1
|
Weber SE, Bascompte J, Kahmen A, Niklaus PA. AMF diversity promotes plant community phosphorus acquisition and reduces carbon costs per unit of phosphorus. THE NEW PHYTOLOGIST 2025. [PMID: 40248851 DOI: 10.1111/nph.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Plants may benefit from more diverse communities of arbuscular mycorrhizal fungi (AMF), as functional complementarity of AMF may allow for increased resource acquisition, and because a high AMF diversity increases the probability of plants matching with an optimal AMF symbiont. We repeatedly radiolabeled plants and AMF in the glasshouse over c. 9 months to test how AMF species richness (SR) influences the exchange of plant C (14C) for AMF P (32P & 33P) and resulting shoot nutrients and mass from a biodiversity-ecosystem functioning perspective. Plant P acquisition via AMF increased with sown AMF SR, as did shoot biomass, shoot P, and shoot N. The rate of plant C transferred to AMF for this P (C:P) decreased with sown AMF SR. Plants in plant communities benefit from inoculation with a variety of AMF species via more favorable resource exchange. Surprisingly, this effect did not differ among functionally distinct communities comprised entirely of either legumes, nonlegume forbs, or C3 grasses.
Collapse
Affiliation(s)
- Sören Eliot Weber
- Institute for Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Zurich-Basel Plant Science Center, ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Jordi Bascompte
- Institute for Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Zurich-Basel Plant Science Center, ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| | - Ansgar Kahmen
- Zurich-Basel Plant Science Center, ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
- Departement Umweltwissenschaften, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
| | - Pascal A Niklaus
- Institute for Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Zurich-Basel Plant Science Center, ETH Zürich, Tannenstrasse 1, 8092, Zürich, Switzerland
| |
Collapse
|
2
|
Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. Cross-kingdom nutrient exchange in the plant-arbuscular mycorrhizal fungus-bacterium continuum. Nat Rev Microbiol 2024; 22:773-790. [PMID: 39014094 DOI: 10.1038/s41579-024-01073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
The association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF-plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant-AMF-bacterium continuum, summarize current advances and provide perspectives on soil microbiology. First, we review the top-down carbon flow and the bottom-up mineral flow (especially phosphorus and nitrogen) in this continuum, as well as how AMF-bacteria interactions influence the biogeochemical cycling of nutrients (for example, carbon, phosphorus and nitrogen). Second, we discuss how AMF interact with hyphospheric bacteria or endobacteria to regulate nutrient exchange between plants and AMF, and the possible molecular mechanisms that underpin this continuum. Finally, we explore future prospects for studies on the hyphosphere to facilitate the utilization of AMF and hyphospheric bacteria in sustainable agriculture.
Collapse
Affiliation(s)
- Shilong Duan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Iwai S. A simple model and rules for the evolution of microbial mutualistic symbiosis with positive fitness feedbacks. Theor Popul Biol 2024; 160:14-24. [PMID: 39384161 DOI: 10.1016/j.tpb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
The evolution of microbe-microbe mutualistic symbiosis is considered to be promoted by repeated exchanges of fitness benefits, which can generate positive fitness feedbacks ('partner fidelity feedback') between species. However, previous evolutionary models for mutualism have not captured feedback dynamics or coupling of fitness between species. Here, a simple population model is developed to understand the evolution of mutualistic symbiosis in which two microbial species (host and symbiont) continuously grow and exchange fitness benefits to generate feedback dynamics but do not strictly control each other. The assumption that individual microbes provide constant amounts of resources, which are equally divided among interacting partner individual, enables us to reveal a simple rule for the evolution of costly mutualism with positive fitness feedbacks: the product of the benefit-to-cost ratios for each species exceeds one. When this condition holds, high cooperative investment levels are favored in both species regardless of the amount invested by each partner. The model is then extended to examine how symbiont mutation, immigration, or switching affects the spread of selfish or cooperative symbionts, which decrease and increase their investment levels, respectively. In particular, when a host associates with numerous symbionts without enforcement, neither mutation nor immigration but rather random switching would allow the spread of cooperative symbionts. Examples using symbiont switching for evolution would include large ciliates hosting numerous intracellular endosymbionts. The simple model and rules would provide a basis for understanding the evolution of microbe-microbe mutualistic symbiosis with positive fitness feedbacks and without enforcement mechanisms.
Collapse
Affiliation(s)
- Sosuke Iwai
- Department of Biology, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan.
| |
Collapse
|
4
|
Bunn RA, Corrêa A, Joshi J, Kaiser C, Lekberg Y, Prescott CE, Sala A, Karst J. What determines transfer of carbon from plants to mycorrhizal fungi? THE NEW PHYTOLOGIST 2024; 244:1199-1215. [PMID: 39352455 DOI: 10.1111/nph.20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/18/2024] [Indexed: 10/18/2024]
Abstract
Biological Market Models are common evolutionary frameworks to understand the maintenance of mutualism in mycorrhizas. 'Surplus C' hypotheses provide an alternative framework where stoichiometry and source-sink dynamics govern mycorrhizal function. A critical difference between these frameworks is whether carbon transfer from plants is regulated by nutrient transfer from fungi or through source-sink dynamics. In this review, we: provide a historical perspective; summarize studies that asked whether plants transfer more carbon to fungi that transfer more nutrients; conduct a meta-analysis to assess whether mycorrhizal plant growth suppressions are related to carbon transfer; and review literature on cellular mechanisms for carbon transfer. In sum, current knowledge does not indicate that carbon transfer from plants is directly regulated by nutrient delivery from fungi. Further, mycorrhizal plant growth responses were linked to nutrient uptake rather than carbon transfer. These findings are more consistent with 'Surplus C' hypotheses than Biological Market Models. However, we also identify research gaps, and future research may uncover a mechanism directly linking carbon and nutrient transfer. Until then, we urge caution when applying economic terminology to describe mycorrhizas. We present a synthesis of ideas, consider knowledge gaps, and suggest experiments to advance the field.
Collapse
Affiliation(s)
- Rebecca A Bunn
- Department of Environmental Sciences, Western Washington University, 516 HIgh Street, Bellingham, WA, 98225, USA
| | - Ana Corrêa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Jaya Joshi
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Cindy E Prescott
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| |
Collapse
|
5
|
Calvert MB, Hoque M, Wood CW. Genotypic variation in resource exchange, use, and production traits in the legume-rhizobia mutualism. Ecol Evol 2024; 14:e70245. [PMID: 39498196 PMCID: PMC11532390 DOI: 10.1002/ece3.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 11/07/2024] Open
Abstract
Mutualisms, reciprocally beneficial interactions between two or more species, are ubiquitous in nature. A common feature of mutualisms is extensive context-dependent variation in fitness outcomes. This context-dependency is hypothesized to stem from the environment's mediation of the relative costs and benefits associated with mutualisms. However, traits related to the exchange of goods and services in mutualisms have received little attention in comparison to net fitness outcomes. In this study, we quantified the contribution of host and symbiont genotypes to variation in resource exchange, use, and production traits measured in the host using the model mutualism between legumes and nitrogen-fixing rhizobia. We predicted that plant genotype × rhizobia genotype (G × G) effects would be common to resource exchange traits because resource exchange is hypothesized to be governed by both interacting partners through bargaining. On the other hand, we predicted that plant genotype effects would dominate host resource use and production traits because these traits are only indirectly related to the exchange of resources. Consistent with our prediction for resource exchange traits, but not our prediction for resource use and production traits, we found that rhizobia genotype and G × G effects were the most common sources of variation in the traits that we measured. The results of this study complement the commonly observed phenomenon of G × G effects for fitness by showing that numerous mutualism traits also exhibit G × G variation. Furthermore, our results highlight the possibility that the exchange of resources as well as how partners use and produce traded resources can influence the evolution of mutualistic interactions. Our study lays the groundwork for future work to explore the relationship between resource exchange, use and production traits and fitness (i.e., selection) to test the competing hypotheses proposed to explain the maintenance of fitness variation in mutualisms.
