1
|
Ji Y, Jiang Q, Chen B, Chen X, Li A, Shen D, Shen Y, Liu H, Qian X, Yao X, Sun H. Endoplasmic reticulum stress and unfolded protein response: Roles in skeletal muscle atrophy. Biochem Pharmacol 2025; 234:116799. [PMID: 39952329 DOI: 10.1016/j.bcp.2025.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Skeletal muscle atrophy is commonly present in various pathological states, posing a huge burden on society and patients. Increased protein hydrolysis, decreased protein synthesis, inflammatory response, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are all important molecular mechanisms involved in the occurrence and development of skeletal muscle atrophy. The potential mechanisms of ERS and UPR in skeletal muscle atrophy are extremely complex and have not yet been fully elucidated. This article elucidates the molecular mechanisms of ERS and UPR, and discusses their effects on different types of muscle atrophy (muscle atrophy caused by disuse, cachexia, chronic kidney disease (CKD), diabetes mellitus (DM), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), aging, sarcopenia, obesity, and starvation), and explores the preventive and therapeutic strategies targeting ERS and UPR in skeletal muscle atrophy, including inhibitor therapy and drug therapy. This review aims to emphasize the importance of endoplasmic reticulum (ER) in maintaining skeletal muscle homeostasis, which helps us further understand the molecular mechanisms of skeletal muscle atrophy and provides new ideas and insights for the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Quan Jiang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province 215500, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
2
|
Chen HH, Yeo HT, Huang YH, Tsai LK, Lai HJ, Tsao YP, Chen SL. AAV-NRIP gene therapy ameliorates motor neuron degeneration and muscle atrophy in ALS model mice. Skelet Muscle 2024; 14:17. [PMID: 39044305 PMCID: PMC11267858 DOI: 10.1186/s13395-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS. METHODS We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human NRIP gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice. RESULTS SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice. CONCLUSIONS AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hsin-Tung Yeo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yun-Hsin Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, 104, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
Gagnon J, Caron V, Tremblay A. SUMOylation of nuclear receptor Nor1/NR4A3 coordinates microtubule cytoskeletal dynamics and stability in neuronal cells. Cell Biosci 2024; 14:91. [PMID: 38997783 PMCID: PMC11245793 DOI: 10.1186/s13578-024-01273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Nor1/NR4A3 is a member of the NR4A subfamily of nuclear receptors that play essential roles in regulating gene expression related to development, cell homeostasis and neurological functions. However, Nor1 is still considered an orphan receptor, as its natural ligand remains unclear for mediating transcriptional activation. Yet other activation signals may modulate Nor1 activity, although their precise role in the development and maintenance of the nervous system remains elusive. METHODS We used transcriptional reporter assays, gene expression profiling, protein turnover measurement, and cell growth assays to assess the functional relevance of Nor1 and SUMO-defective variants in neuronal cells. SUMO1 and SUMO2 conjugation to Nor1 were assessed by immunoprecipitation. Tubulin stability was determined by acetylation and polymerization assays, and live-cell fluorescent microscopy. RESULTS Here, we demonstrate that Nor1 undergoes SUMO1 conjugation at Lys-89 within a canonical ψKxE SUMOylation motif, contributing to the complex pattern of Nor1 SUMOylation, which also includes Lys-137. Disruption of Lys-89, thereby preventing SUMO1 conjugation, led to reduced Nor1 transcriptional competence and protein stability, as well as the downregulation of genes involved in cell growth and metabolism, such as ENO3, EN1, and CFLAR, and in microtubule cytoskeleton dynamics, including MAP2 and MAPT, which resulted in reduced survival of neuronal cells. Interestingly, Lys-89 SUMOylation was potentiated in response to nocodazole, a microtubule depolymerizing drug, although this was insufficient to rescue cells from microtubule disruption despite enhanced Nor1 gene expression. Instead, Lys-89 deSUMOylation reduced the expression of microtubule-severing genes like KATNA1, SPAST, and FIGN, and enhanced α-tubulin cellular levels, acetylation, and microfilament organization, promoting microtubule stability and resistance to nocodazole. These effects contrasted with Lys-137 SUMOylation, suggesting distinct regulatory mechanisms based on specific Nor1 input SUMOylation signals. CONCLUSIONS Our study provides novel insights into Nor1 transcriptional signaling competence and identifies a hierarchical mechanism whereby selective Nor1 SUMOylation may govern neuronal cytoskeleton network dynamics and resistance against microtubule disturbances, a condition strongly associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Gagnon
- Research Center, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Véronique Caron
- Research Center, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - André Tremblay
- Research Center, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, H3T 1C5, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montréal, Québec, H3T 1J4, Canada.
- Centre de Recherche en Reproduction et Fertilité, University of Montreal, Saint-Hyacinthe, Québec, J2S 7C6, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Montreal, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
4
|
Pan JZ, Wang Z, Sun W, Pan P, Li W, Sun Y, Chen S, Lin A, Tan W, He L, Greene J, Yao V, An L, Liang R, Li Q, Yu J, Zhang L, Kyritsis N, Fernandez XD, Moncivais S, Mendoza E, Fung P, Wang G, Niu X, Du Q, Xiao Z, Chang Y, Lv P, Huie JR, Torres‐Espin A, Ferguson AR, Hemmerle DD, Talbott JF, Weinstein PR, Pascual LU, Singh V, DiGiorgio AM, Saigal R, Whetstone WD, Manley GT, Dhall SS, Bresnahan JC, Maze M, Jiang X, Singhal NS, Beattie MS, Su H, Guan Z. ATF3 is a neuron-specific biomarker for spinal cord injury and ischaemic stroke. Clin Transl Med 2024; 14:e1650. [PMID: 38649772 PMCID: PMC11035380 DOI: 10.1002/ctm2.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.
Collapse
Affiliation(s)
- Jonathan Z. Pan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zhanqiang Wang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyCangzhou People's HospitalCangzhouChina
| | - Wei Sun
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Peipei Pan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Wei Li
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Yongtao Sun
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyQianfoshan Hospital, Shandong UniversityJinanChina
| | - Shoulin Chen
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyThe Second Affiliated Hospital, Nanchang UniversityNanchangChina
| | - Amity Lin
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Wulin Tan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyGuangzhou Medical UniversityGuangzhouChina
| | - Liangliang He
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Pain ManagementXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jacob Greene
- Medical SchoolUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Virginia Yao
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lijun An
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyNo. 1 People's HospitalHuaianChina
| | - Rich Liang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Qifeng Li
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
| | - Jessica Yu
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Nikolaos Kyritsis
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xuan Duong Fernandez
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sara Moncivais
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Esmeralda Mendoza
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Pamela Fung
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gongming Wang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Xinhuan Niu
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Qihang Du
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Zhaoyang Xiao
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyThe Second Affiliated Hospital, Dalian Medical UniversityDalianChina
| | - Yuwen Chang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Peiyuan Lv
- Department of AnesthesiologyThe Second Affiliated Hospital, Dalian Medical UniversityDalianChina
- Department of NeurologyHebei Medical UniversityShijiazhuangChina
| | - J. Russell Huie
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Abel Torres‐Espin
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adam R. Ferguson
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Debra D. Hemmerle
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jason F. Talbott
- Department of RadiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Philip R. Weinstein
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lisa U. Pascual
- Department of Orthopedic SurgeryOrthopaedic Trauma InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vineeta Singh
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony M. DiGiorgio
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Rajiv Saigal
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - William D. Whetstone
- Department of Emergency MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Geoffrey T. Manley
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sanjay S. Dhall
- Department of NeurosurgeryHarbor UCLA Medical CenterTorranceCaliforniaUSA
| | - Jacqueline C. Bresnahan
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xiangning Jiang
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Neel S. Singhal
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael S. Beattie
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Hua Su
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Ovsepian SV, O'Leary VB, Martinez S. Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates. Brain Struct Funct 2024; 229:1-14. [PMID: 37999738 PMCID: PMC10827929 DOI: 10.1007/s00429-023-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why some motor neurons are especially susceptible to the disease, while others are affected less or even spared. In this article, we review the neurobiological mechanisms, neurochemical profiles, and morpho-functional characteristics of various motor neuron groups and types of motor units implicated in their differential exposure to degeneration. We discuss specific cell-autonomous (intrinsic) and extrinsic factors influencing the vulnerability gradient of motor units and motor neuron types to ALS, with their impact on disease manifestation, course, and prognosis, as revealed in preclinical and clinical studies. We consider the outstanding challenges and emerging opportunities for interpreting the phenotypic and mechanistic variability of the disease to identify targets for clinical interventions.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, Avda. Ramon y Cajal, 03550, San Juan de Alicante, Spain.
