1
|
Li X, Zhong S, Pan T, Xiong J, Zhu G, Shi Y, Xin H. Light-powered phagocytic macrophage microrobot (phagobot): both in vitro and in vivo. LIGHT, SCIENCE & APPLICATIONS 2025; 14:202. [PMID: 40383739 PMCID: PMC12086205 DOI: 10.1038/s41377-025-01881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Micro/nanorobots based on immune cells show great potential for addressing challenging biological and biomedical conditions. However, their powerful innate immune functions, particularly the phagocytosis capabilities, remain a big challenge to fully leverage with the current designs of immune cell-based microrobots. Herein, we report a light-powered phagocytic macrophage microrobot (phagobot), which is capable of robotic navigation toward specific foreign bio-threats and executing precise phagocytosis of these targeted entities under light control. Without genetic modification or nanoengineering of macrophages, the phagobot's "wake-up" program is achieved through direct activation of a resting-state macrophage by a tightly focused near-infrared (NIR) light beam. The phagobot exhibits robotic steering and directional navigation controlled by optical manipulation of the extended pseudopodia within the activated macrophage. It can further execute targeted phagocytic clearance tasks via engulfing various foreign bio-threats, including nanoplastics, microbials, and cancer cell debris. Notably, the phagobot can be constructed in a living larval zebrafish through optical activation and manipulation of the endogenous macrophage, which also exhibits controllable navigation and targeted phagocytic capabilities in vivo. With the intrinsic immune functions of macrophages, our light-powered phagobot represents a novel form of intelligent immune cell-based microrobots, holding many new possibilities for precise immune regulation and treatment for immune-related diseases.
Collapse
Affiliation(s)
- Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Shuhan Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
2
|
Eddington C, Titus MA. The filopodial myosin DdMyo7 is a slow, calcium-regulated motor. J Biol Chem 2025; 301:108371. [PMID: 40043952 DOI: 10.1016/j.jbc.2025.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/08/2025] Open
Abstract
MyTH4-FERM (MF) myosins are a family of molecular motors with critical roles in the formation and organization of thin membrane protrusions supported by parallel bundles of actin - filopodia, microvilli, and stereocilia. The amoeboid MF myosin DdMyo7 is essential for filopodia formation but its mechanism of action is unknown. The motor properties of a forced-dimer of the DdMyo7 motor were characterized using an in vitro motility assay to address this question. The DdMyo7 motor associates with two different light chains, the Dictyostelium calmodulins CalA and CalB, whose binding is shown to be sensitive to the presence of calcium. Total internal reflection fluorescence motility assays of the dimerized DdMyo7 motor reveal that it is a slow, processive motor that moves along actin at ∼ 40 nm/sec, and the activity of the motor is significantly reduced in the presence of Ca2+. The speed of DdMyo7 is similar to that of other Myo7 family members such as human Myo7A and fly DmMyo7A, but is at least 10-fold slower than the mammalian filopodial MF myosin, Myo10. The results show that evolutionarily distant native filopodial myosins can promote filopodia elongation using motors with distinct properties, revealing diverse mechanisms of myosin-based filopodia formation.
Collapse
Affiliation(s)
- Casey Eddington
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA; Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA; Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
3
|
Ruhoff VT, Leijnse N, Doostmohammadi A, Bendix PM. Filopodia: integrating cellular functions with theoretical models. Trends Cell Biol 2025; 35:129-140. [PMID: 38969554 DOI: 10.1016/j.tcb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.
Collapse
Affiliation(s)
| | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| |
Collapse
|
4
|
Hiepen C, Benamar M, Barrasa-Fano J, Condor M, Ilhan M, Münch J, Hastar N, Kerkhoff Y, Harms GS, Mielke T, Koenig B, Block S, Rocks O, Abdelilah-Seyfried S, Van Oosterwyck H, Knaus P. Endothelial tip-cell position, filopodia formation and biomechanics require BMPR2 expression and signaling. Commun Biol 2025; 8:21. [PMID: 39779836 PMCID: PMC11711618 DOI: 10.1038/s42003-024-07431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs). Targeting of Bmpr2 reduced sprouting angiogenesis in zebrafish and BMPR2-deficient human ECs formed fewer filopodia, affecting cell migration and actomyosin localization. Spheroid assays revealed a reduced sprouting of BMPR2-deficient ECs in fibrin gels. Even more strikingly, in mosaic spheroids, BMPR2-deficient ECs failed to acquire tip-cell positions. Yet, 3D traction force microscopy revealed that these distinct cell behaviors of BMPR2-deficient tip cells cannot be explained by differences in force-induced matrix deformations, even though these cells adopted distinct cone-shaped morphologies. Notably, BMPR2 positively regulates local CDC42 activity at the plasma membrane to promote filopodia formation. Our findings reveal that BMPR2 functions as a nexus integrating biochemical and biomechanical processes crucial for TCs during angiogenesis.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
- Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany.