Collapse
Affiliation(s)
- McCall B. Calvert
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Maliha Hoque
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corlett W. Wood
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Mostafa F, Krüger A, Nies T, Frunzke J, Schipper K, Matuszyńska A. Microbial markets: socio-economic perspective in studying microbial communities. MICROLIFE 2024; 5:uqae016. [PMID: 39318452 PMCID: PMC11421381 DOI: 10.1093/femsml/uqae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Studying microbial communities through a socio-economic lens, this paper draws parallels with human economic transactions and microbes' race for resources. Extending the 'Market Economy' concept of social science to microbial ecosystems, the paper aims to contribute to comprehending the collaborative and competitive dynamics among microorganisms. Created by a multidisciplinary team of an economist, microbiologists, and mathematicians, the paper also highlights the risks involved in employing a socio-economic perspective to explain the complexities of natural ecosystems. Navigating through microbial markets offers insights into the implications of these interactions while emphasizing the need for cautious interpretation within the broader ecological context. We hope that this paper will be a fruitful source of inspiration for future studies on microbial communities.
Collapse
Affiliation(s)
- Fariha Mostafa
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Aileen Krüger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Tim Nies
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Kerstin Schipper
- Institute of Microbiology, Heinrich-Heine University Dusseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anna Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
7
|
Lekberg Y, Jansa J, McLeod M, DuPre ME, Holben WE, Johnson D, Koide RT, Shaw A, Zabinski C, Aldrich-Wolfe L. Carbon and phosphorus exchange rates in arbuscular mycorrhizas depend on environmental context and differ among co-occurring plants. THE NEW PHYTOLOGIST 2024; 242:1576-1588. [PMID: 38173184 DOI: 10.1111/nph.19501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Phosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF-specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P-for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.
Collapse
Affiliation(s)
- Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Jan Jansa
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | | | | | - William E Holben
- Cellular, Molecular and Microbial Biology, University of Montana, Missoula, MT, 59812, USA
| | - David Johnson
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Alanna Shaw
- Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Catherine Zabinski
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Laura Aldrich-Wolfe
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
8
|
Ullah A, Gao D, Wu F. Common mycorrhizal network: the predominant socialist and capitalist responses of possible plant-plant and plant-microbe interactions for sustainable agriculture. Front Microbiol 2024; 15:1183024. [PMID: 38628862 PMCID: PMC11020090 DOI: 10.3389/fmicb.2024.1183024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024] Open
Abstract
Plants engage in a variety of interactions, including sharing nutrients through common mycorrhizal networks (CMNs), which are facilitated by arbuscular mycorrhizal fungi (AMF). These networks can promote the establishment, growth, and distribution of limited nutrients that are important for plant growth, which in turn benefits the entire network of plants. Interactions between plants and microbes in the rhizosphere are complex and can either be socialist or capitalist in nature, and the knowledge of these interactions is equally important for the progress of sustainable agricultural practice. In the socialist network, resources are distributed more evenly, providing benefits for all connected plants, such as symbiosis. For example, direct or indirect transfer of nutrients to plants, direct stimulation of growth through phytohormones, antagonism toward pathogenic microorganisms, and mitigation of stresses. For the capitalist network, AMF would be privately controlled for the profit of certain groups of plants, hence increasing competition between connected plants. Such plant interactions invading by microbes act as saprophytic and cause necrotrophy in the colonizing plants. In the first case, an excess of the nutritional resources may be donated to the receiver plants by direct transfer. In the second case, an unequal distribution of resources occurs, which certainly favor individual groups and increases competition between interactions. This largely depends on which of these responses is predominant ("socialist" or "capitalist") at the moment plants are connected. Therefore, some plant species might benefit from CMNs more than others, depending on the fungal species and plant species involved in the association. Nevertheless, benefits and disadvantages from the interactions between the connected plants are hard to distinguish in nature once most of the plants are colonized simultaneously by multiple fungal species, each with its own cost-benefits. Classifying plant-microbe interactions based on their habitat specificity, such as their presence on leaf surfaces (phyllospheric), within plant tissues (endophytic), on root surfaces (rhizospheric), or as surface-dwelling organisms (epiphytic), helps to highlight the dense and intricate connections between plants and microbes that occur both above and below ground. In these complex relationships, microbes often engage in mutualistic interactions where both parties derive mutual benefits, exemplifying the socialistic or capitalistic nature of these interactions. This review discusses the ubiquity, functioning, and management interventions of different types of plant-plant and plant-microbe interactions in CMNs, and how they promote plant growth and address environmental challenges for sustainable agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Danmei Gao
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Bragazzi NL, Woldegerima WA, Siri A. Economic microbiology: exploring microbes as agents in economic systems. Front Microbiol 2024; 15:1305148. [PMID: 38450162 PMCID: PMC10915239 DOI: 10.3389/fmicb.2024.1305148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Microbial communities exhibit striking parallels with economic markets, resembling intricate ecosystems where microorganisms engage in resource exchange akin to human market transactions. This dynamic network of resource swapping mirrors economic trade in human markets, with microbes specializing in metabolic functions much like businesses specializing in goods and services. Cooperation and competition are central dynamics in microbial communities, with alliances forming for mutual benefit and species vying for dominance, similar to businesses seeking market share. The human microbiome, comprising trillions of microorganisms within and on our bodies, is not only a marker of socioeconomic status but also a critical factor contributing to persistent health inequalities. Social and economic factors shape the composition of the gut microbiota, impacting healthcare access and quality of life. Moreover, these microbes exert indirect influence over human decisions by affecting neurotransmitter production, influencing mood, behavior, and choices related to diet and emotions. Human activities significantly impact microbial communities, from dietary choices and antibiotic use to environmental changes, disrupting these ecosystems. Beyond their natural roles, humans harness microbial communities for various applications, manipulating their interactions and resource exchanges to achieve specific goals in fields like medicine, agriculture, and environmental science. In conclusion, the concept of microbial communities as biological markets offers valuable insights into their intricate functioning and adaptability. It underscores the profound interplay between microbial ecosystems and human health and behavior, with far-reaching implications for multiple disciplines. To paraphrase Alfred Marshall, "the Mecca of the economist lies in economic microbiology."
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair, Health Anthropology Biosphere and Healing Systems, University of Genoa, Genoa, Italy
| | - Woldegebriel Assefa Woldegerima
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Anna Siri
- United Nations Educational, Scientific and Cultural Organization (UNESCO) Chair, Health Anthropology Biosphere and Healing Systems, University of Genoa, Genoa, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso University, Naples, Italy
| |
Collapse
|
10
|
Fontaine S, Abbadie L, Aubert M, Barot S, Bloor JMG, Derrien D, Duchene O, Gross N, Henneron L, Le Roux X, Loeuille N, Michel J, Recous S, Wipf D, Alvarez G. Plant-soil synchrony in nutrient cycles: Learning from ecosystems to design sustainable agrosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17034. [PMID: 38273527 DOI: 10.1111/gcb.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/14/2023] [Indexed: 01/27/2024]
Abstract
Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.
