comparison to P. inhibens 2.10. The genetic variation was exclusively due to single nucleotide variants and small deletions, and showed high variability between replicates, indicating their random emergence. Interspecific competition exerted an apparent strong positive selection on a subset of P. inhibens 2.10 genes (e.g., luxR, cobC, argH, and sinR) that could facilitate competition, while the P. tunicata D2 population was genetically constrained under competition conditions. In the absence of interspecific competition, the P. tunicata D2 replicate populations displayed high levels of mutations affecting the same genes involved in cell motility and biofilm formation. Our results show that interspecific biofilm competition has a complex impact on genomic diversification, which likely depends on the nature of the competing strains and their ability to generate genetic variants due to their genomic constraints.
Collapse
Affiliation(s)
- Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Shan Zhang
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Staffan Kjelleberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
11
|
Schmidt AK, Schwartzkopf CM, Pourtois JD, Burgener E, Faith DR, Joyce A, Lamma T, Kumar G, Bollyky PL, Secor PR. Targeted deletion of Pf prophages from diverse Pseudomonas aeruginosa isolates impacts quorum sensing and virulence traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567716. [PMID: 38014273 PMCID: PMC10680813 DOI: 10.1101/2023.11.19.567716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous bacterial virulence phenotypes. Most work on Pf phages has focused on strain Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf strains infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, virulence factor production, and virulence. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates, but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.
Collapse
Affiliation(s)
- Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | - Julie D. Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Burgener
- Department of Pediatrics, Division of Pulmonology, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Alex Joyce
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tyrza Lamma
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Geetha Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
12
|
Copeland CJ, Roddy JW, Schmidt AK, Secor PR, Wheeler TJ. VIBES: A Workflow for Annotating and Visualizing Viral Sequences Integrated into Bacterial Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562434. [PMID: 37905003 PMCID: PMC10614876 DOI: 10.1101/2023.10.17.562434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Bacteriophages are viruses that infect bacteria. Many bacteriophages integrate their genomes into the bacterial chromosome and become prophages. Prophages may substantially burden or benefit host bacteria fitness, acting in some cases as parasites and in others as mutualists, and have been demonstrated to increase host virulence. The increasing ease of bacterial genome sequencing provides an opportunity to deeply explore prophage prevalence and insertion sites. Here we present VIBES, a workflow intended to automate prophage annotation in complete bacterial genome sequences. VIBES provides additional context to prophage annotations by annotating bacterial genes and viral proteins in user-provided bacterial and viral genomes. The VIBES pipeline is implemented as a Nextflow-driven workflow, providing a simple, unified interface for execution on local, cluster, and cloud computing environments. For each step of the pipeline, a container including all necessary software dependencies is provided. VIBES produces results in simple tab separated format and generates intuitive and interactive visualizations for data exploration. Despite VIBES' primary emphasis on prophage annotation, its generic alignment-based design allows it to be deployed as a general-purpose sequence similarity search manager. We demonstrate the utility of the VIBES prophage annotation workflow by searching for 178 Pf phage genomes across 1,072 Pseudomonas spp. genomes. VIBES software is available at https://github.com/TravisWheelerLab/VIBES.
Collapse
Affiliation(s)
- Conner J. Copeland
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Jack W. Roddy
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Travis J. Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Schwartzkopf CM, Taylor VL, Groleau MC, Faith DR, Schmidt AK, Lamma TL, Brooks DM, Déziel E, Maxwell KL, Secor PR. Inhibition of PQS signaling by the Pf bacteriophage protein PfsE enhances viral replication in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554831. [PMID: 37662248 PMCID: PMC10473763 DOI: 10.1101/2023.08.25.554831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Quorum sensing, a bacterial signaling system that coordinates group behaviors as a function of cell density, plays an important role in regulating viral (phage) defense mechanisms in bacteria. The opportunistic pathogen Pseudomonas aeruginosa is a model system for the study of quorum sensing. P. aeruginosa is also frequently infected by Pf prophages that integrate into the host chromosome. Upon induction, Pf phages suppress host quorum sensing systems; however, the physiological relevance and mechanism of suppression are unknown. Here, we identify the Pf phage protein PfsE as an inhibitor of Pseudomonas Quinolone Signal (PQS) quorum sensing. PfsE binds to the host protein PqsA, which is essential for the biosynthesis of the PQS signaling molecule. Inhibition of PqsA increases the replication efficiency of Pf virions when infecting a new host and when the Pf prophage switches from lysogenic replication to active virion replication. In addition to inhibiting PQS signaling, our prior work demonstrates that PfsE also binds to PilC and inhibits type IV pili extension, protecting P. aeruginosa from infection by type IV pili-dependent phages. Overall, this work suggests that the simultaneous inhibition of PQS signaling and type IV pili by PfsE may be a viral strategy to suppress host defenses to promote Pf replication while at the same time protecting the susceptible host from competing phages.
Collapse
Affiliation(s)
| | | | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Tyrza L. Lamma
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
14
|
Prokopczuk FI, Im H, Campos-Gomez J, Orihuela CJ, Martínez E. Engineered Superinfective Pf Phage Prevents Dissemination of Pseudomonas aeruginosa in a Mouse Burn Model. mBio 2023; 14:e0047223. [PMID: 37039641 PMCID: PMC10294672 DOI: 10.1128/mbio.00472-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
Pf is a filamentous bacteriophage integrated in the chromosome of most clinical isolates of Pseudomonas aeruginosa. Under stress conditions, mutations occurring in the Pf genome result in the emergence of superinfective variants of Pf (SI-Pf) that are capable of circumventing phage immunity; therefore, SI-Pf can even infect Pf-lysogenized P. aeruginosa. Here, we identified specific mutations located between the repressor and the excisionase genes of Pf4 phage in the P. aeruginosa PAO1 strain that resulted in the emergence of SI-Pf. Based on these findings, we genetically engineered an SI-Pf (eSI-Pf) and tested it as a phage therapy tool for the treatment of life-threatening burn wound infections caused by PAO1. In validation experiments, eSI-Pf was able to infect PAO1 grown in a lawn as well as biofilms formed in vitro on polystyrene. eSI-Pf also infected PAO1 present in burned skin wounds on mice but was not capable of maintaining a sustained reduction in bacterial burden beyond 24 h. Despite not lowering bacterial burden in burned skin tissue, eSI-Pf treatment completely abolished the capability of P. aeruginosa to disseminate from the burn site to internal organs. Over the course of 10 days, this resulted in bacterial clearance and survival of all treated mice. We subsequently determined that eSI-Pf induced a small-colony variant of P. aeruginosa that was unable to disseminate systemically. This attenuated phenotype was due to profound changes in virulence determinant production and altered physiology. Our results suggest that eSI-Pf has potential as a phage therapy against highly recalcitrant antimicrobial-resistant P. aeruginosa infections of burn wounds. IMPORTANCE Pseudomonas aeruginosa is a major cause of burn-related infections. It is also the most likely bacterial infection to advance to sepsis and result in burn-linked death. Frequently, P. aeruginosa strains isolated from burn patients display a multidrug-resistant phenotype necessitating the development of new therapeutic strategies and prophylactic treatments. In this context, phage therapy using lytic phages has demonstrated exciting potential in the control P. aeruginosa infection. However, lytic phages can present a set of drawbacks during phage therapy, including the induction of bacterial resistance and limited bacteria-phage interactions in vivo. Here, we propose an alternative approach to interfere with P. aeruginosa pathogenesis in a burn infection model, i.e., by using an engineered superinfective filamentous phage. Our study demonstrates that treatment with the engineered Pf phage can prevent sepsis and death in a burn mouse model.
Collapse
Affiliation(s)
- Federico I. Prokopczuk
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hansol Im
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Javier Campos-Gomez
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eriel Martínez
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Giallonardi G, Letizia M, Mellini M, Frangipani E, Halliday N, Heeb S, Cámara M, Visca P, Imperi F, Leoni L, Williams P, Rampioni G. Alkyl-quinolone-dependent quorum sensing controls prophage-mediated autolysis in Pseudomonas aeruginosa colony biofilms. Front Cell Infect Microbiol 2023; 13:1183681. [PMID: 37305419 PMCID: PMC10250642 DOI: 10.3389/fcimb.2023.1183681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Pseudomonas aeruginosa is a model quorum sensing (QS) pathogen with three interconnected QS circuits that control the production of virulence factors and antibiotic tolerant biofilms. The pqs QS system of P. aeruginosa is responsible for the biosynthesis of diverse 2-alkyl-4-quinolones (AQs), of which 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) function as QS signal molecules. Transcriptomic analyses revealed that HHQ and PQS influenced the expression of multiple genes via PqsR-dependent and -independent pathways whereas 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) had no effect on P. aeruginosa transcriptome. HQNO is a cytochrome bc 1 inhibitor that causes P. aeruginosa programmed cell death and autolysis. However, P. aeruginosa pqsL mutants unable to synthesize HQNO undergo autolysis when grown as colony biofilms. The mechanism by which such autolysis occurs is not understood. Through the generation and phenotypic characterization of multiple P. aeruginosa PAO1 mutants producing altered levels of AQs in different combinations, we demonstrate that mutation of pqsL results in the accumulation of HHQ which in turn leads to Pf4 prophage activation and consequently autolysis. Notably, the effect of HHQ on Pf4 activation is not mediated via its cognate receptor PqsR. These data indicate that the synthesis of HQNO in PAO1 limits HHQ-induced autolysis mediated by Pf4 in colony biofilms. A similar phenomenon is shown to occur in P. aeruginosa cystic fibrosis (CF) isolates, in which the autolytic phenotype can be abrogated by ectopic expression of pqsL.