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, Madrid, Spain.
| |
Collapse
|
6
|
Reiners JC, Leopold L, Hallebach V, Sinske D, Meier P, Amoroso M, Langgartner D, Reber SO, Knöll B. Acute stress modulates the outcome of traumatic brain injury-associated gene expression and behavioral responses. FASEB J 2023; 37:e23218. [PMID: 37779443 DOI: 10.1096/fj.202301035r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Psychological stress and traumatic brain injury (TBI) result in long-lasting emotional and behavioral impairments in patients. So far, the interaction of psychological stress with TBI not only in the brain but also in peripheral organs is poorly understood. Herein, the impact of acute stress (AS) occurring immediately before TBI is investigated. For this, a mouse model of restraint stress and TBI was employed, and their influence on behavior and gene expression in brain regions, the hypothalamic-pituitary-adrenal (HPA) axis, and peripheral organs was analyzed. Results demonstrate that, compared to single AS or TBI exposure, mice treated with AS prior to TBI showed sex-specific alterations in body weight, memory function, and locomotion. The induction of immediate early genes (IEGs, e.g., c-Fos) by TBI was modulated by previous AS in several brain regions. Furthermore, IEG upregulation along the HPA axis (e.g., pituitary, adrenal glands) and other peripheral organs (e.g., heart) was modulated by AS-TBI interaction. Proteomics of plasma samples revealed proteins potentially mediating this interaction. Finally, the deletion of Atf3 diminished the TBI-induced induction of IEGs in peripheral organs but left them largely unaltered in the brain. In summary, AS immediately before brain injury affects the brain and, to a strong degree, also responses in peripheral organs.
Collapse
Affiliation(s)
| | - Laura Leopold
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Vera Hallebach
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Daniela Sinske
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Song J, Dikwella N, Sinske D, Roselli F, Knöll B. SRF deletion results in earlier disease onset in a mouse model of amyotrophic lateral sclerosis. JCI Insight 2023; 8:e167694. [PMID: 37339001 PMCID: PMC10445689 DOI: 10.1172/jci.insight.167694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
Changes in neuronal activity modulate the vulnerability of motoneurons (MNs) in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). So far, the molecular basis of neuronal activity's impact in ALS is poorly understood. Herein, we investigated the impact of deleting the neuronal activity-stimulated transcription factor (TF) serum response factor (SRF) in MNs of SOD1G93A mice. SRF was present in vulnerable MMP9+ MNs. Ablation of SRF in MNs induced an earlier disease onset starting around 7-8 weeks after birth, as revealed by enhanced weight loss and decreased motor ability. This earlier disease onset in SRF-depleted MNs was accompanied by a mild elevation of neuroinflammation and neuromuscular synapse degeneration, whereas overall MN numbers and mortality were unaffected. In SRF-deficient mice, MNs showed impaired induction of autophagy-encoding genes, suggesting a potentially new SRF function in transcriptional regulation of autophagy. Complementary, constitutively active SRF-VP16 enhanced autophagy-encoding gene transcription and autophagy progression in cells. Furthermore, SRF-VP16 decreased ALS-associated aggregate induction. Chemogenetic modulation of neuronal activity uncovered SRF as having important TF-mediating activity-dependent effects, which might be beneficial to reduce ALS disease burden. Thus, our data identify SRF as a gene regulator connecting neuronal activity with the cellular autophagy program initiated in degenerating MNs.
Collapse
Affiliation(s)
- Jialei Song
- Institute of Neurobiochemistry and
- Department of Neurology, Ulm University, Ulm, Germany
| | - Natalie Dikwella
- Institute of Neurobiochemistry and
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases-Ulm (DZNE-Ulm), Ulm, Germany
| | | |
Collapse
|
8
|
Yazar V, Kühlwein JK, Knehr A, Grozdanov V, Ekici AB, Ludolph AC, Danzer KM. Impaired ATF3 signaling involves SNAP25 in SOD1 mutant ALS patients. Sci Rep 2023; 13:12019. [PMID: 37491426 PMCID: PMC10368635 DOI: 10.1038/s41598-023-38684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
Epigenetic remodeling is emerging as a critical process for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Genetics alone fails to explain the etiology of ALS, the investigation of the epigenome might therefore provide novel insights into the molecular mechanisms of the disease. In this study, we interrogated the epigenetic landscape in peripheral blood mononuclear cells (PBMCs) of familial ALS (fALS) patients with either chromosome 9 open reading frame 72 (C9orf72) or superoxide dismutase 1 (SOD1) mutation and aimed to identify key epigenetic footprints of the disease. To this end, we used an integrative approach that combines chromatin immunoprecipitation targeting H3K27me3 (ChIP-Seq) with the matching gene expression data to gain new insights into the likely impact of blood-specific chromatin remodeling on ALS-related molecular mechanisms. We demonstrated that one of the hub molecules that modulates changes in PBMC transcriptome in SOD1-mutant ALS patients is ATF3, which has been previously reported in an SOD1G93A mouse model. We also identified potential suppression of SNAP25, with impaired ATF3 signaling in SOD1-mutant ALS blood. Together, our study shed light on the mechanistic underpinnings of SOD1 mutations in ALS.
Collapse
Affiliation(s)
- Volkan Yazar
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Baden-Wüerttemberg, Germany
| | - Julia K Kühlwein
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wüerttemberg, Germany
| | - Antje Knehr
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wüerttemberg, Germany
| | - Veselin Grozdanov
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wüerttemberg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Clinic Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Bavaria, Germany
| | - Albert C Ludolph
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Baden-Wüerttemberg, Germany
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wüerttemberg, Germany
| | - Karin M Danzer
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Baden-Wüerttemberg, Germany.
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wüerttemberg, Germany.
| |
Collapse
|
9
|
Castro RW, Lopes MC, Settlage RE, Valdez G. Aging alters mechanisms underlying voluntary movements in spinal motor neurons of mice, primates, and humans. JCI Insight 2023; 8:e168448. [PMID: 37154159 PMCID: PMC10243831 DOI: 10.1172/jci.insight.168448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Spinal motor neurons have been implicated in the loss of motor function that occurs with advancing age. However, the cellular and molecular mechanisms that impair the function of these neurons during aging remain unknown. Here, we show that motor neurons do not die in old female and male mice, rhesus monkeys, and humans. Instead, these neurons selectively and progressively shed excitatory synaptic inputs throughout the soma and dendritic arbor during aging. Thus, aged motor neurons contain a motor circuitry with a reduced ratio of excitatory to inhibitory synapses that may be responsible for the diminished ability to activate motor neurons to commence movements. An examination of the motor neuron translatome (ribosomal transcripts) in male and female mice reveals genes and molecular pathways with roles in glia-mediated synaptic pruning, inflammation, axonal regeneration, and oxidative stress that are upregulated in aged motor neurons. Some of these genes and pathways are also found altered in motor neurons affected with amyotrophic lateral sclerosis (ALS) and responding to axotomy, demonstrating that aged motor neurons are under significant stress. Our findings show mechanisms altered in aged motor neurons that could serve as therapeutic targets to preserve motor function during aging.
Collapse
Affiliation(s)
- Ryan W. Castro
- Neuroscience Graduate Program
- Department of Molecular Biology, Cellular Biology, and Biochemistry
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, and
| | - Mikayla C. Lopes
- Department of Molecular Biology, Cellular Biology, and Biochemistry
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, and
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Robert E. Settlage
- Department of Advanced Research Computing, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cellular Biology, and Biochemistry
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, and
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Wlaschin JJ, Donahue C, Gluski J, Osborne JF, Ramos LM, Silberberg H, Le Pichon CE. Promoting regeneration while blocking cell death preserves motor neuron function in a model of ALS. Brain 2023; 146:2016-2028. [PMID: 36342754 PMCID: PMC10411937 DOI: 10.1093/brain/awac415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/16/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of motor neurons with very few treatment options. We had previously found that motor neuron degeneration in a mouse model of ALS can be delayed by deleting the axon damage sensor MAP3K12 or dual leucine zipper kinase (DLK). However, DLK is also involved in axon regeneration, prompting us to ask whether combining DLK deletion with a way to promote axon regeneration would result in greater motor neuron protection. To achieve this, we used a mouse line that constitutively expresses ATF3, a master regulator of regeneration in neurons. Although there is precedence for each individual strategy in the SOD1G93A mouse model of ALS, these have not previously been combined. By several lines of evidence including motor neuron electrophysiology, histology and behaviour, we observed a powerful synergy when combining DLK deletion with ATF3 expression. The combinatorial strategy resulted in significant protection of motor neurons with fewer undergoing cell death, reduced axon degeneration and preservation of motor function and connectivity to muscle. This study provides a demonstration of the power of combinatorial therapy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Josette J Wlaschin
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caroline Donahue
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Jacob Gluski
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Jennifer F Osborne
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Leana M Ramos
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Hanna Silberberg
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Chen M, Lian D, Li Y, Zhao Y, Xu X, Liu Z, Zhang J, Zhang X, Wu S, Qi S, Deng S, Yu K, Lian Z. Global Long Noncoding RNA Expression Profiling of MSTN and FGF5 Double-Knockout Sheep Reveals the Key Gatekeepers of Skeletal Muscle Development. DNA Cell Biol 2023; 42:163-175. [PMID: 36917699 DOI: 10.1089/dna.2022.0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Improving livestock and poultry growth rates and increasing meat production are urgently needed worldwide. Previously, we produced a myostatin (MSTN) and fibroblast growth factor 5 (FGF5) double-knockout (MF-/-) sheep by CRISPR Cas9 system to improve meat production, and also wool production. Both MF-/- sheep and the F1 generation (MF+/-) sheep showed an obvious "double-muscle" phenotype. In this study, we identified the expression profiles of long noncoding RNAs (lncRNAs) in wild-type and MF+/- sheep, then screened out the key candidate lncRNAs that can regulate myogenic differentiation and skeletal muscle development. These key candidate lncRNAs can serve as critical gatekeepers for muscle contraction, calcium ion transport and skeletal muscle cell differentiation, apoptosis, autophagy, and skeletal muscle inflammation, further revealing that lncRNAs play crucial roles in regulating muscle phenotype in MF+/- sheep. In conclusion, our newly identified lncRNAs may emerge as novel molecules for muscle development or muscle disease and provide a new reference for MSTN-mediated regulation of skeletal muscle development.