| | - Mounir Benamar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mar Condor
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mustafa Ilhan
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Berlin School of Integrative Oncology, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Juliane Münch
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Nurcan Hastar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Gregory S Harms
- Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Cell Biology Unit, Imaging Core Facility and the Research Center for Immune Intervention, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Thorsten Mielke
- Max-Planck-Institute for Molecular Genetics, Microscopy & Cryo-Electron Microscopy, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Benjamin Koenig
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Stephan Block
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Oliver Rocks
- Charité - Universitätsmedizin Berlin, Systemic Cell Dynamics, Charitéplatz 1, 10117, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
- KU Leuven, Prometheus Division of Skeletal Tissue Engineering, Leuven, Belgium
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Albaghdadi AJH, Xu W, Kan FWK. An Immune-Independent Mode of Action of Tacrolimus in Promoting Human Extravillous Trophoblast Migration Involves Intracellular Calcium Release and F-Actin Cytoskeletal Reorganization. Int J Mol Sci 2024; 25:12090. [PMID: 39596157 PMCID: PMC11593602 DOI: 10.3390/ijms252212090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
We have previously reported that the calcineurin inhibitor macrolide immunosuppressant Tacrolimus (TAC, FK506) can promote the migration and invasion of the human-derived extravillous trophoblast cells conducive to preventing implantation failure in immune-complicated gestations manifesting recurrent implantation failure. Although the exact mode of action of TAC in promoting implantation has yet to be elucidated, the integral association of its binding protein FKBP12 with the inositol triphosphate receptor (IP3R) regulated intracellular calcium [Ca2+]i channels in the endoplasmic reticulum (ER), suggesting that TAC can mediate its action through ER release of [Ca2+]i. Using the immortalized human-derived first-trimester extravillous trophoblast cells HTR8/SVneo, our data indicated that TAC can increase [Ca2+]I, as measured by fluorescent live-cell imaging using Fluo-4. Concomitantly, the treatment of HTR8/SVneo with TAC resulted in a major dynamic reorganization in the actin cytoskeleton, favoring a predominant distribution of cortical F-actin networks in these trophoblasts. Notably, the findings that TAC was unable to recover [Ca2+]i in the presence of the IP3R inhibitor 2-APB indicate that this receptor may play a crucial role in the mechanism of action of TAC. Taken together, our results suggest that TAC has the potential to influence trophoblast migration through downstream [Ca2+]i-mediated intracellular events and mechanisms involved in trophoblast migration, such as F-actin redistribution. Further research into the mono-therapeutic use of TAC in promoting trophoblast growth and differentiation in clinical settings of assisted reproduction is warranted.
Collapse
Affiliation(s)
| | | | - Frederick W. K. Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.J.H.A.); (W.X.)
| |
Collapse
|
6
|
Huang Y, Zhou Z, Liu T, Tang S, Xin X. Exploring heterogeneous cell population dynamics in different microenvironments by novel analytical strategy based on images. NPJ Syst Biol Appl 2024; 10:129. [PMID: 39505883 PMCID: PMC11542073 DOI: 10.1038/s41540-024-00459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Understanding the dynamic states and transitions of heterogeneous cell populations is crucial for addressing fundamental biological questions. High-content imaging provides rich datasets, but it remains increasingly difficult to integrate and annotate high-dimensional and time-resolved datasets to profile heterogeneous cell population dynamics in different microenvironments. Using hepatic stellate cells (HSCs) LX-2 as model, we proposed a novel analytical strategy for image-based integration and annotation to profile dynamics of heterogeneous cell populations in 2D/3D microenvironments. High-dimensional features were extracted from extensive image datasets, and cellular states were identified based on feature profiles. Time-series clustering revealed distinct temporal patterns of cell shape and actin cytoskeleton reorganization. We found LX-2 showed more complex membrane dynamics and contractile systems with an M-shaped actin compactness trend in 3D culture, while they displayed rapid spreading in early 2D culture. This image-based integration and annotation strategy enhances our understanding of HSCs heterogeneity and dynamics in complex extracellular microenvironments.
Collapse
Affiliation(s)
- Yihong Huang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zidong Zhou
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianqi Liu
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shengnan Tang
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
James EC, Tomaskovic‐Crook E, Crook JM. Engineering 3D Scaffold-Free Nanoparticle-Laden Stem Cell Constructs for Piezoelectric Enhancement of Human Neural Tissue Formation and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310010. [PMID: 39049737 PMCID: PMC11516115 DOI: 10.1002/advs.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
| | - Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
- Institute of Innovative MaterialsAIIM FacilityInnovation CampusFaculty of Engineering and Information SystemsUniversity of WollongongFairy MeadowNSW2519Australia
| |
Collapse
|
9
|
Sanchez-Fernandez A, Insua I, Montenegro J. Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function. Commun Chem 2024; 7:223. [PMID: 39349583 PMCID: PMC11442845 DOI: 10.1038/s42004-024-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As in natural cytoskeletons, the cooperative assembly of fibrillar networks can be hosted inside compartments to engineer biomimetic functions, such as mechanical actuation, transport, and reaction templating. Coacervates impose an optimal liquid-liquid phase separation within the aqueous continuum, functioning as membrane-less compartments that can organise such self-assembling processes as well as the exchange of information with their environment. Furthermore, biological fibrillation can often be controlled or assisted by intracellular compartments. Thus, the reconstitution of analogues of natural filaments in simplified artificial compartments, such as coacervates, offer a suitable model to unravel, mimic, and potentially exploit cellular functions. This perspective summarises the latest developments towards assembling fibrillar networks under confinement inside coacervates and related compartments, including a selection of examples ranging from biological to fully synthetic monomers. Comparative analysis between coacervates, lipid vesicles, and droplet emulsions showcases the interplay between supramolecular fibres and the boundaries of the corresponding compartment. Combining inspiration from natural systems and the custom properties of tailored synthetic fibrillators, rational monomer and compartment design will contribute towards engineering increasingly complex and more realistic artificial protocells.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Enxeñaría Química, Universidade de Santaigo de Compostela, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Comlekoglu T, Dzamba BJ, Pacheco GG, Shook DR, Sego TJ, Glazier JA, Peirce SM, DeSimone DW. Modeling the roles of cohesotaxis, cell-intercalation, and tissue geometry in collective cell migration of Xenopus mesendoderm. Biol Open 2024; 13:bio060615. [PMID: 39162010 PMCID: PMC11360141 DOI: 10.1242/bio.060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce a novel agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the respective contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism contributing to an increase in migratory speed of the tissue. Model outcomes are validated experimentally using mesendoderm tissue explants.