Collapse
Affiliation(s)
| | | | - Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Nigel Halliday
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
16
|
Schwartzkopf CM, Robinson AJ, Ellenbecker M, Faith DR, Schmidt AK, Brooks DM, Lewerke L, Voronina E, Dandekar AA, Secor PR. Tripartite interactions between filamentous Pf4 bacteriophage, Pseudomonas aeruginosa, and bacterivorous nematodes. PLoS Pathog 2023; 19:e1010925. [PMID: 36800381 PMCID: PMC9980816 DOI: 10.1371/journal.ppat.1010925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/02/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa PAO1 is infected by the filamentous bacteriophage Pf4. Pf4 virions promote biofilm formation, protect bacteria from antibiotics, and modulate animal immune responses in ways that promote infection. Furthermore, strains cured of their Pf4 infection (ΔPf4) are less virulent in animal models of infection. Consistently, we find that strain ΔPf4 is less virulent in a Caenorhabditis elegans nematode infection model. However, our data indicate that PQS quorum sensing is activated and production of the pigment pyocyanin, a potent virulence factor, is enhanced in strain ΔPf4. The reduced virulence of ΔPf4 despite high levels of pyocyanin production may be explained by our finding that C. elegans mutants unable to sense bacterial pigments through the aryl hydrocarbon receptor are more susceptible to ΔPf4 infection compared to wild-type C. elegans. Collectively, our data support a model where suppression of quorum-regulated virulence factors by Pf4 allows P. aeruginosa to evade detection by innate host immune responses.
Collapse
Affiliation(s)
- Caleb M. Schwartzkopf
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Autumn J. Robinson
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Diane M. Brooks
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Lincoln Lewerke
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Pf4 is a filamentous bacteriophage integrated as a prophage into the genome of Pseudomonas aeruginosa PAO1. Pf4 virions can be produced without killing P. aeruginosa. However, cell lysis can occur during superinfection when Pf virions successfully infect a host lysogenized by a Pf superinfective variant. We have previously shown that infection of P. aeruginosa PAO1 with a superinfective Pf4 variant abolished twitching motility and altered biofilm architecture. More precisely, most of the cells embedded into the biofilm were showing a filamentous morphology, suggesting the activation of the cell envelope stress response involving both AlgU and SigX extracytoplasmic function sigma factors. Here, we show that Pf4 variant infection results in a drastic dysregulation of 3,360 genes representing about 58% of P. aeruginosa genome; of these, 70% of the virulence factors encoding genes show a dysregulation. Accordingly, Pf4 variant infection (termed Pf4*) causes in vivo reduction of P. aeruginosa virulence and decreased production of N-acyl-homoserine lactones and 2-alkyl-4-quinolones quorum-sensing molecules and related virulence factors, such as pyocyanin, elastase, and pyoverdine. In addition, the expression of genes involved in metabolism, including energy generation and iron homeostasis, was affected, suggesting further relationships between virulence and central metabolism. Altogether, these data show that Pf4 phage variant infection results in complex network dysregulation, leading to reducing acute virulence in P. aeruginosa. This study contributes to the comprehension of the bacterial response to filamentous phage infection. IMPORTANCE Filamentous bacteriophages can become superinfective and infect P. aeruginosa, even though they are inserted in the genome as lysogens. Despite this productive infection, growth of the host is only mildly affected, allowing the study of the interaction between the phage and the host, which is not possible in the case of lytic phages killing rapidly their host. Here, we demonstrate by transcriptome and phenotypic analysis that the infection by a superinfective filamentous phage variant causes a massive disruption in gene expression, including those coding for virulence factors and metabolic pathways.
Collapse
|
18
|
Wendling CC, Lange J, Liesegang H, Sieber M, Pöhlein A, Bunk B, Rajkov J, Goehlich H, Roth O, Brockhurst MA. Higher phage virulence accelerates the evolution of host resistance. Proc Biol Sci 2022; 289:20221070. [PMID: 36196537 PMCID: PMC9532999 DOI: 10.1098/rspb.2022.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pathogens vary strikingly in their virulence and the selection they impose on their hosts. While the evolution of different virulence levels is well studied, the evolution of host resistance in response to different virulence levels is less understood and, at present, mainly based on observations and theoretical predictions with few experimental tests. Increased virulence can increase selection for host resistance evolution if the benefits of avoiding infection outweigh resistance costs. To test this, we experimentally evolved the bacterium Vibrio alginolyticus in the presence of two variants of a filamentous phage that differ in their virulence. The bacterial host exhibited two alternative defence strategies: (1) super infection exclusion (SIE), whereby phage-infected cells were immune to subsequent infection at the cost of reduced growth, and (2) surface receptor mutations (SRM), providing resistance to infection by preventing phage attachment. While SIE emerged rapidly against both phages, SRM evolved faster against the high- than the low-virulence phage. Using a mathematical model of our system, we show that increasing virulence strengthens selection for SRM owing to the higher costs of infection suffered by SIE immune hosts. Thus, by accelerating the evolution of host resistance, more virulent phages caused shorter epidemics.
Collapse
Affiliation(s)
- Carolin C Wendling
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, CHN D 33, 8092 Zürich, Switzerland
| | - Janina Lange
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Heiko Liesegang
- Department of genomic and applied microbiology, Georg-August-University Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Michael Sieber
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Anja Pöhlein
- Department of genomic and applied microbiology, Georg-August-University Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38114 Braunschweig, Germany
| | - Jelena Rajkov
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Henry Goehlich
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Olivia Roth
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany.,Marine Evolutionary Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Ahator SD, Sagar S, Zhu M, Wang J, Zhang LH. Nutrient Availability and Phage Exposure Alter the Quorum-Sensing and CRISPR-Cas-Controlled Population Dynamics of Pseudomonas aeruginosa. mSystems 2022; 7:e0009222. [PMID: 35699339 PMCID: PMC9426516 DOI: 10.1128/msystems.00092-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) coordinates bacterial communication and cooperation essential for virulence and dominance in polymicrobial settings. QS also regulates the CRISPR-Cas system for targeted defense against parasitic genomes from phages and horizontal gene transfer. Although the QS and CRISPR-Cas systems are vital for bacterial survival, they undergo frequent selection in response to biotic and abiotic factors. Using the opportunistic Pseudomonas aeruginosa with well-established QS and CRISPR-Cas systems, we show how the social interactions between the acyl-homoserine lactone (AHL)-QS signal-blind mutants (ΔlasRrhlR) and the CRISPR-Cas mutants are affected by phage exposure and nutrient availability. We demonstrate that media conditions and phage exposure alter the resistance and relative fitness of ΔlasRrhlR and CRISPR-Cas mutants while tipping the fitness advantage in favor of the QS signal-blind mutants under nutrient-limiting conditions. We also show that the AHL signal-blind mutants are less selected by phages under QS-inducing conditions than the CRISPR-Cas mutants, whereas the mixed population of the CRISPR-Cas and AHL signal-blind mutants reduce phage infectivity, which can improve survival during phage exposure. Our data reveal that phage exposure and nutrient availability reshape the population dynamics between the ΔlasRrhlR QS mutants and CRISPR-Cas mutants, with key indications for cooperation and conflict between the strains. IMPORTANCE The increase in antimicrobial resistance has created the need for alternative interventions such as phage therapy. However, as previously observed with antimicrobial resistance, phage therapy will not be effective if bacteria evolve resistance and persist in the presence of the phages. The QS is commonly known as an arsenal for bacteria communication, virulence, and regulation of the phage defense mechanism, the CRISPR-Cas system. The QS and CRISPR-Cas systems are widespread in bacteria. However, they are known to evolve rapidly under the influence of biotic and abiotic factors in the bacterial environment, resulting in alteration in bacterial genotypes, which enhance phage resistance and fitness. We believe that adequate knowledge of the influence of environmental factors on the bacterial community lifestyle and phage defense mechanisms driven by the QS and CRISPR-Cas system is necessary for developing effective phage therapy.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Sadhanna Sagar
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Minya Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianhe Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