Collapse
Affiliation(s)
- Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Di Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Li
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, China
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhimei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Sujun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Holland SD, Ramer MS. Microglial activating transcription factor 3 upregulation: An indirect target to attenuate inflammation in the nervous system. Front Mol Neurosci 2023; 16:1150296. [PMID: 37033378 PMCID: PMC10076742 DOI: 10.3389/fnmol.2023.1150296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Activating Transcription Factor 3 (ATF3) is upregulated in reaction to several cellular stressors found in a wide range of pathological conditions to coordinate a transcriptional response. ATF3 was first implicated in the transcriptional reaction to axotomy when its massive upregulation was measured in sensory and motor neuron cell bodies following peripheral nerve injury. It has since been shown to be critical for successful axon regeneration in the peripheral nervous system and a promising target to mitigate regenerative failure in the central nervous system. However, much of the research to date has focused on ATF3's function in neurons, leaving the expression, function, and therapeutic potential of ATF3 in glia largely unexplored. In the immunology literature ATF3 is seen as a master regulator of the innate immune system. Specifically, in macrophages following pathogen or damage associated molecular pattern receptor activation and subsequent cytokine release, ATF3 upregulation abrogates the inflammatory response. Importantly, ATF3 upregulation is not exclusively due to cellular stress exposure but has been achieved by the administration of several small molecules. In the central nervous system, microglia represent the resident macrophage population and are therefore of immediate interest with respect to ATF3 induction. It is our perspective that the potential of inducing ATF3 expression to dampen inflammatory microglial phenotype represents an unexplored therapeutic target and may have synergistic benefits when paired with concomitant neuronal ATF3 upregulation. This would be of particular benefit in pathologies that involve both detrimental inflammation and neuronal damage including spinal cord injury, multiple sclerosis, and stroke.
Collapse
|
13
|
Kiryu-Seo S, Matsushita R, Tashiro Y, Yoshimura T, Iguchi Y, Katsuno M, Takahashi R, Kiyama H. Impaired disassembly of the axon initial segment restricts mitochondrial entry into damaged axons. EMBO J 2022; 41:e110486. [PMID: 36004759 PMCID: PMC9574747 DOI: 10.15252/embj.2021110486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
The proteasome is essential for cellular responses to various physiological stressors. However, how proteasome function impacts the stress resilience of regenerative damaged motor neurons remains unclear. Here, we develop a unique mouse model using a regulatory element of the activating transcription factor (Atf3) gene to label mitochondria in a damage‐induced manner while simultaneously genetically disrupting the proteasome. Using this model, we observed that in injury‐induced proteasome‐deficient mouse motor neurons, the increase of mitochondrial influx from soma into axons is inhibited because neurons fail to disassemble ankyrin G, an organizer of the axon initial segment (AIS), in a proteasome‐dependent manner. Further, these motor neurons exhibit amyotrophic lateral sclerosis (ALS)‐like degeneration despite having regenerative potential. Selectively vulnerable motor neurons in SOD1G93A ALS mice, which induce ATF3 in response to pathological damage, also fail to disrupt the AIS, limiting the number of axonal mitochondria at a pre‐symptomatic stage. Thus, damage‐induced proteasome‐sensitive AIS disassembly could be a critical post‐translational response for damaged motor neurons to temporarily transit to an immature state and meet energy demands for axon regeneration or preservation.
Collapse
Affiliation(s)
- Sumiko Kiryu-Seo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reika Matsushita
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Tashiro
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Marlin E, Viu-Idocin C, Arrasate M, Aragón T. The Role and Therapeutic Potential of the Integrated Stress Response in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23147823. [PMID: 35887167 PMCID: PMC9321386 DOI: 10.3390/ijms23147823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
In amyotrophic lateral sclerosis (ALS) patients, loss of cellular homeostasis within cortical and spinal cord motor neurons triggers the activation of the integrated stress response (ISR), an intracellular signaling pathway that remodels translation and promotes a gene expression program aimed at coping with stress. Beyond its neuroprotective role, under regimes of chronic or excessive stress, ISR can also promote cell/neuronal death. Given the two-edged sword nature of ISR, many experimental attempts have tried to establish the therapeutic potential of ISR enhancement or inhibition in ALS. This review discusses the complex interplay between ISR and disease progression in different models of ALS, as well as the opportunities and limitations of ISR modulation in the hard quest to find an effective therapy for ALS.
Collapse
Affiliation(s)
- Elías Marlin
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | | | - Montserrat Arrasate
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (M.A.); (T.A.)
| | - Tomás Aragón
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Neuroscience Department, Navarra Institute for Health Research (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (M.A.); (T.A.)
| |
Collapse
|
15
|
Woo TG, Yoon MH, Kang SM, Park S, Cho JH, Hwang YJ, Ahn J, Jang H, Shin YJ, Jung EM, Ha NC, Kim BH, Kwon Y, Park BJ. Novel chemical inhibitor against SOD1 misfolding and aggregation protects neuron-loss and ameliorates disease symptoms in ALS mouse model. Commun Biol 2021; 4:1397. [PMID: 34912047 PMCID: PMC8674338 DOI: 10.1038/s42003-021-02862-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu, Zn-superoxide dismutase (SOD1) causing the gain of its toxic property are the major culprit of familial ALS (fALS). The abnormal SOD1 aggregation in the motor neurons has been suggested as the major pathological hallmark of ALS patients. However, the development of pharmacological interventions against SOD1 still needs further investigation. In this study, using ELISA-based chemical screening with wild and mutant SOD1 proteins, we screened a new small molecule, PRG-A01, which could block the misfolding/aggregation of SOD1 or TDP-43. The drug rescued the cell death induced by mutant SOD1 in human neuroblastoma cell line. Administration of PRG-A01 into the ALS model mouse resulted in significant improvement of muscle strength, motor neuron viability and mobility with extended lifespan. These results suggest that SOD1 misfolding/aggregation is a potent therapeutic target for SOD1 related ALS.
Collapse
Affiliation(s)
- Tae-Gyun Woo
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Rare Disease R&D Center, PRG S&T Co., Ltd, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Jung-Hyun Cho
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Young Jun Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Jinsook Ahn
- Department of Food Science, College of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyewon Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jeong Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | - Nam-Chul Ha
- Department of Food Science, College of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bae-Hoon Kim
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Rare Disease R&D Center, PRG S&T Co., Ltd, Busan, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
| | - Bum-Joon Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.
- Rare Disease R&D Center, PRG S&T Co., Ltd, Busan, Republic of Korea.
| |
Collapse
|
16
|
Cheung WW, Hao S, Zheng R, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. Targeting interleukin-1 for reversing fat browning and muscle wasting in infantile nephropathic cystinosis. J Cachexia Sarcopenia Muscle 2021; 12:1296-1311. [PMID: 34196133 PMCID: PMC8517356 DOI: 10.1002/jcsm.12744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Inflammatory cytokines such as interleukin (IL)-1 trigger inflammatory cascades and may be an important cause for cachexia. We employed genetic and pharmacological approaches to investigate the effects of IL-1 blockade in Ctns-/- mice. METHODS We generated Ctns-/- Il1β-/- mice, and we treated Ctns-/- and wild-type control mice with IL-1 receptor antagonist, anakinra (2.5 mg/kg/day, IP) or saline as vehicle for 6 weeks. In each of these mouse lines, we characterized the cachexia phenotype consisting of anorexia, loss of weight, fat mass and lean mass, elevation of metabolic rate, and reduced in vivo muscle function (rotarod activity and grip strength). We quantitated energy homeostasis by measuring the protein content of uncoupling proteins (UCPs) and adenosine triphosphate in adipose tissue and skeletal muscle. We measured skeletal muscle fiber area and intramuscular fatty infiltration. We also studied expression of molecules regulating adipose tissue browning and muscle mass metabolism. Finally, we evaluated the impact of anakinra on the muscle transcriptome in Ctns-/- mice. RESULTS Skeletal muscle expression of IL-1β was significantly elevated in Ctns-/- mice relative to wild-type control mice. Cachexia was completely normalized in Ctns-/- Il1β-/- mice relative to Ctns-/- mice. We showed that anakinra attenuated the cachexia phenotype in Ctns-/- mice. Anakinra normalized UCPs and adenosine triphosphate content of adipose tissue and muscle in Ctns-/- mice. Anakinra attenuated aberrant expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) and molecules implicated in adipocyte tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in inguinal white adipose tissue in Ctns-/- mice. Moreover, anakinra normalized gastrocnemius weight and fiber size and attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correction of the increased muscle wasting signalling pathways (increased protein content of ERK1/2, JNK, p38 MAPK, and nuclear factor-κB p65 and mRNA expression of Atrogin-1 and Myostatin) and the decreased myogenesis process (decreased mRNA expression of MyoD and Myogenin) in the gastrocnemius muscle of Ctns-/- mice. Previously, we identified the top 20 differentially expressed skeletal muscle genes in Ctns-/- mice by RNAseq. Aberrant expression of these 20 genes have been implicated in muscle wasting, increased energy expenditure, and lipolysis. We showed that anakinra attenuated 12 of those top 20 differentially expressed muscle genes in Ctns-/- mice. CONCLUSIONS Anakinra may provide a targeted novel therapy for patients with infantile nephropathic cystinosis.