Collapse
Affiliation(s)
- Sébastien Fontaine
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | - Luc Abbadie
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Michaël Aubert
- UNIROUEN, INRAE, ECODIV-Rouen, Normandie Univ, Rouen, France
| | - Sébastien Barot
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Juliette M G Bloor
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Olivier Duchene
- ISARA, Research Unit Agroecology and Environment, Lyon, France
| | - Nicolas Gross
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| | | | - Xavier Le Roux
- INRAE UMR 1418, CNRS UMR 5557, VetAgroSup, Microbial Ecology Centre LEM, Université de Lyon, Villeurbanne, France
| | - Nicolas Loeuille
- UPEC, CNRS, IRD, INRAE, Institut d'écologie et des sciences de l'environnement, IEES, Sorbonne Université, Paris, France
| | - Jennifer Michel
- Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sylvie Recous
- INRAE, FARE, Université de Reims Champagne-Ardenne, Reims, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gaël Alvarez
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Ecosystème Prairial, Clermont-Ferrand, France
| |
Collapse
|
11
|
Martins M, César CS, Cogni R. The effects of temperature on prevalence of facultative insect heritable symbionts across spatial and seasonal scales. Front Microbiol 2023; 14:1321341. [PMID: 38143870 PMCID: PMC10741647 DOI: 10.3389/fmicb.2023.1321341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Facultative inheritable endosymbionts are common and diverse in insects and are often found at intermediate frequencies in insect host populations. The literature assessing the relationship between environment and facultative endosymbiont frequency in natural host populations points to temperature as a major component shaping the interaction. However, a synthesis describing its patterns and mechanistic basis is lacking. This mini-review aims to bridge this gap by, following an evolutionary model, hypothesizing that temperature increases endosymbiont frequencies by modulating key phenotypes mediating the interaction. Field studies mainly present positive correlations between temperature and endosymbiont frequency at spatial and seasonal scales; and unexpectedly, temperature is predominantly negatively correlated with the key phenotypes. Higher temperatures generally reduce the efficiency of maternal transmission, reproductive parasitism, endosymbiont influence on host fitness and the ability to protect against natural enemies. From the endosymbiont perspective alone, higher temperatures reduce titer and both high and low temperatures modulate their ability to promote host physiological acclimation and behavior. It is necessary to promote research programs that integrate field and laboratory approaches to pinpoint which processes are responsible for the temperature correlated patterns of endosymbiont prevalence in natural populations.
Collapse
Affiliation(s)
| | | | - Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Ramírez N, Sigurbjörnsdóttir MA, Monteil C, Berge O, Heiðmarsson S, Jackson RW, Morris C, Vilhelmsson O. Pseudomonas syringae isolated in lichens for the first time: Unveiling Peltigera genus as the exclusive host. Environ Microbiol 2023; 25:3502-3511. [PMID: 37658725 DOI: 10.1111/1462-2920.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Pseudomonas syringae is a bacterial complex that is widespread through a range of environments, typically associated with plants where it can be pathogenic, but also found in non-plant environments such as clouds, precipitation, and surface waters. Understanding its distribution within the environment, and the habitats it occupies, is important for examining its evolution and understanding behaviours. After a recent study found P. syringae living among a range of vascular plant species in Iceland, we questioned whether lichens could harbour P. syringae. Sixteen different species of lichens were sampled all over Iceland, but only one lichen genus, Peltigera, was found to consistently harbour P. syringae. Phylogenetic analyses of P. syringae from 10 sampling points where lichen, tracheophyte, and/or moss were simultaneously collected showed significant differences between sampling points, but not between different plants and lichens from the same point. Furthermore, while there were similarities in the P. syringae population in tracheophytes and Peltigera, the densities in Peltigera thalli were lower than in moss and tracheophyte samples. This discovery suggests P. syringae strains can localize and survive in organisms beyond higher plants, and thus reveals opportunities for studying their influence on P. syringae evolution.
Collapse
Affiliation(s)
- Natalia Ramírez
- Department of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | | | - Cecile Monteil
- INRA, UR0407 Pathologie Vegétale, Montfavet Cedex, France
| | - Odile Berge
- INRA, UR0407 Pathologie Vegétale, Montfavet Cedex, France
| | | | - Robert W Jackson
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Cindy Morris
- INRA, UR0407 Pathologie Vegétale, Montfavet Cedex, France
| | - Oddur Vilhelmsson
- Department of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
13
|
Clark KB. Ownership psychology as a "cognitive cell" adaptation: A minimalist model of microbial goods theory. Behav Brain Sci 2023; 46:e330. [PMID: 37813404 DOI: 10.1017/s0140525x23001498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Microbes perfect social interactions with intuitive logics and goal-directed reciprocity. These multilevel, cognition-resembling adaptations in Dictyostelid cellular molds enable individual-to-group viability through public/private bacterial farming and dynamic marketspaces. Like humans and animals, Dictyostelid livestock-ownership depends on environmental sensing, cooperation, and competition. Moreover, social-norm policing of cosmopolitan colonies coordinates farmer decisions, phenotypes, and ownership identities with bacteria herding, privatization, and consumption.
Collapse
Affiliation(s)
- Kevin B Clark
- Cures Within Reach, Chicago, IL, USA ; www.linkedin.com/pub/kevin-clark/58/67/19a; https://access-ci.org
- Felidae Conservation Fund, Mill Valley, CA, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA, USA
- Network for Life Detection (NfoLD), NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA, USA
- Multi-Omics and Systems Biology & Artificial Intelligence and Machine Learning Analysis Working Groups, NASA GeneLab, NASA Ames Research Center, Mountain View, CA, USA
- Frontier Development Lab, NASA Ames Research Center, Mountain View, CA, USA
- SETI Institute, Mountain View, CA, USA
- Peace Innovation Institute, Netherlands & Stanford University, Palo Alto, CA, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, Berlin, Germany
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers, New York, NY, USA
| |
Collapse
|
14
|
Luo X, Liu Y, Li S, He X. Interplant carbon and nitrogen transfers mediated by common arbuscular mycorrhizal networks: beneficial pathways for system functionality. FRONTIERS IN PLANT SCIENCE 2023; 14:1169310. [PMID: 37502701 PMCID: PMC10369077 DOI: 10.3389/fpls.2023.1169310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous in soil and form nutritional symbioses with ~80% of vascular plant species, which significantly impact global carbon (C) and nitrogen (N) biogeochemical cycles. Roots of plant individuals are interconnected by AMF hyphae to form common AM networks (CAMNs), which provide pathways for the transfer of C and N from one plant to another, promoting plant coexistence and biodiversity. Despite that stable isotope methodologies (13C, 14C and 15N tracer techniques) have demonstrated CAMNs are an important pathway for the translocation of both C and N, the functioning of CAMNs in ecosystem C and N dynamics remains equivocal. This review systematically synthesizes both laboratory and field evidence in interplant C and N transfer through CAMNs generated through stable isotope methodologies and highlights perspectives on the system functionality of CAMNs with implications for plant coexistence, species diversity and community stability. One-way transfers from donor to recipient plants of 0.02-41% C and 0.04-80% N of recipient C and N have been observed, with the reverse fluxes generally less than 15% of donor C and N. Interplant C and N transfers have practical implications for plant performance, coexistence and biodiversity in both resource-limited and resource-unlimited habitats. Resource competition among coexisting individuals of the same or different species is undoubtedly modified by such C and N transfers. Studying interplant variability in these transfers with 13C and 15N tracer application and natural abundance measurements could address the eco physiological significance of such CAMNs in sustainable agricultural and natural ecosystems.
Collapse
Affiliation(s)
- Xie Luo
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yining Liu
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
| | - Xinhua He
- National Base of International Science and Technology (S&T) Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region and Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, United States
| |
Collapse
|
15
|
Ma N, Kou L, Li S, Dai X, Meng S, Jiang L, Xue Y, Zheng J, Fu X, Wang H. Plant-soil feedback regulates the trade-off between phosphorus acquisition pathways in Pinus elliottii. TREE PHYSIOLOGY 2023; 43:1092-1103. [PMID: 37074159 PMCID: PMC10785040 DOI: 10.1093/treephys/tpad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Plant-soil feedback (PSF) is conventionally characterized by plant biomass growth, yet it remains unclear how PSF affects plant nutrient acquisition strategies (e.g., nutrient absorption and nutrient resorption) associated with plant growth, particularly under changing soil environments. A greenhouse experiment was performed with seedlings of Pinus elliottii Englem and conditioned soils of monoculture plantations (P. elliottii and Cunninghamia lanceolata Hook). Soil sterilization was designed to test plant phosphorus (P) acquisition strategy with and without native soil fungal communities. Soils from P. elliottii and C. lanceolata plantations were used to explore the specific soil legacy effects on two different P acquisition pathways (absorption and resorption). Phosphorus addition was also applied to examine the separate and combined effects of soil abiotic factors and soil fungal factors on P acquisition pathways. Due to diminished mycorrhizal symbiosis, PSF prompted plants to increasingly rely on P resorption under soil sterilization. In contrast, P absorption was employed preferentially in the heterospecific soil, where species-specific pathogenic fungi could not affect P absorption. Higher soil P availability diluted the effects of soil fungal factors on the trade-off between the two P acquisition pathways in terms of the absolute PSF. Moreover, P addition plays a limited role in terms of the relative PSF and does not affect the direction and strength of relative PSF. Our results reveal the role of PSF in regulating plant P acquisition pathways and highlight the interaction between mycorrhizal and pathogenic fungi as the underlying mechanism of PSF.