Collapse
Affiliation(s)
- Tien Comlekoglu
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Bette J. Dzamba
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Gustavo G. Pacheco
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - David R. Shook
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - T. J. Sego
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - James A. Glazier
- Department of Intelligent Systems Engineering and The Biocomplexity Institute, Indiana University, Bloomington, IN 47408, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Douglas W. DeSimone
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
11
|
Sengupta K, Dillard P, Limozin L. Morphodynamics of T-lymphocytes: Scanning to spreading. Biophys J 2024; 123:2224-2233. [PMID: 38425041 PMCID: PMC11331044 DOI: 10.1016/j.bpj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Binding of the T cell receptor complex to its ligand, the subsequent molecular rearrangement, and the concomitant cell-scale shape changes represent the very first steps of adaptive immune recognition. The first minutes of the interaction of T cells and antigen presenting cells have been extensively scrutinized; yet, gaps remain in our understanding of how the biophysical properties of the environment may impact the sequence of events. In particular, many pioneering experiments were done on immobilized ligands and gave major insights into the process of T cell activation, whereas later experiments have indicated that ligand mobility was of paramount importance, especially to enable the formation of T cell receptor clusters. Systematic experiments to compare and reconcile the two schools are still lacking. Furthermore, recent investigations using compliant substrates have elucidated other intriguing aspects of T cell mechanics. Here we review experiments on interaction of T cells with planar artificial antigen presenting cells to explore the impact of mechanics on adhesion and actin morphodynamics during the spreading process. We enumerate a sequence tracing first contact to final spread state that is consistent with current understanding. Finally, we interpret the presented experimental results in light of a mechanical model that captures all the different morphodynamic states.
Collapse
Affiliation(s)
- Kheya Sengupta
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France.
| | - Pierre Dillard
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France; Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
12
|
Jawahar A, Vermeil J, Heuvingh J, du Roure O, Piel M. The third dimension of the actin cortex. Curr Opin Cell Biol 2024; 89:102381. [PMID: 38905917 DOI: 10.1016/j.ceb.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.
Collapse
Affiliation(s)
- Anumita Jawahar
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Joseph Vermeil
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| |
Collapse
|
13
|
Peterman E, Quitevis EJA, Goo CEA, Rasmussen JP. Rho-associated kinase regulates Langerhans cell morphology and responsiveness to tissue damage. Cell Rep 2024; 43:114208. [PMID: 38728139 DOI: 10.1016/j.celrep.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Skin damage requires efficient immune cell responses to restore organ function. Epidermal-resident immune cells known as Langerhans cells use dendritic protrusions to surveil the skin microenvironment, which contains keratinocytes and peripheral axons. The mechanisms governing Langerhans cell dendrite dynamics and responses to tissue damage are poorly understood. Using skin explants from adult zebrafish, we show that Langerhans cells maintain normal surveillance following axonal degeneration and use their dendrites to engulf small axonal debris. By contrast, a ramified-to-rounded shape transition accommodates the engulfment of larger keratinocyte debris. We find that Langerhans cell dendrites are populated with actin and sensitive to a broad-spectrum actin inhibitor. We show that Rho-associated kinase (ROCK) inhibition leads to elongated dendrites, perturbed clearance of large debris, and reduced Langerhans cell migration to epidermal wounds. Our work describes the dynamics of Langerhans cells and involvement of the ROCK pathway in immune cell responses.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | | - Camille E A Goo
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey P Rasmussen
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
14
|
Braeutigam A, Burnet AF, Gompper G, Sabass B. Clutch model for focal adhesions predicts reduced self-stabilization under oblique pulling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:295101. [PMID: 38574682 DOI: 10.1088/1361-648x/ad3ac1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Cell-matrix adhesions connect the cytoskeleton to the extracellular environment and are essential for maintaining the integrity of tissue and whole organisms. Remarkably, cell adhesions can adapt their size and composition to an applied force such that their size and strength increases proportionally to the load. Mathematical models for the clutch-like force transmission at adhesions are frequently based on the assumption that mechanical load is applied tangentially to the adhesion plane. Recently, we suggested a molecular mechanism that can explain adhesion growth under load for planar cell adhesions. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which for thermodynamic reasons, leads to the association of further molecules with the cluster, which we refer to as self-stabilization. Here, we generalize this model to forces that pull at an oblique angle to the plane supporting the cell, and examine if this idealized model also predicts self-stabilization. We also allow for a variable distance between the parallel planes representing cytoskeletal F-actin and transmembrane integrins. Simulation results demonstrate that the binding mechanism and the geometry of the cluster have a strong influence on the response of adhesion clusters to force. For oblique angles smaller than about 40∘, we observe a growth of the adhesion site under force. However this self-stabilization is reduced as the angle between the force and substrate plane increases, with vanishing self-stabilization for normal pulling. Overall, these results highlight the fundamental difference between the assumption of pulling and shearing forces in commonly used models of cell adhesion.