Wang W, Li Y, Tang K, Lin J, Gao X, Guo Y, Wang X. Filamentous Prophage Capsid Proteins Contribute to Superinfection Exclusion and Phage Defense in Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4285-4298. [PMID: 35384225 DOI: 10.1111/1462-2920.15991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Filamentous prophages in Pseudomonas aeruginosa PAO1 are converted to superinfective phage virions during biofilm development. Superinfection exclusion is necessary for the development of resistance against superinfective phage virions in host cells. However, the molecular mechanisms underlying the exclusion of superinfective Pf phages are unknown. In this study, we found that filamentous prophage-encoded structural proteins allow exclusion of superinfective Pf phages by interfering with type IV pilus (T4P) function. Specifically, the phage minor capsid protein pVII inhibits Pf phage adsorption by interacting with PilC and PilJ of T4P, and overproduction of pVII completely abrogates twitching motility. The minor capsid protein pIII provides partial superinfection exclusion and interacts with the PilJ and TolR/TolA proteins. Furthermore, pVII provides full host protection against infection by pilus-dependent lytic phages, and pIII provides partial protection against infection by pilus-independent lytic phages. Considering that filamentous prophages are common in clinical Pseudomonas isolates and their induction is often activated during biofilm formation, this study suggests the need to rethink the strategy of using lytic phages to treat P. aeruginosa biofilm-related infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Verma NK, Tan SJ, Chen J, Chen H, Ismail MH, Rice SA, Bifani P, Hariharan S, Paul VD, Sriram B, Dam LC, Chan CC, Ho P, Goh BC, Chung SJ, Goh KCM, Thong SH, Kwa ALH, Ostrowski A, Aung TT, Razali H, Low SW, Bhattacharyya MS, Gautam HK, Lakshminarayanan R, Sicheritz-Pontén T, Clokie MR, Moreira W, van Steensel MAM. inPhocus: Current State and Challenges of Phage Research in Singapore. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:6-11. [PMID: 36161195 PMCID: PMC9436264 DOI: 10.1089/phage.2022.29028.nkv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bacteriophages and phage-derived proteins are a promising class of antibacterial agents that experience a growing worldwide interest. To map ongoing phage research in Singapore and neighboring countries, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore (NTU) and Yong Loo Lin School of Medicine, National University of Singapore (NUS) recently co-organized a virtual symposium on Bacteriophage and Bacteriophage-Derived Technologies, which was attended by more than 80 participants. Topics were discussed relating to phage life cycles, diversity, the roles of phages in biofilms and the human gut microbiome, engineered phage lysins to combat polymicrobial infections in wounds, and the challenges and prospects of clinical phage therapy. This perspective summarizes major points discussed during the symposium and new perceptions that emerged after the panel discussion.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,Singapore Eye Research Institute, Singapore.,Address correspondence to: Navin Kumar Verma, PhD, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| | - Si Jia Tan
- Institute for Health Technologies, Nanyang Technological University Singapore, Singapore
| | - John Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hanrong Chen
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Microbial Biofilms Cluster, Nanyang Technological University Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Microbial Biofilms Cluster, Nanyang Technological University Singapore, Singapore.,Microbiomes for One Systems Health and Agriculture and Food, Westmead NSW, CSIRO, Australia
| | - Pablo Bifani
- Yong Loo Lin School of Medicine, National University of Singapore, A*STAR Infectious Diseases Labs, Singapore and the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Bharathi Sriram
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Linh Chi Dam
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Chia Ching Chan
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Boon Chong Goh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Shimin Jasmine Chung
- Department of Infectious Diseases, Singapore General Hospital, Singapore.,Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore
| | | | - Shu Hua Thong
- Department of Pharmacy, Singapore General Hospital, Singapore
| | - Andrea Lay-Hoon Kwa
- Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore.,Department of Pharmacy, Singapore General Hospital, Singapore.,Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Thet Tun Aung
- Department of Microbiology and Immunology, Immunology Translational Research Program and Centre for Life Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Halimah Razali
- Asian School of the Environment, Nanyang Technological University Singapore, Singapore
| | - Shermaine W.Y. Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | | | - Hemant K. Gautam
- CSIR—Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Wilfried Moreira
- Department of Microbiology and Immunology, Immunology Translational Research Program and Centre for Life Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Address correspondence to: Wilfried Moreira, PhD, Department of Microbiology and Immunology, Immunology Translational Research Program and Centre for Life Science, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Maurice Adrianus Monique van Steensel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,Address correspondence to: Maurice Adrianus Monique van Steensel, PhD, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
| |
Collapse
|
22
|
Zeng Z, Lin S, Li Q, Wang W, Wang Y, Xiao T, Guo Y. Molecular Basis of Wrinkled Variants Isolated From Pseudoalteromonas lipolytica Biofilms. Front Microbiol 2022; 13:797197. [PMID: 35295294 PMCID: PMC8919034 DOI: 10.3389/fmicb.2022.797197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Many Pseudoalteromonas species are dominant biofilm-forming Gammaproteobacteria in the ocean. The formation of Pseudoalteromonas biofilms is often accompanied by the occurrence of variants with different colony morphologies that may exhibit increased marine antifouling or anticorrosion activities. However, the genetic basis of the occurrence of these variants remains largely unexplored. In this study, we identified that wrinkled variants of P. lipolytica mainly arose due to mutations in the AT00_08765, a wspF-like gene, that are associated with decreased swimming motility and increased cellulose production. Moreover, we found that the spontaneous mutation in flhA, encoding a flagellar biosynthesis protein, also caused a wrinkled colony morphology that is associated with cellulose overproduction, indicating that flhA plays a dual role in controlling flagellar assembly and polysaccharide production in P. lipolytica. Investigation of wrinkled variants harboring spontaneous mutation in dgcB, encoding a GGDEF domain protein, also demonstrated dgcB plays an important role in regulating cellulose production and swimming motility. In addition, by screening the suppressor of the AT00_08765 variant strain, we also identified that the spontaneous mutation in cheR and bcsC directly abolished the wrinkled phenotype of the AT00_08765 variant strain, suggesting that the chemosensory signaling transduction and cellulose production are crucial for the determination of the wrinkled phenotype in P. lipolytica. Taken together, this study provides insights into the genetic variation within biofilms of P. lipolytica.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yuexue Guo,
| |
Collapse
|
23
|
Schmidt AK, Fitzpatrick AD, Schwartzkopf CM, Faith DR, Jennings LK, Coluccio A, Hunt DJ, Michaels LA, Hargil A, Chen Q, Bollyky PL, Dorward DW, Wachter J, Rosa PA, Maxwell KL, Secor PR. A Filamentous Bacteriophage Protein Inhibits Type IV Pili To Prevent Superinfection of Pseudomonas aeruginosa. mBio 2022; 13:e0244121. [PMID: 35038902 PMCID: PMC8764522 DOI: 10.1128/mbio.02441-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | | | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Alison Coluccio
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Devin J. Hunt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David W. Dorward
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia A. Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
24
|
Harris KB, Flynn KM, Cooper VS. Polygenic Adaptation and Clonal Interference Enable Sustained Diversity in Experimental Pseudomonas aeruginosa Populations. Mol Biol Evol 2021; 38:5359-5375. [PMID: 34410431 PMCID: PMC8662654 DOI: 10.1093/molbev/msab248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
How biodiversity arises and can be maintained in asexual microbial populations growing on a single resource remains unclear. Many models presume that beneficial genotypes will outgrow others and purge variation via selective sweeps. Environmental structure like that found in biofilms, which are associated with persistence during infection and other stressful conditions, may oppose this process and preserve variation. We tested this hypothesis by evolving Pseudomonas aeruginosa populations in biofilm-promoting arginine media for 3 months, using both a bead model of the biofilm life cycle and planktonic serial transfer. Surprisingly, adaptation and diversification were mostly uninterrupted by fixation events that eliminate diversity, with hundreds of mutations maintained at intermediate frequencies. The exceptions included genotypes with mutator alleles that also accelerated genetic diversification. Despite the rarity of hard sweeps, a remarkable 40 genes acquired parallel mutations in both treatments and often among competing genotypes within a population. These incomplete soft sweeps include several transporters (including pitA, pntB, nosD, and pchF) suggesting adaptation to the growth media that becomes highly alkaline during growth. Further, genes involved in signal transduction (including gacS, aer2, bdlA, and PA14_71750) reflect likely adaptations to biofilm-inducing conditions. Contrary to evolution experiments that select mutations in a few genes, these results suggest that some environments may expose a larger fraction of the genome and select for many adaptations at once. Thus, even growth on a sole carbon source can lead to persistent genetic and phenotypic variation despite strong selection that would normally purge diversity.
Collapse
Affiliation(s)
- Katrina B Harris
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth M Flynn
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microbiomes 2021; 7:80. [PMID: 34759294 PMCID: PMC8581019 DOI: 10.1038/s41522-021-00251-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilms are organised heterogeneous assemblages of microbial cells that are encased within a self-produced matrix. Current estimates suggest that up to 80% of bacterial and archaeal cells reside in biofilms. Since biofilms are the main mode of microbial life, understanding their biology and functions is critical, especially as controlling biofilm growth is essential in industrial, infrastructure and medical contexts. Here we discuss biofilms both as collections of individual cells, and as multicellular biological individuals, and introduce the concept of biofilms as unique incubators of diversity for the microbial world.
