1
|
Yilmaz S, Kanis B, Hogers RA, Benito-Vaquerizo S, Kahnt J, Glatter T, Dronsella B, Erb TJ, Suarez-Diez M, Claassens NJ. System-level characterization of engineered and evolved formatotrophic E. coli strains. Synth Syst Biotechnol 2025; 10:650-666. [PMID: 40166614 PMCID: PMC11957790 DOI: 10.1016/j.synbio.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 04/02/2025] Open
Abstract
One-carbon compounds, such as formate, are promising and sustainable feedstocks for microbial bioproduction of fuels and chemicals. Growth of Escherichia coli on formate was recently achieved by introducing the reductive glycine pathway (rGlyP) into its genome, which is theoretically the most energy-efficient aerobic formate assimilation pathway. While adaptive laboratory evolution was used to enhance the growth rate and biomass yield significantly, still the best performing formatotrophic E. coli strain did not approach the theoretical optimal biomass yield of the rGlyP. In this study, we investigated these previously engineered formatotrophic E. coli strains to find out why the biomass yield was sub-optimal and how it may be improved. Through a combination of metabolic modelling, genomic and proteomic analysis, we identified several potential metabolic bottlenecks and future targets for optimization. This study also reveals further insights in the evolutionary mutations and related changes in proteome allocation that supported the already substantially improved growth of formatotrophic E. coli strains. This systems-level analysis provides key insights to realize high-yield, fast growing formatotrophic strains for future bioproduction.
Collapse
Affiliation(s)
- Suzan Yilmaz
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Boas Kanis
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Rensco A.H. Hogers
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jörg Kahnt
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Beau Dronsella
- Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J. Erb
- Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology, Marburg, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Nico J. Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
2
|
Harel M, Dahan N, Lahav C, Jacob E, Elon Y, Puzanov I, Kelly RJ, Shaked Y, Leibowitz R, Carbone DP, Gandara DR, Dicker AP. Decoding resistance to immune checkpoint inhibitors in non-small cell lung cancer: a comprehensive analysis of plasma proteomics and therapeutic implications. J Immunother Cancer 2025; 13:e011427. [PMID: 40404205 DOI: 10.1136/jitc-2024-011427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown substantial benefit for patients with advanced non-small cell lung cancer (NSCLC). However, resistance to ICIs remains a major clinical challenge. Here, we perform a comprehensive bioinformatic analysis of plasma proteomic profiles to explore the underlying biology of treatment resistance in NSCLC. METHODS The analysis was performed on 388 "resistance-associated proteins" (RAPs) that were previously described as pretreatment plasma proteomic predictors within the PROphet computational model designed to predict ICI clinical benefit in NSCLC. Putative tissue origins of the RAPs were explored using publicly available datasets. Enrichment analyses were performed to investigate RAP-related biological processes. Plasma proteomic data from 50 healthy subjects and 272 patients with NSCLC were compared, where patients were classified as displaying clinical benefit (CB; n=76) or no CB (NCB; n=196). Therapeutic agents targeting RAPs were identified in drug and clinical trial databases. RESULTS The RAP set was significantly enriched with proteins associated with lung cancer, liver tissue, cell proliferation, extracellular matrix, invasion, and metastasis. Comparison of RAP expression in healthy subjects and patients with NSCLC revealed five distinct RAP subsets that provide mechanistic insights. The RAP subset displaying a pattern of high expression in the healthy population relative to the NSCLC population included multiple proteins associated with antitumor activities, while the subset displaying a pattern of highest expression in the NCB population included proteins associated with various hallmarks of treatment resistance. Analysis of patient-specific RAP profiles revealed inter-patient diversity of potential resistance mechanisms, suggesting that RAPs may aid in developing personalized therapeutic strategies. Furthermore, examination of drug and clinical trial databases revealed that 17.5% of the RAPs are drug targets, highlighting the RAP set as a valuable resource for drug development. CONCLUSIONS The study provides insight into the underlying biology of ICI resistance in NSCLC and highlights the potential clinical value of RAP profiles for developing personalized therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- The Roswell Park Comprehensive Cancer Center Data Bank and BioRepository, Buffalo, New York, USA
| | - Ronan J Kelly
- Department of Hematology and Oncology, Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | - Yuval Shaked
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | | | | | - David R Gandara
- Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Adam P Dicker
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Hulmi JJ, Halonen EJ, Sharples AP, O'Connell TM, Kuikka L, Lappi VM, Salokas K, Keskitalo S, Varjosalo M, Ahtiainen JP. Human skeletal muscle possesses both reversible proteomic signatures and a retained proteomic memory after repeated resistance training. J Physiol 2025; 603:2655-2673. [PMID: 40183698 DOI: 10.1113/jp288104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
Investigating repeated resistance training (RT) separated by a training break enables exploration of the potential for a proteomic memory of RT-induced skeletal muscle growth, i.e. retained protein adaptations from the previous RT. Our aim was to examine skeletal muscle proteome response to 10-week RT (RT1) followed by 10-week training cessation (i.e. detraining, DT), and finally, 10-week retraining (RT2). Thirty healthy, untrained participants conducted either periodic RT (RT1-DT-RT2, n = 17) or a 10-week no-training control period (n = 13) followed by 20 weeks of RT (n = 11). RT included twice-weekly supervised whole-body RT sessions, and resting vastus lateralis biopsies were obtained every 10 weeks for proteomics analysis using high-end dia-PASEF's mass spectrometry. The first RT period altered 150 proteins (93% increased) involved in, for example, energy metabolism and protein processing compared to minor changes during the control period. The proteome adaptations were similar after the second RT compared to baseline demonstrating reproducibility in proteome adaptations to RT. Many of the proteins induced by RT1 were reversed towards baseline after detraining and increased again after retraining. These reversible proteins were especially involved in aerobic energy metabolism. Interestingly, several proteins which increased after RT1 remain elevated (i.e. retained) after detraining, including carbonyl reductase 1 (CBR1) and proteins involved in muscle contraction, cytoskeleton and calcium binding. Among the latter, calcium-activated protease calpain-2 (CAPN2) has been recently identified as an epigenetic muscle memory gene. We show that resistance training evokes retained protein levels even after 2.5 months of no training, which demonstrates a potential proteomic memory of resistance training-induced muscle growth in human skeletal muscle. KEY POINTS: Repeated resistance training in humans separated by a training break (i.e. detraining) enables the identification of temporal protein signatures over the training, detraining and retraining periods, as well as studying reproducibility of protein changes to resistance training. Muscle proteome adaptations were similar after a second period of resistance training, demonstrating reproducibility in proteome adaptations to earlier resistance training. Many of the proteins induced by resistance training were reversed towards baseline after detraining and increased again after retraining. These reversible proteins were especially involved in aerobic energy metabolism. Several proteins increased after resistance training remain elevated (i.e. retained) after detraining, including carbonyl reductase 1 (CBR1) and calcium-binding proteins such as calpain-2 (CAPN2), a recently identified epigenetic muscle memory gene. Human skeletal muscle experiences retained protein changes following resistance training persisting over 2 months, demonstrating a potential proteomic memory of resistance training-induced muscle growth.
Collapse
Affiliation(s)
- Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Eeli J Halonen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Adam P Sharples
- Institute for Physical Performance (IFP), Norwegian School of Sport Sciences, Oslo, Norway
| | - Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lauri Kuikka
- Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Veli-Matti Lappi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Tafrishi A, Alva T, Chartron J, Wheeldon I. Ribo-seq guided design of enhanced protein secretion in Komagataellaphaffii. Metab Eng 2025; 91:228-241. [PMID: 40315981 DOI: 10.1016/j.ymben.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/12/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
The production of recombinant proteins requires the precise coordination of various biological processes, including protein synthesis, folding, trafficking, and secretion. The overproduction of a heterologous protein can impose various bottlenecks on these networks. Identifying and alleviating these bottlenecks can guide strain engineering efforts to enhance protein production. The methylotrophic yeast Komagataella phaffii is used for its high capacity to produce recombinant proteins. Here, we use ribosome profiling to identify bottlenecks in protein secretion during heterologous expression of human serum albumin (HSA). Validation of this analysis showed that the knockout of non-essential genes whose gene products target the ER, through co- and post-translational mechanisms, and have high ribosome utilization can increase production of a heterologous protein, HSA. A triple knockout in co-translationally translocated carbohydrate and acetate transporter Gal2p, cell wall maintenance protein Ydr134cp, and the post-translationally translocated cell wall protein Aoa65896.1 increased HSA production by 35 %. This data-driven strain engineering approach uses cell-level information to identify gene targets for phenotype improvement. This specific case identifies hits and creates strains with improved HSA production, with Ribo-seq and bioinformatic analysis to identify non-essential ER targeted proteins that are high ribosome utilizers.
Collapse
Affiliation(s)
- Aida Tafrishi
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Troy Alva
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Justin Chartron
- Bioengineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA; Center for Industrial Biotechnology, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Yuan S, Xia Y, Dai G, Rao S, Hu R, Gao Y, Qiu Q, Wu C, Qiao S, Xu Y, Xie X, Lou H, Wang X, Zhang J. Single-cell and spatial transcriptomic analysis reveals that an immune cell-related signature could predict clinical outcomes for microsatellite-stable colorectal cancer patients receiving immunotherapy. J Zhejiang Univ Sci B 2025; 26:371-392. [PMID: 40274385 PMCID: PMC12021538 DOI: 10.1631/jzus.b2300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/25/2024] [Indexed: 04/26/2025]
Abstract
Recent data suggest that vascular endothelial growth factor receptor inhibitor (VEGFRi) can enhance the anti-tumor activity of the anti-programmed cell death-1 (anti-PD-1) antibody in colorectal cancer (CRC) with microsatellite stability (MSS). However, the comparison between this combination and standard third-line VEGFRi treatment is not performed, and reliable biomarkers are still lacking. We retrospectively enrolled MSS CRC patients receiving anti-PD-1 antibody plus VEGFRi (combination group, n=54) or VEGFRi alone (VEGFRi group, n=32), and their efficacy and safety were evaluated. We additionally examined the immune characteristics of the MSS CRC tumor microenvironment (TME) through single-cell and spatial transcriptomic data, and an MSS CRC immune cell-related signature (MCICRS) that can be used to predict the clinical outcomes of MSS CRC patients receiving immunotherapy was developed and validated in our in-house cohort. Compared with VEGFRi alone, the combination of anti-PD-1 antibody and VEGFRi exhibited a prolonged survival benefit (median progression-free survival: 4.4 vs. 2.0 months, P=0.0024; median overall survival: 10.2 vs. 5.2 months, P=0.0038) and a similar adverse event incidence. Through single-cell and spatial transcriptomic analysis, we determined ten MSS CRC-enriched immune cell types and their spatial distribution, including naive CD4+ T, regulatory CD4+ T, CD4+ Th17, exhausted CD8+ T, cytotoxic CD8+ T, proliferated CD8+ T, natural killer (NK) cells, plasma, and classical and intermediate monocytes. Based on a systemic meta-analysis and ten machine learning algorithms, we obtained MCICRS, an independent risk factor for the prognosis of MSS CRC patients. Further analyses demonstrated that the low-MCICRS group presented a higher immune cell infiltration and immune-related pathway activation, and hence a significant relation with the superior efficacy of pan-cancer immunotherapy. More importantly, the predictive value of MCICRS in MSS CRC patients receiving immunotherapy was also validated with an in-house cohort. Anti-PD-1 antibody combined with VEGFRi presented an improved clinical benefit in MSS CRC with manageable toxicity. MCICRS could serve as a robust and promising tool to predict clinical outcomes for individual MSS CRC patients receiving immunotherapy.