Collapse
Affiliation(s)
- Andrea Braeutigam
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Anton F Burnet
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Benedikt Sabass
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
| |
Collapse
|
15
|
Ghisleni A, Gauthier NC. Mechanotransduction through membrane tension: It's all about propagation? Curr Opin Cell Biol 2024; 86:102294. [PMID: 38101114 DOI: 10.1016/j.ceb.2023.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Over the past 25 years, membrane tension has emerged as a primary mechanical factor influencing cell behavior. Although supporting evidences are accumulating, the integration of this parameter in the lifecycle of cells, organs, and tissues is complex. The plasma membrane is envisioned as a bilayer continuum acting as a 2D fluid. However, it possesses almost infinite combinations of proteins, lipids, and glycans that establish interactions with the extracellular or intracellular environments. This results in a tridimensional composite material with non-trivial dynamics and physics, and the task of integrating membrane mechanics and cellular outcome is a daunting chore for biologists. In light of the most recent discoveries, we aim in this review to provide non-specialist readers some tips on how to solve this conundrum.
Collapse
Affiliation(s)
- Andrea Ghisleni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Nils C Gauthier
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
16
|
Yim YI, Pedrosa A, Wu X, Chinthalapudi K, Cheney RE, Hammer JA. Mechanisms underlying Myosin 10's contribution to the maintenance of mitotic spindle bipolarity. Mol Biol Cell 2024; 35:ar14. [PMID: 38019611 PMCID: PMC10881153 DOI: 10.1091/mbc.e23-07-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Myosin 10 (Myo10) couples microtubules and integrin-based adhesions to movement along actin filaments via its microtubule-binding MyTH4 domain and integrin-binding FERM domain, respectively. Here we show that Myo10-depleted HeLa cells and mouse embryo fibroblasts (MEFs) both exhibit a pronounced increase in the frequency of multipolar spindles. Staining of unsynchronized metaphase cells showed that the primary driver of spindle multipolarity in Myo10-depleted MEFs and in Myo10-depleted HeLa cells lacking supernumerary centrosomes is pericentriolar material (PCM) fragmentation, which creates y-tubulin-positive acentriolar foci that serve as extra spindle poles. For HeLa cells possessing supernumerary centrosomes, Myo10 depletion further accentuates spindle multipolarity by impairing the clustering of the extra spindle poles. Complementation experiments show that Myo10 must interact with both microtubules and integrins to promote PCM/pole integrity. Conversely, Myo10 only needs interact with integrins to promote supernumerary centrosome clustering. Importantly, images of metaphase Halo-Myo10 knockin cells show that the myosin localizes exclusively to the spindle and the tips of adhesive retraction fibers. We conclude that Myo10 promotes PCM/pole integrity in part by interacting with spindle microtubules, and that it promotes supernumerary centrosome clustering by supporting retraction fiber-based cell adhesion, which likely serves to anchor the microtubule-based forces driving pole focusing.
Collapse
Affiliation(s)
- Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Antonio Pedrosa
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
17
|
Henderson JM, Ljubojevic N, Belian S, Chaze T, Castaneda D, Battistella A, Giai Gianetto Q, Matondo M, Descroix S, Bassereau P, Zurzolo C. Tunnelling nanotube formation is driven by Eps8/IRSp53-dependent linear actin polymerization. EMBO J 2023; 42:e113761. [PMID: 38009333 PMCID: PMC10711657 DOI: 10.15252/embj.2023113761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023] Open
Abstract
Tunnelling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How cells generate these actin-mediated protrusions to span lengths beyond those attainable by canonical filopodia remains unknown. Through a combination of micropatterning, microscopy, and optical tweezer-based approaches, we demonstrate that TNTs formed through the outward extension of actin achieve distances greater than the mean length of filopodia and that branched Arp2/3-dependent pathways attenuate the extent to which actin polymerizes in nanotubes, thus limiting their occurrence. Proteomic analysis using epidermal growth factor receptor kinase substrate 8 (Eps8) as a positive effector of TNTs showed that, upon Arp2/3 inhibition, proteins enhancing filament turnover and depolymerization were reduced and Eps8 instead exhibited heightened interactions with the inverted Bin/Amphiphysin/Rvs (I-BAR) domain protein IRSp53 that provides a direct connection with linear actin polymerases. Our data reveals how common protrusion players (Eps8 and IRSp53) form tunnelling nanotubes, and that when competing pathways overutilizing such proteins and monomeric actin in Arp2/3 networks are inhibited, processes promoting linear actin growth dominate to favour tunnelling nanotube formation.
Collapse
Affiliation(s)
- J Michael Henderson
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Present address:
Department of ChemistryBowdoin CollegeBrunswickMEUSA
| | - Nina Ljubojevic
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Sorbonne UniversitéParisFrance
| | - Sevan Belian
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Daryl Castaneda
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Keele UniversityKeeleUK
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
- Bioinformatics and Biostatistics Hub, Computational Biology DepartmentCNRS USR 3756, Institut PasteurParisFrance
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Institut Pierre‐Gilles de GennesParisFrance
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
18
|
Fujikawa R, Okimura C, Kozawa S, Ikeda K, Inagaki N, Iwadate Y, Sakumura Y. Bayesian traction force estimation using cell boundary-dependent force priors. Biophys J 2023; 122:4542-4554. [PMID: 37915171 PMCID: PMC10719052 DOI: 10.1016/j.bpj.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the principles of cell migration necessitates measurements of the forces generated by cells. In traction force microscopy (TFM), fluorescent beads are placed on a substrate's surface and the substrate strain caused by the cell traction force is observed as displacement of the beads. Mathematical analysis can estimate traction force from bead displacement. However, most algorithms estimate substrate stresses independently of cell boundary, which results in poor estimation accuracy in low-density bead environments. To achieve accurate force estimation at low density, we proposed a Bayesian traction force estimation (BTFE) algorithm that incorporates cell-boundary-dependent force as a prior. We evaluated the performance of the proposed algorithm using synthetic data generated with mathematical models of cells and TFM substrates. BTFE outperformed other methods, especially in low-density bead conditions. In addition, the BTFE algorithm provided a reasonable force estimation using TFM images from the experiment.