Collapse
Affiliation(s)
- Ning Ma
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Liang Kou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shenggong Li
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Jiang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafang Xue
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Zheng
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Timmis K, Verstraete W, Regina VR, Hallsworth JE. The Pareto principle: To what extent does it apply to resource acquisition in stable microbial communities and thereby steer their geno-/ecotype compositions and interactions between their members? Environ Microbiol 2023. [PMID: 37308155 DOI: 10.1111/1462-2920.16438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The Pareto principle, or 20:80 rule, describes resource distribution in stable communities whereby 20% of community members acquire 80% of a key resource. In this Burning Question, we ask to what extent the Pareto principle applies to the acquisition of limiting resources in stable microbial communities; how it may contribute to our understanding of microbial interactions, microbial community exploration of evolutionary space, and microbial community dysbiosis; and whether it can serve as a benchmark of microbial community stability and functional optimality?
Collapse
Affiliation(s)
- Kenneth Timmis
- Institute of Microbiology, Technical University, Braunschweig, Germany
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Belgium
| | | | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, UK
| |
Collapse
|
17
|
Bshary R, Noë R. A marine cleaning mutualism provides new insights in biological market dynamics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210501. [PMID: 36934753 PMCID: PMC10024986 DOI: 10.1098/rstb.2021.0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/22/2023] [Indexed: 03/21/2023] Open
Abstract
Most mutually beneficial social interactions (cooperation within species, mutualism between species) involve some degree of partner choice. In an analogy to economic theory as applied to human trading practices, biological market theory (BMT) focuses on how partner choice affects payoff distributions among non-human traders. BMT has inspired a great diversity of research, including research on the mutualism between cleaner fish Labroides dimidiatus and other marine fish, their 'clients'. In this mutualism, clients have ectoparasites removed and cleaners obtain food in return. We use the available data on L. dimidiatus cleaner-client interactions to identify avenues for future expansion of BMT. We focus on three main topics, namely how partner quality interacts with supply-to-demand ratios to affect service quality, the role of threats and forms of forceful intervention, and the potential role of cognition. We consider it essential to identify the specifics of each biological market as a basis for the development of more sophisticated BMT models. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Ronald Noë
- Department of Psychology, Tuk, The Netherlands and Arizona State University, Tempe, AZ 85287-1104, USA
| |
Collapse
|
18
|
Santos-Merino M, Yun L, Ducat DC. Cyanobacteria as cell factories for the photosynthetic production of sucrose. Front Microbiol 2023; 14:1126032. [PMID: 36865782 PMCID: PMC9971976 DOI: 10.3389/fmicb.2023.1126032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-pot reaction. We summarize recent advances reported in such cyanobacteria/heterotroph co-cultivation strategies and provide a perspective on future developments that are likely required to realize their bioindustrial potential.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Lisa Yun
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Sarma RK, Gohain A, Ahmed TH, Yadav A, Saikia R. An environment-benign approach of bamboo pulp bleaching using extracellular xylanase of strain Bacillus stratosphericus EB-11 isolated from elephant dung. Folia Microbiol (Praha) 2023; 68:135-149. [PMID: 36048323 DOI: 10.1007/s12223-022-01003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
The use of microbial enzymes is highly encouraged in paper and pulp industries to reduce the excessive use of hazardous chemicals. During the study, xylanase of Bacillus stratosphericus EB-11 was characterized for pulp bleaching applications. The extracellular xylanase was produced under submerged fermentation using bamboo waste as a natural carbon source. There was fast cell division and enzyme production under optimized fermentation conditions in the bioreactor. The highest activity was 91,200U after 30 h of growth with Km and Vmax of 3.52 mg/mL and 391.5 μmol/min per mg respectively. The purified enzyme with molecular mass ~ 60 kDa had conferred positive activity on native PAGE. The strong inhibition by ethylenediaminetetraacetate and SDS showed the metallo-xylanase nature of the purified enzyme. The bacterial xylanase reduces the use of hydrogen peroxide by 0.4%. Similarly, biological oxygen demand and chemical oxygen demand were reduced by 42.6 and 35.2%. The xylanase-hydrogen peroxide combined treatment and conventional chlorine dioxide-alkaline (CDE1D1D2) bleaching showed almost similar improvement in physicochemical properties of bamboo pulp. Xylanase-peroxide bleaching reduces the lignin content to 4.95% from 13.32% unbleached pulp. This content after CDE1D1D2 treatment was 4.21%. The kappa number decreased from 15.2 to 9.46 with increasing the burst factor (15.51), crystallinity index (60.25%), viscosity (20.1 cp), and brightness (65.4%). The overall finding will encourage the development of new cleaner methods of bleaching in the paper and pulp industry.
Collapse
Affiliation(s)
| | - Anwesha Gohain
- Department of Botany, Arunachal University of Studies, PIN-792013, Namsai, India
| | - Tobiul Hussain Ahmed
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Yadav
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Ratul Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| |
Collapse
|
20
|
Calibrating spatiotemporal models of microbial communities to microscopy data: A review. PLoS Comput Biol 2022; 18:e1010533. [PMID: 36227846 PMCID: PMC9560168 DOI: 10.1371/journal.pcbi.1010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Spatiotemporal models that account for heterogeneity within microbial communities rely on single-cell data for calibration and validation. Such data, commonly collected via microscopy and flow cytometry, have been made more accessible by recent advances in microfluidics platforms and data processing pipelines. However, validating models against such data poses significant challenges. Validation practices vary widely between modelling studies; systematic and rigorous methods have not been widely adopted. Similar challenges are faced by the (macrobial) ecology community, in which systematic calibration approaches are often employed to improve quantitative predictions from computational models. Here, we review single-cell observation techniques that are being applied to study microbial communities and the calibration strategies that are being employed for accompanying spatiotemporal models. To facilitate future calibration efforts, we have compiled a list of summary statistics relevant for quantifying spatiotemporal patterns in microbial communities. Finally, we highlight some recently developed techniques that hold promise for improved model calibration, including algorithmic guidance of summary statistic selection and machine learning approaches for efficient model simulation.
Collapse
|
21
|
Klein M, Stewart JD, Porter SS, Weedon JT, Kiers ET. Evolution of manipulative microbial behaviors in the rhizosphere. Evol Appl 2022; 15:1521-1536. [PMID: 36330300 PMCID: PMC9624083 DOI: 10.1111/eva.13333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
The rhizosphere has been called "one of the most complex ecosystems on earth" because it is a hotspot for interactions among millions of microbial cells. Many of these are microbes are also participating in a dynamic interplay with host plant tissues, signaling pathways, and metabolites. Historically, breeders have employed a plant-centric perspective when trying to harness the potential of microbiome-derived benefits to improve productivity and resilience of economically important plants. This is potentially problematic because: (i) the evolution of the microbes themselves is often ignored, and (ii) it assumes that the fitness of interacting plants and microbes is strictly aligned. In contrast, a microbe-centric perspective recognizes that putatively beneficial microbes are still under selection to increase their own fitness, even if there are costs to the host. This can lead to the evolution of sophisticated, potentially subtle, ways for microbes to manipulate the phenotype of their hosts, as well as other microbes in the rhizosphere. We illustrate this idea with a review of cases where rhizosphere microbes have been demonstrated to directly manipulate host root growth, architecture and exudation, host nutrient uptake systems, and host immunity and defense. We also discuss indirect effects, whereby fitness outcomes for the plant are a consequence of ecological interactions between rhizosphere microbes. If these consequences are positive for the plant, they can potentially be misconstrued as traits that have evolved to promote host growth, even if they are a result of selection for unrelated functions. The ubiquity of both direct microbial manipulation of hosts and context-dependent, variable indirect effects leads us to argue that an evolutionary perspective on rhizosphere microbial ecology will become increasingly important as we continue to engineer microbial communities for crop production.