Collapse
Affiliation(s)
- Shijin Yuan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yan Xia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Guangwei Dai
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Shun Rao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Rongrong Hu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
- Yongkang Hospital of Traditional Chinese Medicine Medical Community Xicheng Branch, Jinhua 321300, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Qing Qiu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Chenghao Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Sai Qiao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Yinghua Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China
| | - Haizhou Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China. ,
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310016, China.
| |
Collapse
|
6
|
Ye W, Zhang X, Tang Z, Hu Y, Zheng Y, Yuan Y. Comprehensive analysis of glycometabolism-related genes reveals PLOD2 as a prognostic biomarker and therapeutic target in gastric cancer. BMC Gastroenterol 2025; 25:256. [PMID: 40229676 PMCID: PMC11998276 DOI: 10.1186/s12876-025-03878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the leading causes of cancer-related mortality worldwide, with limited therapeutic options and a poor prognosis, particularly in advanced stages. Glycometabolism, a hallmark of cancer, plays a critical role in tumor progression, immune evasion, and response to therapy. However, the specific roles of glycometabolism-related genes and their prognostic and therapeutic implications in GC remain inadequately understood. METHODS Transcriptomic and clinical data from GC patients were retrieved from TCGA and GEO databases. Glycometabolism-related genes were identified and analyzed using machine learning algorithms to construct a prognostic model. Functional assays, immune profiling, and pathway enrichment analyses were performed to explore the roles of these genes in tumor progression, immune-modulatory effects, and drug resistance. PLOD2, the gene with the highest prognostic significance, was further investigated to uncover its underlying regulatory mechanisms, roles in immune modulation, and contribution to therapeutic resistance. RESULTS A glycometabolism-related prognostic model consisting of four genes (PLOD2, CHSY3, SLC2A3 and SLC5A1) was developed and validated, effectively stratifying GC patients into high- and low-risk subgroups with distinct survival outcomes. Among these, PLOD2 emerged as the most significant gene, exhibiting strong associations with tumor progression and poor survival. Functional analyses revealed that PLOD2 promotes glycolysis and tumor progression through activation of the PI3K/AKT/mTOR pathway. Immune profiling revealed that PLOD2 overexpression is associated with an immunosuppressive tumor microenvironment, characterized by increased M2 macrophage infiltration and reduced immune activity. Moreover, treatment with rapamycin, an mTOR inhibitor, significantly suppressed PLOD2-mediated proliferation and anchorage-independent growth in GC cells, highlighting the central role of the PI3K/AKT/mTOR pathway in PLOD2-driven oncogenic behaviors. CONCLUSIONS This study identifies PLOD2 as a key prognostic biomarker and therapeutic target in gastric cancer. As a central component in a glycometabolism-related model, PLOD2 promotes glycolysis, tumor progression, and immune evasion via the PI3K/AKT/mTOR pathway. The model effectively stratifies patient risk, offering both prognostic utility and therapeutic insight. Targeting PLOD2-mediated pathways may represent a promising strategy for precision therapy and improved clinical outcomes in gastric cancer.
Collapse
Affiliation(s)
- Wanchun Ye
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Clinical Laboratory, Jinan Fourth People's Hospital, Jinan, China
| | - Zhongjie Tang
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yufeng Hu
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yuanliang Zheng
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Yuping Yuan
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China.
| |
Collapse
|
7
|
Zhu X, Zhang Z, Zhu Y, Chen Y, Li W, Xu H, Chen X. Comprehensive analysis of autophagy status and its relationship with immunity and inflammation in ischemic stroke through integrated transcriptomic and single-cell sequencing. Genes Immun 2025; 26:111-123. [PMID: 39827328 DOI: 10.1038/s41435-025-00320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Ischemic stroke (IS) significantly impacts patients' health and quality of life, with the roles of autophagy and autophagy-related genes in IS still not fully understood. In this study, IS datasets were retrieved from the GEO database. Autophagy-related genes(ARGs) were identified and screened for differential expression. A prediction model was constructed using machine learning algorithm. WGCNA was employed to analyze differential regulation modules among different clusters of stroke patients. The analysis results were validated using single-cell sequencing data. Finally, autophagy hub genes were validated in an external cohort and an IS mouse model. We observed suppressed autophagy states in IS patients. A diagnostic model with good clinical efficacy for stroke diagnosis was constructed based on the selected key genes (AUC = 0.87). Consensus clustering identified two IS subtypes with distinct gene expression patterns and immune cell infiltration. scRNA-seq data analysis confirmed downregulation of pexophagy in IS. CellChat analysis identified key signaling pathways and intercellular interactions related to pexophagy. Validation in an external cohort and IS mouse model confirmed differential gene expression, supporting the involvement of pexophagy in IS pathogenesis. The identified key genes, molecular subtypes, and cellular interactions provide a foundation for further research into targeted therapies and precision medicine approaches for IS patients.
Collapse
Affiliation(s)
- Xiaole Zhu
- Department of Emergency, Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongman Zhang
- Department of Emergency, Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Zhu
- Department of Emergency, Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanlong Chen
- Department of Emergency, Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Li
- Department of Emergency, Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xufeng Chen
- Department of Emergency, Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Carlsen J, Fossati S, Østergaard L, Gutiérrez‐Jiménez E, Palmfeldt J. Cerebral proteome adaptations to amyloid angiopathy are prevented by carbonic anhydrase inhibitors. Alzheimers Dement 2025; 21:e70122. [PMID: 40285374 PMCID: PMC12032195 DOI: 10.1002/alz.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a hallmark of Alzheimer's disease (AD), linked to adverse effects of emerging AD treatments. We explored the molecular effects of CAA in mouse brain and evaluated how these could be prevented by two repurposed United States Food and Drug Administration (FDA) approved treatments. METHODS Brain proteomics was performed on the Tg-SwDI genetic mouse model carrying disease causing mutations and developing AD characteristic cognitive deficits and severe CAA. Cortical and hippocampal tissues from presymptomatic male and female mice were studied. RESULTS We identify a core of dysregulated proteins across studies, including established markers of AD as well as proteins indicative of astrogliosis and negative regulators of synaptic stability and function. Two FDA approved, repurposed carbonic anhydrase inhibitors (CAIs), acetazolamide and methazolamide, were effective in preventing these molecular adaptations. DISCUSSION The two drugs broadly prevent proteome adaptations to the detrimental genotype and retain glutamatergic synapse proteins significantly closer to wild-type levels. HIGHLIGHTS The brain proteome changes of mice with CAA are mapped. Cortical and hippocampal tissues from presymptomatic male and female mice are studied. Markers of AD, astrogliosis, and synaptic stability are dysregulated. Two CAI are effective in preventing these protein changes.
Collapse
Affiliation(s)
- Jasper Carlsen
- Research Unit for Molecular Medicine (MMF), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT) and Department of Neural SciencesTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Eugenio Gutiérrez‐Jiménez
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine (MMF), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| |
Collapse
|
9
|
Liu J, Feng L, Jia Q, Meng J, Zhao Y, Ren L, Yan Z, Wang M, Qin J. A comprehensive bioinformatics analysis identifies mitophagy biomarkers and potential Molecular mechanisms in hypertensive nephropathy. J Biomol Struct Dyn 2025; 43:3204-3223. [PMID: 38334110 DOI: 10.1080/07391102.2024.2311344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024]
Abstract
Mitophagy, the selective removal of damaged mitochondria, plays a critical role in kidney diseases, but its involvement in hypertensive nephropathy (HTN) is not well understood. To address this gap, we investigated mitophagy-related genes in HTN, identifying potential biomarkers for diagnosis and treatment. Transcriptome datasets from the Gene Expression Omnibus database were analyzed, resulting in the identification of seven mitophagy related differentially expressed genes (MR-DEGs), namely PINK1, ULK1, SQSTM1, ATG5, ATG12, MFN2, and UBA52. Further, we explored the correlation between MR-DEGs, immune cells, and inflammatory factors. The identified genes demonstrated a strong correlation with Mast cells, T-cells, TGFβ3, IL13, and CSF3. Machine learning techniques were employed to screen important genes, construct diagnostic models, and evaluate their accuracy. Consensus clustering divided the HTN patients into two mitophagy subgroups, with Subgroup 2 showing higher levels of immune cell infiltration and inflammatory factors. The functions of their proteins primarily involve complement, coagulation, lipids, and vascular smooth muscle contraction. Single-cell RNA sequencing revealed that mitophagy was most significant in proximal tubule cells (PTC) in HTN patients. Pseudotime analysis of PTC confirmed the expression changes observed in the transcriptome. Intercellular communication analysis suggested that mitophagy might regulate PTC's participation in intercellular crosstalk. Notably, specific transcription factors such as HNF4A, PPARA, and STAT3 showed strong correlations with mitophagy-related genes in PTC, indicating their potential role in modulating PTC function and influencing the onset and progression of HTN. This study offers a comprehensive analysis of mitophagy in HTN, enhancing our understanding of the pathogenesis, diagnosis, and treatment of HTN.
Collapse
Affiliation(s)
- Jiayou Liu
- The Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Meng
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yun Zhao
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Ren
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Yan
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Manrui Wang
- The Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Qin
- Department of Nephropathy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Litschel T, Vavylonis D, Weitz DA. 3D printing cytoskeletal networks: ROS-induced filament severing leads to surge in actin polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644260. [PMID: 40166186 PMCID: PMC11957145 DOI: 10.1101/2025.03.19.644260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The cytoskeletal protein actin forms a spatially organized biopolymer network that plays a central role in many cellular processes. Actin filaments continuously assemble and disassemble, enabling cells to rapidly reorganize their cytoskeleton. Filament severing accelerates actin turnover, as both polymerization and depolymerization rates depend on the number of free filament ends - which severing increases. Here, we use light to control actin severing in vitro by locally generating reactive oxygen species (ROS) with photosensitive molecules such as fluorophores. We see that ROS sever actin filaments, which increases actin polymerization in our experiments. However, beyond a certain threshold, excessive severing leads to the disassembly of actin networks. Our experimental data is supported by simulations using a kinetic model of actin polymerization, which helps us understand the underlying dynamics. In cells, ROS are known to regulate the actin cytoskeleton, but the molecular mechanisms are poorly understood. Here we show that, in vitro, ROS directly affect actin reorganization.
Collapse
Affiliation(s)
- Thomas Litschel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
11
|
Ling Z, Niego B, Li Q, Villa VS, Bhattaram D, Hu M, Gong Z, Smith LM, Frey BL, Ren X. Chemoselective Characterization of New Extracellular Matrix Deposition in Bioengineered Tumor Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643336. [PMID: 40166338 PMCID: PMC11956949 DOI: 10.1101/2025.03.18.643336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The extracellular matrix (ECM), present in nearly all tissues, provides extensive support to resident cells through structural, biomechanical, and biochemical means, and in return the ECM undergoes constant remodeling from interacting cells to adapt to the evolving tissue states. Bioengineered 3D tissues, commonly known as cell-ECM composites, are robust model systems to recapitulate and investigate native pathophysiology. Key to this engineered morphogenesis process are the intricate cell-ECM interactions reflected by how cells respond to and thereby modulate their surrounding microenvironments through their ongoing ECM secretome. However, investigating ECM-regulated new ECM production has been challenging due to the proteomic background from the pre-existing biomaterial ECM. To address this hindrance, here we present a chemoselective strategy to label, enrich, and characterize newly synthesized ECM (newsECM) proteins produced by resident cells, allowing distinction from the pre-existing ECM background. Applying our analytical pipeline to bioengineered tumor tissues, either built upon decellularized ECM (dECM-tumors) or as ECM-free tumor spheroids (tumoroids), we observed distinct ECM synthesis patterns that were linked to their extracellular environments. Tumor cells responded to the dECM presence with elevated ECM remodeling activities, mediated by augmented digestion of pre-existing ECM coupled with upregulated synthesis of tumor-associated ECM. Our findings highlight the sensitivity of newsECM profiling to capture remodeling events that are otherwise under-represented by bulk proteomics and underscore the significance of dECM support for enabling native-like tumor cell behaviors. We anticipate the described newsECM analytical pipeline to be broadly applicable to other tissue-engineered systems to probe ECM-regulated ECM synthesis and remodeling, both fundamental aspects of cell-ECM crosstalk in engineered tissue morphogenesis.