Collapse
Affiliation(s)
- Ryosuke Fujikawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Chika Okimura
- Department of Biology, Yamaguchi University, Yamaguchi, Japan
| | - Satoshi Kozawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kazushi Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Naoyuki Inagaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
19
|
Zhang Y, Zhang X, Li Z, Zhao W, Yang H, Zhao S, Tang D, Zhang Q, Li Z, Liu H, Li H, Li B, Lappalainen P, Xu T, Cui Z, Jiu Y. Single particle tracking reveals SARS-CoV-2 regulating and utilizing dynamic filopodia for viral invasion. Sci Bull (Beijing) 2023; 68:2210-2224. [PMID: 37661543 DOI: 10.1016/j.scib.2023.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry mechanism has been explored, little is known about how SARS-CoV-2 regulates the subcellular structural remodeling to invade multiple organs and cell types. Here, we unveil how SARS-CoV-2 boosts and utilizes filopodia to enter the target cells by real-time imaging. Using SARS-CoV-2 single virus-like particle (VLP) tracking in live cells and sparse deconvolution algorithm, we uncover that VLPs utilize filopodia to reach the entry site in two patterns, "surfing" and "grabbing", which avoid the virus from randomly searching on the plasma membrane. Moreover, combining mechanical simulation, we elucidate that the formation of virus-induced filopodia and the retraction speed of filopodia depend on cytoskeleton dynamics and friction resistance at the substrate surface caused by loading-virus gravity, respectively. Further, we discover that the entry process of SARS-CoV-2 via filopodia depends on Cdc42 activity and actin-associated proteins fascin, formin, and Arp2/3. Together, our results highlight that the spatial-temporal regulation of actin cytoskeleton by SARS-CoV-2 infection makes filopodia as a highway for virus entry and potentiates it as an antiviral target.
Collapse
Affiliation(s)
- Yue Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhongyi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Weisong Zhao
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Hui Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daijiao Tang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zonghong Li
- Guangzhou Laboratory, Guangzhou 510005, China
| | | | - Haoyu Li
- Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Tao Xu
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Peterman E, Quitevis EJ, Goo CE, Rasmussen JP. Rho-associated kinase regulates Langerhans cell morphology and responsiveness to tissue damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550974. [PMID: 37546841 PMCID: PMC10402157 DOI: 10.1101/2023.07.28.550974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Skin is often the first physical barrier to encounter invading pathogens and physical damage. Damage to the skin must be resolved quickly and efficiently to maintain organ homeostasis. Epidermal-resident immune cells known as Langerhans cells use dendritic protrusions to dynamically surveil the skin microenvironment, which contains epithelial keratinocytes and somatosensory peripheral axons. The mechanisms governing Langerhans cell dendrite dynamics and responses to tissue damage are not well understood. Using skin explants from adult zebrafish, we show that Langerhans cells maintain normal surveillance activity following axonal degeneration and use their dynamic dendrites to engulf small axonal debris. By contrast, a ramified-to-rounded shape transition accommodates the engulfment of larger keratinocyte debris. We find that Langerhans cell dendrites are richly populated with actin and sensitive to a broad spectrum actin inhibitor. We further show that Rho-associated kinase (ROCK) inhibition leads to elongated dendrites, perturbed clearance of large debris, and reduced Langerhans cell migration to tissue-scale wounds. Altogether, our work describes the unique dynamics of Langerhans cells and involvement of the ROCK pathway in immune cell responses to damage of varying magnitude.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | | | - Camille E.A. Goo
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Jeffrey P. Rasmussen
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
21
|
De Belly H, Yan S, Borja da Rocha H, Ichbiah S, Town JP, Zager PJ, Estrada DC, Meyer K, Turlier H, Bustamante C, Weiner OD. Cell protrusions and contractions generate long-range membrane tension propagation. Cell 2023; 186:3049-3061.e15. [PMID: 37311454 PMCID: PMC10330871 DOI: 10.1016/j.cell.2023.05.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023]
Abstract
Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.
Collapse
Affiliation(s)
- Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shannon Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hudson Borja da Rocha
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France
| | - Sacha Ichbiah
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France
| | - Jason P Town
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick J Zager
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Dorothy C Estrada
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kirstin Meyer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, Inserm, Université PSL, Paris, France.