Collapse
Affiliation(s)
- Wai W. Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Wang
- Department of Pediatrics, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and ChildrenAffiliated Women and Children's Hospital of Chengdu Medical CollegeChengduChina
| | - Hal M. Hoffman
- Department of PediatricsUniversity of California, San DiegoLa JollaCAUSA
| | - Robert H. Mak
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
17
|
Cheung WW, Zheng R, Hao S, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. The role of IL-1 in adipose browning and muscle wasting in CKD-associated cachexia. Sci Rep 2021; 11:15141. [PMID: 34302016 PMCID: PMC8302616 DOI: 10.1038/s41598-021-94565-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/29/2021] [Indexed: 10/25/2022] Open
Abstract
Cytokines such as IL-6, TNF-α and IL-1β trigger inflammatory cascades which may play a role in the pathogenesis of chronic kidney disease (CKD)-associated cachexia. CKD was induced by 5/6 nephrectomy in mice. We studied energy homeostasis in Il1β-/-/CKD, Il6-/-/CKD and Tnfα-/-/CKD mice and compared with wild type (WT)/CKD controls. Parameters of cachexia phenotype were completely normalized in Il1β-/-/CKD mice but were only partially rescued in Il6-/-/CKD and Tnfα-/-/CKD mice. We tested the effects of anakinra, an IL-1 receptor antagonist, on CKD-associated cachexia. WT/CKD mice were treated with anakinra (2.5 mg/kg/day, IP) or saline for 6 weeks and compared with WT/Sham controls. Anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function, and also attenuated molecular perturbations of energy homeostasis in adipose tissue and muscle in WT/CKD mice. Anakinra decreased serum and muscle expression of IL-6, TNF-α and IL-1β in WT/CKD mice. Anakinra attenuated browning of white adipose tissue in WT/CKD mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in WT/CKD mice. This was accompanied by correcting the increased muscle wasting signaling pathways while promoting the decreased myogenesis process in gastrocnemius of WT/CKD mice. We performed qPCR analysis for the top 20 differentially expressed muscle genes previously identified via RNAseq analysis in WT/CKD mice versus controls. Importantly, 17 differentially expressed muscle genes were attenuated in anakinra treated WT/CKD mice. In conclusion, IL-1 receptor antagonism may represent a novel targeted treatment for adipose tissue browning and muscle wasting in CKD.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and Children, and Affiliated Women and Children's Hospital of Chengdu Medical College, Sichuan, China
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA.
| |
Collapse
|
18
|
Yu Z, Li W, Lan J, Hayakawa K, Ji X, Lo EH, Wang X. EphrinB2-EphB2 signaling for dendrite protection after neuronal ischemia in vivo and oxygen-glucose deprivation in vitro. J Cereb Blood Flow Metab 2021; 41:1744-1755. [PMID: 33325764 PMCID: PMC8221775 DOI: 10.1177/0271678x20973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In order to rescue neuronal function, neuroprotection should be required not only for the neuron soma but also the dendrites. Here, we propose the hypothesis that ephrin-B2-EphB2 signaling may be involved in dendritic degeneration after ischemic injury. A mouse model of focal cerebral ischemia with middle cerebral artery occlusion (MCAO) method was used for EphB2 signaling test in vivo. Primary cortical neuron culture and oxygen-glucose deprivation were used to assess EphB2 signaling in vitro. siRNA and soluble ephrin-B2 ectodomain were used to block ephrin-B2-Ephb2 signaling. In the mouse model of focal cerebral ischemia and in neurons subjected to oxygen-glucose deprivation, clustering of ephrin-B2 with its receptor EphB2 was detected. Phosphorylation of EphB2 suggested activation of this signaling pathway. RNA silencing of EphB2 prevented neuronal death and preserved dendritic length. To assess therapeutic potential, we compared the soluble EphB2 ectodomain with the NMDA antagonist MK801 in neurons after oxygen-glucose deprivation. Both agents equally reduced lactate dehydrogenase release as a general marker of neurotoxicity. However, only soluble EphB2 ectodomain protected the dendrites. These findings provide a proof of concept that ephrin-B2-EphB2 signaling may represent a novel therapeutic target to protect both the neuron soma as well as dendrites against ischemic injury.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jing Lan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Cerebrovascular Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
19
|
Ding S, Yu Q, Wang J, Zhu L, Li T, Guo X, Zhang X. Activation of ATF3/AP-1 signaling pathway is required for P2X3-induced endometriosis pain. Hum Reprod 2021; 35:1130-1144. [PMID: 32303740 DOI: 10.1093/humrep/deaa061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does P2X ligand-gated ion channel 3 (P2X3) play a role in endometriosis pain? SUMMARY ANSWER Upregulation of P2X3 in dorsal root ganglia (DRG) tissues via the activating transcription factor 3 (ATF3)/activator protein (AP)-1 pathway contributed to endometriosis-associated hyperalgesia, which could be attenuated by the chitosan oligosaccharide stearic acid (CSOSA)/liposomes (LPs)/SP600125 delivery system. WHAT IS KNOWN ALREADY Infiltrating nerve fibers and elevated nociceptors in endometriotic lesions are associated with endometriosis pain. P2X3 has been demonstrated to play an important role in neuropathic pain. STUDY DESIGN, SIZE, DURATION A rat model of endometriosis was used to investigate the signaling pathways involved in P2X3-induced pain. PARTICIPANTS/MATERIALS, SETTING, METHODS Degrees of hyperalgesia, endogenous adenosine 5'-triphosphate (ATP) contents and P2X3 expression levels in endometriotic lesions and DRG tissues were detected in a rat model of endometriosis. The expression levels of ATF3 and P2X3 were measured using qRT-PCR, western blot analysis and immunofluorescence analysis after adenosine 5'-diphosphate (ADP) exposure in DRG cells. Plasmids encoding ATF3 and its siRNA were used to investigate the role of ATF3 on ADP-induced P2X3 upregulation. The activity of ATF binding to the P2X3 promoter was evaluated by using chromatin immunoprecipitation (CHIP) and luciferase assays. SP600125, an inhibitor of c-JUN N-terminal kinase, was wrapped in CSOSA/LPs delivery system and its inhibitory effects on ADP-induced upregulation of P2X3 in DRG cells and endometriosis-induced hyperalgesia in rats were tested. MAIN RESULTS AND THE ROLE OF CHANCE The concentrations of endogenous ATP and expression levels of P2X3 were significantly increased in both endometriotic lesions and DRG tissues in endometriosis rat models and were found to be positively correlated with the severity of hyperalgesia. In DRG cells, P2X3 expression levels were elevated by ADP stimulation, but dramatically inhibited by blocking ATF3 with its siRNA and SP600125. CHIP and luciferase assay showed that ADP increased the binding of ATF3 to the P2X3 promoter, resulting in an increase in P2X3 expression levels. In the CSOSA/LPs/SP600125 delivery system, the drug could be effectively concentrated in endometriotic lesions, and it could alleviate endometriosis-induced hyperalgesia, reduce the size of endometriotic lesions and attenuate upregulated P2X3 expression levels in endometriosis rat models. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Changes in the sensitivity and function of P2X3 caused by endometriosis need to be further investigated. WIDER IMPLICATIONS OF THE FINDINGS This study indicates that ATP and the P2X3 receptor are involved in endometriosis pain, thus providing a novel therapeutic approach for the treatment of endometriosis pain by targeting the P2X3 receptor. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by National Key R&D Program of China (Grant No. 2017YFC1001202) and National Natural Science Foundation of China (Grant Nos. 81974225, 81671429 and 81471433). There are no competing interests.