Collapse
Affiliation(s)
- Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Burke Niego
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Qingyang Li
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Vanessa Serna Villa
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Dhruv Bhattaram
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Michael Hu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Zhuowei Gong
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
12
|
Liu S, Pi J, Zhang Q. Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin. Antioxidants (Basel) 2025; 14:235. [PMID: 40002419 PMCID: PMC11852172 DOI: 10.3390/antiox14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrogen peroxide (H2O2) plays a crucial role in cell signaling in response to physiological and environmental perturbations. H2O2 can oxidize typical 2-Cys peroxiredoxin (PRX) first into a sulfenic acid, which resolves into a disulfide that can be reduced by thioredoxin (TRX)/TRX reductase (TR). At high levels, H2O2 can also hyperoxidize sulfenylated PRX into a sulfinic acid that can be reduced by sulfiredoxin (SRX). Therefore, PRX, TRX, TR, and SRX (abbreviated as PTRS system here) constitute the coupled sulfenylation and sulfinylation cycle (CSSC), where certain oxidized PRX and TRX forms also function as redox signaling intermediates. Earlier studies have revealed that the PTRS system is capable of rich signaling dynamics, including linearity, ultrasensitivity/switch-like response, nonmonotonicity, circadian oscillation, and possibly, bistability. However, the origins of ultrasensitivity, which is fundamentally required for redox signal amplification, have not been adequately characterized, and their roles in enabling complex nonlinear dynamics of the PTRS system remain to be determined. Through in-depth mathematical modeling analyses, here we revealed multiple sources of ultrasensitivity that are intrinsic to the CSSC, including zero-order kinetic cycles, multistep H2O2 signaling, and a mechanism arising from diminished H2O2 removal at high PRX hyperoxidation state. The CSSC, structurally a positive feedback loop, is capable of bistability under certain parameter conditions, which requires embedding multiple sources of ultrasensitivity identified. Forming a negative feedback loop with cytosolic SRX as previously observed in energetically active cells, the mitochondrial PTRS system (where PRX3 is expressed) can produce sustained circadian oscillations through supercritical Hopf bifurcations. In conclusion, our study provided novel quantitative insights into the dynamical complexity of the PTRS system and improved appreciation of intracellular redox signaling.
Collapse
Affiliation(s)
- Shengnan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Madoz-Gúrpide J, Serrano-López J, Sanz-Álvarez M, Morales-Gallego M, Rodríguez-Pinilla SM, Rovira A, Albanell J, Rojo F. Adaptive Proteomic Changes in Protein Metabolism and Mitochondrial Alterations Associated with Resistance to Trastuzumab and Pertuzumab Therapy in HER2-Positive Breast Cancer. Int J Mol Sci 2025; 26:1559. [PMID: 40004024 PMCID: PMC11855744 DOI: 10.3390/ijms26041559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is overexpressed in approximately 15-20% of breast cancers, leading to aggressive tumour growth and poor prognosis. Anti-HER2 therapies, such as trastuzumab and pertuzumab, have significantly improved the outcomes for patients with HER2-positive breast cancer by blocking HER2 signalling. However, intrinsic and acquired resistance remains a major clinical challenge, limiting the long-term effectiveness of these therapies. Understanding the mechanisms of resistance is essential for developing strategies to overcome it and improve the therapeutic outcomes. We generated multiple HER2-positive breast cancer cell line models resistant to trastuzumab and pertuzumab combination therapy. Using mass spectrometry-based proteomics, we conducted a comprehensive analysis to identify the mechanisms underlying resistance. Proteomic analysis identified 618 differentially expressed proteins, with a core of 83 overexpressed and 118 downregulated proteins. Through a series of advanced bioinformatics analyses, we identified significant protein alterations and signalling pathways potentially responsible for the development of resistance, revealing key alterations in the protein metabolism, mitochondrial function, and signalling pathways, such as MAPK, TNF, and TGFβ. These findings identify mitochondrial activity and detoxification processes as pivotal mechanisms underlying the resistance to anti-HER2 therapy. Additionally, we identified key proteins, including ANXA1, SLC2A1, and PPIG, which contribute to the tumour progression and resistance phenotype. Our study suggests that targeting these pathways and proteins could form the basis of novel therapeutic strategies to overcome resistance in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Juan Madoz-Gúrpide
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| | - Juana Serrano-López
- Department of Haematology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain;
| | - Marta Sanz-Álvarez
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| | - Miriam Morales-Gallego
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| | - Socorro María Rodríguez-Pinilla
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| | - Ana Rovira
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain;
| | - Joan Albanell
- Department of Medical Oncology, Hospital del Mar—CIBERONC, 08003 Barcelona, Spain;
| | - Federico Rojo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain (M.M.-G.); (S.M.R.-P.)
| |
Collapse
|
14
|
Hu B, Gong H, Nie L, Zhang J, Li Y, Liu D, Zhang H, Zhang H, Han L, Yang C, Li M, Xu W, Nakamura Y, Shi L, Ye M, Hillyer CD, Mohandas N, Liang L, Sheng Y, Liu J. Lysine succinylation precisely controls normal erythropoiesis. Haematologica 2025; 110:397-413. [PMID: 39415677 PMCID: PMC11788629 DOI: 10.3324/haematol.2024.285752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Lysine succinylation (Ksu) has recently emerged as a protein modification that regulates diverse functions in various biological processes. However, the systemic, precise role of lysine succinylation in erythropoiesis remains to be fully elucidated. In this study, we noted a prominent increase of succinyl-CoA and lysine succinylation during human erythroid differentiation. To explore the functional significance of succinylation, we inhibited succinylation by either knocking down key succinyltransferases or overexpressing desuccinylases. Succinylation inhibition led to suppressed cell proliferation, increased apoptosis, and disrupted erythroid differentiation. In vivo overexpression of the desuccinylase SIRT5 delayed erythroid differentiation. Furthermore, integrative proteome and succinylome analysis identified 939 succinylated proteins with 3,562 Ksu sites, distributed across various cellular compartments and involved in multiple cellular processes. Significantly, inconsistencies were observed between protein expression levels and succinylation levels, indicating that the succinylation of certain proteins may function independently of expression. Mechanistically, we implicated KAT2A-mediated succinylation of histone H3 K79, leading to chromatin remodeling and, subsequently, regulation of erythropoiesis. Specifically, we identified CYCS as a key regulator of erythropoiesis, a function that depends on its succinylation sites K28/K40. Taken together, our comprehensive investigation of the succinylation landscape during erythropoiesis provides valuable insights into its regulatory role and offers potential implications for erythroid-related diseases.
Collapse
Affiliation(s)
- Bin Hu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Han Gong
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Ling Nie
- Department of Hematology, Xiangya Hospital, Central South University, Hunan
| | - Ji Zhang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hunan
| | - Yanan Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Dandan Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Huifang Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Haihang Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Lu Han
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Chaoying Yang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Maohua Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Wenwen Xu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Hunan
| | | | - Narla Mohandas
- Research Laboratory of Red Cell Physiology, New York Blood Center, New York
| | - Long Liang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan.
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan.
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan.
| |
Collapse
|
15
|
Peterson JM, Leclair V, Oyebode OE, Herzallah DM, Nestor-Kalinoski AL, Morais J, Zahedi RP, Alamr M, Di Battista JA, Hudson M. A window into intracellular events in myositis through subcellular proteomics. Inflamm Res 2025; 74:31. [PMID: 39890639 PMCID: PMC11785624 DOI: 10.1007/s00011-025-01996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVE AND DESIGN Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of inflammatory muscle disorders of unknown etiology. It is postulated that mitochondrial dysfunction and protein aggregation in skeletal muscle contribute to myofiber degeneration. However, molecular pathways that lead to protein aggregation in skeletal muscle are not well defined. SUBJECTS Here we have isolated membrane-bound organelles (e.g., nuclei, mitochondria, sarcoplasmic/endoplasmic reticulum, Golgi apparatus, and plasma membrane) from muscle biopsies of normal (n = 3) and muscle disease patients (n = 11). Of the myopathy group, 10 patients displayed mitochondrial abnormalities (IIM (n = 9); mitochondrial myopathy (n = 1)), and one IIM patient did not show mitochondrial abnormalities (polymyositis). METHODS Global proteomic analysis was performed using an Orbitrap Fusion mass spectrometer. Upon unsupervised clustering, normal and mitochondrial myopathy muscle samples clustered separately from IIM samples. RESULTS We have confirmed previously known protein alterations in IIM and identified several new ones. For example, we found differential expression of (i) nuclear proteins that control cell division, transcription, RNA regulation, and stability, (ii) ER and Golgi proteins involved in protein folding, degradation, and protein trafficking in the cytosol, and (iii) mitochondrial proteins involved in energy production/metabolism and alterations in cytoskeletal and contractile machinery of the muscle. CONCLUSIONS Our data demonstrates that molecular alterations are not limited to protein aggregations in the cytosol (inclusions) and occur in nuclear, mitochondrial, and membrane compartments of IIM skeletal muscle.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA.
| | - Valérie Leclair
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Olumide E Oyebode
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA
| | - Dema M Herzallah
- Department of Exercise and Rehabilitative Sciences, The University of Toledo, 2801 W. Bancroft St., MS 119, Toledo, OH, 43606, USA
| | - Andrea L Nestor-Kalinoski
- Department of Surgery, Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, USA
| | - Jose Morais
- Division of Geriatric Medicine and Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Mazen Alamr
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - John A Di Battista
- Department of Medicine and Experimental Medicine, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Marie Hudson
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Shumanska M, Lodygin D, Gibhardt CS, Ickes C, Stejerean-Todoran I, Krause LCM, Pahl K, Jacobs LJHC, Paluschkiwitz A, Liu S, Boshnakovska A, Voigt N, Legler TJ, Haubrock M, Mitkovski M, Poschmann G, Rehling P, Dennerlein S, Riemer J, Flügel A, Bogeski I. Mitochondrial calcium uniporter complex controls T-cell-mediated immune responses. EMBO Rep 2025; 26:407-442. [PMID: 39623165 PMCID: PMC11772621 DOI: 10.1038/s44319-024-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 01/29/2025] Open
Abstract
T-cell receptor (TCR)-induced Ca2+ signals are essential for T-cell activation and function. In this context, mitochondria play an important role and take up Ca2+ to support elevated bioenergetic demands. However, the functional relevance of the mitochondrial-Ca2+-uniporter (MCU) complex in T-cells was not fully understood. Here, we demonstrate that TCR activation causes rapid mitochondrial Ca2+ (mCa2+) uptake in primary naive and effector human CD4+ T-cells. Compared to naive T-cells, effector T-cells display elevated mCa2+ and increased bioenergetic and metabolic output. Transcriptome and proteome analyses reveal molecular determinants involved in the TCR-induced functional reprogramming and identify signalling pathways and cellular functions regulated by MCU. Knockdown of MCUa (MCUaKD), diminishes mCa2+ uptake, mitochondrial respiration and ATP production, as well as T-cell migration and cytokine secretion. Moreover, MCUaKD in rat CD4+ T-cells suppresses autoimmune responses in an experimental autoimmune encephalomyelitis (EAE) multiple sclerosis model. In summary, we demonstrate that mCa2+ uptake through MCU is essential for proper T-cell function and has a crucial role in autoimmunity. T-cell specific MCU inhibition is thus a potential tool for targeting autoimmune disorders.
Collapse
Affiliation(s)
- Magdalena Shumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Dmitri Lodygin
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Christian Ickes
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Lena C M Krause
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Kira Pahl
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Lianne J H C Jacobs
- Redox Metabolism, Institute of Biochemistry and CECAD, University of Cologne, Cologne, Germany
| | - Andrea Paluschkiwitz
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Shuya Liu
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Tobias J Legler
- Department of Transfusion Medicine, University Medical Centre, Göttingen, Germany
| | - Martin Haubrock
- Department of Medical Bioinformatics, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Jan Riemer
- Redox Metabolism, Institute of Biochemistry and CECAD, University of Cologne, Cologne, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
17
|
Palmfeldt J. Interaction and regulation of the mitochondrial proteome - in health and disease. Expert Rev Proteomics 2025; 22:19-33. [PMID: 39806765 DOI: 10.1080/14789450.2025.2451704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Mitochondria contain multiple pathways including energy metabolism and several signaling and synthetic pathways. Mitochondrial proteomics is highly valuable for studying diseases including inherited metabolic disorders, complex and common disorders like neurodegeneration, diabetes, and cancer, since they all to some degree have mitochondrial underpinnings. AREAS COVERED The main mitochondrial functions and pathways are outlined, and systematic protein lists are presented. The main energy metabolic pathways are as follows: iron-sulfur cluster synthesis, one carbon metabolism, catabolism of hydrogen sulfide, kynurenines and reactive oxygen species (ROS), and others, described with the aim of laying a foundation for systematic mitochondrial pathway analysis based on proteomics data. The links of the proteins and pathways to functional effects and diseases are discussed. The disease examples are focussed on inherited metabolic disorders, cancer, neurological, and cardiovascular disorders. EXPERT OPINION To elucidate the role of mitochondria in health and disease, there is a need for comprehensive proteomics analyses with stringent, systematic data treatment for proper interpretation of mitochondrial pathway data. In that way, comprehensive hypothesis-based research can be performed based on proteomics data.