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA, USA; Department of Physics, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Yim YI, Pedrosa A, Wu X, Chinthalapudi K, Cheney RE, Hammer JA. Myosin 10 uses its MyTH4 and FERM domains differentially to support two aspects of spindle pole biology required for mitotic spindle bipolarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545002. [PMID: 37398378 PMCID: PMC10312724 DOI: 10.1101/2023.06.15.545002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myosin 10 (Myo10) has the ability to link actin filaments to integrin-based adhesions and to microtubules by virtue of its integrin-binding FERM domain and microtubule-binding MyTH4 domain, respectively. Here we used Myo10 knockout cells to define Myo10's contribution to the maintenance of spindle bipolarity, and complementation to quantitate the relative contributions of its MyTH4 and FERM domains. Myo10 knockout HeLa cells and mouse embryo fibroblasts (MEFs) both exhibit a pronounced increase in the frequency of multipolar spindles. Staining of unsynchronized metaphase cells showed that the primary driver of spindle multipolarity in knockout MEFs and knockout HeLa cells lacking supernumerary centrosomes is pericentriolar material (PCM) fragmentation, which creates γ-tubulin-positive acentriolar foci that serve as additional spindle poles. For HeLa cells possessing supernumerary centrosomes, Myo10 depletion further accentuates spindle multipolarity by impairing the clustering of the extra spindle poles. Complementation experiments show that Myo10 must interact with both integrins and microtubules to promote PCM/pole integrity. Conversely, Myo10's ability to promote the clustering of supernumerary centrosomes only requires that it interact with integrins. Importantly, images of Halo-Myo10 knock-in cells show that the myosin localizes exclusively within adhesive retraction fibers during mitosis. Based on these and other results, we conclude that Myo10 promotes PCM/pole integrity at a distance, and that it facilitates supernumerary centrosome clustering by promoting retraction fiber-based cell adhesion, which likely provides an anchor for the microtubule-based forces driving pole focusing.
Collapse
Affiliation(s)
- Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Antonio Pedrosa
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
23
|
Graham K, Chandrasekaran A, Wang L, Ladak A, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like VASP condensates drive actin polymerization and dynamic bundling. NATURE PHYSICS 2023; 19:574-585. [PMID: 38405682 PMCID: PMC10887402 DOI: 10.1038/s41567-022-01924-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/15/2022] [Indexed: 02/27/2024]
Abstract
The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin-binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet's surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.
Collapse
Affiliation(s)
- Kristin Graham
- University of Texas at Austin, Department of Biomedical Engineering
| | | | - Liping Wang
- University of Texas Health Science Center at San Antonio, Department of Biochemistry and Structural Biology
| | - Aly Ladak
- University of Texas at Austin, Department of Biomedical Engineering
| | - Eileen M Lafer
- University of Texas Health Science Center at San Antonio, Department of Biochemistry and Structural Biology
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering
| | | |
Collapse
|
24
|
Fitz GN, Weck ML, Bodnya C, Perkins OL, Tyska MJ. Protrusion growth driven by myosin-generated force. Dev Cell 2023; 58:18-33.e6. [PMID: 36626869 PMCID: PMC9940483 DOI: 10.1016/j.devcel.2022.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Actin-based protrusions extend from the surface of all eukaryotic cells, where they support diverse activities essential for life. Models of protrusion growth hypothesize that actin filament assembly exerts force for pushing the plasma membrane outward. However, membrane-associated myosin motors are also abundant in protrusions, although their potential for contributing, growth-promoting force remains unexplored. Using an inducible system that docks myosin motor domains to membrane-binding modules with temporal control, we found that application of myosin-generated force to the membrane is sufficient for driving robust protrusion elongation in human, mouse, and pig cell culture models. Protrusion growth scaled with motor accumulation, required barbed-end-directed force, and was independent of cargo delivery or recruitment of canonical elongation factors. Application of growth-promoting force was also supported by structurally distinct myosin motors and membrane-binding modules. Thus, myosin-generated force can drive protrusion growth, and this mechanism is likely active in diverse biological contexts.
Collapse
Affiliation(s)
- Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Caroline Bodnya
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Olivia L Perkins
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Tu Y, Pal K, Austin J, Wang X. Filopodial adhesive force in discrete nodes revealed by integrin molecular tension imaging. Curr Biol 2022; 32:4386-4396.e3. [PMID: 36084647 PMCID: PMC9613586 DOI: 10.1016/j.cub.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
Filopodia are narrow cell extensions involved in various physiological processes. Integrins mediate filopodia adhesion and likely transmit adhesive force to regulate filopodia formation and functions, but the force is extremely weak to study and remains poorly understood. Using integrative tension sensor (ITS), we imaged filopodia adhesive force at the single molecular tension level and investigated the force dynamics and sources. Results show that filopodia integrin tension (FIT) is generated in discrete foci (force nodes) along single filopodia with a spacing of ∼1 μm. Inhibitions of actin polymerization or myosin II activity markedly reduced FIT signals in force nodes at filopodia tips and at filopodia bases, respectively, suggesting differential force sources of FIT in the distal force nodes and proximal ones in filopodia. Using two ITS constructs with different force thresholds for activation, we showed that the molecular force level of FIT is greater at filopodia bases than that at filopodia tips. We also tested the role of vinculin and myosin X in the FIT transmission. With vinculin knockout in cells, filopodia and associated force nodes were still formed normally, suggesting that vinculin is dispensable for the formation of filopodia and force nodes. However, vinculin is indeed required for the transmission of strong FIT (capable of rupturing DNA in a shear conformation), as the strong FIT vanished in filopodia with vinculin knockout. Co-imaging of FIT and myosin X shows no apparent co-localization, demonstrating that myosin X is not directly responsible for generating FIT, despite its prominent role in filopodium elongation.