Collapse
Affiliation(s)
- Shaojie Ding
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Qin Yu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Jianzhang Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Libo Zhu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Tiantian Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Xinyue Guo
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Xinmei Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| |
Collapse
|
20
|
Marshall KL, Farah MH. Axonal regeneration and sprouting as a potential therapeutic target for nervous system disorders. Neural Regen Res 2021; 16:1901-1910. [PMID: 33642358 PMCID: PMC8343323 DOI: 10.4103/1673-5374.308077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nervous system disorders are prevalent health issues that will only continue to increase in frequency as the population ages. Dying-back axonopathy is a hallmark of many neurologic diseases and leads to axonal disconnection from their targets, which in turn leads to functional impairment. During the course of many of neurologic diseases, axons can regenerate or sprout in an attempt to reconnect with the target and restore synapse function. In amyotrophic lateral sclerosis (ALS), distal motor axons retract from neuromuscular junctions early in the disease-course before significant motor neuron death. There is evidence of compensatory motor axon sprouting and reinnervation of neuromuscular junctions in ALS that is usually quickly overtaken by the disease course. Potential drugs that enhance compensatory sprouting and encourage reinnervation may slow symptom progression and retain muscle function for a longer period of time in ALS and in other diseases that exhibit dying-back axonopathy. There remain many outstanding questions as to the impact of distinct disease-causing mutations on axonal outgrowth and regeneration, especially in regards to motor neurons derived from patient induced pluripotent stem cells. Compartmentalized microfluidic chambers are powerful tools for studying the distal axons of human induced pluripotent stem cells-derived motor neurons, and have recently been used to demonstrate striking regeneration defects in human motor neurons harboring ALS disease-causing mutations. Modeling the human neuromuscular circuit with human induced pluripotent stem cells-derived motor neurons will be critical for developing drugs that enhance axonal regeneration, sprouting, and reinnervation of neuromuscular junctions. In this review we will discuss compensatory axonal sprouting as a potential therapeutic target for ALS, and the use of compartmentalized microfluidic devices to find drugs that enhance regeneration and axonal sprouting of motor axons.
Collapse
Affiliation(s)
| | - Mohamed H Farah
- Department of Neurology at Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Yegorova S, Yegorov O, Ferreira LF. RNA-sequencing reveals transcriptional signature of pathological remodeling in the diaphragm of rats after myocardial infarction. Gene 2020; 770:145356. [PMID: 33333219 DOI: 10.1016/j.gene.2020.145356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
The diaphragm is the main inspiratory muscle, and the chronic phase post-myocardial infarction (MI) is characterized by diaphragm morphological, contractile, and metabolic abnormalities. However, the mechanisms of diaphragm weakness are not fully understood. In the current study, we aimed to identify the transcriptome changes associated with diaphragm abnormalities in the chronic stage MI. We ligated the left coronary artery to cause MI in rats and performed RNA-sequencing (RNA-Seq) in diaphragm samples 16 weeks post-surgery. The sham group underwent thoracotomy and pericardiotomy but no artery ligation. We identified 112 differentially expressed genes (DEGs) out of a total of 9664 genes. Myocardial infarction upregulated and downregulated 42 and 70 genes, respectively. Analysis of DEGs in the framework of skeletal muscle-specific biological networks suggest remodeling in the neuromuscular junction, extracellular matrix, sarcomere, cytoskeleton, and changes in metabolism and iron homeostasis. Overall, the data are consistent with pathological remodeling of the diaphragm and reveal potential biological targets to prevent diaphragm weakness in the chronic stage MI.
Collapse
Affiliation(s)
- Svetlana Yegorova
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | - Oleg Yegorov
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA.
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
22
|
Renthal W, Tochitsky I, Yang L, Cheng YC, Li E, Kawaguchi R, Geschwind DH, Woolf CJ. Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury. Neuron 2020; 108:128-144.e9. [PMID: 32810432 PMCID: PMC7590250 DOI: 10.1016/j.neuron.2020.07.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Primary somatosensory neurons are specialized to transmit specific types of sensory information through differences in cell size, myelination, and the expression of distinct receptors and ion channels, which together define their transcriptional and functional identity. By profiling sensory ganglia at single-cell resolution, we find that all somatosensory neuronal subtypes undergo a similar transcriptional response to peripheral nerve injury that both promotes axonal regeneration and suppresses cell identity. This transcriptional reprogramming, which is not observed in non-neuronal cells, resolves over a similar time course as target reinnervation and is associated with the restoration of original cell identity. Injury-induced transcriptional reprogramming requires ATF3, a transcription factor that is induced rapidly after injury and necessary for axonal regeneration and functional recovery. Our findings suggest that transcription factors induced early after peripheral nerve injury confer the cellular plasticity required for sensory neurons to transform into a regenerative state.
Collapse
Affiliation(s)
- William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA.
| | - Ivan Tochitsky
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Yung-Chih Cheng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Emmy Li
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Cir., Boston, MA 02115, USA.
| |
Collapse
|
23
|
Boussicault L, Laffaire J, Schmitt P, Rinaudo P, Callizot N, Nabirotchkin S, Hajj R, Cohen D. Combination of acamprosate and baclofen (PXT864) as a potential new therapy for amyotrophic lateral sclerosis. J Neurosci Res 2020; 98:2435-2450. [PMID: 32815196 PMCID: PMC7693228 DOI: 10.1002/jnr.24714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/16/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
There is currently no therapy impacting the course of amyotrophic lateral sclerosis (ALS). The only approved treatments are riluzole and edaravone, but their efficacy is modest and short‐lasting, highlighting the need for innovative therapies. We previously demonstrated the ability of PXT864, a combination of low doses of acamprosate and baclofen, to synergistically restore cellular and behavioral activity in Alzheimer's and Parkinson's disease models. The overlapping genetic, molecular, and cellular characteristics of these neurodegenerative diseases supported investigating the effectiveness of PXT864 in ALS. As neuromuscular junction (NMJ) alterations is a key feature of ALS, the effects of PXT864 in primary neuron‐muscle cocultures injured by glutamate were studied. PXT864 significantly and synergistically preserved NMJ and motoneuron integrity following glutamate excitotoxicity. PXT864 added to riluzole significantly improved such protection. PXT864 activity was then assessed in primary cultures of motoneurons derived from SOD1G93A rat embryos. These motoneurons presented severe maturation defects that were significantly improved by PXT864. In this model, glutamate application induced an accumulation of TDP‐43 protein in the cytoplasm, a hallmark that was completely prevented by PXT864. The anti‐TDP‐43 aggregation effect was also confirmed in a cell line expressing TDP‐43 fused to GFP. These results demonstrate the value of PXT864 as a promising therapeutic strategy for the treatment of ALS.
Collapse
|
24
|
Tallon C, Marshall KL, Kennedy ME, Hyde LA, Farah MH. Pharmacological BACE Inhibition Improves Axonal Regeneration in Nerve Injury and Disease Models. Neurotherapeutics 2020; 17:973-988. [PMID: 32236823 PMCID: PMC7609814 DOI: 10.1007/s13311-020-00852-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While the peripheral nervous system is able to repair itself following injury and disease, recovery is often slow and incomplete, with no available treatments to enhance the effectiveness of regeneration. Using knock-out and transgenic overexpressor mice, we previously reported that BACE1, an aspartyl protease, as reported by Hemming et al. (PLoS One 4:12, 2009), negatively regulates peripheral nerve regeneration. Here, we investigated whether pharmacological inhibition of BACE may enhance peripheral nerve repair following traumatic nerve injury or neurodegenerative disease. BACE inhibitor-treated mice had increased numbers of regenerating axons and enhanced functional recovery after a sciatic nerve crush while inhibition increased axonal sprouting following a partial nerve injury. In the SOD1G93A ALS mouse model, BACE inhibition increased axonal regeneration with improved muscle re-innervation. CHL1, a BACE1 substrate, was elevated in treated mice and may mediate enhanced regeneration. Our data demonstrates that pharmacological BACE inhibition accelerates peripheral axon regeneration after varied nerve injuries and could be used as a potential therapy.
Collapse
Affiliation(s)
- Carolyn Tallon
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Katherine L Marshall
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | | | | | - Mohamed H Farah
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Gerbino V, Kaunga E, Ye J, Canzio D, O'Keeffe S, Rudnick ND, Guarnieri P, Lutz CM, Maniatis T. The Loss of TBK1 Kinase Activity in Motor Neurons or in All Cell Types Differentially Impacts ALS Disease Progression in SOD1 Mice. Neuron 2020; 106:789-805.e5. [PMID: 32220666 DOI: 10.1016/j.neuron.2020.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/30/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
DNA sequence variants in the TBK1 gene associate with or cause sporadic or familial amyotrophic lateral sclerosis (ALS). Here we show that mice bearing human ALS-associated TBK1 missense loss-of-function mutations, or mice in which the Tbk1 gene is selectively deleted in motor neurons, do not display a neurodegenerative disease phenotype. However, loss of TBK1 function in motor neurons of the SOD1G93A mouse model of ALS impairs autophagy, increases SOD1 aggregation, and accelerates early disease onset without affecting lifespan. By contrast, point mutations that decrease TBK1 kinase activity in all cells also accelerate disease onset but extend the lifespan of SOD1 mice. This difference correlates with the failure to activate high levels of expression of interferon-inducible genes in glia. We conclude that loss of TBK1 kinase activity impacts ALS disease progression through distinct pathways in different spinal cord cell types and further implicate the importance of glia in neurodegeneration.