Collapse
Affiliation(s)
- Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Zhu H, Shi H, Lu J, Zhu K, Yang L, Guo L, Tang L, Shi Y, Hu X. Proteomic profiling reveals the significance of lipid metabolism in small cell lung cancer recurrence and metastasis. J Transl Med 2024; 22:1117. [PMID: 39707352 PMCID: PMC11662706 DOI: 10.1186/s12967-024-05926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a lethal and recalcitrant malignancy with early metastases. However, the molecular and cellular mechanisms underlying its aggressive characteristics remain relatively elusive. METHODS In this study, we conducted a comprehensive proteomic analysis of 90 primary tumors, 15 patient-matched lymph node metastatic tumors, and 15 brain metastatic tumors derived from a cohort of 105 SCLC patients. The potential mechanism for SCLC metastasis was investigated based on the variety of protein expression profiles. RESULTS Primary tumors were divided into two categories according to the their different protein expression profiles, using metastatic tumors as reference. Proteomic comparisons across different groups revealed that lipid metabolism, especially phospholipid metabolism, and immune response had a critical role in SCLC metastasis. Additionally, it was shown that high- and low-density lipoprotein cholesterol were both independent prognostic factors for disease free survival of SCLC patients. To identify critical regulators of metastasis in SCLC, support vector machine was adopted to generate a biomarker combination of ten proteins, all of which significantly correlated with the infiltration of immune cells. Furthermore, it was demonstrated that high expression of phospholipase A2 group IIA in stroma was associated with delayed disease recurrence in limited stage SCLC. CONCLUSIONS This study highlighted the critical significance of lipid metabolism, especially phospholipid metabolism in the disease recurrence and metastasis of SCLC.
Collapse
Affiliation(s)
- Haohua Zhu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Huiyang Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jingyu Lu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kai Zhu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Xingsheng Hu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
19
|
Ronan G, Yang J, Zorlutuna P. Small Extracellular Vesicles Isolated from Cardiac Tissue Matrix or Plasma Display Distinct Aging-Related Changes in Cargo Contributing to Chronic Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627231. [PMID: 39713371 PMCID: PMC11661072 DOI: 10.1101/2024.12.06.627231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs). While young EVs showed notable overlap of miRNA cargo, aged EVs differed substantially, indicating differential age-related changes between TEVs and PEVs. TEVs overall were uniquely enriched in miRNAs which directly or indirectly demonstrate cardioprotective effects, with 45 potential therapeutic agents implicated in our analysis. Both populations also showed increased predisposition to disease with aging, though through different mechanisms. PEVs were largely correlated with chronic systemic inflammation, while TEVs were more related to cardiac homeostasis and local inflammation. From this, 17 protein targets unique to TEVs were implicated as aging-related changes which likely contribute to the development of cardiovascular disease.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jun Yang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
20
|
Ronan G, Bahcecioglu G, Yang J, Zorlutuna P. Cardiac tissue-resident vesicles differentially modulate anti-fibrotic phenotype by age and sex through synergistic miRNA effects. Biomaterials 2024; 311:122671. [PMID: 38941684 PMCID: PMC11344275 DOI: 10.1016/j.biomaterials.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Aging is a risk factor for cardiovascular disease, the leading cause of death worldwide. Cardiac fibrosis is a harmful result of repeated myocardial infarction that increases risk of morbidity and future injury. Interestingly, both rates and outcomes of cardiac fibrosis differ between young and aged individuals, as well as men and women. Here, for the first time, we identify and isolate matrix-bound extracellular vesicles from the left ventricles (LVs) of young or aged males and females in both human and murine models. These LV vesicles (LVVs) show differences in morphology and content between these four cohorts in both humans and mice. LVV effects on fibrosis were also investigated in vitro, and aged male LVVs were pro-fibrotic while other LVVs were anti-fibrotic. From these LVVs, we could identify therapeutic miRNAs to promote anti-fibrotic effects. Four miRNAs were identified and together, but not individually, demonstrated significant cardioprotective effects when transfected. This suggests that miRNA synergy can regulate cell response, not just individual miRNAs, and also indicates that biological agent-associated therapeutic effects may be recapitulated using non-immunologically active agents. Furthermore, that chronic changes in LVV miRNA content may be a major factor in sex- and age-dependent differences in clinical outcomes of cardiac fibrosis.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
21
|
Lian H, Wang J, Yan S, Chen K, Jin L. An integrative analysis based on multiple cell death patterns identifies an immunosuppressive subtype and establishes a prognostic signature in lower-grade glioma. Ann Med 2024; 56:2412831. [PMID: 39387560 PMCID: PMC11469432 DOI: 10.1080/07853890.2024.2412831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Cell death modulates the biological behaviors of tumors. However, the comprehensive role of the multiple forms of cell death in lower-grade glioma (LGG) is unknown. METHODS We collected the transcriptional data of LGG patients from public repositories to comprehensively examine six cell death patterns (autophagy, apoptosis, cuproptosis, necroptosis, ferroptosis, and pyroptosis) in LGG samples and systematically correlated these patterns with patient survival, underlying biological processes, and drug sensitivity using serial bioinformatics analysis, clinical sample validation and in vitro assays. RESULTS We identified and independently validated three reproducible cell death-based clusters associated with distinct clinical outcomes and tumor microenvironment characteristics. The Tumor Immune Dysfunction and Exclusion algorithm was applied for predicting how these three clusters would respond to immune checkpoint blockade (ICB) therapy; we found potential resistance of cluster B to ICB therapy. We also performed drug screening to identify cluster-specific drugs. Furthermore, a scoring system, designated as the CDPM score, was developed to estimate the cell death patterns of patients with LGG; this system could predict both LGG patients' prognosis and immunotherapy efficacy. By performing multiplex immunofluorescence staining, we validated the correlations of GNAL expression with the molecular and clinical features of LGG in an independent LGG cohort. Finally, in vitro assays showed that GNAL promoted apoptosis and inhibited the proliferation of LGG cells. CONCLUSION The new cell death-based subtype system indicates several features of LGG biology and reveals novel insights into the use of precision medicine for treating LGG. The CDPM score could be used to predict the immunotherapy response and prognosis of LGG patients; moreover, it could indicate a novel direction for improving LGG management.
Collapse
Affiliation(s)
- Hao Lian
- Department of Traditional Chinese Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Yan
- Pudong New District, Huamu Community Health Service Center, Shanghai, P.R. China
| | - Kui Chen
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lilun Jin
- Department of Traditional Chinese Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Hedberg-Oldfors C, Lindgren U, Visuttijai K, Shen Y, Ilinca A, Nordström S, Lindberg C, Oldfors A. Lipid storage myopathy associated with sertraline treatment is an acquired mitochondrial disorder with respiratory chain deficiency. Acta Neuropathol 2024; 148:73. [PMID: 39586906 PMCID: PMC11588938 DOI: 10.1007/s00401-024-02830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Lipid storage myopathies are considered inborn errors of metabolism affecting the fatty acid metabolism and leading to accumulation of lipid droplets in the cytoplasm of muscle fibers. Specific diagnosis is based on investigation of organic aids in urine, acylcarnitines in blood and genetic testing. An acquired lipid storage myopathy in patients treated with the antidepressant drug sertraline, a serotonin reuptake inhibitor, has recently emerged as a new tentative differential diagnosis. We analyzed the muscle biopsy tissue in a group of 11 adult patients with muscle weakness and lipid storage myopathy which developed at a time when they were on sertraline treatment. This group comprise most patients with lipid storage myopathies in western Sweden during the recent nine-year period. By enzyme histochemistry, electron microscopy, quantitative proteomics, immunofluorescence of the respiratory chain subunits, western blot and genetic analyses we demonstrate that muscle tissue in this group of patients exhibit a characteristic morphological and proteomic profile. The patients also showed an acylcarnitine profile in blood suggestive of multiple acyl-coenzyme A dehydrogenase deficiency, but no genetic explanation was found by whole genome or exome sequencing. By proteomic analysis the muscle tissue revealed a profound loss of Complex I subunits from the respiratory chain and to some extent also deficiency of Complex II and IV. Most other components of the respiratory chain as well as the fatty acid oxidation and citric acid cycle were upregulated in accordance with the massive mitochondrial proliferation. The respiratory chain deficiency was verified by immunofluorescence analysis, western blot analysis and enzyme histochemistry. The typical ultrastructural changes of the mitochondria included pleomorphism, dark matrix and frequent round osmiophilic inclusions. Our results show that lipid storage myopathy associated with sertraline treatment is a mitochondrial disorder with respiratory chain deficiency and is an important differential diagnosis with characteristic features.
Collapse
Affiliation(s)
| | - Ulrika Lindgren
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Neuromuscular Centre, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Yan Shen
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Andreea Ilinca
- Department of Neurology, Division of Neurology, Skåne University Hospital, Lund, Sweden
- Department for Clinical Sciences, Lund University, Lund, Sweden
| | - Sara Nordström
- Neuromuscular Centre, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christopher Lindberg
- Neuromuscular Centre, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
23
|
Lebachelier de la Riviere ME, Téteau O, Mahé C, Lasserre O, Desmarchais A, Uzbekova S, Papillier P, Tomas D, Labas V, Maillard V, Saint-Dizier M, Binet A, Elis S. Metabolic status is a key factor influencing proteomic changes in ewe granulosa cells induced by chronic BPS exposure. BMC Genomics 2024; 25:1095. [PMID: 39550580 PMCID: PMC11568600 DOI: 10.1186/s12864-024-11034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Bisphenol S (BPS) is the main substitute for bisphenol A (BPA), a well-known plasticiser and endocrine disruptor. BPS disrupts ovarian function in several species. Moreover, a few studies have reported that the effects of BPS might be modulated by the metabolic status, and none have characterised the granulosa cell (GC) proteome after chronic BPS exposure. OBJECTIVES This study aimed to decipher the mechanisms of action of chronic BPS exposure on the proteome of ewe GCs while considering the interaction between a deliberate contrasted metabolism and reproductive function. METHODS Forty ewes were split into two groups with contrasted diets: restricted (R, n = 20) and well-fed (WF, n = 20). The R and WF ewes were subdivided according to the dose of BPS administered through the diet (0-50 µg/kg/day), forming four groups: R0, R50, WF0 and WF50. After 3-month BPS daily exposure, GCs were recovered during the pre-ovulatory stage and proteins were analysed by nano-liquid chromatography coupled with tandem mass spectrometry. RESULTS Chronic exposure to BPS affected the GC proteome differently according to the ewe metabolic status. Fifty-nine out of 958 quantified proteins were differentially abundant between groups and are mainly involved in carbohydrate and lipid pathways. Unsupervised hierarchical clustering of differentially abundant proteins (DAPs) identified four clusters of 34, 6, 5 and 14 proteins according to the BPS exposure and diet interaction. Pairwise comparisons between groups also revealed a strong effect of BPS exposure and diet interaction. Functional analysis of DAPs highlighted that BPS upregulated β-glucuronidase (GUSB; p = 0.002), a protein especially able to deconjugate bisphenol glucuronides (BP-g). Moreover, among unexposed ewes, GUSB was detected only in well-fed ewes. DISCUSSION Conjugation of glucuronides inhibits the oestrogenic activity of bisphenols. Upregulation of GUSB in ewes dosed with BPS would prolong the oestrogenic effects of BPS by deconjugating BPS-g into free BPS. In addition, literature has reported an up-regulation of GUSB in people suffering from obesity. Therefore, people suffering from obesity could be subjected to prolonged and aggravated exposure to BPS. These data highlighted the deleterious effects of BPS and its interaction with metabolic status.