Collapse
Affiliation(s)
- Malin Klein
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Justin D. Stewart
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - James T. Weedon
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
22
|
Du J, Yin Q, Zhou X, Guo Q, Wu G. Distribution of extracellular amino acids and their potential functions in microbial cross-feeding in anaerobic digestion systems. BIORESOURCE TECHNOLOGY 2022; 360:127535. [PMID: 35779747 DOI: 10.1016/j.biortech.2022.127535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion is a prevalent bioenergy production process relying on a complex network of symbiotic interactions, where the nutrient based cross-feeding is an essential microbial mechanism. Here, the cross-feeding function was assessed by analyzing extracellular polymeric substances-associated amino acids in microbial aggregates collected from 14 lab-scale anaerobic digesters, as well as deciphering their genetically biosynthetic potential by syntrophic bacteria and methanogens. The total concentration of essential amino acids ranged from 1.2 mg/g VSS to 174.0 mg/g VSS. The percentages of glutamic acid (8.5 ∼ 37.6%), lysine (2.7 ∼ 22.6%), alanine (5.6 ∼ 13.2%), and valine (3.0 ∼ 10.4%) to the total amount of detected amino acids were the highest in most samples. Through metagenomics analysis, several investigated syntrophs (i.e., Smithella, Syntrophobacter, Syntrophomonas, and Mesotoga) and methanogens (i.e., Methanothrix and Methanosarcina) were auxotrophies, but the genetic ability of syntrophs and methanogens to synthesize some essential amino acids could be complementary, implying potential cross-feeding partnership.
Collapse
Affiliation(s)
- Jin Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Xingzhao Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qiannan Guo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
23
|
Lajoie G, Parfrey LW. Beyond specialization: re-examining routes of host influence on symbiont evolution. Trends Ecol Evol 2022; 37:590-598. [PMID: 35466020 DOI: 10.1016/j.tree.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022]
Abstract
Our understanding of host influence on microbial evolution has focused on symbiont specialization and the genomic streamlining that often accompanies it. However, a vast diversity of symbiotic lineages facultatively interact with hosts or associate with multiple hosts. Yet, there are no clear expectations for how host association influences the niche of these symbionts or their evolution. Here, we discuss how weak or variable selection on microbial symbiotic associations, horizontal transmission, and low costs of adaptation to novel host habitats are predicted to promote the expansion or maintenance of microbial niches. This broad perspective will aid in developing better and more general predictions for evolution in microbial symbioses.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4.
| | - Laura Wegener Parfrey
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
24
|
Verstraete W, Yanuka‐Golub K, Driesen N, De Vrieze J. Engineering microbial technologies for environmental sustainability: choices to make. Microb Biotechnol 2022; 15:215-227. [PMID: 34875143 PMCID: PMC8719809 DOI: 10.1111/1751-7915.13986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/27/2022] Open
Abstract
Microbial technologies have provided solutions to key challenges in our daily lives for over a century. In the debate about the ongoing climate change and the need for planetary sustainability, microbial ecology and microbial technologies are rarely considered. Nonetheless, they can bring forward vital solutions to decrease and even prevent long-term effects of climate change. The key to the success of microbial technologies is an effective, target-oriented microbiome management. Here, we highlight how microbial technologies can play a key role in both natural, i.e. soils and aquatic ecosystems, and semi-natural or even entirely human-made, engineered ecosystems, e.g. (waste) water treatment and bodily systems. First, we set forward fundamental guidelines for effective soil microbial resource management, especially with respect to nutrient loss and greenhouse gas abatement. Next, we focus on closing the water circle, integrating resource recovery. We also address the essential interaction of the human and animal host with their respective microbiomes. Finally, we set forward some key future potentials, such as microbial protein and the need to overcome microphobia for microbial products and services. Overall, we conclude that by relying on the wisdom of the past, we can tackle the challenges of our current era through microbial technologies.
Collapse
Affiliation(s)
- Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653GentB‐9000Belgium
- Avecom NVIndustrieweg 122PWondelgem9032Belgium
| | - Keren Yanuka‐Golub
- The Institute of Applied ResearchThe Galilee SocietyP.O. Box 437Shefa‐AmrIsrael
| | | | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET)Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653GentB‐9000Belgium
| |
Collapse
|
25
|
Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, Gabriel R, Reipert S, Weidinger M, Clode P, Wagner M, Woebken D, Richter A, Kaiser C. Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica. THE NEW PHYTOLOGIST 2021; 232:2457-2474. [PMID: 34196001 PMCID: PMC9291818 DOI: 10.1111/nph.17591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.
Collapse
Affiliation(s)
- Werner Mayerhofer
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass SpectrometryUniversity of ViennaViennaA‐1030Austria
| | - Marlies Dietrich
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Stefan Gorka
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Julia Wiesenbauer
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Victoria Martin
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Raphael Gabriel
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaA‐1030Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaA‐1030Austria
| | - Peta Clode
- Centre for Microscopy, Characterisation & AnalysisUniversity of Western AustraliaPerthWA6009Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass SpectrometryUniversity of ViennaViennaA‐1030Austria
- Department of Chemistry and BioscienceAalborg UniversityAalborgDK‐9220Denmark
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaA‐1030Austria
| |
Collapse
|
26
|
Mayerhofer W, Schintlmeister A, Dietrich M, Gorka S, Wiesenbauer J, Martin V, Gabriel R, Reipert S, Weidinger M, Clode P, Wagner M, Woebken D, Richter A, Kaiser C. Recently photoassimilated carbon and fungus-delivered nitrogen are spatially correlated in the ectomycorrhizal tissue of Fagus sylvatica. THE NEW PHYTOLOGIST 2021; 232:2457-2474. [PMID: 34196001 DOI: 10.5281/zenodo.5035482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 05/21/2023]
Abstract
Ectomycorrhizal plants trade plant-assimilated carbon for soil nutrients with their fungal partners. The underlying mechanisms, however, are not fully understood. Here we investigate the exchange of carbon for nitrogen in the ectomycorrhizal symbiosis of Fagus sylvatica across different spatial scales from the root system to the cellular level. We provided 15 N-labelled nitrogen to mycorrhizal hyphae associated with one half of the root system of young beech trees, while exposing plants to a 13 CO2 atmosphere. We analysed the short-term distribution of 13 C and 15 N in the root system with isotope-ratio mass spectrometry, and at the cellular scale within a mycorrhizal root tip with nanoscale secondary ion mass spectrometry (NanoSIMS). At the root system scale, plants did not allocate more 13 C to root parts that received more 15 N. Nanoscale secondary ion mass spectrometry imaging, however, revealed a highly heterogenous, and spatially significantly correlated distribution of 13 C and 15 N at the cellular scale. Our results indicate that, on a coarse scale, plants do not allocate a larger proportion of photoassimilated C to root parts associated with N-delivering ectomycorrhizal fungi. Within the ectomycorrhizal tissue, however, recently plant-assimilated C and fungus-delivered N were spatially strongly coupled. Here, NanoSIMS visualisation provides an initial insight into the regulation of ectomycorrhizal C and N exchange at the microscale.
Collapse
Affiliation(s)
- Werner Mayerhofer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna, Vienna, A-1030, Austria
| | - Marlies Dietrich
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Stefan Gorka
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Julia Wiesenbauer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Victoria Martin
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Raphael Gabriel
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, A-1030, Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, A-1030, Austria
| | - Peta Clode
- Centre for Microscopy, Characterisation & Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, University of Vienna, Vienna, A-1030, Austria
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, A-1030, Austria
| |
Collapse
|
27
|
Triki Z, Richter XYL, Demairé C, Kurokawa S, Bshary R. Marine cleaning mutualism defies standard logic of supply and demand. Am Nat 2021; 199:455-467. [DOI: 10.1086/718315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiol Res 2021; 254:126901. [PMID: 34700186 DOI: 10.1016/j.micres.2021.126901] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.