Collapse
Affiliation(s)
- Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jacob Austin
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
26
|
Tsai FC, Henderson JM, Jarin Z, Kremneva E, Senju Y, Pernier J, Mikhajlov O, Manzi J, Kogan K, Le Clainche C, Voth GA, Lappalainen P, Bassereau P. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions. SCIENCE ADVANCES 2022; 8:eabp8677. [PMID: 36240267 PMCID: PMC9565809 DOI: 10.1126/sciadv.abp8677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - J. Michael Henderson
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France
| | - Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elena Kremneva
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| |
Collapse
|
27
|
Tsai FC, Henderson JM, Jarin Z, Kremneva E, Senju Y, Pernier J, Mikhajlov O, Manzi J, Kogan K, Le Clainche C, Voth GA, Lappalainen P, Bassereau P. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions. SCIENCE ADVANCES 2022; 8:eabp8677. [PMID: 36240267 DOI: 10.1101/2022.03.04.483020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - J Michael Henderson
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France
| | - Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elena Kremneva
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| |
Collapse
|
28
|
Peuhu E, Jacquemet G, Scheele CL, Isomursu A, Laisne MC, Koskinen LM, Paatero I, Thol K, Georgiadou M, Guzmán C, Koskinen S, Laiho A, Elo LL, Boström P, Hartiala P, van Rheenen J, Ivaska J. MYO10-filopodia support basement membranes at pre-invasive tumor boundaries. Dev Cell 2022; 57:2350-2364.e7. [DOI: 10.1016/j.devcel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
|
29
|
Michiels R, Gensch N, Erhard B, Rohrbach A. Pulling, failing, and adaptive mechanotransduction of macrophage filopodia. Biophys J 2022; 121:3224-3241. [PMID: 35927956 PMCID: PMC9463700 DOI: 10.1016/j.bpj.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Macrophages use filopodia to withdraw particles toward the cell body for phagocytosis. This can require substantial forces, which the cell generates after bio-mechanical stimuli are transmitted to the filopodium. Adaptation mechanisms to mechanical stimuli are essential for cells, but can a cell iteratively improve filopodia pulling? If so, the underlying mechanic adaptation principles organized on the protein level are unclear. Here, we tackle this problem using optically trapped 1 μm beads, which we tracked interferometrically at 1 MHz during connection to the tips of dorsal filopodia of macrophages. We observe repetitive failures while the filopodium tries to pull the bead out of the optical trap. Analyses of mean bead motions and position fluctuations on the nano-meter and microsecond scale indicate mechanical ruptures caused by a force-dependent actin-membrane connection. We found that beads are retracted three times slower under any load between 5 and 40 pN relative to the no-load transport, which has the same speed as the actin retrograde flow obtained from fluorescent speckle tracking. From this duty ratio of pulling velocities, we estimated a continuous on/off binding with τoff = 2⋅τon, with measured off times τoff = 0.1-0.5 s. Remarkably, we see a gradual increase of filopodia pulling forces from 10 to 30 pN over time and after failures, which points toward an unknown adaptation mechanism. Additionally, we see that the attachment strength and friction between the bead and filopodium tip increases under load and over time. All observations are typical for catch-bond proteins such as integrin-talin complexes. We present a mechanistic picture of adaptive mechanotransduction, which formed by the help of mathematical models for repetitive tip ruptures and reconnections. The analytic mathematical model and the stochastic computer simulations, both based on catch-bond lifetimes, confirmed our measurements. Such catch-bond characteristics could also be important for other immune cells taking up counteracting pathogens.
Collapse
Affiliation(s)
- Rebecca Michiels
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Nicole Gensch
- Core Facility Signalling Factory, University of Freiburg, Freiburg, Germany
| | - Birgit Erhard
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; CIBSS, Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| |
Collapse
|
30
|
Cytoplasmic forces functionally reorganize nuclear condensates in oocytes. Nat Commun 2022; 13:5070. [PMID: 36038550 PMCID: PMC9424315 DOI: 10.1038/s41467-022-32675-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 12/21/2022] Open
Abstract
Cells remodel their cytoplasm with force-generating cytoskeletal motors. Their activity generates random forces that stir the cytoplasm, agitating and displacing membrane-bound organelles like the nucleus in somatic and germ cells. These forces are transmitted inside the nucleus, yet their consequences on liquid-like biomolecular condensates residing in the nucleus remain unexplored. Here, we probe experimentally and computationally diverse nuclear condensates, that include nuclear speckles, Cajal bodies, and nucleoli, during cytoplasmic remodeling of female germ cells named oocytes. We discover that growing mammalian oocytes deploy cytoplasmic forces to timely impose multiscale reorganization of nuclear condensates for the success of meiotic divisions. These cytoplasmic forces accelerate nuclear condensate collision-coalescence and molecular kinetics within condensates. Disrupting the forces decelerates nuclear condensate reorganization on both scales, which correlates with compromised condensate-associated mRNA processing and hindered oocyte divisions that drive female fertility. We establish that cytoplasmic forces can reorganize nuclear condensates in an evolutionary conserved fashion in insects. Our work implies that cells evolved a mechanism, based on cytoplasmic force tuning, to functionally regulate a broad range of nuclear condensates across scales. This finding opens new perspectives when studying condensate-associated pathologies like cancer, neurodegeneration and viral infections. Cytoskeletal activity generates mechanical forces known to agitate and displace membrane-bound organelles in the cytoplasm. In oocytes, Al Jord et al. discover that these cytoplasmic forces functionally remodel nuclear RNA-processing condensates across scales for developmental success.