Collapse
Affiliation(s)
- Anahit Penesyan
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael R Gillings
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
26
|
Nair HAS, Subramoni S, Poh WH, Hasnuddin NTB, Tay M, Givskov M, Tolker-Nielsen T, Kjelleberg S, McDougald D, Rice SA. Carbon starvation of Pseudomonas aeruginosa biofilms selects for dispersal insensitive mutants. BMC Microbiol 2021; 21:255. [PMID: 34551714 PMCID: PMC8459498 DOI: 10.1186/s12866-021-02318-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilms disperse in response to specific environmental cues, such as reduced oxygen concentration, changes in nutrient concentration and exposure to nitric oxide. Interestingly, biofilms do not completely disperse under these conditions, which is generally attributed to physiological heterogeneity of the biofilm. However, our results suggest that genetic heterogeneity also plays an important role in the non-dispersing population of P. aeruginosa in biofilms after nutrient starvation. RESULTS In this study, 12.2% of the biofilm failed to disperse after 4 d of continuous starvation-induced dispersal. Cells were recovered from the dispersal phase as well as the remaining biofilm. For 96 h starved biofilms, rugose small colony variants (RSCV) were found to be present in the biofilm, but were not observed in the dispersal effluent. In contrast, wild type and small colony variants (SCV) were found in high numbers in the dispersal phase. Genome sequencing of these variants showed that most had single nucleotide mutations in genes associated with biofilm formation, e.g. in wspF, pilT, fha1 and aguR. Complementation of those mutations restored starvation-induced dispersal from the biofilms. Because c-di-GMP is linked to biofilm formation and dispersal, we introduced a c-di-GMP reporter into the wild-type P. aeruginosa and monitored green fluorescent protein (GFP) expression before and after starvation-induced dispersal. Post dispersal, the microcolonies were smaller and significantly brighter in GFP intensity, suggesting the relative concentration of c-di-GMP per cell within the microcolonies was also increased. Furthermore, only the RSCV showed increased c-di-GMP, while wild type and SCV were no different from the parental strain. CONCLUSIONS This suggests that while starvation can induce dispersal from the biofilm, it also results in strong selection for mutants that overproduce c-di-GMP and that fail to disperse in response to the dispersal cue, starvation.
Collapse
Affiliation(s)
- Harikrishnan A S Nair
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,Interdisciplinary Graduate School, Singapore, Singapore.,Present address: Eppendorf AG, Barkhausenweg 1, 22339, Hamburg, Germany
| | - Sujatha Subramoni
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Wee Han Poh
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | | | - Martin Tay
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,Present address: Public Utilities Board, Government of Singapore, Singapore, Singapore
| | - Michael Givskov
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Staffan Kjelleberg
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Diane McDougald
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore. .,The Ithree Institute, University of Technology Sydney, Sydney, Australia.
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,The Ithree Institute, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
27
|
Du L, Chen J, Wu Y, Xia G, Chen M, Zhao P, Wang Y, Yao D, Liu F, Zhang L, Wang X, Yang Y, Wang L. Long Non-coding RNA N1LR Protects Against Myocardial Ischemic/Reperfusion Injury Through Regulating the TGF-β Signaling Pathway. Front Cardiovasc Med 2021; 8:654969. [PMID: 34485393 PMCID: PMC8414635 DOI: 10.3389/fcvm.2021.654969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play critical roles in various cell biological processes. However, the mechanism of lncRNAs in acute myocardial infarction (AMI) is not fully understood. Previous studies showed that lncRNA N1LR was down-regulated in ischemic cerebral stroke and its up-regulation was protective. The current study was designed to assess the protective effect of N1LR and further to explore potential mechanisms of N1LR in ischemic/reperfusion (I/R) injury after AMI. Male C57BL/6J mice and H9c2 cardiomyocytes were selected to construct in vivo and in vitro pathological models. In H9c2 cell line, N1LR expression was markedly decreased after H2O2 and CoCl2 treatments and N1LR overexpression alleviated apoptosis, inflammation reaction, and LDH release in cardiomyocytes treated with H2O2 and CoCl2. Mouse in vivo study showed that overexpression of N1LR enhanced cardiac function and suppressed inflammatory response and fibrosis. Mechanistically, we found that the expression of transforming growth factor (TGF)-β1 and smads were significantly decreased in the N1LR overexpression group exposed to H2O2. In a summary, our study indicated that N1LR can act as a protective factor against cardiac ischemic-reperfusion injury through regulating the TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- Lin Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jie Chen
- Department of Gastroenterology, Northern Jiangsu Province People's Hospital, Yangzhou University, Yangzhou, China
| | - Yong Wu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guangwei Xia
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Mingxing Chen
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yao Wang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Deshan Yao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Fan Liu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lina Zhang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xue Wang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Ismail MH, Michie KA, Goh YF, Noorian P, Kjelleberg S, Duggin IG, McDougald D, Rice SA. The Repressor C Protein, Pf4r, Controls Superinfection of Pseudomonas aeruginosa PAO1 by the Pf4 Filamentous Phage and Regulates Host Gene Expression. Viruses 2021; 13:1614. [PMID: 34452479 PMCID: PMC8402870 DOI: 10.3390/v13081614] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
It has been shown that the filamentous phage, Pf4, plays an important role in biofilm development, stress tolerance, genetic variant formation and virulence in Pseudomonas aeruginosa PAO1. These behaviours are linked to the appearance of superinfective phage variants. Here, we have investigated the molecular mechanism of superinfection as well as how the Pf4 phage can control host gene expression to modulate host behaviours. Pf4 exists as a prophage in PAO1 and encodes a homologue of the P2 phage repressor C and was recently named Pf4r. Through a combination of molecular techniques, ChIPseq and transcriptomic analyses, we show a critical site in repressor C (Pf4r) where a mutation in the site, 788799A>G (Ser4Pro), causes Pf4r to lose its function as the immunity factor against reinfection by Pf4. X-ray crystal structure analysis shows that Pf4r forms symmetric homo-dimers homologous to the E.coli bacteriophage P2 RepC protein. A mutation, Pf4r*, associated with the superinfective Pf4r variant, found at the dimer interface, suggests dimer formation may be disrupted, which derepresses phage replication. This is supported by multi-angle light scattering (MALS) analysis, where the Pf4r* protein only forms monomers. The loss of dimerisation also explains the loss of Pf4r's immunity function. Phenotypic assays showed that Pf4r increased LasB activity and was also associated with a slight increase in the percentage of morphotypic variants. ChIPseq and transcriptomic analyses suggest that Pf4r also likely functions as a transcriptional regulator for other host genes. Collectively, these data suggest the mechanism by which filamentous phages play such an important role in P. aeruginosa biofilm development.
Collapse
Affiliation(s)
- Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (M.H.I.); (Y.F.G.); (S.K.); (D.M.)
- The School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Katharine A. Michie
- Structural Biology Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Yu Fen Goh
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (M.H.I.); (Y.F.G.); (S.K.); (D.M.)
| | - Parisa Noorian
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia; (P.N.); (I.G.D.)
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (M.H.I.); (Y.F.G.); (S.K.); (D.M.)
- The School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Iain G. Duggin
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia; (P.N.); (I.G.D.)
| | - Diane McDougald
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (M.H.I.); (Y.F.G.); (S.K.); (D.M.)
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia; (P.N.); (I.G.D.)
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (M.H.I.); (Y.F.G.); (S.K.); (D.M.)
- The School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia; (P.N.); (I.G.D.)
| |
Collapse
|
29
|
Genomic evolution of the marine bacterium Phaeobacter inhibens during biofilm growth. Appl Environ Microbiol 2021; 87:e0076921. [PMID: 34288701 DOI: 10.1128/aem.00769-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P. inhibens 2.10 is an effective biofilm former on marine surfaces and has the ability to outcompete other microorganisms, possibly due to the production of the plasmid-encoded, secondary metabolite tropodithietic acid (TDA). P. inhibens 2.10 biofilms produce phenotypic variants with reduced competitiveness compared to the wild-type. In the present study, we used longitudinal, genome-wide deep sequencing to uncover the genetic foundation that contributes to the emergent phenotypic diversity in P. inhibens 2.10 biofilm dispersants. Our results show that phenotypic variation is not due to the loss of plasmid that encodes the genes for the TDA synthesis, but instead show that P. inhibens 2.10 biofilm populations become rapidly enriched in single nucleotide variations in genes involved in the synthesis of TDA. While variants in genes previously linked to other phenotypes, such as lipopolysaccharide production (i.e. rfbA) and celluar persistence (i.e. metG), also appear to be selected for during biofilm dispersal, the number and consistency of variations found for genes involved in TDA production suggest that this metabolite imposes a burden for P. inhibens 2.10 cells. Our results indicate a strong selection pressure for the loss of TDA in mono-species biofilm populations and provide insight into how competition (or lack thereof) in biofilms might shape genome evolution in bacteria. Importance Statement Biofilm formation and dispersal are important survival strategies for environmental bacteria. During biofilm dispersal cells often display stable and heritable variants from the parental biofilm. Phaeobacter inhibens is an effective colonizer of marine surfaces, in which a subpopulation of its biofilm dispersal cells displays a non-competitive phenotype. This study aimed to elucidate the genetic basis of these phenotypic changes. Despite the progress made to date in characterizing the dispersal variants in P. inhibens, little is understood about the underlying genetic changes that result in the development of the specific variants. Here, P. inhibens phenotypic variation was linked to single nucleotide polymorphisms (SNPs), in particular in genes affecting the competitive ability of P. inhibens, including genes related to the production of the antibiotic tropodithietic acid (TDA) and bacterial cell-cell communication (e.g. quorum sensing). This work is significant as it reveals how the biofilm-lifestyle might shape genome evolution in a cosmopolitan bacterium.