Collapse
|
29
|
Market forces determine the distribution of a leaky function in a simple microbial community. Proc Natl Acad Sci U S A 2021; 118:2109813118. [PMID: 34548403 DOI: 10.1073/pnas.2109813118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 11/18/2022] Open
Abstract
Many biological functions are leaky, and organisms that perform them contribute some of their products to a community "marketplace" in which nonperforming individuals may compete for them. Leaky functions are partitioned unequally in microbial communities, and the evolutionary forces determining which species perform them and which become beneficiaries are poorly understood. Here, we demonstrate that the market principle of comparative advantage determines the distribution of a leaky antibiotic resistance gene in an environment occupied by two "species"-strains of Escherichia coli growing on mutually exclusive resources and thus occupying separate niches. Communities comprised of antibiotic-resistant cells were rapidly invaded by sensitive cells of both types. While the two phenotypes coexisted stably for 500 generations, in 15/18 replicates, antibiotic sensitivity became fixed in one species. Fixation always occurred in the same species despite both species being genetically identical except for their niche-defining mutation. In the absence of antibiotic, the fitness cost of resistance was identical in both species. However, the intrinsic resistance of the species that ultimately became the sole helper was significantly lower, and thus its reward for expressing the resistance gene was higher. Opportunity cost of resistance, not absolute cost or efficiency of antibiotic removal, determined which species became the helper, consistent with the economic theory of comparative advantage. We present a model that suggests that this market-like dynamic is a general property of Black Queen systems and, in communities dependent on multiple leaky functions, could lead to the spontaneous development of an equitable and efficient division of labor.
Collapse
|
30
|
Bellabarba A, Bacci G, Decorosi F, Aun E, Azzarello E, Remm M, Giovannetti L, Viti C, Mengoni A, Pini F. Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis. mSystems 2021. [PMID: 34313466 DOI: 10.1101/2020.09.15.298034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.
Collapse
Affiliation(s)
- Agnese Bellabarba
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Francesca Decorosi
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Erki Aun
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartugrid.10939.32, Tartu, Estonia
| | - Elisa Azzarello
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Maido Remm
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartugrid.10939.32, Tartu, Estonia
| | - Luciana Giovannetti
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry (DAGRI), University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florencegrid.8404.8, Sesto Fiorentino, Italy
| | - Francesco Pini
- Department of Biology, University of Bari Aldo Morogrid.7644.1, Bari, Italy
| |
Collapse
|
31
|
Abstract
Many microorganisms with high prevalence in host populations are beneficial to the host and maintained by specialized transmission mechanisms. Although microbial promotion of host fitness and specificity of the associations undoubtedly enhance microbial prevalence, it is an open question whether these symbiotic traits are also a prerequisite for the evolutionary origin of prevalent microbial taxa. To address this issue, we investigate how processes without positive microbial effects on host fitness or host choice can influence the prevalence of certain microbes in a host population. Specifically, we develop a theoretical model to assess the conditions under which particular microbes can become enriched in animal hosts even when they are not providing a specific benefit to a particular host. We find increased prevalence of specific microbes in a host when both show some overlap in their lifecycles, and especially when both share dispersal routes across a patchy habitat distribution. Our results emphasize that host enrichment per se is not a reliable indicator of beneficial host-microbe interactions. The resulting increase in time spent associated with a host may nevertheless give rise to new selection conditions, which can favor microbial adaptations toward a host-associated lifestyle, and, thus, it could be the foundation for subsequent evolution of mutually beneficial coevolved symbioses.
Collapse
|
32
|
Orlofsky E, Zabari L, Bonito G, Masaphy S. Changes in soil bacteria functional ecology associated with Morchella rufobrunnea fruiting in a natural habitat. Environ Microbiol 2021; 23:6651-6662. [PMID: 34327796 DOI: 10.1111/1462-2920.15692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023]
Abstract
Morchella rufobrunnea is a saprobic edible mushroom, found in a range of ecological niches, indicating nutritional adjustment to different habitats and possible interaction with soil prokaryotic microbiome (SPM). Using the 16S rRNA gene, we examined the SPM of M. rufobrunnea that appeared in a natural habitat in Northern Israel. Three sample types were included: bare soil without mushroom, soil beneath young mushroom initials and soil beneath the mature fruiting body. Morchella rufobrunnea developmental stage was significantly associated with changes in bacterial populations (PERMANOVA, p < 0.0005). Indicator analysis with point-biserial correlation coefficient found 180 operational taxonomic units (OTU) uniquely associated with distinct stages of development. The Functional Annotation of Prokaryotic Taxonomy (FAPROTAX) database helped to infer ecological roles for indicator OTU. The functional ecological progression begins with establishment of a photoautotrophic N-fixing bacterial mat on bare soil. Pioneer heterotrophs including oligotrophs, acidifying nutrient mobilizers and nitrifiers are congruent with appearance of young M. rufobrunnea initials. Under the mature fruiting body, the population changed to saprobes, organic-N degraders, denitrifiers, insect endosymbionts and fungal antagonists. Based on this work, M. rufobrunnea may be able to influence SPM and change the soil nutritional profile.
Collapse
Affiliation(s)
- Ezra Orlofsky
- Applied Mycology and Microbiology, Migal, Kiryat Shemona, 11016, Israel
| | - Limor Zabari
- Applied Mycology and Microbiology, Migal, Kiryat Shemona, 11016, Israel
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Segula Masaphy
- Applied Mycology and Microbiology, Migal, Kiryat Shemona, 11016, Israel.,Tel Hai Academic College, Kiryat Shemona, 12210, Israel
| |
Collapse
|
33
|
Competitiveness for Nodule Colonization in Sinorhizobium meliloti: Combined In Vitro-Tagged Strain Competition and Genome-Wide Association Analysis. mSystems 2021; 6:e0055021. [PMID: 34313466 PMCID: PMC8407117 DOI: 10.1128/msystems.00550-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Associations between leguminous plants and symbiotic nitrogen-fixing rhizobia are a classic example of mutualism between a eukaryotic host and a specific group of prokaryotic microbes. Although this symbiosis is in part species specific, different rhizobial strains may colonize the same nodule. Some rhizobial strains are commonly known as better competitors than others, but detailed analyses that aim to predict rhizobial competitive abilities based on genomes are still scarce. Here, we performed a bacterial genome-wide association (GWAS) analysis to define the genomic determinants related to the competitive capabilities in the model rhizobial species Sinorhizobium meliloti. For this, 13 tester strains were green fluorescent protein (GFP) tagged and assayed versus 3 red fluorescent protein (RFP)-tagged reference competitor strains (Rm1021, AK83, and BL225C) in a Medicago sativa nodule occupancy test. Competition data and strain genomic sequences were employed to build a model for GWAS based on k-mers. Among the k-mers with the highest scores, 51 k-mers mapped on the genomes of four strains showing the highest competition phenotypes (>60% single strain nodule occupancy; GR4, KH35c, KH46, and SM11) versus BL225C. These k-mers were mainly located on the symbiosis-related megaplasmid pSymA, specifically on genes coding for transporters, proteins involved in the biosynthesis of cofactors, and proteins related to metabolism (e.g., fatty acids). The same analysis was performed considering the sum of single and mixed nodules obtained in the competition assays versus BL225C, retrieving k-mers mapped on the genes previously found and on vir genes. Therefore, the competition abilities seem to be linked to multiple genetic determinants and comprise several cellular components. IMPORTANCE Decoding the competitive pattern that occurs in the rhizosphere is challenging in the study of bacterial social interaction strategies. To date, the single-gene approach has mainly been used to uncover the bases of nodulation, but there is still a knowledge gap regarding the main features that a priori characterize rhizobial strains able to outcompete indigenous rhizobia. Therefore, tracking down which traits make different rhizobial strains able to win the competition for plant infection over other indigenous rhizobia will improve the strain selection process and, consequently, plant yield in sustainable agricultural production systems. We proved that a k-mer-based GWAS approach can efficiently identify the competition determinants of a panel of strains previously analyzed for their plant tissue occupancy using double fluorescent labeling. The reported strategy will be useful for detailed studies on the genomic aspects of the evolution of bacterial symbiosis and for an extensive evaluation of rhizobial inoculants.