Collapse
Affiliation(s)
| | - Ophélie Téteau
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
| | - Coline Mahé
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
| | | | | | | | | | - Daniel Tomas
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
- PIXANIM, INRAE, Université de Tours, CHU de Tours, Nouzilly, 37380, France
| | - Valérie Labas
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France
- PIXANIM, INRAE, Université de Tours, CHU de Tours, Nouzilly, 37380, France
| | | | | | - Aurélien Binet
- Service de Chirurgie Pédiatrique, CHU Poitiers, Poitiers, France
- CNRS UMR7267, Ecologie et biologiie des interactions, Université de Poitiers, Poitiers, 86000, France
| | - Sebastien Elis
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, 37380, France.
| |
Collapse
|
24
|
Liu W, Huang Y, Xu Y, Gao X, Zhao Y, Fan S, Geng Y, Zhu S. The combined signatures of programmed cell death and immune landscape provide a prognostic and therapeutic biomarker in the hepatocellular carcinoma. Front Chem 2024; 12:1484310. [PMID: 39600313 PMCID: PMC11591233 DOI: 10.3389/fchem.2024.1484310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the fourth most common cause of mortality globally among all cancer types. Programmed cell death (PCD) is a crucial biological mechanism governing cancer progression, tumor expansion, and metastatic dissemination. Furthermore, the tumor microenvironment (TME) is critical in influencing overall survival (OS) and immune responses to immunotherapeutic interventions. From a multi-omics perspective, the combination of PCD and TME could help to predict the survival of HCC patient survival and immunotherapy response. Our study analyzed variations in the PCD- and TME-classifier used in the classification of HCC patients into two subgroups: PCD high-TME low and PCD low-TME high. In the following step, we compared the tumor somatic mutation (TMB), immunotherapy response, and functional annotation of both groups of patients. Lastly, Western Blot (WB) were conducted. The immunohistochemistry (IHC) was performed on the Human Protein Atlas (HPA). In the PCD-TME classifier, 23 PCD-related genes and three immune cell types were identified. Patients' prognoses and responses to therapy could be accurately predicted using this model. The findings of this study provide a new instrument for the clinical management of HCC patients, and they contribute to the development of accurate treatment strategies for these patients.
Collapse
Affiliation(s)
- Wanghu Liu
- Department of General Surgery, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yang Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xuanji Gao
- Department of General Surgery, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, China
| | - Yifan Zhao
- Department of General Surgery, Affiliated Hospital of Nantong University, Medicine School of Nantong University, Nantong, China
| | - Simin Fan
- Department of Nursing, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanzhi Geng
- Medicine School of Nantong University, Nantong, China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
25
|
Zhu M, Wang Y, Mu H, Han F, Wang Q, Pei Y, Wang X, Dai X. Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains. Nat Commun 2024; 15:9567. [PMID: 39500898 PMCID: PMC11538241 DOI: 10.1038/s41467-024-53992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The trade-off between rapid growth and other important physiological traits (e.g., survival and adaptability) poses a fundamental challenge for microbes to achieve fitness maximization. Studies on Bacillus subtilis biology often use strains derived after a process of lab 'domestication' from an ancestral strain known as Marburg strain. The domestication process led to loss of a large plasmid (pBS32) encoding a phosphatase (RapP) that dephosphorylates the Spo0F protein and thus regulates biofilm formation and sporulation. Here, we show that plasmid pBS32, and more specifically rapP, enhance growth rates by preventing premature expression of the Spo0F-Spo0A-mediated adaptive response during exponential phase. This results in reallocation of proteome resources towards biosynthetic, growth-promoting pathways without compromising long-term fitness during stationary phase. Thus, RapP helps B. subtilis to constrain physiological trade-offs and economize cellular resources for fitness improvement.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yiheng Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Haoyan Mu
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Fei Han
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Qian Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Yongfu Pei
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xin Wang
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
26
|
He C, Zhang J, Bai X, Lu C, Zhang K. Lysine lactylation-based insight to understanding the characterization of cervical cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167356. [PMID: 39025375 DOI: 10.1016/j.bbadis.2024.167356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Lysine lactylation (Kla), a recently discovered post-translational modification (PTM), is not only present in histone proteins but also widely distributed among non-histone proteins in tumor cells and immunocytes. However, the precise characterization and functional implications of these non-histone Kla proteins remain to be explored. Herein, a comprehensive proteomic analysis of Kla was conducted in HeLa cells. As a result, a total of 3633 Kla sites on 1637 proteins were identified. Subsequently, the stable Kla substrates were obtained and sorted to investigate the characterization and function of Kla proteins. Moreover, we characterized the Kla-related features of cervical cancers through integrative analyses of multiple datasets with proteomes, transcriptomes and single-cell transcriptome profiling. Kla-related genes (KRGs) were used to stratify cervical cancers into two clusters (C1 and C2). C2 cluster display inhibition in glycosylation and increased oxidative phosphorylation activity with high survival rate. In addition, we constructed a prognostic model based on two lactate signature genes, namely ISY1 and PPP1R14B. Interestingly, our findings revealed a negative correlation between PPP1R14B expression and the infiltration of CD8+ T cells, as well as a lower survival rate. This observation was further validated at the single-cell resolution. Simultaneously, we found that K140R mutant of PPP1R14B resulted in the decrease of Kla level and enhanced the proliferation and migration capabilities of cervical cancer cell lines, suggesting PPP1R14B-K140la has an effect on tumor behaviors. Collectively, we provides a Kla-based insight to understanding the characterization of cervical cancer, offering a potential avenue for therapeutic approaches.
Collapse
Affiliation(s)
- Chaoran He
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jianji Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Congcong Lu
- Frontiers Science Center for Cell Responses, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
27
|
Jia K, Cheng H, Ma W, Zhuang L, Li H, Li Z, Wang Z, Sun H, Cui Y, Zhang H, Xie H, Yi L, Chen Z, Sano M, Fukuda K, Lu L, Pu J, Zhang Y, Gao L, Zhang R, Yan X. RNA Helicase DDX5 Maintains Cardiac Function by Regulating CamkIIδ Alternative Splicing. Circulation 2024; 150:1121-1139. [PMID: 39056171 DOI: 10.1161/circulationaha.123.064774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Heart failure (HF) is a leading cause of morbidity and mortality worldwide. RNA-binding proteins are identified as regulators of cardiac disease; DDX5 (dead-box helicase 5) is a master regulator of many RNA processes, although its function in heart physiology remains unclear. METHODS We assessed DDX5 expression in human failing hearts and a mouse HF model. To study the function of DDX5 in heart, we engineered cardiomyocyte-specific Ddx5 knockout mice. We overexpressed DDX5 in cardiomyocytes using adeno-associated virus serotype 9 and performed transverse aortic constriction to establish the murine HF model. The mechanisms underlined were subsequently investigated using immunoprecipitation-mass spectrometry, RNA-sequencing, alternative splicing analysis, and RNA immunoprecipitation sequencing. RESULTS We screened transcriptome databases of murine HF and human dilated cardiomyopathy samples and found that DDX5 was significantly downregulated in both. Cardiomyocyte-specific deletion of Ddx5 resulted in HF with reduced cardiac function, an enlarged heart chamber, and increased fibrosis in mice. DDX5 overexpression improved cardiac function and protected against adverse cardiac remodeling in mice with transverse aortic constriction-induced HF. Furthermore, proteomics revealed that DDX5 is involved in RNA splicing in cardiomyocytes. We found that DDX5 regulated the aberrant splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CamkIIδ), thus preventing the production of CaMKIIδA, which phosphorylates L-type calcium channel by serine residues of Cacna1c, leading to impaired Ca2+ homeostasis. In line with this, we found increased intracellular Ca2+ transients and increased sarcoplasmic reticulum Ca2+ content in DDX5-depleted cardiomyocytes. Using adeno-associated virus serotype 9 knockdown of CaMKIIδA partially rescued the cardiac dysfunction and HF in Ddx5 knockout mice. CONCLUSIONS These findings reveal a role for DDX5 in maintaining calcium homeostasis and cardiac function by regulating alternative splicing in cardiomyocytes, identifying the DDX5 as a potential target for therapeutic intervention in HF.
Collapse
Affiliation(s)
- Kangni Jia
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Haomai Cheng
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Wenqi Ma
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hao Li
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (H.L., L.G.)
| | - Zhigang Li
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Ziyang Wang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hang Sun
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Yuke Cui
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hang Zhang
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Hongyang Xie
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Lei Yi
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Zhiyong Chen
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (M.S., K.F.)
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (M.S., K.F.)
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (J.P.), School of Medicine, Shanghai Jiao Tong University, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing, China (Y.Z.)
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy & Institutes for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (H.L., L.G.)
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
- Institute of Cardiovascular Diseases (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.C., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital (K.J., H.C., W.M., L.Z., Z.L., Z.W., H.S., Y.C., H.Z., H.X., L.Y., Z.C., L.L., R.Z., X.Y.), School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
28
|
Cömert C, Kjær-Sørensen K, Hansen J, Carlsen J, Just J, Meaney BF, Østergaard E, Luo Y, Oxvig C, Schmidt-Laursen L, Palmfeldt J, Fernandez-Guerra P, Bross P. HSP60 chaperone deficiency disrupts the mitochondrial matrix proteome and dysregulates cholesterol synthesis. Mol Metab 2024; 88:102009. [PMID: 39147275 PMCID: PMC11388177 DOI: 10.1016/j.molmet.2024.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVE Mitochondrial proteostasis is critical for cellular function. The molecular chaperone HSP60 is essential for cell function and dysregulation of HSP60 expression has been implicated in cancer and diabetes. The few reported patients carrying HSP60 gene variants show neurodevelopmental delay and brain hypomyelination. Hsp60 interacts with more than 260 mitochondrial proteins but the mitochondrial proteins and functions affected by HSP60 deficiency are poorly characterized. METHODS We studied two model systems for HSP60 deficiency: (1) engineered HEK cells carrying an inducible dominant negative HSP60 mutant protein, (2) zebrafish HSP60 knockout larvae. Both systems were analyzed by RNASeq, proteomics, and targeted metabolomics, and several functional assays relevant for the respective model. In addition, skin fibroblasts from patients with disease-associated HSP60 variants were analyzed by proteomics. RESULTS We show that HSP60 deficiency leads to a differentially downregulated mitochondrial matrix proteome, transcriptional activation of stress responses, and dysregulated cholesterol biosynthesis. This leads to lipid accumulation in zebrafish knockout larvae. CONCLUSIONS Our data provide a compendium of the effects of HSP60 deficiency on the mitochondrial matrix proteome. We show that HSP60 is a master regulator and modulator of mitochondrial functions and metabolic pathways. HSP60 dysfunction also affects cellular metabolism and disrupts the integrated stress response. The effect on cholesterol synthesis explains the effect of HSP60 dysfunction on myelination observed in patients carrying genetic variants of HSP60.
Collapse
Affiliation(s)
- Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Brandon F Meaney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Odense, Denmark.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
29
|
Popow J, Farnaby W, Gollner A, Kofink C, Fischer G, Wurm M, Zollman D, Wijaya A, Mischerikow N, Hasenoehrl C, Prokofeva P, Arnhof H, Arce-Solano S, Bell S, Boeck G, Diers E, Frost AB, Goodwin-Tindall J, Karolyi-Oezguer J, Khan S, Klawatsch T, Koegl M, Kousek R, Kratochvil B, Kropatsch K, Lauber AA, McLennan R, Olt S, Peter D, Petermann O, Roessler V, Stolt-Bergner P, Strack P, Strauss E, Trainor N, Vetma V, Whitworth C, Zhong S, Quant J, Weinstabl H, Kuster B, Ettmayer P, Ciulli A. Targeting cancer with small-molecule pan-KRAS degraders. Science 2024; 385:1338-1347. [PMID: 39298590 DOI: 10.1126/science.adm8684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) protein are highly prevalent in cancer. However, small-molecule concepts that address oncogenic KRAS alleles remain elusive beyond replacing glycine at position 12 with cysteine (G12C), which is clinically drugged through covalent inhibitors. Guided by biophysical and structural studies of ternary complexes, we designed a heterobifunctional small molecule that potently degrades 13 out of 17 of the most prevalent oncogenic KRAS alleles. Compared with inhibition, KRAS degradation results in more profound and sustained pathway modulation across a broad range of KRAS mutant cell lines, killing cancer cells while sparing models without genetic KRAS aberrations. Pharmacological degradation of oncogenic KRAS was tolerated and led to tumor regression in vivo. Together, these findings unveil a new path toward addressing KRAS-driven cancers with small-molecule degraders.