Collapse
|
30
|
Hassett DJ, Kovall RA, Schurr MJ, Kotagiri N, Kumari H, Satish L. The Bactericidal Tandem Drug, AB569: How to Eradicate Antibiotic-Resistant Biofilm Pseudomonas aeruginosa in Multiple Disease Settings Including Cystic Fibrosis, Burns/Wounds and Urinary Tract Infections. Front Microbiol 2021; 12:639362. [PMID: 34220733 PMCID: PMC8245851 DOI: 10.3389/fmicb.2021.639362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
The life-threatening pandemic concerning multi-drug resistant (MDR) bacteria is an evolving problem involving increased hospitalizations, billions of dollars in medical costs and a remarkably high number of deaths. Bacterial pathogens have demonstrated the capacity for spontaneous or acquired antibiotic resistance and there is virtually no pool of organisms that have not evolved such potentially clinically catastrophic properties. Although many diseases are linked to such organisms, three include cystic fibrosis (CF), burn/blast wounds and urinary tract infections (UTIs), respectively. Thus, there is a critical need to develop novel, effective antimicrobials for the prevention and treatment of such problematic infections. One of the most formidable, naturally MDR bacterial pathogens is Pseudomonas aeruginosa (PA) that is particularly susceptible to nitric oxide (NO), a component of our innate immune response. This susceptibility sets the translational stage for the use of NO-based therapeutics during the aforementioned human infections. First, we discuss how such NO therapeutics may be able to target problematic infections in each of the aforementioned infectious scenarios. Second, we describe a recent discovery based on years of foundational information, a novel drug known as AB569. AB569 is capable of forming a "time release" of NO from S-nitrosothiols (RSNO). AB569, a bactericidal tandem consisting of acidified NaNO2 (A-NO2 -) and Na2-EDTA, is capable of killing all pathogens that are associated with the aforementioned disorders. Third, we described each disease state in brief, the known or predicted effects of AB569 on the viability of PA, its potential toxicity and highly remote possibility for resistance to develop. Finally, we conclude that AB569 can be a viable alternative or addition to conventional antibiotic regimens to treat such highly problematic MDR bacterial infections for civilian and military populations, as well as the economical burden that such organisms pose.
Collapse
Affiliation(s)
- Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH, United States
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, OH, United States
| | - Michael J Schurr
- Department of Immunology and Microbiology, University of Colorado Health Sciences, Denver, CO, United States
| | - Nalinikanth Kotagiri
- Division of Pharmacy, University of Colorado Health Sciences, Denver, CO, United States
| | - Harshita Kumari
- Division of Pharmacy, University of Colorado Health Sciences, Denver, CO, United States
| | - Latha Satish
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Shriners Hospitals for Children-Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
31
|
Yamamoto K, Kusada H, Kamagata Y, Tamaki H. Parallel Evolution of Enhanced Biofilm Formation and Phage-Resistance in Pseudomonas aeruginosa during Adaptation Process in Spatially Heterogeneous Environments. Microorganisms 2021; 9:569. [PMID: 33801971 PMCID: PMC7999436 DOI: 10.3390/microorganisms9030569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/22/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
An opportunistic pathogen Pseudomonas aeruginosa has a versatile phenotype and high evolutionary potential to adapt to various natural habitats. As the organism normally lives in spatially heterogeneous and polymicrobial environments from open fields to the inside of hosts, adaptation to abiotic (spatial heterogeneity) and biotic factors (interspecies interactions) is a key process to proliferate. However, our knowledge about the adaptation process of P. aeruginosa in spatially heterogeneous environments associated with other species is limited. We show herein that the evolutionary dynamics of P. aeruginosa PAO1 in spatially heterogeneous environments with Staphylococcus aureus known to coexist in vivo is dictated by two distinct core evolutionary trajectories: (i) the increase of biofilm formation and (ii) the resistance to infection by a filamentous phage which is retained in the PAO1 genome. Hyperbiofilm and/or pili-deficient phage-resistant variants were frequently selected in the laboratory evolution experiment, indicating that these are key adaptive traits under spatially structured conditions. On the other hand, the presence of S. aureus had only a marginal effect on the emergence and maintenance of these variants. These results show key adaptive traits of P. aeruginosa and indicate the strong selection pressure conferred by spatial heterogeneity, which might overwhelm the effect of interspecies interactions.
Collapse
Affiliation(s)
- Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 0628517, Hokkaido, Japan
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058577, Ibaraki, Japan
| | - Hiroyuki Kusada
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
| | - Yoichi Kamagata
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
| | - Hideyuki Tamaki
- Bioproduction Research Institute, AIST, Tsukuba 3058566, Ibaraki, Japan; (H.K.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058577, Ibaraki, Japan
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan
| |
Collapse
|
32
|
Phenotypic and Genotypic Adaptations in Pseudomonas aeruginosa Biofilms following Long-Term Exposure to an Alginate Oligomer Therapy. mSphere 2021; 6:6/1/e01216-20. [PMID: 33472983 PMCID: PMC7845618 DOI: 10.1128/msphere.01216-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) evolve to generate environmentally adapted biofilm communities, leading to increased patient morbidity and mortality. OligoG CF-5/20, a low-molecular-weight inhaled alginate oligomer therapy, is currently in phase IIb/III clinical trials in CF patients. Experimental evolution of P. aeruginosa in response to OligoG CF-5/20 was assessed using a bead biofilm model allowing continuous passage (45 days; ∼245 generations). Mutants isolated after OligoG CF-5/20 treatment typically had a reduced biofilm-forming ability and altered motility profile. Genotypically, OligoG CF-5/20 provided no selective pressure on genomic mutations within morphotypes. Chronic exposure to azithromycin, a commonly prescribed antibiotic in CF patients, with or without OligoG CF-5/20 in the biofilm evolution model also had no effect on rates of resistance acquisition. Interestingly, however, cross-resistance to other antibiotics (e.g., aztreonam) was reduced in the presence of OligoG CF-5/20. Collectively, these findings show no apparent adverse effects from long-term exposure to OligoG CF-5/20, instead resulting in both fewer colonies with multidrug resistance (MDR)-associated phenotypes and improved antibiotic susceptibility of P. aeruginosa IMPORTANCE The emergence of multidrug-resistant (MDR) pathogens within biofilms in the cystic fibrosis lung results in increased morbidity. An inhalation therapy derived from alginate, OligoG CF-5/20, is currently in clinical trials for cystic fibrosis patients. OligoG CF-5/20 has been shown to alter sputum viscoelasticity, disrupt mucin polymer networks, and disrupt MDR pseudomonal biofilms. Long-term exposure to inhaled therapeutics may induce selective evolutionary pressures on bacteria within the lung biofilm. Here, a bead biofilm model with repeated exposure of P. aeruginosa to OligoG CF-5/20 (alone and in combination with azithromycin) was conducted to study these long-term effects and characterize the phenotypic and genotypic adaptations which result. These findings, over 6 weeks, show that long-term use of OligoG CF-5/20 does not lead to extensive mutational changes and may potentially decrease the pathogenicity of the bacterial biofilm and improve the susceptibility of P. aeruginosa to other classes of antibiotics.
Collapse
|
33
|
Varadarajan AR, Allan RN, Valentin JDP, Castañeda Ocampo OE, Somerville V, Pietsch F, Buhmann MT, West J, Skipp PJ, van der Mei HC, Ren Q, Schreiber F, Webb JS, Ahrens CH. An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1. NPJ Biofilms Microbiomes 2020; 6:46. [PMID: 33127897 PMCID: PMC7603352 DOI: 10.1038/s41522-020-00154-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms.
Collapse
Affiliation(s)
- Adithi R Varadarajan
- Research Group Molecular Diagnostics Genomics & Bioinformatics, Agroscope and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.
| | - Raymond N Allan
- School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH, UK
| | - Jules D P Valentin
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Olga E Castañeda Ocampo
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Vincent Somerville
- Research Group Molecular Diagnostics Genomics & Bioinformatics, Agroscope and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Franziska Pietsch
- Division of Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Matthias T Buhmann
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Jonathan West
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Hybrid Biodevices, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul J Skipp
- Centre for Proteomics Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Henny C van der Mei
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Jeremy S Webb
- School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Christian H Ahrens
- Research Group Molecular Diagnostics Genomics & Bioinformatics, Agroscope and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.