Collapse
|
34
|
Kim J, Silva-Rocha R, de Lorenzo V. Picking the right metaphors for addressing microbial systems: economic theory helps understanding biological complexity. Int Microbiol 2021; 24:507-519. [PMID: 34269947 DOI: 10.1007/s10123-021-00194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Any descriptive language is necessarily metaphoric and interpretative. Two somewhat overlapping-but not identical-languages have been thoroughly employed in the last decade to address the issue of regulatory complexity in biological systems: the terminology of network theory and the jargon of electric circuitry. These approaches have found many formal equivalences between the layout of extant genetic circuits and the architecture of man-made counterparts. However, these languages still fail to describe accurately key features of biological objects, in particular the diversity of signal-transfer molecules and the diffusion that is inherent to any biochemical system. Furthermore, current formalisms associated with networks and circuits can hardly face the problem of multi-scale regulatory complexity-from single molecules to entire ecosystems. We argue that the language of economic theory might be instrumental not only to portray accurately many features of regulatory networks, but also to unveil aspects of the biological complexity problem that remain opaque to other types of analyses. The main perspective opened by the economic metaphor when applied to control of microbiological activities is a focus on metabolism, not gene selfishness, as the necessary background to make sense of regulatory phenomena. As an example, we analyse and reinterpret the widespread phenomenon of catabolite repression with the formal frame of the consumer's choice theory.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
35
|
Exploring the diverse, intimate lives of plants. Nat Methods 2021; 18:861-865. [PMID: 34272538 DOI: 10.1038/s41592-021-01228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Walrasian equilibrium behavior in nature. Proc Natl Acad Sci U S A 2021; 118:2020961118. [PMID: 34183408 DOI: 10.1073/pnas.2020961118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between land plants and mycorrhizal fungi (MF) forms perhaps the world's most prevalent biological market. Most plants participate in such markets, in which MF collect nutrients from the soil and trade them with host plants in exchange for carbon. In a recent study, M. D. Whiteside et al. [Curr. Biol. 29, 2043-2050.e8 (2019)] conducted experiments that allowed them to quantify the behavior of arbuscular MF when trading phosphorus with their host roots. Their experimental techniques enabled the researchers to infer the quantities traded under multiple scenarios involving different amounts of phosphorus resources initially held by different MF patches. We use these observations to confirm a revealed preference hypothesis, which characterizes behavior in Walrasian equilibrium, a centerpiece of general economic equilibrium theory.
Collapse
|
37
|
Yang Y. Emerging Patterns of Microbial Functional Traits. Trends Microbiol 2021; 29:874-882. [PMID: 34030967 DOI: 10.1016/j.tim.2021.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023]
Abstract
Functional traits are measurable characteristics that affect an organism's fitness under certain environmental conditions. The use of functional traits in microbial ecology holds great promise for improving our ability to develop biogeochemical models and predict ecosystem responses to global changes. Notably, functional traits could be decoupled from taxonomic relatedness, owing to horizontal gene transfer among microorganisms and adaptive evolution. In recent years, our knowledge about microbial functional traits has been substantially enhanced, thereby revealing the multitude of ecological processes in driving community assembly and dynamics. Here, I summarize the emerging patterns of how microbial functional traits respond to changing environments, which considerably differ from better-studied microbial taxonomy. I use niche and neutral theories to explain microbial functional traits. Finally, I highlight future challenges to analyze, elucidate, and utilize functional traits in microbial ecology.
Collapse
Affiliation(s)
- Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Ardanuy A, Walker JKM, Kritzler U, Taylor AFS, Johnson D. Tripartite symbioses regulate plant–soil feedback in alder. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agnès Ardanuy
- Department of Earth and Environmental Sciences Michael Smith building The University of Manchester Manchester UK
| | - Jennifer K. M. Walker
- Department of Earth and Environmental Sciences Michael Smith building The University of Manchester Manchester UK
| | - Ully Kritzler
- Department of Earth and Environmental Sciences Michael Smith building The University of Manchester Manchester UK
| | - Andy F. S. Taylor
- The James Hutton Institute Aberdeen UK
- Institute of Biological and Environmental Sciences Cruickshank Building University of Aberdeen Aberdeen UK
| | - David Johnson
- Department of Earth and Environmental Sciences Michael Smith building The University of Manchester Manchester UK
| |
Collapse
|
39
|
van't Padje A, Werner GDA, Kiers ET. Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt 'crashes' and 'booms' of resource availability. THE NEW PHYTOLOGIST 2021; 229:2933-2944. [PMID: 33124078 PMCID: PMC7898638 DOI: 10.1111/nph.17055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 05/06/2023]
Abstract
Biological market theory provides a conceptual framework to analyse trade strategies in symbiotic partnerships. A key prediction of biological market theory is that individuals can influence resource value - meaning the amount a partner is willing to pay for it - by mediating where and when it is traded. The arbuscular mycorrhizal symbiosis, characterised by roots and fungi trading phosphorus and carbon, shows many features of a biological market. However, it is unknown if or how fungi can control phosphorus value when exposed to abrupt changes in their trade environment. We mimicked an economic 'crash', manually severing part of the fungal network (Rhizophagus irregularis) to restrict resource access, and an economic 'boom' through phosphorus additions. We quantified trading strategies over a 3-wk period using a recently developed technique that allowed us to tag rock phosphate with fluorescing quantum dots of three different colours. We found that the fungus: compensated for resource loss in the 'crash' treatment by transferring phosphorus from alternative pools closer to the host root (Daucus carota); and stored the surplus nutrients in the 'boom' treatment until root demand increased. By mediating from where, when and how much phosphorus was transferred to the host, the fungus successfully controlled resource value.
Collapse
Affiliation(s)
- Anouk van't Padje
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Gijsbert D. A. Werner
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- Netherlands Scientific Council for Government PolicyBuitenhof 34The Hague2513 AHthe Netherlands
| | - E. Toby Kiers
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| |
Collapse
|
40
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
41
|
García-Ulloa MI, Escalante AE, Moreno-Letelier A, Eguiarte LE, Souza V. Evolutionary Rescue of an Environmental Pseudomonas otitidis in Response to Anthropogenic Perturbation. Front Microbiol 2021; 11:563885. [PMID: 33552002 PMCID: PMC7856823 DOI: 10.3389/fmicb.2020.563885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic perturbations introduce novel selective pressures to natural environments, impacting the genomic variability of organisms and thus altering the evolutionary trajectory of populations. Water overexploitation for agricultural purposes and defective policies in Cuatro Cienegas, Coahuila, Mexico, have strongly impacted its water reservoir, pushing entire hydrological systems to the brink of extinction along with their native populations. Here, we studied the effects of continuous water overexploitation on an environmental aquatic lineage of Pseudomonas otitidis over a 13-year period which encompasses three desiccation events. By comparing the genomes of a population sample from 2003 (original state) and 2015 (perturbed state), we analyzed the demographic history and evolutionary response to perturbation of this lineage. Through coalescent simulations, we obtained a demographic model of contraction-expansion-contraction which points to the occurrence of an evolutionary rescue event. Loss of genomic and nucleotide variation alongside an increment in mean and variance of Tajima’s D, characteristic of sudden population expansions, support this observation. In addition, a significant increase in recombination rate (R/θ) was observed, pointing to horizontal gene transfer playing a role in population recovery. Furthermore, the gain of phosphorylation, DNA recombination, small-molecule metabolism and transport and loss of biosynthetic and regulatory genes suggest a functional shift in response to the environmental perturbation. Despite subsequent sampling events in the studied site, no pseudomonad was found until the lagoon completely dried in 2017. We speculate about the causes of P. otitidis final decline or possible extinction. Overall our results are evidence of adaptive responses at the genomic level of bacterial populations in a heavily exploited aquifer.