Collapse
Affiliation(s)
- Johannes Popow
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - William Farnaby
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | - Melanie Wurm
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - David Zollman
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Andre Wijaya
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | | | | | - Polina Prokofeva
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | | | | | - Sammy Bell
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Georg Boeck
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Emelyne Diers
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Aileen B Frost
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Jake Goodwin-Tindall
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | | | - Shakil Khan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | | | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Roland Kousek
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | - Arnel A Lauber
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Ross McLennan
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Sabine Olt
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Daniel Peter
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | | | | | - Patrick Strack
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Eva Strauss
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Nicole Trainor
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Vesna Vetma
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Claire Whitworth
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Siying Zhong
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| | - Jens Quant
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | | | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co KG, 1221 Vienna, Austria
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee DD1 5JJ, UK
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
30
|
Biswas P, Roy P, Jana S, Ray D, Das J, Chaudhuri B, Basunia RR, Sinha B, Sinha DK. Exploring the role of macromolecular crowding and TNFR1 in cell volume control. eLife 2024; 13:e92719. [PMID: 39297502 PMCID: PMC11581439 DOI: 10.7554/elife.92719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favoring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with nuclear factor kappa beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that tumor necrosis factor receptor 1 (TNFR1) initiates the hypertonicity-induced NFkB signaling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders receptor interacting protein kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signaling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signaling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.
Collapse
Affiliation(s)
- Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Priyanka Roy
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Subhamoy Jana
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Dipanjan Ray
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Jibitesh Das
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Bipasa Chaudhuri
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Ridita Ray Basunia
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| |
Collapse
|
31
|
Notario Manzano R, Chaze T, Rubinstein E, Penard E, Matondo M, Zurzolo C, Brou C. Proteomic landscape of tunneling nanotubes reveals CD9 and CD81 tetraspanins as key regulators. eLife 2024; 13:RP99172. [PMID: 39250349 PMCID: PMC11383530 DOI: 10.7554/elife.99172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Tunneling nanotubes (TNTs) are open actin- and membrane-based channels, connecting remote cells and allowing direct transfer of cellular material (e.g. vesicles, mRNAs, protein aggregates) from the cytoplasm to the cytoplasm. Although they are important especially, in pathological conditions (e.g. cancers, neurodegenerative diseases), their precise composition and their regulation were still poorly described. Here, using a biochemical approach allowing to separate TNTs from cell bodies and from extracellular vesicles and particles (EVPs), we obtained the full composition of TNTs compared to EVPs. We then focused on two major components of our proteomic data, the CD9 and CD81 tetraspanins, and further investigated their specific roles in TNT formation and function. We show that these two tetraspanins have distinct non-redundant functions: CD9 participates in stabilizing TNTs, whereas CD81 expression is required to allow the functional transfer of vesicles in the newly formed TNTs, possibly by regulating docking to or fusion with the opposing cell.
Collapse
Affiliation(s)
- Roberto Notario Manzano
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, Paris, France
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Eric Rubinstein
- Centre d'Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, Paris, France
| | - Esthel Penard
- Ultrastructural BioImaging Core Facility (UBI), C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christel Brou
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and Infection, CNRS 18 UMR 3691, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
32
|
Shen Y, Dinh HV, Cruz ER, Chen Z, Bartman CR, Xiao T, Call CM, Ryseck RP, Pratas J, Weilandt D, Baron H, Subramanian A, Fatma Z, Wu ZY, Dwaraknath S, Hendry JI, Tran VG, Yang L, Yoshikuni Y, Zhao H, Maranas CD, Wühr M, Rabinowitz JD. Mitochondrial ATP generation is more proteome efficient than glycolysis. Nat Chem Biol 2024; 20:1123-1132. [PMID: 38448734 PMCID: PMC11925356 DOI: 10.1038/s41589-024-01571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Metabolic efficiency profoundly influences organismal fitness. Nonphotosynthetic organisms, from yeast to mammals, derive usable energy primarily through glycolysis and respiration. Although respiration is more energy efficient, some cells favor glycolysis even when oxygen is available (aerobic glycolysis, Warburg effect). A leading explanation is that glycolysis is more efficient in terms of ATP production per unit mass of protein (that is, faster). Through quantitative flux analysis and proteomics, we find, however, that mitochondrial respiration is actually more proteome efficient than aerobic glycolysis. This is shown across yeast strains, T cells, cancer cells, and tissues and tumors in vivo. Instead of aerobic glycolysis being valuable for fast ATP production, it correlates with high glycolytic protein expression, which promotes hypoxic growth. Aerobic glycolytic yeasts do not excel at aerobic growth but outgrow respiratory cells during oxygen limitation. We accordingly propose that aerobic glycolysis emerges from cells maintaining a proteome conducive to both aerobic and hypoxic growth.
Collapse
Affiliation(s)
- Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hoang V Dinh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Edward R Cruz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Zihong Chen
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
| | - Caroline R Bartman
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA
| | - Tianxia Xiao
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Catherine M Call
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rolf-Peter Ryseck
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jimmy Pratas
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Daniel Weilandt
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Heide Baron
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Arjuna Subramanian
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Zia Fatma
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zong-Yen Wu
- US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sudharsan Dwaraknath
- US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John I Hendry
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Vinh G Tran
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lifeng Yang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
33
|
Zhang H, Hu F, Peng O, Huang Y, Hu G, Ashraf U, Cen M, Wang X, Xu Q, Zou C, Wu Y, Zhu B, Li W, Li Q, Li C, Xue C, Cao Y. Multi-Omics Analysis by Machine Learning Identified Lysophosphatidic Acid as a Biomarker and Therapeutic Target for Porcine Reproductive and Respiratory Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402025. [PMID: 38976572 PMCID: PMC11425916 DOI: 10.1002/advs.202402025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/16/2024] [Indexed: 07/10/2024]
Abstract
As a significant infectious disease in livestock, porcine reproductive and respiratory syndrome (PRRS) imposes substantial economic losses on the swine industry. Identification of diagnostic markers and therapeutic targets has been a focal challenge in PPRS prevention and control. By integrating metabolomic and lipidomic serum analyses of clinical pig cohorts through a machine learning approach with in vivo and in vitro infection models, lysophosphatidic acid (LPA) is discovered as a serum metabolic biomarker for PRRS virus (PRRSV) clinical diagnosis. PRRSV promoted LPA synthesis by upregulating the autotaxin expression, which causes innate immunosuppression by dampening the retinoic acid-inducible gene I (RIG-I) and type I interferon responses, leading to enhanced virus replication. Targeting LPA demonstrated protection against virus infection and associated disease outcomes in infected pigs, indicating that LPA is a novel antiviral target against PRRSV. This study lays a foundation for clinical prevention and control of PRRSV infections.
Collapse
Affiliation(s)
- Hao Zhang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fangyu Hu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yihui Huang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guangli Hu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Usama Ashraf
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305, USA
| | - Meifeng Cen
- Bioinformatics and Omics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaojuan Wang
- Bioinformatics and Omics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chuangchao Zou
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Wu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qunhui Li
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China
| | - Chujun Li
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
34
|
Alfandari A, Moskovich D, Weisz A, Katzav A, Kidron D, Beiner M, Josephy D, Asali A, Hants Y, Yagur Y, Weitzner O, Ellis M, Itchaki G, Ashur‐Fabian O. The selenoenzyme type I iodothyronine deiodinase: a new tumor suppressor in ovarian cancer. Mol Oncol 2024; 18:2298-2313. [PMID: 38429887 PMCID: PMC11467794 DOI: 10.1002/1878-0261.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
The selenoenzyme type I iodothyronine deiodinase (DIO1) catalyzes removal of iodine atoms from thyroid hormones. Although DIO1 action is reported to be disturbed in several malignancies, no work has been conducted in high-grade serous ovarian carcinoma (HGSOC), the most lethal gynecologic cancer. We studied DIO1 expression in HGSOC patients [The Cancer Genome Atlas (TCGA) data and tumor tissues], human cell lines (ES-2 and Kuramochi), normal Chinese hamster ovarian cells (CHO-K1), and normal human fallopian tube cells (FT282 and FT109). To study its functional role, DIO1 was overexpressed, inhibited [by propylthiouracil (PTU)], or knocked down (KD), and cell count, proliferation, apoptosis, cell viability, and proteomics analysis were performed. Lower DIO1 levels were observed in HGSOC compared to normal cells and tissues. TCGA analyses confirmed that low DIO1 mRNA expression correlated with worse survival and therapy resistance in patients. Silencing or inhibiting the enzyme led to enhanced ovarian cancer proliferation, while an opposite effect was shown following DIO1 ectopic expression. Proteomics analysis in DIO1-KD cells revealed global changes in proteins that facilitate tumor metabolism and progression. In conclusion, DIO1 expression and ovarian cancer progression are inversely correlated, highlighting a tumor suppressive role for this enzyme and its potential use as a biomarker in this disease.
Collapse
Affiliation(s)
- Adi Alfandari
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Dotan Moskovich
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Avivit Weisz
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Aviva Katzav
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Debora Kidron
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Mario Beiner
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Dana Josephy
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Aula Asali
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Yael Hants
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Yael Yagur
- Department of Obstetrics and GynecologyMeir Medical CenterKfar SabaIsrael
| | - Omer Weitzner
- Department of Obstetrics and GynecologyMeir Medical CenterKfar SabaIsrael
| | - Martin Ellis
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Gilad Itchaki
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Osnat Ashur‐Fabian
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| |
Collapse
|
35
|
No EG, Blank HM, Polymenis M. Patterns of protein synthesis in the budding yeast cell cycle: variable or constant? MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:321-327. [PMID: 39188509 PMCID: PMC11345583 DOI: 10.15698/mic2024.08.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Proteins are the principal macromolecular constituent of proliferating cells, and protein synthesis is viewed as a primary metric of cell growth. While there are celebrated examples of proteins whose levels are periodic in the cell cycle (e.g., cyclins), the concentration of most proteins was not thought to change in the cell cycle, but some recent results challenge this notion. The 'bulk' protein is the focus of this article, specifically the rate of its synthesis, in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Eun-Gyu No
- Department of Biochemistry and Biophysics, Texas A&M UniversityTX, 77843U.S.A
| | - Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M UniversityTX, 77843U.S.A
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M UniversityTX, 77843U.S.A
| |
Collapse
|
36
|
Muñoz-Gómez SA. The energetic costs of cellular complexity in evolution. Trends Microbiol 2024; 32:746-755. [PMID: 38307786 DOI: 10.1016/j.tim.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
The evolutionary history of cells has been marked by drastic increases in complexity. Some hypothesize that such cellular complexification requires a massive energy flux as the origin of new features is hypothetically more energetically costly than their evolutionary maintenance. However, it remains unclear how increases in cellular complexity demand more energy. I propose that the early evolution of new genes with weak functions imposes higher energetic costs by overexpression before their functions are evolutionarily refined. In the long term, the accumulation of new genes deviates resources away from growth and reproduction. Accrued cellular complexity further requires additional infrastructure for its maintenance. Altogether, this suggests that larger and more complex cells are defined by increased survival but lower reproductive capacity.
Collapse
|
37
|
Kopecká R, Černý M. Xylem Sap Proteome Analysis Provides Insight into Root-Shoot Communication in Response to flg22. PLANTS (BASEL, SWITZERLAND) 2024; 13:1983. [PMID: 39065510 PMCID: PMC11281318 DOI: 10.3390/plants13141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and Hordeum vulgare. By analyzing the flg22 response, we identified immune response components not detectable through root or shoot analyses. Notably, we discovered previously unknown elements of the plant immune system, including calcium/calmodulin-dependent kinases and G-type lectin receptor kinases. Despite similarities in the metabolic pathways identified in the xylem sap of both plants, the flg22 response differed significantly: S. tuberosum exhibited 78 differentially abundant proteins, whereas H. vulgare had over 450. However, an evolutionarily conserved overlap in the flg22 response proteins was evident, particularly in the CAZymes and lipid metabolism pathways, where lipid transfer proteins and lipases showed a similar response to flg22. Additionally, many proteins without conserved signal sequences for extracellular targeting were found, such as members of the HSP70 family. Interestingly, the HSP70 response to flg22 was specific to the xylem sap proteome, suggesting a unique regulatory role in the extracellular space similar to that reported in mammalians.