| |
Collapse
|
34
|
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant. Microorganisms 2020; 8:microorganisms8111700. [PMID: 33143386 PMCID: PMC7693463 DOI: 10.3390/microorganisms8111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
Collapse
|
35
|
Fiedoruk K, Zakrzewska M, Daniluk T, Piktel E, Chmielewska S, Bucki R. Two Lineages of Pseudomonas aeruginosa Filamentous Phages: Structural Uniformity over Integration Preferences. Genome Biol Evol 2020; 12:1765-1781. [PMID: 32658245 PMCID: PMC7549136 DOI: 10.1093/gbe/evaa146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa filamentous (Pf) bacteriophages are important factors contributing to the pathogenicity of this opportunistic bacterium, including biofilm formation and suppression of bacterial phagocytosis by macrophages. In addition, the capacity of Pf phages to form liquid crystal structures and their high negative charge density makes them potent sequesters of cationic antibacterial agents, such as aminoglycoside antibiotics or host antimicrobial peptides. Therefore, Pf phages have been proposed as a potential biomarker for risk of antibiotic resistance development. The majority of studies describing biological functions of Pf viruses have been performed with only three of them: Pf1, Pf4, and Pf5. However, our analysis revealed that Pf phages exist as two evolutionary lineages (I and II), characterized by substantially different structural/morphogenesis properties, despite sharing the same integration sites in the host chromosomes. All aforementioned model Pf phages are members of the lineage I. Hence, it is reasonable to speculate that their interactions with P. aeruginosa and impact on its pathogenicity may be not completely extrapolated to the lineage II members. Furthermore, in order to organize the present numerical nomenclature of Pf phages, we propose a more informative approach based on the insertion sites, that is, Pf-tRNA-Gly, -Met, -Sec, -tmRNA, and -DR (direct repeats), which are fully compatible with one of five types of tyrosine integrases/recombinases XerC/D carried by these viruses. Finally, we discuss possible evolutionary mechanisms behind this division and consequences from the perspective of virus-virus, virus-bacterium, and virus-human interactions.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| |
Collapse
|
36
|
Evolution of an Escherichia coli PTS - strain: a study of reproducibility and dynamics of an adaptive evolutive process. Appl Microbiol Biotechnol 2020; 104:9309-9325. [PMID: 32954454 DOI: 10.1007/s00253-020-10885-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Adaptive laboratory evolution (ALE) has been used to study and solve pressing questions about evolution, especially for the study of the development of mutations that confer increased fitness during evolutionary processes. In this contribution, we investigated how the evolutionary process conducted with the PTS- mutant of Escherichia coli PB11 in three parallel batch cultures allowed the restoration of rapid growth with glucose as the carbon source. The significant findings showed that genomic sequence analysis of a set of newly evolved mutants isolated from ALE experiments 2-3 developed some essential mutations, which efficiently improved the fast-growing phenotypes throughout different fitness landscapes. Regulator galR was the target of several mutations such as SNPs, partial and total deletions, and insertion of an IS1 element and thus indicated the relevance of a null mutation of this gene in the adaptation of the evolving population of PB11 during the parallel ALE experiments. These mutations resulted in the selection of MglB and GalP as the primary glucose transporters by the evolving population, but further selection of at least a second adaptive mutation was also necessary. We found that mutations in the yfeO, rppH, and rng genes improved the fitness advantage of evolving PTS- mutants and resulted in amplification of leaky activity in Glk for glucose phosphorylation and upregulation of glycolytic and other growth-related genes. Notably, we determined that these mutations appeared and were fixed in the evolving populations between 48 and 72 h of cultivation, which resulted in the selection of fast-growing mutants during one ALE experiments in batch cultures of 80 h duration.Key points• ALE experiments selected evolved mutants through different fitness landscapes in which galR was the target of different mutations: SNPs, deletions, and insertion of IS.• Key mutations in evolving mutants appeared and fixed at 48-72 h of cultivation.• ALE experiments led to increased understanding of the genetics of cellular adaptation to carbon source limitation.
Collapse
|
37
|
Bridier A, Piard JC, Briandet R, Bouchez T. Emergence of a Synergistic Diversity as a Response to Competition in Pseudomonas putida Biofilms. MICROBIAL ECOLOGY 2020; 80:47-59. [PMID: 31844910 DOI: 10.1007/s00248-019-01470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Genetic diversification through the emergence of variants is one of the known mechanisms enabling the adaptation of bacterial communities. We focused in this work on the adaptation of the model strain Pseudomonas putida KT2440 in association with another P. putida strain (PCL1480) recently isolated from soil to investigate the potential role of bacterial interactions in the diversification process. On the basis of colony morphology, three variants of P. putida KT2440 were obtained from co-culture after 168 h of growth whereas no variant was identified from the axenic KT2440 biofilm. The variants exhibited distinct phenotypes and produced biofilms with specific architecture in comparison with the ancestor. The variants better competed with the P. putida PCL1480 strain in the dual-strain biofilms after 24 h of co-culture in comparison with the ancestor. Moreover, the synergistic interaction of KT2440 ancestor and the variants led to an improved biofilm production and to higher competitive ability versus the PCL1480 strain, highlighting the key role of diversification in the adaptation of P. putida KT2440 in the mixed community. Whole genome sequencing revealed mutations in polysaccharides biosynthesis protein, membrane transporter, or lipoprotein signal peptidase genes in variants.
Collapse
Affiliation(s)
- Arnaud Bridier
- ANSES, Fougères Laboratory, AB2R, 10B rue Claude Bourgelat, 35300, Fougères, France.
- IRSTEA, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761, Antony Cedex, France.
| | - J C Piard
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - R Briandet
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - T Bouchez
- IRSTEA, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761, Antony Cedex, France
| |
Collapse
|
38
|
Henriksen K, Rørbo N, Rybtke ML, Martinet MG, Tolker-Nielsen T, Høiby N, Middelboe M, Ciofu O. P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage-ciprofloxacin combination. Pathog Dis 2020; 77:5368070. [PMID: 30821815 DOI: 10.1093/femspd/ftz011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Phage therapy has shown promising results in the treatment of Pseudomonas aeruginosa biofilm infections in animal studies and case reports. The aim of this study was to quantify effects of phage treatments on P. aeruginosa biofilm production and structure. Confocal scanning microscopy was used to follow the interaction between a cocktail of three virulent phages and P. aeruginosa flow-cell biofilms. The role of (i) biofilm age, (ii) repeated phage treatments, (iii) alginate production and (iv) the combination with sub-MIC levels of ciprofloxacin was investigated. Single phage treatment in the early biofilm stages significantly reduced P. aeruginosa PAO1 biovolume (85%-98% reduction). Repeated phage treatments increased the biovolume from 18.25 (untreated biofilm) to 22.24 and 31.07 µm3/µm2 for biofilms treated with phages twice and thrice, respectively. Alginate protected against the phage treatment as the live biovolume remained unaffected by the phage treatment in the mucoid biofilm (20.11 µm3/µm2 in untreated and 21.74 µm3/µm2 in phage-treated biofilm) but decreased in the PAO1 biofilm from 27.35 to 0.89 µm3/µm2. We show that the combination of phages with antibiotics at sub-MIC levels caused a ∼6 log units reduction in the abundance of P. aeruginosa cells in biofilms and that phage treatment increased the size of microcolonies in flow-cell system.
Collapse
Affiliation(s)
- Karoline Henriksen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| | - Nanna Rørbo
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Morten Levin Rybtke
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| | - Mark Grevsen Martinet
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| | - Niels Høiby
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100 , Copenhagen, Denmark
| | - Mathias Middelboe
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| |
Collapse
|
39
|
Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front Immunol 2020; 11:244. [PMID: 32153575 PMCID: PMC7047154 DOI: 10.3389/fimmu.2020.00244] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
Collapse
Affiliation(s)
- Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Elizabeth B. Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - M. Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Valery Roman-Cruz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Naomi Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Conner Copeland
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Julie Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Travis J. Wheeler
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Carlos E. Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
40
|
Phage liquid crystalline droplets form occlusive sheaths that encapsulate and protect infectious rod-shaped bacteria. Proc Natl Acad Sci U S A 2020; 117:4724-4731. [PMID: 32071243 PMCID: PMC7060675 DOI: 10.1073/pnas.1917726117] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we investigate how phage molecules secreted by pathogenic Pseudomonas aeruginosa bacteria drive antibiotic tolerance by forming phase-separated liquid crystalline compartments around bacterial cells. This study spans across spatial scales, combining atomic structure determination using electron cryomicroscopy with cellular electron cryotomography, optical microscopy, and biochemical reconstitution. We show that encapsulation of rod-shaped bacteria by spindle-shaped liquid crystalline droplets made of phage molecules is a process profoundly influenced by shape and size complementarity. The opportunistic pathogen Pseudomonas aeruginosa is a major cause of antibiotic-tolerant infections in humans. P. aeruginosa evades antibiotics in bacterial biofilms by up-regulating expression of a symbiotic filamentous inoviral prophage, Pf4. We investigated the mechanism of phage-mediated antibiotic tolerance using biochemical reconstitution combined with structural biology and high-resolution cellular imaging. We resolved electron cryomicroscopy atomic structures of Pf4 with and without its linear single-stranded DNA genome, and studied Pf4 assembly into liquid crystalline droplets using optical microscopy and electron cryotomography. By biochemically replicating conditions necessary for antibiotic protection, we found that phage liquid crystalline droplets form phase-separated occlusive compartments around rod-shaped bacteria leading to increased bacterial survival. Encapsulation by these compartments was observed even when inanimate colloidal rods were used to mimic rod-shaped bacteria, suggesting that shape and size complementarity profoundly influences the process. Filamentous inoviruses are pervasive across prokaryotes, and in particular, several Gram-negative bacterial pathogens including Neisseria meningitidis, Vibrio cholerae, and Salmonella enterica harbor these prophages. We propose that biophysical occlusion mediated by secreted filamentous molecules such as Pf4 may be a general strategy of bacterial survival in harsh environments.