Collapse
Affiliation(s)
- Valeria Gerbino
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Esther Kaunga
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sean O'Keeffe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Noam D Rudnick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Paolo Guarnieri
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; New York Genome Center, New York, NY 10013, USA; Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
26
|
Cholinergic modulation of motor neurons through the C-boutons are necessary for the locomotor compensation for severe motor neuron loss during amyotrophic lateral sclerosis disease progression. Behav Brain Res 2019; 369:111914. [DOI: 10.1016/j.bbr.2019.111914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
|
27
|
Vaughan SK, Sutherland NM, Zhang S, Hatzipetros T, Vieira F, Valdez G. The ALS-inducing factors, TDP43 A315T and SOD1 G93A, directly affect and sensitize sensory neurons to stress. Sci Rep 2018; 8:16582. [PMID: 30410094 PMCID: PMC6224462 DOI: 10.1038/s41598-018-34510-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
There is increased recognition that sensory neurons located in dorsal root ganglia (DRG) are affected in amyotrophic lateral sclerosis (ALS). However, it remains unknown whether ALS-inducing factors, other than mutant superoxide dismutase 1 (SOD1G93A), directly affect sensory neurons. Here, we examined the effect of mutant TAR DNA-binding protein 1 (TDP43A315T) on sensory neurons in culture and in vivo. In parallel, we reevaluated sensory neurons expressing SOD1G93A. We found that cultured sensory neurons harboring either TDP43A315T or SOD1G93A grow neurites at a slower rate and elaborate fewer neuritic branches compared to control neurons. The presence of either ALS-causing mutant gene also sensitizes sensory neurons to vincristine, a microtubule inhibitor that causes axonal degeneration. Interestingly, these experiments revealed that cultured sensory neurons harboring TDP43A315T elaborate shorter and less complex neurites, and are more sensitive to vincristine compared to controls and to SOD1G93A expressing sensory neurons. Additionally, levels of two molecules involved in stress responses, ATF3 and PERK are significantly different between sensory neurons harboring TDP43A315T to those with SOD1G93A in vitro and in vivo. These findings demonstrate that sensory neurons are directly affected by two ALS-inducing factors, suggesting important roles for this neuronal subpopulation in ALS-related pathogenesis.
Collapse
Affiliation(s)
- Sydney K Vaughan
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Sihui Zhang
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | | | | | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
28
|
Danzi MC, Mehta ST, Dulla K, Zunino G, Cooper DJ, Bixby JL, Lemmon VP. The effect of Jun dimerization on neurite outgrowth and motif binding. Mol Cell Neurosci 2018; 92:114-127. [PMID: 30077771 PMCID: PMC6547139 DOI: 10.1016/j.mcn.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
Axon regeneration is a necessary step toward functional recovery after spinal cord injury. The AP-1 transcription factor c-Jun has long been known to play an important role in directing the transcriptional response of Dorsal Root Ganglion (DRG) neurons to peripheral axotomy that results in successful axon regeneration. Here we performed ChIPseq for Jun in mouse DRG neurons after a sciatic nerve crush or sham surgery in order to measure the changes in Jun's DNA binding in response to peripheral axotomy. We found that the majority of Jun's injury-responsive changes in DNA binding occur at putative enhancer elements, rather than proximal to transcription start sites. We also used a series of single polypeptide chain tandem transcription factors to test the effects of different Jun-containing dimers on neurite outgrowth in DRG, cortical and hippocampal neurons. These experiments demonstrated that dimers composed of Jun and Atf3 promoted neurite outgrowth in rat CNS neurons as well as mouse DRG neurons. Our work provides new insight into the mechanisms underlying Jun's role in axon regeneration.
Collapse
Affiliation(s)
- Matt C Danzi
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Computational Science, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Saloni T Mehta
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kireeti Dulla
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giulia Zunino
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel J Cooper
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Computational Science, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
29
|
Simandi Z, Pajer K, Karolyi K, Sieler T, Jiang LL, Kolostyak Z, Sari Z, Fekecs Z, Pap A, Patsalos A, Contreras GA, Reho B, Papp Z, Guo X, Horvath A, Kiss G, Keresztessy Z, Vámosi G, Hickman J, Xu H, Dormann D, Hortobagyi T, Antal M, Nógrádi A, Nagy L. Arginine Methyltransferase PRMT8 Provides Cellular Stress Tolerance in Aging Motoneurons. J Neurosci 2018; 38:7683-7700. [PMID: 30054395 PMCID: PMC6113905 DOI: 10.1523/jneurosci.3389-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Krisztian Pajer
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Katalin Karolyi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| | - Tatiana Sieler
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| | - Lu-Lin Jiang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Zsuzsanna Kolostyak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zsanett Sari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zoltan Fekecs
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Andreas Patsalos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Gerardo Alvarado Contreras
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Balint Reho
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Greta Kiss
- Department of Anatomy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Zsolt Keresztessy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Dorothee Dormann
- BioMedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany 80539
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 80539
| | - Tibor Hortobagyi
- HAS-UD Cerebrovascular and Neurodegenerative Research Group, Department of Neurology and Neuropathology, University of Debrecen, Debrecen, Hungary, HU 4032
| | - Miklos Antal
- Department of Anatomy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
- HAS-UD Neuroscience Research Group, University of Debrecen, Debrecen, Hungary, HU 4032, and
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary, HU 6720
| | - Laszlo Nagy
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827,
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, HU 4032
- HAS-UD Momentum Immunogenomics Research Group, University of Debrecen, Debrecen, Hungary, HU 4032
| |
Collapse
|
30
|
MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Sci Rep 2018; 8:10105. [PMID: 29973608 PMCID: PMC6031650 DOI: 10.1038/s41598-018-28366-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder that is characterized by a progressive degeneration of motor neurons (MNs). The pathomechanism underlying the disease is largely unknown, even though increasing evidence suggests that RNA metabolism, including microRNAs (miRNAs) may play an important role. In this study, human ALS induced pluripotent stem cells were differentiated into MN progenitors and their miRNA expression profiles were compared to those of healthy control cells. We identified 15 downregulated miRNAs in patients’ cells. Gene ontology and molecular pathway enrichment analysis indicated that the predicted target genes of the differentially expressed miRNAs were involved in neurodegeneration-related pathways. Among the 15 examined miRNAs, miR-34a and miR504 appeared particularly relevant due to their involvement in the p53 pathway, synaptic vesicle regulation and general involvement in neurodegenerative diseases. Taken together our results demonstrate that the neurodegenerative phenotype in ALS can be associated with a dysregulation of miRNAs involved in the control of disease-relevant genetic pathways, suggesting that targeting entire gene networks can be a potential strategy to treat complex diseases such as ALS.
Collapse
|
31
|
Förstner P, Rehman R, Anastasiadou S, Haffner-Luntzer M, Sinske D, Ignatius A, Roselli F, Knöll B. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma 2018; 35:2317-2329. [PMID: 29463176 DOI: 10.1089/neu.2017.5593] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) induces a neuroinflammatory response resulting in astrocyte and microglia activation at the lesion site. This involves upregulation of neuroinflammatory genes, including chemokines and interleukins. However, so far, there is lack of knowledge on transcription factors (TFs) modulating this TBI-associated gene expression response. Herein, we analyzed activating transcription factor 3 (ATF3), a TF encoding a regeneration-associated gene (RAG) predominantly studied in peripheral nervous system (PNS) injury. ATF3 contributes to PNS axon regeneration and was shown before to regulate inflammatory processes in other injury models. In contrast to PNS injury, data on ATF3 in central nervous system (CNS) injury are sparse. We used Atf3 mouse mutants and a closed-head weight-drop-based TBI model in adult mice to target the rostrolateral cortex resulting in moderate injury severity. Post-TBI, ATF3 was upregulated already at early time points (i.e,. 1-4 h) post-injury in the brain. Mortality and weight loss upon TBI were slightly elevated in Atf3 mutants. ATF3 deficiency enhanced TBI-induced paresis and hematoma formation, suggesting that ATF3 limits these injury outcomes in wild-type mice. Next, we analyzed TBI-associated RAG and inflammatory gene expression in the cortical impact area. In contrast to the PNS, only some RAGs (Atf3, Timp1, and Sprr1a) were induced by TBI, and, surprisingly, some RAG encoding neuropeptides were downregulated. Notably, we identified ATF3 as TF-regulating proneuroinflammatory gene expression, including CCL and CXCL chemokines (Ccl2, Ccl3, Ccl4, and Cxcl1) and lipocalin. In Atf3 mutant mice, mRNA abundance was further enhanced upon TBI compared to wild-type mice, suggesting immune gene repression by wild-type ATF3. In accord, more immune cells were present in the lesion area of ATF3-deficient mice. Overall, we identified ATF3 as a new TF-mediating TBI-associated CNS inflammatory responses.