Collapse
Affiliation(s)
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
38
|
Tapia IJ, Perico D, Wolos VJ, Villaverde MS, Abrigo M, Di Silvestre D, Mauri P, De Palma A, Fiszman GL. Proteomic Characterization of a 3D HER2+ Breast Cancer Model Reveals the Role of Mitochondrial Complex I in Acquired Resistance to Trastuzumab. Int J Mol Sci 2024; 25:7397. [PMID: 39000504 PMCID: PMC11242363 DOI: 10.3390/ijms25137397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
HER2-targeted therapies, such as Trastuzumab (Tz), have significantly improved the clinical outcomes for patients with HER2+ breast cancer (BC). However, treatment resistance remains a major obstacle. To elucidate functional and metabolic changes associated with acquired resistance, we characterized protein profiles of BC Tz-responder spheroids (RSs) and non-responder spheroids (nRSs) by a proteomic approach. Three-dimensional cultures were generated from the HER2+ human mammary adenocarcinoma cell line BT-474 and a derived resistant cell line. Before and after a 15-day Tz treatment, samples of each condition were collected and analyzed by liquid chromatography-mass spectrometry. The analysis of differentially expressed proteins exhibited the deregulation of energetic metabolism and mitochondrial pathways. A down-regulation of carbohydrate metabolism and up-regulation of mitochondria organization proteins, the tricarboxylic acid cycle, and oxidative phosphorylation, were observed in nRSs. Of note, Complex I-related proteins were increased in this condition and the inhibition by metformin highlighted that their activity is necessary for nRS survival. Furthermore, a correlation analysis showed that overexpression of Complex I proteins NDUFA10 and NDUFS2 was associated with high clinical risk and worse survival for HER2+ BC patients. In conclusion, the non-responder phenotype identified here provides a signature of proteins and related pathways that could lead to therapeutic biomarker investigation.
Collapse
Affiliation(s)
- Ivana J. Tapia
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área de Investigación, 5481 San Martín Av., Ciudad Autónoma de Buenos Aires C1417DTB, Argentina; (V.J.W.); (M.S.V.); (M.A.); (G.L.F.)
| | - Davide Perico
- Institute of Biomedical Technologies-National Research Council ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, Italy; (D.P.); (D.D.S.); (P.M.)
| | - Virginia J. Wolos
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área de Investigación, 5481 San Martín Av., Ciudad Autónoma de Buenos Aires C1417DTB, Argentina; (V.J.W.); (M.S.V.); (M.A.); (G.L.F.)
| | - Marcela S. Villaverde
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área de Investigación, 5481 San Martín Av., Ciudad Autónoma de Buenos Aires C1417DTB, Argentina; (V.J.W.); (M.S.V.); (M.A.); (G.L.F.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Marianela Abrigo
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área de Investigación, 5481 San Martín Av., Ciudad Autónoma de Buenos Aires C1417DTB, Argentina; (V.J.W.); (M.S.V.); (M.A.); (G.L.F.)
| | - Dario Di Silvestre
- Institute of Biomedical Technologies-National Research Council ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, Italy; (D.P.); (D.D.S.); (P.M.)
| | - Pierluigi Mauri
- Institute of Biomedical Technologies-National Research Council ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, Italy; (D.P.); (D.D.S.); (P.M.)
- Institute of Life Sciences, Sant’Anna School of Advanced Study, 56127 Pisa, Italy
| | - Antonella De Palma
- Institute of Biomedical Technologies-National Research Council ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, Italy; (D.P.); (D.D.S.); (P.M.)
| | - Gabriel L. Fiszman
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área de Investigación, 5481 San Martín Av., Ciudad Autónoma de Buenos Aires C1417DTB, Argentina; (V.J.W.); (M.S.V.); (M.A.); (G.L.F.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
39
|
Rugen N, Senkler M, Braun HP. Deep proteomics reveals incorporation of unedited proteins into mitochondrial protein complexes in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:1180-1199. [PMID: 38060994 PMCID: PMC11142381 DOI: 10.1093/plphys/kiad655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 06/02/2024]
Abstract
The mitochondrial proteome consists of numerous types of proteins which either are encoded and synthesized in the mitochondria, or encoded in the cell nucleus, synthesized in the cytoplasm and imported into the mitochondria. Their synthesis in the mitochondria, but not in the nucleus, relies on the editing of the primary transcripts of their genes at defined sites. Here, we present an in-depth investigation of the mitochondrial proteome of Arabidopsis (Arabidopsis thaliana) and a public online platform for the exploration of the data. For the analysis of our shotgun proteomic data, an Arabidopsis sequence database was created comprising all available protein sequences from the TAIR10 and Araport11 databases, supplemented with sequences of proteins translated from edited and nonedited transcripts of mitochondria. Amino acid sequences derived from partially edited transcripts were also added to analyze proteins encoded by the mitochondrial genome. Proteins were digested in parallel with six different endoproteases to obtain maximum proteome coverage. The resulting peptide fractions were finally analyzed using liquid chromatography coupled to ion mobility spectrometry and tandem mass spectrometry. We generated a "deep mitochondrial proteome" of 4,692 proteins. 1,339 proteins assigned to mitochondria by the SUBA5 database (https://suba.live) accounted for >80% of the total protein mass of our fractions. The coverage of proteins by identified peptides was particularly high compared to single-protease digests, allowing the exploration of differential splicing and RNA editing events at the protein level. We show that proteins translated from nonedited transcripts can be incorporated into native mitoribosomes and the ATP synthase complex. We present a portal for the use of our data, based on "proteomaps" with directly linked protein data. The portal is available at www.proteomeexplorer.de.
Collapse
Affiliation(s)
- Nils Rugen
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Michael Senkler
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
40
|
Dugdale HF, Levy Y, Jungbluth H, Oldfors A, Ochala J. Aberrant myonuclear domains and impaired myofiber contractility despite marked hypertrophy in MYMK-related, Carey-Fineman-Ziter Syndrome. Acta Neuropathol Commun 2024; 12:80. [PMID: 38790073 PMCID: PMC11127446 DOI: 10.1186/s40478-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
Carey Fineman Ziter Syndrome (CFZS) is a rare autosomal recessive disease caused by mutations in the MYMK locus which encodes the protein, myomaker. Myomaker is essential for fusion and concurrent myonuclei donation of muscle progenitors during growth and development. Strikingly, in humans, MYMK mutations appear to prompt myofiber hypertrophy but paradoxically, induce generalised muscle weakness. As the underlying cellular mechanisms remain unexplored, the present study aimed to gain insights by combining myofiber deep-phenotyping and proteomic profiling. Hence, we isolated individual muscle fibers from CFZS patients and performed mechanical, 3D morphological and proteomic analyses. Myofibers from CFZS patients were ~ 4x larger than controls and possessed ~ 2x more myonuclei than those from healthy subjects, leading to disproportionally larger myonuclear domain volumes. These greater myonuclear domain sizes were accompanied by smaller intrinsic cellular force generating-capacities in myofibers from CFZS patients than in control muscle cells. Our complementary proteomic analyses indicated remodelling in 233 proteins particularly those associated with cellular respiration. Overall, our findings suggest that myomaker is somewhat functional in CFZS patients, but the associated nuclear accretion may ultimately lead to non-functional hypertrophy and altered energy-related mechanisms in CFZS patients. All of these are likely contributors of the muscle weakness experienced by CFZS patients.
Collapse
Affiliation(s)
- Hannah F Dugdale
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yotam Levy
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julien Ochala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Dorsch A, Förschner F, Ravandeh M, da Silva Brito WA, Saadati F, Delcea M, Wende K, Bekeschus S. Nanoplastic Size and Surface Chemistry Dictate Decoration by Human Saliva Proteins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25977-25993. [PMID: 38741563 DOI: 10.1021/acsami.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.
Collapse
Affiliation(s)
- Anna Dorsch
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Fritz Förschner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mehdi Ravandeh
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86057-970, Brazil
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry Department, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
42
|
Labourel FJF, Daubin V, Menu F, Rajon E. Proteome allocation and the evolution of metabolic cross-feeding. Evolution 2024; 78:849-859. [PMID: 38376478 DOI: 10.1093/evolut/qpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
In a common instance of metabolic cross-feeding (MCF), an organism incompletely metabolizes nutrients and releases metabolites that are used by another to produce energy or building blocks. Why would the former waste edible food, and why does this preferentially occur at specific locations in a metabolic pathway have challenged evolutionary theory for decades. To address these questions, we combine adaptive dynamics with an explicit model of cell metabolism, including enzyme-driven catalysis of metabolic reactions and the cellular constraints acting on the proteome that may incur a cost to expressing all enzymes along a pathway. After pointing out that cells should in principle prioritize upstream reactions when metabolites are restrained inside the cell, we show that the occurrence of permeability-driven MCF is rare and requires that an intermediate metabolite be extremely diffusive. Indeed, only at very high levels of membrane permeability (consistent with those of acetate and glycerol, for instance) and under distinctive sets of parameters should the population diversify and MCF evolve. These results help understand the origins of simple microbial communities, such as those that readily evolve in short-term evolutionary experiments, and may later be extended to investigate how evolution has progressively built up today's extremely diverse ecosystems.
Collapse
Affiliation(s)
- Florian J F Labourel
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Vincent Daubin
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Frédéric Menu
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Etienne Rajon
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| |
Collapse
|
43
|
Catoiu EA, Mih N, Lu M, Palsson B. Establishing comprehensive quaternary structural proteomes from genome sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590993. [PMID: 38712217 PMCID: PMC11071507 DOI: 10.1101/2024.04.24.590993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A critical body of knowledge has developed through advances in protein microscopy, protein-fold modeling, structural biology software, availability of sequenced bacterial genomes, large-scale mutation databases, and genome-scale models. Based on these recent advances, we develop a computational framework that; i) identifies the oligomeric structural proteome encoded by an organism's genome from available structural resources; ii) maps multi-strain alleleomic variation, resulting in the structural proteome for a species; and iii) calculates the 3D orientation of proteins across subcellular compartments with residue-level precision. Using the platform, we; iv) compute the quaternary E. coli K-12 MG1655 structural proteome; v) use a dataset of 12,000 mutations to build Random Forest classifiers that can predict the severity of mutations; and, in combination with a genome-scale model that computes proteome allocation, vi) obtain the spatial allocation of the E. coli proteome. Thus, in conjunction with relevant datasets and increasingly accurate computational models, we can now annotate quaternary structural proteomes, at genome-scale, to obtain a molecular-level understanding of whole-cell functions. Significance Advancements in experimental and computational methods have revealed the shapes of multi-subunit proteins. The absence of a unified platform that maps actionable datatypes onto these increasingly accurate structures creates a barrier to structural analyses, especially at the genome-scale. Here, we describe QSPACE, a computational annotation platform that evaluates existing resources to identify the best-available structure for each protein in a user's query, maps the 3D location of actionable datatypes ( e.g. , active sites, published mutations) onto the selected structures, and uses third-party APIs to determine the subcellular compartment of all amino acids of a protein. As proof-of-concept, we deployed QSPACE to generate the quaternary structural proteome of E. coli MG1655 and demonstrate two use-cases involving large-scale mutant analysis and genome-scale modelling.
Collapse
|
44
|
Yeo D, Chan AHJ, Hiong KC, Ong J, Ng JY, Lim JM, Zhang W, Lim SR, Fernandez CJ, Wong AMS, Lee BPYH, Khoo MDY, Cheng TXW, Lim BTM, Yeo HHT, Tan MMQ, Sng WBG, Adam SS, Ang WF, How CB, Xie R, Wasser SK, Finch KN, Loo AHB, Yap HH, Leong CC, Er KBH. Uncovering the magnitude of African pangolin poaching with extensive nanopore DNA genotyping of seized scales. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14162. [PMID: 37551767 DOI: 10.1111/cobi.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
Trade in pangolins is illegal, and yet tons of their scales and products are seized at various ports. These large seizures are challenging to process and comprehensively genotype for upstream provenance tracing and species identification for prosecution. We implemented a scalable DNA barcoding pipeline in which rapid DNA extraction and MinION sequencing were used to genotype a substantial proportion of pangolin scales subsampled from 2 record shipments seized in Singapore in 2019 (37.5 t). We used reference sequences to match the scales to phylogeographical regions of origin. In total, we identified 2346 cytochrome b (cytb) barcodes of white-bellied (Phataginus tricuspis) (from 1091 scales), black-bellied (Phataginus tetradactyla) (227 scales), and giant (Smutsia gigantea) (1028 scales) pangolins. Haplotype diversity was higher for P. tricuspis scales (121 haplotypes, 66 novel) than that for P. tetradactyla (22 haplotypes, 15 novel) and S. gigantea (25 haplotypes, 21 novel) scales. Of the novel haplotypes, 74.2% were likely from western and west-central Africa, suggesting potential resurgence of poaching and newly exploited populations in these regions. Our results illustrate the utility of extensively subsampling large seizures and outline an efficient molecular approach for rapid genetic screening that should be accessible to most forensic laboratories and enforcement agencies.