Collapse
|
41
|
Penesyan A, Nagy SS, Kjelleberg S, Gillings MR, Paulsen IT. Rapid microevolution of biofilm cells in response to antibiotics. NPJ Biofilms Microbiomes 2019; 5:34. [PMID: 31728201 PMCID: PMC6834608 DOI: 10.1038/s41522-019-0108-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023] Open
Abstract
Infections caused by Acinetobacter baumannii are increasingly antibiotic resistant, generating a significant public health problem. Like many bacteria, A. baumannii adopts a biofilm lifestyle that enhances its antibiotic resistance and environmental resilience. Biofilms represent the predominant mode of microbial life, but research into antibiotic resistance has mainly focused on planktonic cells. We investigated the dynamics of A. baumannii biofilms in the presence of antibiotics. A 3-day exposure of A. baumannii biofilms to sub-inhibitory concentrations of antibiotics had a profound effect, increasing biofilm formation and antibiotic resistance in the majority of biofilm dispersal isolates. Cells dispersing from biofilms were genome sequenced to identify mutations accumulating in their genomes, and network analysis linked these mutations to their phenotypes. Transcriptomics of biofilms confirmed the network analysis results, revealing novel gene functions of relevance to both resistance and biofilm formation. This approach is a rapid and objective tool for investigating resistance dynamics of biofilms.
Collapse
Affiliation(s)
- Anahit Penesyan
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia.,2School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| | - Stephanie S Nagy
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Staffan Kjelleberg
- 3Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551 Singapore.,4School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore.,5School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Michael R Gillings
- 6Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Ian T Paulsen
- 1Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
42
|
Semenec L, Vergara IA, Laloo AE, Mathews ER, Bond PL, Franks AE. Enhanced Growth of Pilin-Deficient Geobacter sulfurreducens Mutants in Carbon Poor and Electron Donor Limiting Conditions. MICROBIAL ECOLOGY 2019; 78:618-630. [PMID: 30759269 DOI: 10.1007/s00248-019-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Geobacter sulfurreducens pili enable extracellular electron transfer and play a role in secretion of c-type cytochromes such as OmcZ. PilA-deficient mutants of G. sulfurreducens have previously been shown to accumulate cytochromes within their membranes. This cytochrome retaining phenotype allowed for enhanced growth of PilA-deficient mutants in electron donor and carbon-limited conditions where formate and fumarate are provided as the sole electron donor and acceptor with no supplementary carbon source. Conversely, wild-type G. sulfurreducens, which has normal secretion of cytochromes, has comparative limited growth in these conditions. This growth is further impeded for OmcZ-deficient and OmcS-deficient mutants. A PilB-deficient mutant which prevents pilin production but allows for secretion of OmcZ had moderate growth in these conditions, indicating a role for cytochrome localization to enabling survival in the electron donor and carbon-limited conditions. To determine which pathways enhanced growth using formate, Sequential Window Acquisition of all Theoretical Mass Spectra mass spectrometry (SWATH-MS) proteomics of formate adapted PilA-deficient mutants and acetate grown wild type was performed. PilA-deficient mutants had an overall decrease in tricarboxylic acid (TCA) cycle enzymes and significant upregulation of electron transport chain associated proteins including many c-type cytochromes and [NiFe]-hydrogenases. Whole genome sequencing of the mutants shows strong convergent evolution and emergence of genetic subpopulations during adaptation to growth on formate. The results described here suggest a role for membrane constrained c-type cytochromes to the enhancement of survival and growth in electron donor and carbon-limited conditions.
Collapse
Affiliation(s)
- Lucie Semenec
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Ismael A Vergara
- Bioinformatics and Cancer Genomics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Andrew E Laloo
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth R Mathews
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
- Centre for Future Landscapes, La Trobe University, Melbourne, Australia.
| |
Collapse
|
43
|
Sylvain F, Holland A, Audet‐Gilbert É, Luis Val A, Derome N. Amazon fish bacterial communities show structural convergence along widespread hydrochemical gradients. Mol Ecol 2019; 28:3612-3626. [DOI: 10.1111/mec.15184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | - Aleicia Holland
- Department of Ecology, Environment and Evolution School of Life Science La Trobe University Bundoora Vic. Australia
| | - Émie Audet‐Gilbert
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec City QC Canada
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular Instituto Nacional de Pesquisas da Amazônia (INPA) Manaus Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec City QC Canada
| |
Collapse
|
44
|
Zeng Z, Zhan W, Wang W, Wang P, Tang K, Wang X. Biofilm formation in Pseudoalteromonas lipolytica is related to IS5-like insertions in the capsular polysaccharide operon. FEMS Microbiol Ecol 2019; 95:5488432. [PMID: 31077283 DOI: 10.1093/femsec/fiz065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/10/2019] [Indexed: 11/14/2022] Open
Abstract
Bacterial capsular polysaccharides (CPSs) participate in environmental adaptation in diverse bacteria species. However, the role and regulation of CPS production in marine bacteria have remained largely unexplored. We previously reported that both wrinkled and translucent Pseudoalteromonas lipolytica variants with altered polysaccharide production were generated in pellicle biofilm-associated cells. In this study, we observed that translucent variants were generated at a rate of ∼20% in colony biofilms of P. lipolytica cultured on HSLB agar plates for 12 days. The DNA sequencing results revealed that nearly 90% of these variants had an IS5-like element inserted within the coding or promoter regions of nine genes in the cps operon. In contrast, IS5 insertion into the cps operon was not detected in planktonic cells. Furthermore, we demonstrated that the IS5 insertion event inactivated CPS production, which leads to a translucent colony morphology. The CPS-deficient variants showed an increased ability to form attached biofilms but exhibited reduced resistance to sublethal concentrations of antibiotics. Moreover, deleting the DNA repair gene recA significantly decreased the frequency of occurrence of CPS-deficient variants during biofilm formation. Thus, IS insertion into the cps operon is an important mechanism for the production of genetic variants during biofilm formation of marine bacteria.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Waner Zhan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Johnson RC, Deming C, Conlan S, Zellmer CJ, Michelin AV, Lee-Lin S, Thomas PJ, Park M, Weingarten RA, Less J, Dekker JP, Frank KM, Musser KA, McQuiston JR, Henderson DK, Lau AF, Palmore TN, Segre JA. Investigation of a Cluster of Sphingomonas koreensis Infections. N Engl J Med 2018; 379:2529-2539. [PMID: 30586509 PMCID: PMC6322212 DOI: 10.1056/nejmoa1803238] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Plumbing systems are an infrequent but known reservoir for opportunistic microbial pathogens that can infect hospitalized patients. In 2016, a cluster of clinical sphingomonas infections prompted an investigation. METHODS We performed whole-genome DNA sequencing on clinical isolates of multidrug-resistant Sphingomonas koreensis identified from 2006 through 2016 at the National Institutes of Health (NIH) Clinical Center. We cultured S. koreensis from the sinks in patient rooms and performed both whole-genome and shotgun metagenomic sequencing to identify a reservoir within the infrastructure of the hospital. These isolates were compared with clinical and environmental S. koreensis isolates obtained from other institutions. RESULTS The investigation showed that two isolates of S. koreensis obtained from the six patients identified in the 2016 cluster were unrelated, but four isolates shared more than 99.92% genetic similarity and were resistant to multiple antibiotic agents. Retrospective analysis of banked clinical isolates of sphingomonas from the NIH Clinical Center revealed the intermittent recovery of a clonal strain over the past decade. Unique single-nucleotide variants identified in strains of S. koreensis elucidated the existence of a reservoir in the hospital plumbing. Clinical S. koreensis isolates from other facilities were genetically distinct from the NIH isolates. Hospital remediation strategies were guided by results of microbiologic culturing and fine-scale genomic analyses. CONCLUSIONS This genomic and epidemiologic investigation suggests that S. koreensis is an opportunistic human pathogen that both persisted in the NIH Clinical Center infrastructure across time and space and caused health care-associated infections. (Funded by the NIH Intramural Research Programs.).