Collapse
Affiliation(s)
- Philip Förstner
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Rida Rehman
- 2 Department of Neurology, Ulm University , Ulm, Germany .,3 Department of Biomedical Engineering and Sciences (BMES), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) , H-12, Islamabad, Pakistan
| | | | - Melanie Haffner-Luntzer
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | - Daniela Sinske
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Anita Ignatius
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | | | - Bernd Knöll
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| |
Collapse
|
32
|
Elolimy AA, Moisá SJ, Brennan KM, Smith AC, Graugnard D, Shike DW, Loor JJ. Skeletal muscle and liver gene expression profiles in finishing steers supplemented with Amaize. Anim Sci J 2018; 89:1107-1119. [PMID: 29808540 DOI: 10.1111/asj.13041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Abstract
Our main objective was to evaluate the effects of feeding α-amylase (Amaize, Alltech Inc., Nicholasville, KY, USA) for 140 days on skeletal muscle and liver gene transcription in beef steers. Steers fed Amaize had lower average daily gain (p = .03) and gain:feed ratio (p = .05). No differences (p > .10) in serum metabolites or carcass traits were detected between the two groups but Amaize steers tended (p < .15) to have increased 12th rib fat depth. Microarray analysis of skeletal muscle revealed 21 differentially expressed genes (DEG), where 14 were up-regulated and seven were down-regulated in Amaize-fed steers. The bioinformatics analysis indicated that metabolic pathways involved in fat formation and deposition, stress response, and muscle function were activated, while myogenesis was inhibited in Amaize-fed steers. The quantitative PCR results for liver revealed a decrease (p < .01) in expression of fatty acid binding protein 1 (FABP1) and 3-hydroxybutyrate dehydrogenase 1 (BDH1) with Amaize. Because these genes are key for intracellular fatty acid transport, oxidation and ketone body production, data suggest a reduction in hepatic lipid catabolism. Future work to investigate potential positive effects of Amaize on cellular stress response, muscle function, and liver function in beef cattle appears warranted.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois
| | - Sonia J Moisá
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Kristen M Brennan
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Allison C Smith
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Daniel Graugnard
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois, Urbana, Illinois
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Division of Nutritional Sciences, Illinois Informatics Institute, University of Illinois, Urbana, Illinois
| |
Collapse
|
33
|
Deletion of Nampt in Projection Neurons of Adult Mice Leads to Motor Dysfunction, Neurodegeneration, and Death. Cell Rep 2018; 20:2184-2200. [PMID: 28854367 PMCID: PMC6021762 DOI: 10.1016/j.celrep.2017.08.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 06/18/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022] Open
Abstract
Intracellular nicotinamide phosphoribosyltransferase (iNAMPT) is the rate-limiting enzyme of the mammalian NAD+ biosynthesis salvage pathway. Using inducible and conditional knockout (cKO) mice, we show that Nampt gene deletion in adult projection neurons leads to a progressive loss of body weight, hypothermia, motor neuron (MN) degeneration, motor function deficits, paralysis, and death. Nampt deletion causes mitochondrial dysfunction, muscle fiber type conversion, and atrophy, as well as defective synaptic function at neuromuscular junctions (NMJs). When treated with nicotinamide mononucleotide (NMN), Nampt cKO mice exhibit reduced motor function deficits and prolonged lifespan. iNAMPT protein levels are significantly reduced in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, indicating the involvement of NAMPT in ALS pathology. Our findings reveal that neuronal NAMPT plays an essential role in mitochondrial bioenergetics, motor function, and survival. Our study suggests that the NAMPT-mediated NAD+ biosynthesis pathway is a potential therapeutic target for degenerative MN diseases.
Collapse
|
34
|
Kramer NJ, Haney MS, Morgens DW, Jovičić A, Couthouis J, Li A, Ousey J, Ma R, Bieri G, Tsui CK, Shi Y, Hertz NT, Tessier-Lavigne M, Ichida JK, Bassik MC, Gitler AD. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat Genet 2018; 50:603-612. [PMID: 29507424 PMCID: PMC5893388 DOI: 10.1038/s41588-018-0070-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9FTD/ALS). The nucleotide repeat expansions are translated into dipeptide repeat (DPR) proteins, which are aggregation-prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene knockout screens for suppressors and enhancers of C9orf72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA processing pathways, and in chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9orf72 DPRs in neurons, and improved survival of human induced motor neurons from C9orf72 ALS patients. Together, this work demonstrates the promise of CRISPR-Cas9 screens to define mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicholas J Kramer
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael S Haney
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David W Morgens
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ana Jovičić
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - James Ousey
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosanna Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregor Bieri
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - C Kimberly Tsui
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yingxiao Shi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | | | | | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
Gey M, Wanner R, Schilling C, Pedro MT, Sinske D, Knöll B. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury. Open Biol 2017; 6:rsob.160091. [PMID: 27581653 PMCID: PMC5008009 DOI: 10.1098/rsob.160091] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022] Open
Abstract
Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types.
Collapse
Affiliation(s)
- Manuel Gey
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Renate Wanner
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Corinna Schilling
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Bezirkskrankenhaus Günzburg, Ulm University, 89081 Ulm, Germany
| | - Daniela Sinske
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
36
|
Abstract
Numerous environmental, physiological, and pathological insults disrupt protein-folding homeostasis in the endoplasmic reticulum (ER), referred to as ER stress. Eukaryotic cells evolved a set of intracellular signaling pathways, collectively termed the unfolded protein response (UPR), to maintain a productive ER protein-folding environment through reprogramming gene transcription and mRNA translation. The UPR is largely dependent on transcription factors (TFs) that modulate expression of genes involved in many physiological and pathological conditions, including development, metabolism, inflammation, neurodegenerative diseases, and cancer. Here we summarize the current knowledge about these mechanisms, their impact on physiological/pathological processes, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92307 USA
| |
Collapse
|
37
|
Katz ML, Jensen CA, Student JT, Johnson GC, Coates JR. Cervical spinal cord and motor unit pathology in a canine model of SOD1-associated amyotrophic lateral sclerosis. J Neurol Sci 2017; 378:193-203. [DOI: 10.1016/j.jns.2017.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/11/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
|
38
|
Hilton BJ, Moulson AJ, Tetzlaff W. Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci Lett 2017; 652:3-10. [DOI: 10.1016/j.neulet.2016.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/29/2023]
|
39
|
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:863-885. [PMID: 28409282 PMCID: PMC5427160 DOI: 10.1007/s00401-017-1708-8] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022]
Abstract
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
Collapse
|
40
|
Activating transcription factor 3 promotes spinal cord regeneration of adult zebrafish. Biochem Biophys Res Commun 2017; 488:522-527. [PMID: 28522294 DOI: 10.1016/j.bbrc.2017.05.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 05/14/2017] [Indexed: 02/05/2023]
Abstract
Zebrafish is an excellent model to study the mechanisms underlying successful central nervous system (CNS) regeneration. Previous study shows that activating transcription factor 3 (ATF3) promotes neurite outgrowth and is involved in optic nerve regeneration in zebrafish. Here, we used zebrafish model to investigate the role of ATF3 in regeneration following spinal cord injury (SCI). Quantitative polymerase chain reaction (qPCR) and in situ hybridization revealed that ATF3 mRNA levels increased at 12 h and 6 d following SCI. Double labeled immunofluorescence showed that ATF3 expressed in motoneurons. Treatment of anti-sense ATF3 morpholino (MO) inhibited locomotor recovery and decreased axon regeneration of spinal cord injured zebrafish. Further, inhibition of ATF3 up-regulated the expression of inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). These data suggest that ATF3 could promote locomotor recovery and axon regrowth in zebrafish SCI model possibly by regulating inflammatory response.
Collapse
|
41
|
Zhang L, Yue Y, Ouyang M, Liu H, Li Z. The Effects of IGF-1 on TNF-α-Treated DRG Neurons by Modulating ATF3 and GAP-43 Expression via PI3K/Akt/S6K Signaling Pathway. Neurochem Res 2017; 42:1403-1421. [PMID: 28210955 DOI: 10.1007/s11064-017-2192-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/21/2017] [Accepted: 01/24/2017] [Indexed: 02/08/2023]
Abstract
Upregulation of the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) is involved in the development and progression of numerous neurological disorders. Recent reports have challenged the concept that TNF-α exhibits only deleterious effects of pro-inflammatory destruction, and have raised the awareness that it may play a beneficial role in neuronal growth and function in particular conditions, which prompts us to further investigate the role of this cytokine. Insulin-like growth factor-1 (IGF-1) is a cytokine possessing powerful neuroprotective effects in promoting neuronal survival, neuronal differentiation, neurite elongation, and neurite regeneration. The association of IGF-1 with TNF-α and the biological effects, produced by interaction of IGF-1 and TNF-α, on neuronal outgrowth status of primary sensory neurons are still to be clarified. In the present study, using an in vitro model of primary cultured rat dorsal root ganglion (DRG) neurons, we demonstrated that TNF-α challenge at different concentrations elicited diverse biological effects. Higher concentration of TNF-α (10 ng/mL) dampened neurite outgrowth, induced activating transcription factor 3 (ATF3) expression, reduced growth-associated protein 43 (GAP-43) expression, and promoted GAP-43 and ATF3 coexpression, which could be reversed by IGF-1 treatment; while lower concentration of TNF-α (1 ng/mL) promoted neurite sprouting, decreased ATF3 expression, increased GAP-43 expression, and inhibited GAP-43 and ATF3 coexpression, which could be potentiated by IGF-1 supplement. Moreover, IGF-1 administration restored the activation of Akt and p70 S6 kinase (S6K) suppressed by higher concentration of TNF-α (10 ng/mL) challenge. In contrast, lower concentration of TNF-α (1 ng/mL) had no significant effect on Akt or S6K activation, and IGF-1 administration activated these two kinases. The effects of IGF-1 were abrogated by phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These data imply that IGF-1 counteracts the toxic effect of higher concentration of TNF-α, while potentiates the growth-promoting effect of lower concentration of TNF-α, with the node for TNF-α and IGF-1 interaction being the PI3K/Akt/S6K signaling pathway. This study is helpful for interpretation of the association of IGF-1 with TNF-α and the neurobiological effects elicited by interaction of IGF-1 and TNF-α in neurological disorders.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Yaping Yue
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, China
| | - Meishuo Ouyang
- Shandong University School of Public Health, Jinan, 250012, China
| | - Huaxiang Liu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan, 250012, China
| | - Zhenzhong Li
- Department of Anatomy, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
42
|
Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nat Commun 2016; 7:13283. [PMID: 27796305 PMCID: PMC5095598 DOI: 10.1038/ncomms13283] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023] Open
Abstract
The study of amyotrophic lateral sclerosis (ALS) and potential interventions would be facilitated if motor axon degeneration could be more readily visualized. Here we demonstrate that stimulated Raman scattering (SRS) microscopy could be used to sensitively monitor peripheral nerve degeneration in ALS mouse models and ALS autopsy materials. Three-dimensional imaging of pre-symptomatic SOD1 mouse models and data processing by a correlation-based algorithm revealed that significant degeneration of peripheral nerves could be detected coincidentally with the earliest detectable signs of muscle denervation and preceded physiologically measurable motor function decline. We also found that peripheral degeneration was an early event in FUS as well as C9ORF72 repeat expansion models of ALS, and that serial imaging allowed long-term observation of disease progression and drug effects in living animals. Our study demonstrates that SRS imaging is a sensitive and quantitative means of measuring disease progression, greatly facilitating future studies of disease mechanisms and candidate therapeutics.