Collapse
Affiliation(s)
- Darren Yeo
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Amy H J Chan
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Kum Chew Hiong
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Jasmine Ong
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Jun Yuan Ng
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Jie Min Lim
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Wendy Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sara R Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Anna M-S Wong
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | | | - Max D Y Khoo
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | | | - Bryan T M Lim
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | | | - Maxine M Q Tan
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Wendy B G Sng
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Shaun S Adam
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Wee Foong Ang
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Choon Beng How
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Renhui Xie
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Samuel K Wasser
- Department of Biology, Center for Environmental Forensic Science, University of Washington, Seattle, Washington, USA
| | - Kristen N Finch
- Department of Biology, Center for Environmental Forensic Science, University of Washington, Seattle, Washington, USA
| | - Adrian H B Loo
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | - Him Hoo Yap
- Centre for Wildlife Forensics, National Parks Board, Singapore
| | | | - Kenneth B H Er
- Centre for Wildlife Forensics, National Parks Board, Singapore
| |
Collapse
|
45
|
Du J, Yun H, Wang H, Bai X, Su Y, Ge X, Wang Y, Gu B, Zhao L, Yu JG, Song Y. Proteomic Profiling of Muscular Adaptations to Short-Term Concentric Versus Eccentric Exercise Training in Humans. Mol Cell Proteomics 2024; 23:100748. [PMID: 38493954 PMCID: PMC11017286 DOI: 10.1016/j.mcpro.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
The molecular mechanisms underlying muscular adaptations to concentric (CON) and eccentric (ECC) exercise training have been extensively explored. However, most previous studies have focused on specifically selected proteins, thus, unable to provide a comprehensive protein profile and potentially missing the crucial mechanisms underlying muscular adaptation to exercise training. We herein aimed to investigate proteomic profiles of human skeletal muscle in response to short-term resistance training. Twenty young males were randomly and evenly assigned to two groups to complete a 4-week either ECC or CON training program. Measurements of body composition and physiological function of the quadriceps femoris were conducted both before and after the training. Muscle biopsies from the vastus lateralis of randomly selected participants (five in ECC and four in CON) of both before and after the training were analyzed using the liquid-chromatography tandem mass spectrometry in combination with bioinformatics analysis. Neither group presented a significant difference in body composition or leg muscle mass; however, muscle peak torque, total work, and maximal voluntary contraction were significantly increased after the training in both groups. Proteomics analysis revealed 122 differentially abundant proteins (DAPs; p value < 0.05 & fold change >1.5 or <0.67) in ECC, of which the increased DAPs were mainly related to skeletal muscle contraction and cytoskeleton and enriched specifically in the pentose phosphate pathway, extracellular matrix-receptor interaction, and PI3K-Akt signaling pathway, whereas the decreased DAPs were associated with the mitochondrial respiratory chain. One hundred one DAPs were identified in CON, of which the increased DAPs were primarily involved in translation/protein synthesis and the mitochondria respiratory, whereas the decreased DAPs were related to metabolic processes, cytoskeleton, and de-ubiquitination. In conclusion, the 4-week CON and ECC training resulted in distinctly different proteomic profiles, especially in proteins related to muscular structure and metabolism.
Collapse
Affiliation(s)
- Jiawei Du
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hezhang Yun
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hongsheng Wang
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xin Bai
- Beijing Sports University Community Health Service Center, Beijing Sport University, Beijing, China
| | - Yuhui Su
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xiaochuan Ge
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yang Wang
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Institute of Sports and Health, Beijing Sport University, Beijing, China
| | - Boya Gu
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Institute of Sports and Health, Beijing Sport University, Beijing, China
| | - Li Zhao
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Ji-Guo Yu
- Sports Medicine Unit, Department of Community Medicine and Rehabilitation, Umea University, Umeå, Sweden.
| | - Yafeng Song
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Institute of Sports and Health, Beijing Sport University, Beijing, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China.
| |
Collapse
|
46
|
De Geyter I, Kowalewski MP, Tavares Pereira M. Applying a novel kinomics approach to study decidualization and the effects of antigestagens using a canine model†. Biol Reprod 2024; 110:583-598. [PMID: 38079525 PMCID: PMC10941090 DOI: 10.1093/biolre/ioad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 03/16/2024] Open
Abstract
Maternal decidual cells are crucial for the maintenance of canine pregnancy as they are the only cells expressing the nuclear progesterone (P4) receptor (PGR) in the placenta. Interfering with P4/PGR signaling adversely affects decidual cells and terminates pregnancy. Although immortalized dog uterine stromal (DUS) cells can be decidualized in vitro using cAMP, the involvement of cAMP-dependent kinases in canine decidualization had not been investigated. Therefore, the present project investigated changes in the kinome of DUS cells following in vitro decidualization, using the serine/threonine kinase (STK) PamChip assay (PamGene). Decidualization led to a predicted activation of 85 STKs in DUS cells, including protein kinase (PK) A, PKC, extracellular signal-regulated kinase (ERK)1/2 and other mitogen-activated protein kinases (MAPKs), calcium/calmodulin-dependent protein kinases (CAMKs), and Akt1/2. In addition, blocking PGR with type 2 antigestagens (aglepristone or mifepristone) decreased the activity of virtually all kinases modulated by decidualization. The underlying transcriptional effects were inferred from comparison with available transcriptomic data on antigestagen-mediated effects in DUS cells. In targeted studies, interfering with PKA or MAPK kinase (MEK)1/2 resulted in downregulation of important decidualization markers (e.g., insulin-like growth factor 1 (IGF1), prostaglandin E2 synthase (PTGES), prolactin receptor (PRLR), PGR, and prostaglandin-endoperoxide synthase 2 (PTGS2/COX2)). Conversely, blocking of PKC decreased the mRNA availability of IGF1, PGR, and PTGS2, but not of PTGES and PRLR. Moreover, suppressing PKA decreased the phosphorylation of the transcription factors cJUN and CREB, whereas blocking of PKC affected only cJUN. This first kinomics analysis to target decidualization showed an increased activity of a wide range of STKs, which could be hindered by disrupting P4/PGR signaling. Decidualization appears to be regulated in a kinase-dependent manner, with PKA and PKC evoking different effects.
Collapse
Affiliation(s)
- Isabelle De Geyter
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Baghdassarian HM, Lewis NE. Resource allocation in mammalian systems. Biotechnol Adv 2024; 71:108305. [PMID: 38215956 PMCID: PMC11182366 DOI: 10.1016/j.biotechadv.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cells execute biological functions to support phenotypes such as growth, migration, and secretion. Complementarily, each function of a cell has resource costs that constrain phenotype. Resource allocation by a cell allows it to manage these costs and optimize their phenotypes. In fact, the management of resource constraints (e.g., nutrient availability, bioenergetic capacity, and macromolecular machinery production) shape activity and ultimately impact phenotype. In mammalian systems, quantification of resource allocation provides important insights into higher-order multicellular functions; it shapes intercellular interactions and relays environmental cues for tissues to coordinate individual cells to overcome resource constraints and achieve population-level behavior. Furthermore, these constraints, objectives, and phenotypes are context-dependent, with cells adapting their behavior according to their microenvironment, resulting in distinct steady-states. This review will highlight the biological insights gained from probing resource allocation in mammalian cells and tissues.
Collapse
Affiliation(s)
- Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Sjöberg G, Reķēna A, Fornstad M, Lahtvee PJ, van Maris AJA. Evaluation of enzyme-constrained genome-scale model through metabolic engineering of anaerobic co-production of 2,3-butanediol and glycerol by Saccharomyces cerevisiae. Metab Eng 2024; 82:49-59. [PMID: 38309619 DOI: 10.1016/j.ymben.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Enzyme-constrained genome-scale models (ecGEMs) have potential to predict phenotypes in a variety of conditions, such as growth rates or carbon sources. This study investigated if ecGEMs can guide metabolic engineering efforts to swap anaerobic redox-neutral ATP-providing pathways in yeast from alcoholic fermentation to equimolar co-production of 2,3-butanediol and glycerol. With proven pathways and low product toxicity, the ecGEM solution space aligned well with observed phenotypes. Since this catabolic pathway provides only one-third of the ATP of alcoholic fermentation (2/3 versus 2 ATP per glucose), the ecGEM predicted a growth decrease from 0.36 h-1 in the reference to 0.175 h-1 in the engineered strain. However, this <3-fold decrease would require the specific glucose consumption rate to increase. Surprisingly, after the pathway swap the engineered strain immediately grew at 0.15 h-1 with a glucose consumption rate of 29 mmol (g CDW)-1 h-1, which was indeed higher than reference (23 mmol (g CDW)-1 h-1) and one of the highest reported for S. cerevisiae. The accompanying 2,3-butanediol- (15.8 mmol (g CDW)-1 h-1) and glycerol (19.6 mmol (g CDW)-1 h-1) production rates were close to predicted values. Proteomics confirmed that this increased consumption rate was facilitated by enzyme reallocation from especially ribosomes (from 25.5 to 18.5 %) towards glycolysis (from 28.7 to 43.5 %). Subsequently, 200 generations of sequential transfer did not improve growth of the engineered strain, showing the use of ecGEMs in predicting opportunity space for laboratory evolution. The observations in this study illustrate both the current potential, as well as future improvements, of ecGEMs as a tool for both metabolic engineering and laboratory evolution.
Collapse
Affiliation(s)
- Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Matilda Fornstad
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
49
|
Zhu M, Mu H, Dai X. Integrated control of bacterial growth and stress response by (p)ppGpp in Escherichia coli: A seesaw fashion. iScience 2024; 27:108818. [PMID: 38299113 PMCID: PMC10828813 DOI: 10.1016/j.isci.2024.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
To thrive in nature, bacteria have to reproduce efficiently under favorable conditions and persist during stress. The global strategy that integrates the growth control and stress response remains to be explored. Here, we find that a moderate induction of (p)ppGpp reduces growth rate but significantly enhances the stress tolerance of E. coli, resulting from a global resource re-allocation from ribosome synthesis to the synthesis of stress-responsive proteins. Strikingly, the activation of stress response by (p)ppGpp is still largely retained in the absence of RpoS. In addition, (p)ppGpp induction could activate the catabolism of alanine and arginine, facilitating the adaption of bacteria to nutrient downshift. Our work demonstrates that the activation of stress response by (p)ppGpp could occur in an RpoS-independent manner and (p)ppGpp enables bacteria to integrate the control of growth and stress response in a seesaw fashion, thus acting as an important global regulator of the bacterial fitness landscape.
Collapse
Affiliation(s)
- Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| | - Haoyan Mu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| |
Collapse
|
50
|
Minoia M, Quintana-Cordero J, Jetzinger K, Kotan IE, Turnbull KJ, Ciccarelli M, Masser AE, Liebers D, Gouarin E, Czech M, Hauryliuk V, Bukau B, Kramer G, Andréasson C. Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis. Nat Commun 2024; 15:1382. [PMID: 38360885 PMCID: PMC10869706 DOI: 10.1038/s41467-024-45645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.
Collapse
Affiliation(s)
- Melania Minoia
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jany Quintana-Cordero
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Katharina Jetzinger
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ilgin Eser Kotan
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kathryn Jane Turnbull
- Department of Clinical Microbiology, Rigshospitalet, 2200, Copenhagen, Denmark
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dorina Liebers
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eloïse Gouarin
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marius Czech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vasili Hauryliuk
- Science for Life Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|