Collapse
Affiliation(s)
- Ryan C Johnson
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Clay Deming
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Sean Conlan
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Caroline J Zellmer
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Angela V Michelin
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - ShihQueen Lee-Lin
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Pamela J Thomas
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Morgan Park
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Rebecca A Weingarten
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - John Less
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - John P Dekker
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Karen M Frank
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Kimberlee A Musser
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - John R McQuiston
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - David K Henderson
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Anna F Lau
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Tara N Palmore
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| | - Julia A Segre
- From the National Human Genome Research Institute (R.C.J., C.D., S.C., S.L.-L., J.A.S.), National Institutes of Health (NIH) Clinical Center (C.J.Z., A.V.M., R.A.W., J.P.D., K.M.F., D.K.H., A.F.L., T.N.P.), and the Division of Facilities, Operations, and Maintenance (J.L.), NIH, Bethesda, and the NIH Intramural Sequencing Center, NIH, Rockville (P.J.T., M.P.) - all in Maryland; Wadsworth Center, New York State Department of Health, Albany (K.A.M.); and the Special Bacteriology Reference Laboratory, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta (J.R.M.). Dr. Park serves as an author on behalf of the NIH Intramural Sequencing Center Comparative Sequencing Program
| |
Collapse
|
46
|
Li Y, Liu X, Tang K, Wang P, Zeng Z, Guo Y, Wang X. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa. Mol Microbiol 2018; 111:495-513. [PMID: 30475408 PMCID: PMC7379572 DOI: 10.1111/mmi.14170] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2018] [Indexed: 12/15/2022]
Abstract
Pf filamentous prophages are prevalent among clinical and environmental Pseudomonasaeruginosa isolates. Pf4 and Pf5 prophages are integrated into the host genomes of PAO1 and PA14, respectively, and play an important role in biofilm development. However, the genetic factors that directly control the lysis‐lysogeny switch in Pf prophages remain unclear. Here, we identified and characterized the excisionase genes in Pf4 and Pf5 (named xisF4 and xisF5, respectively). XisF4 and XisF5 represent two major subfamilies of functional excisionases and are commonly found in Pf prophages. While both of them can significantly promote prophage excision, only XisF5 is essential for Pf5 excision. XisF4 activates Pf4 phage replication by upregulating the phage initiator gene (PA0727). In addition, xisF4 and the neighboring phage repressor c gene pf4r are transcribed divergently and their 5′‐untranslated regions overlap. XisF4 and Pf4r not only auto‐activate their own expression but also repress each other. Furthermore, two H‐NS family proteins, MvaT and MvaU, coordinately repress Pf4 production by directly repressing xisF4. Collectively, we reveal that Pf prophage excisionases cooperate in controlling lysogeny and phage production.
Collapse
Affiliation(s)
- Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
47
|
Ravithej Singh L, Tripathi VC, Raj S, Kumar A, Gupta S, Horam S, Upadhyay A, Kushwaha P, Arockiaraj J, Sashidhara KV, Pasupuleti M. In-house chemical library repurposing: A case example for Pseudomonas aeruginosa antibiofilm activity and quorum sensing inhibition. Drug Dev Res 2018; 79:383-390. [PMID: 30291767 DOI: 10.1002/ddr.21458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 02/01/2023]
Abstract
Hit, Lead & Candidate Discovery Drug repurposing has become a recent trend in drug development programs, where previously developed drugs are explored for hit and redeveloped into potential therapeutic agents for new diseases. Globally, in any drug development program, a series of molecules are synthesized and evaluated for the hypothesized activity. Hits are developed into lead molecules or drugs, whereas the negative ones are shelved in the lab with no immediate use. We in this project took the previously sidelined small chemical molecules to the next level of utility, where previously developed in-house small molecules library are tested for the unexplored biological relevant activity. As biofilm formation and quorum sensing play a vital role in bacterial pathogenesis, we believe that they could be one of the most effective targets for antimicrobial agents. In this study, we report the evaluation of 50 different compounds for anti-biofilm and anti-quorum sensing activity against Pseudomonas aeruginosa. Out of the screened compounds, three hydrazine-carboxamide hybrid derivatives showed promising anti-biofilm property and inhibition of pyocyanin production without any direct antimicrobial activity and cytotoxicity issues. Hydrazine-carboxamide hybrids can be a new class and promising leads for further anti-biofilm and anti-virulence development against microbial infections.
Collapse
Affiliation(s)
- L Ravithej Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vikash C Tripathi
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sneha Raj
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anoop Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sampa Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Soyar Horam
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Akanksha Upadhyay
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pragati Kushwaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mukesh Pasupuleti
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
48
|
Rezzoagli C, Wilson D, Weigert M, Wyder S, Kümmerli R. Probing the evolutionary robustness of two repurposed drugs targeting iron uptake in Pseudomonas aeruginosa. Evol Med Public Health 2018; 2018:246-259. [PMID: 30455950 PMCID: PMC6234326 DOI: 10.1093/emph/eoy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
LAY SUMMARY We probed the evolutionary robustness of two antivirulence drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine in the opportunistic pathogen Pseudomonas aeruginosa. Using an experimental evolution approach in human serum, we showed that antivirulence treatments are not evolutionarily robust per se, but vary in their propensity to select for resistance. BACKGROUND AND OBJECTIVES Treatments that inhibit the expression or functioning of bacterial virulence factors hold great promise to be both effective and exert weaker selection for resistance than conventional antibiotics. However, the evolutionary robustness argument, based on the idea that antivirulence treatments disarm rather than kill pathogens, is controversial. Here, we probe the evolutionary robustness of two repurposed drugs, gallium and flucytosine, targeting the iron-scavenging pyoverdine of the opportunistic human pathogen Pseudomonas aeruginosa. METHODOLOGY We subjected replicated cultures of bacteria to two concentrations of each drug for 20 consecutive days in human serum as an ex vivo infection model. We screened evolved populations and clones for resistance phenotypes, including the restoration of growth and pyoverdine production, and the evolution of iron uptake by-passing mechanisms. We whole-genome sequenced evolved clones to identify the genetic basis of resistance. RESULTS We found that mutants resistant against antivirulence treatments readily arose, but their selective spreading varied between treatments. Flucytosine resistance quickly spread in all populations due to disruptive mutations in upp, a gene encoding an enzyme required for flucytosine activation. Conversely, resistance against gallium arose only sporadically, and was based on mutations in transcriptional regulators, upregulating pyocyanin production, a redox-active molecule promoting siderophore-independent iron acquisition. The spread of gallium resistance was presumably hampered because pyocyanin-mediated iron delivery benefits resistant and susceptible cells alike. CONCLUSIONS AND IMPLICATIONS Our work highlights that antivirulence treatments are not evolutionarily robust per se. Instead, evolutionary robustness is a relative measure, with specific treatments occupying different positions on a continuous scale.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - David Wilson
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Stefan Wyder
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin. Antimicrob Agents Chemother 2018; 62:AAC.00320-18. [PMID: 29760140 DOI: 10.1128/aac.00320-18] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
The opportunistic Gram-negative pathogen Pseudomonas aeruginosa, known for its intrinsic and acquired antibiotic resistance, has a notorious ability to form biofilms, which often facilitate chronic infections. The evolutionary paths to antibiotic resistance have mainly been investigated in planktonic cultures and are less studied in biofilms. We experimentally evolved P. aeruginosa PAO1 colony biofilms and stationary-phase planktonic cultures for seven passages in the presence of subinhibitory levels (0.1 mg/liter) of ciprofloxacin (CIP) and performed a genotypic (whole-bacterial population sequencing) and phenotypic assessment of the populations. We observed a higher proportion of CIP resistance in the CIP-evolved biofilm populations than in planktonic populations exposed to the same drug concentrations. However, the MICs of ciprofloxacin were lower in CIP-resistant isolates selected from the biofilm population than the MICs of CIP-resistant isolates from the planktonic cultures. We found common evolutionary trajectories between the different lineages, with mutations in known CIP resistance determinants as well as growth condition-dependent adaptations. We observed a general trend toward a reduction in type IV-pilus-dependent motility (twitching) in CIP-evolved populations and a loss of virulence-associated traits in the populations evolved in the absence of antibiotic. In conclusion, our data indicate that biofilms facilitate the development of low-level mutational resistance, probably due to the lower effective drug exposure than in planktonic cultures. These results provide a framework for the selection process of resistant variants and the evolutionary mechanisms involved under the two different growth conditions.
Collapse
|
50
|
Lee Y, Song S, Sheng L, Zhu L, Kim JS, Wood TK. Substrate Binding Protein DppA1 of ABC Transporter DppBCDF Increases Biofilm Formation in Pseudomonas aeruginosa by Inhibiting Pf5 Prophage Lysis. Front Microbiol 2018; 9:30. [PMID: 29416528 PMCID: PMC5787571 DOI: 10.3389/fmicb.2018.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Abstract
Filamentous phage impact biofilm development, stress tolerance, virulence, biofilm dispersal, and colony variants. Previously, we identified 137 Pseudomonas aeruginosa PA14 mutants with more than threefold enhanced and 88 mutants with more than 10-fold reduced biofilm formation by screening 5850 transposon mutants (PLoS Pathogens5: e1000483, 2009). Here, we characterized the function of one of these 225 mutations, dppA1 (PA14_58350), in regard to biofilm formation. DppA1 is a substrate-binding protein (SBP) involved in peptide utilization via the DppBCDF ABC transporter system. We show that compared to the wild-type strain, inactivating dppA1 led to 68-fold less biofilm formation in a static model and abolished biofilm formation in flow cells. Moreover, the dppA1 mutant had a delay in swarming and produced 20-fold less small-colony variants, and both biofilm formation and swarming were complemented by producing DppA1. A whole-transcriptome analysis showed that only 10 bacteriophage Pf5 genes were significantly induced in the biofilm cells of the dppA1 mutant compared to the wild-type strain, and inactivation of dppA1 resulted in a 600-fold increase in Pf5 excision and a million-fold increase in phage production. As expected, inactivating Pf5 genes PA0720 and PA0723 increased biofilm formation substantially. Inactivation of DppA1 also reduced growth (due to cell lysis). Hence, DppA1 increases biofilm formation by repressing Pf5 prophage.
Collapse
Affiliation(s)
- Yunho Lee
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Lili Sheng
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | - Lei Zhu
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| | | | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|