Collapse
|
43
|
Stoica L, Todeasa SH, Cabrera GT, Salameh JS, ElMallah MK, Mueller C, Brown RH, Miguel SE. Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model. Ann Neurol 2016; 79:687-700. [PMID: 26891182 PMCID: PMC5374859 DOI: 10.1002/ana.24618] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/09/2016] [Accepted: 02/14/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of motor neurons, resulting in progressive muscle weakness, paralysis, and death within 5 years of diagnosis. About 10% of cases are inherited, of which 20% are due to mutations in the superoxide dismutase 1 (SOD1) gene. Riluzole, the only US Food and Drug Administration-approved ALS drug, prolongs survival by only a few months. Experiments in transgenic ALS mouse models have shown decreasing levels of mutant SOD1 protein as a potential therapeutic approach. We sought to develop an efficient adeno-associated virus (AAV)-mediated RNAi gene therapy for ALS. METHODS A single-stranded AAV9 vector encoding an artificial microRNA against human SOD1 was injected into the cerebral lateral ventricles of neonatal SOD1(G93A) mice, and impact on disease progression and survival was assessed. RESULTS This therapy extended median survival by 50% and delayed hindlimb paralysis, with animals remaining ambulatory until the humane endpoint, which was due to rapid body weight loss. AAV9-treated SOD1(G93A) mice showed reduction of mutant human SOD1 mRNA levels in upper and lower motor neurons and significant improvements in multiple parameters including the numbers of spinal motor neurons, diameter of ventral root axons, and extent of neuroinflammation in the SOD1(G93A) spinal cord. Mice also showed previously unexplored changes in pulmonary function, with AAV9-treated SOD1(G93A) mice displaying a phenotype reminiscent of patient pathophysiology. INTERPRETATION These studies clearly demonstrate that an AAV9-delivered SOD1-specific artificial microRNA is an effective and translatable therapeutic approach for ALS.
Collapse
Affiliation(s)
- Lorelei Stoica
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sophia H. Todeasa
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gabriela Toro Cabrera
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Johnny S. Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mai K. ElMallah
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christian Mueller
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sena-Esteves Miguel
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
44
|
RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies. PLoS One 2016; 11:e0149976. [PMID: 26930486 PMCID: PMC4773011 DOI: 10.1371/journal.pone.0149976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.
Collapse
|
45
|
Nardo G, Trolese MC, Tortarolo M, Vallarola A, Freschi M, Pasetto L, Bonetto V, Bendotti C. New Insights on the Mechanisms of Disease Course Variability in ALS from Mutant SOD1 Mouse Models. Brain Pathol 2016; 26:237-47. [PMID: 26780365 PMCID: PMC8029191 DOI: 10.1111/bpa.12351] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a heterogeneous disease in terms of progression rate and survival. This is probably one of the reasons for the failure of many clinical trials and the lack of effective therapies. Similar variability is also seen in SOD1(G93A) mouse models based on their genetic background. For example, when the SOD1(G93A) transgene is expressed in C57BL6 background the phenotype is mild with slower disease progression than in the 129Sv mice expressing the same amount of transgene but showing faster progression and shorter lifespan. This review summarizes and discusses data obtained from the analysis of these two mouse models under different aspects such as the motor phenotype, neuropathological alterations in the central nervous system (CNS) and peripheral nervous system (PNS) and the motor neuron autonomous and non-cell autonomous mechanisms with the aim of finding elements to explain the different rates of disease progression. We also discuss the identification of promising prognostic biomarkers by comparative analysis of the two ALS mouse models. This analysis might possibly suggest new strategies for effective therapeutic intervention in ALS to slow significantly or even block the course of the disease.
Collapse
Affiliation(s)
- Giovanni Nardo
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Maria Chiara Trolese
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Massimo Tortarolo
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Antonio Vallarola
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Mattia Freschi
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
- Animal Facility, AriSLA, Fondazione Italiana di ricerca per la Sclerosi Laterale Amiotrofica
| | - Laura Pasetto
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Translational ProteomicsIRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Translational ProteomicsIRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| | - Caterina Bendotti
- Department of NeuroscienceLaboratory Molecular Neurobiology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanoItaly
| |
Collapse
|
46
|
The Stress-Induced Atf3-Gelsolin Cascade Underlies Dendritic Spine Deficits in Neuronal Models of Tuberous Sclerosis Complex. J Neurosci 2015. [PMID: 26224859 DOI: 10.1523/jneurosci.4796-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Hyperactivation of the mechanistic target of rapamycin (mTOR) kinase, as a result of loss-of-function mutations in tuberous sclerosis complex 1 (TSC1) or TSC2 genes, causes protein synthesis dysregulation, increased cell size, and aberrant neuronal connectivity. Dysregulated synthesis of synaptic proteins has been implicated in the pathophysiology of autism spectrum disorder (ASD) associated with TSC and fragile X syndrome. However, cell type-specific translational profiles in these disease models remain to be investigated. Here, we used high-fidelity and unbiased Translating Ribosome Affinity Purification (TRAP) methodology to purify ribosome-associated mRNAs and identified translational alterations in a rat neuronal culture model of TSC. We find that expression of many stress and/or activity-dependent proteins is highly induced while some synaptic proteins are repressed. Importantly, transcripts for the activating transcription factor-3 (Atf3) and mitochondrial uncoupling protein-2 (Ucp2) are highly induced in Tsc2-deficient neurons, as well as in a neuron-specific Tsc1 conditional knock-out mouse model, and show differential responses to the mTOR inhibitor rapamycin. Gelsolin, a known target of Atf3 transcriptional activity, is also upregulated. shRNA-mediated block of Atf3 induction suppresses expression of gelsolin, an actin-severing protein, and rescues spine deficits found in Tsc2-deficient neurons. Together, our data demonstrate that a cell-autonomous program consisting of a stress-induced Atf3-gelsolin cascade affects the change in dendritic spine morphology following mTOR hyperactivation. This previously unidentified molecular cascade could be a therapeutic target for treating mTORopathies. SIGNIFICANCE STATEMENT Tuberous sclerosis complex (TSC) is a genetic disease associated with epilepsy and autism. Dysregulated protein synthesis has been implicated as a cause of this disease. However, cell type-specific translational profiles that are aberrant in this disease are unknown. Here we show that expression of many stress and/or activity-dependent proteins is highly induced while some synaptic proteins are repressed in neurons missing the Tsc2 gene expression. Identification of genes whose translation is abnormal in TSC may provide insights to previously unidentified therapeutic targets.
Collapse
|
47
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
48
|
Liu KX, Edwards B, Lee S, Finelli MJ, Davies B, Davies KE, Oliver PL. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain 2015; 138:1167-81. [PMID: 25753484 PMCID: PMC4407188 DOI: 10.1093/brain/awv039] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a key factor contributing to motor neuron injury in amyotrophic lateral sclerosis (ALS). Liu et al. show that overexpression of oxidation resistance 1 (Oxr1) in neurons reduces pathology and extends lifespan in an ALS mouse model. Manipulation of OXR1 levels may have therapeutic benefit in neurodegenerative disease. Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1G93A mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1G93A mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1G93A mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies.
Collapse
Affiliation(s)
- Kevin X Liu
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Benjamin Edwards
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Sheena Lee
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Mattéa J Finelli
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Ben Davies
- 2 Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kay E Davies
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Peter L Oliver
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
49
|
Saba L, Viscomi MT, Caioli S, Pignataro A, Bisicchia E, Pieri M, Molinari M, Ammassari-Teule M, Zona C. Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis. Cereb Cortex 2015; 26:1512-28. [DOI: 10.1093/cercor/bhu317] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|