Collapse
Affiliation(s)
- Manuel Ii García-Ulloa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Ana Elena Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Alejandra Moreno-Letelier
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
42
|
Van't Padje A, Oyarte Galvez L, Klein M, Hink MA, Postma M, Shimizu T, Kiers ET. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. THE ISME JOURNAL 2021; 15:435-449. [PMID: 32989245 PMCID: PMC8027207 DOI: 10.1038/s41396-020-00786-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022]
Abstract
Arbuscular mycorrhizal fungi function as conduits for underground nutrient transport. While the fungal partner is dependent on the plant host for its carbon (C) needs, the amount of nutrients that the fungus allocates to hosts can vary with context. Because fungal allocation patterns to hosts can change over time, they have historically been difficult to quantify accurately. We developed a technique to tag rock phosphorus (P) apatite with fluorescent quantum-dot (QD) nanoparticles of three different colors, allowing us to study nutrient transfer in an in vitro fungal network formed between two host roots of different ages and different P demands over a 3-week period. Using confocal microscopy and raster image correlation spectroscopy, we could distinguish between P transfer from the hyphae to the roots and P retention in the hyphae. By tracking QD-apatite from its point of origin, we found that the P demands of the younger root influenced both: (1) how the fungus distributed nutrients among different root hosts and (2) the storage patterns in the fungus itself. Our work highlights that fungal trade strategies are highly dynamic over time to local conditions, and stresses the need for precise measurements of symbiotic nutrient transfer across both space and time.
Collapse
Affiliation(s)
- Anouk Van't Padje
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Loreto Oyarte Galvez
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Malin Klein
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Mark A Hink
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Thomas Shimizu
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - E Toby Kiers
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Pessione E. The Less Expensive Choice: Bacterial Strategies to Achieve Successful and Sustainable Reciprocal Interactions. Front Microbiol 2021; 11:571417. [PMID: 33584557 PMCID: PMC7873842 DOI: 10.3389/fmicb.2020.571417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria, the first organisms that appeared on Earth, continue to play a central role in ensuring life on the planet, both as biogeochemical agents and as higher organisms' symbionts. In the last decades, they have been employed both as bioremediation agents for cleaning polluted sites and as bioconversion effectors for obtaining a variety of products from wastes (including eco-friendly plastics and green energies). However, some recent reports suggest that bacterial biodiversity can be negatively affected by the present environmental crisis (global warming, soil desertification, and ocean acidification). This review analyzes the behaviors positively selected by evolution that render bacteria good models of sustainable practices (urgent in these times of climate change and scarcity of resources). Actually, bacteria display a tendency to optimize rather than maximize, to economize energy and building blocks (by using the same molecule for performing multiple functions), and to recycle and share metabolites, and these are winning strategies when dealing with sustainability. Furthermore, their ability to establish successful reciprocal relationships by means of anticipation, collective actions, and cooperation can also constitute an example highlighting how evolutionary selection favors behaviors that can be strategic to contain the present environmental crisis.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
44
|
Noë R. Waste Can Be Traded with Mutualistic Partners. Trends Ecol Evol 2020; 36:175-176. [PMID: 33279253 DOI: 10.1016/j.tree.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
|
45
|
Velev MV. Entropy and free-energy based interpretation of the laws of supply and demand. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43546-020-00009-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Willis KA, Stewart JD, Ambalavanan N. Recent advances in understanding the ecology of the lung microbiota and deciphering the gut-lung axis. Am J Physiol Lung Cell Mol Physiol 2020. [PMID: 32877224 PMCID: PMC7642895 DOI: 10.1152/ajplung.00360.2020 10.1152/ajplung.00360.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A rapidly expanding new field of lung research has been produced by the emergence of culture-independent next-generation sequencing technologies. While pulmonary microbiome research lags behind the exploration of the microbiome in other organ systems, the field is maturing and has recently produced multiple exciting discoveries. In this mini-review, we will explore recent advances in our understanding of the lung microbiome and the gut-lung axis from an ecological perspective.
Collapse
Affiliation(s)
- Kent A. Willis
- 1Division of Neonatology, Department of Pediatrics, College of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Justin D. Stewart
- 2Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Namasivayam Ambalavanan
- 1Division of Neonatology, Department of Pediatrics, College of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama,3Department of Pathology, College of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama,4Department of Cell, Developmental and Integrative Biology, College of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
47
|
Willis KA, Stewart JD, Ambalavanan N. Recent advances in understanding the ecology of the lung microbiota and deciphering the gut-lung axis. Am J Physiol Lung Cell Mol Physiol 2020; 319:L710-L716. [PMID: 32877224 DOI: 10.1152/ajplung.00360.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A rapidly expanding new field of lung research has been produced by the emergence of culture-independent next-generation sequencing technologies. While pulmonary microbiome research lags behind the exploration of the microbiome in other organ systems, the field is maturing and has recently produced multiple exciting discoveries. In this mini-review, we will explore recent advances in our understanding of the lung microbiome and the gut-lung axis from an ecological perspective.
Collapse
Affiliation(s)
- Kent A Willis
- Division of Neonatology, Department of Pediatrics, College of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Justin D Stewart
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, College of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Department of Pathology, College of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Department of Cell, Developmental and Integrative Biology, College of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
48
|
Afkhami ME, Almeida BK, Hernandez DJ, Kiesewetter KN, Revillini DP. Tripartite mutualisms as models for understanding plant-microbial interactions. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:28-36. [PMID: 32247158 DOI: 10.1016/j.pbi.2020.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
All plants host diverse microbial assemblages that shape plant health, productivity, and function. While some microbial effects are attributable to particular symbionts, interactions among plant-associated microbes can nonadditively affect plant fitness and traits in ways that cannot be predicted from pairwise interactions. Recent research into tripartite plant-microbe mutualisms has provided crucial insight into this nonadditivity and the mechanisms underlying plant interactions with multiple microbes. Here, we discuss how interactions among microbial mutualists affect plant performance, highlight consequences of biotic and abiotic context-dependency for nonadditive outcomes, and summarize burgeoning efforts to determine the molecular bases of how plants regulate establishment, resource exchange, and maintenance of tripartite interactions. We conclude with four goals for future tripartite studies that will advance our overall understanding of complex plant-microbial interactions.
Collapse
Affiliation(s)
- Michelle E Afkhami
- University of Miami, Department of Biology, Coral Gables, FL 33146, USA.
| | - Brianna K Almeida
- University of Miami, Department of Biology, Coral Gables, FL 33146, USA
| | | | | | | |
Collapse
|
49
|
Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal Fitness Feedbacks Promote the Evolution of Mutualistic Cooperation. Curr Biol 2020; 30:3580-3590.e7. [PMID: 32707067 DOI: 10.1016/j.cub.2020.06.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Mutually beneficial interactions are ubiquitous in nature and have played a pivotal role for the evolution of life on earth. However, the factors facilitating their emergence remain poorly understood. Here, we address this issue both experimentally and by mathematical modeling using cocultures of auxotrophic strains of Escherichia coli, whose growth depends on a reciprocal exchange of amino acids. Coevolving auxotrophic pairs in a spatially heterogeneous environment for less than 150 generations transformed the initial interaction that was merely based on an exchange of metabolic byproducts into a costly metabolic cooperation, in which both partners increased the amounts of metabolites they produced to benefit their corresponding partner. The observed changes were afforded by the formation of multicellular clusters, within which increased cooperative investments were favored by positive fitness feedbacks among interacting genotypes. Under these conditions, non-cooperative individuals were less fit than cooperative mutants. Together, our results highlight the ease with which mutualistic cooperation can evolve, suggesting similar mechanisms likely operate in natural communities. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Daniel Preussger
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll Str. 8, Jena 07745, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
| | - Samir Giri
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll Str. 8, Jena 07745, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
| | - Linéa K Muhsal
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
| | - Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll Str. 8, Jena 07745, Germany; Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück 49076, Germany.
| |
Collapse
|
50
|
|