Collapse
|
31
|
Gardeta SR, García-Cuesta EM, D’Agostino G, Soler Palacios B, Quijada-Freire A, Lucas P, Bernardino de la Serna J, Gonzalez-Riano C, Barbas C, Rodríguez-Frade JM, Mellado M. Sphingomyelin Depletion Inhibits CXCR4 Dynamics and CXCL12-Mediated Directed Cell Migration in Human T Cells. Front Immunol 2022; 13:925559. [PMID: 35903108 PMCID: PMC9315926 DOI: 10.3389/fimmu.2022.925559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Sphingolipids, ceramides and cholesterol are integral components of cellular membranes, and they also play important roles in signal transduction by regulating the dynamics of membrane receptors through their effects on membrane fluidity. Here, we combined biochemical and functional assays with single-particle tracking analysis of diffusion in the plasma membrane to demonstrate that the local lipid environment regulates CXCR4 organization and function and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration. Our data underscore a critical role for the local lipid composition at the cell membrane in regulating the lateral mobility of chemokine receptors, and their ability to dynamically increase receptor density at the leading edge to promote efficient cell migration.
Collapse
Affiliation(s)
- Sofía R. Gardeta
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva M. García-Cuesta
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gianluca D’Agostino
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Blanca Soler Palacios
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adriana Quijada-Freire
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pilar Lucas
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Central Laser Facility, Rutherford Appleton Laboratory, Medical Research Council-Research Complex at Harwell, Science and Technology Facilities Council, Harwell, United Kingdom
- National Institute for Health and Care Research Imperial Biomedical Research Center, London, United Kingdom
| | - Carolina Gonzalez-Riano
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Centro de Estudios Universitarios Universities, Madrid, Spain
| | - Coral Barbas
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Centro de Estudios Universitarios Universities, Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario Mellado
- Chemokine Signaling Group, Department of Immunology and Oncology, National Center for Biotechnology/Consejo Superior de Investigaciones Científicas, Madrid, Spain
- *Correspondence: Mario Mellado,
| |
Collapse
|
32
|
Generic self-stabilization mechanism for biomolecular adhesions under load. Nat Commun 2022; 13:2197. [PMID: 35459276 PMCID: PMC9033785 DOI: 10.1038/s41467-022-29823-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/20/2022] [Indexed: 11/09/2022] Open
Abstract
Mechanical loading generally weakens adhesive structures and eventually leads to their rupture. However, biological systems can adapt to loads by strengthening adhesions, which is essential for maintaining the integrity of tissue and whole organisms. Inspired by cellular focal adhesions, we suggest here a generic, molecular mechanism that allows adhesion systems to harness applied loads for self-stabilization through adhesion growth. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which, for thermodynamic reasons, leads to association of further molecules with the cluster. Self-stabilization robustly increases adhesion lifetimes in broad parameter ranges. Unlike for catch-bonds, bond rupture rates can increase monotonically with force. The self-stabilization principle can be realized in many ways in complex adhesion-state networks; we show how it naturally occurs in cellular adhesions involving the adaptor proteins talin and vinculin. Cellular adhesions have the remarkable property that they adapt their stability to the applied mechanical load. Here, authors describe a generic physical mechanism that explains self-stabilization of idealized adhesion systems under shear.
Collapse
|
33
|
Guadarrama Bello D, Moraille P, Boughari S, Badia A, Nanci A. Adhesion response of filopodia to an AFM lateral detachment force and functional changes after centrifugation of cells grown on nanoporous titanium. Mater Today Bio 2022; 14:100250. [PMID: 35449800 PMCID: PMC9018134 DOI: 10.1016/j.mtbio.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Patricia Moraille
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, C.P 6128 Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| | - Serine Boughari
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Antonella Badia
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, C.P 6128 Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada
- Corresponding author. Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3C3J7, Canada.
| |
Collapse
|
34
|
Application of piconewton forces to individual filopodia reveals mechanosensory role of L-type Ca 2+ channels. Biomaterials 2022; 284:121477. [PMID: 35395455 DOI: 10.1016/j.biomaterials.2022.121477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
Abstract
Filopodia are ubiquitous membrane projections that play crucial role in guiding cell migration on rigid substrates and through extracellular matrix by utilizing yet unknown mechanosensing molecular pathways. As recent studies show that Ca2+ channels localized to filopodia play an important role in regulation of their formation and since some Ca2+ channels are known to be mechanosensitive, force-dependent activity of filopodial Ca2+ channels might be linked to filopodia's mechanosensing function. We tested this hypothesis by monitoring changes in the intra-filopodial Ca2+ level in response to application of stretching force to individual filopodia of several cell types using optical tweezers. Results show that stretching forces of tens of pN strongly promote Ca2+ influx into filopodia, causing persistent Ca2+ oscillations that last for minutes even after the force is released. Several known mechanosensitive Ca2+ channels, such as Piezo 1, Piezo 2 and TRPV4, were found to be dispensable for the observed force-dependent Ca2+ influx, while L-type Ca2+ channels appear to be a key player in the discovered phenomenon. As previous studies have shown that intra-filopodial transient Ca2+ signals play an important role in guidance of cell migration, our results suggest that the force-dependent activation of L-type Ca2+ channels may contribute to this process. Overall, our study reveals an intricate interplay between mechanical forces and Ca2+ signaling in filopodia, providing novel mechanistic insights for the force-dependent filopodia functions in guidance of cell migration.
Collapse
|
35
|
Filopodia rotate and coil by actively generating twist in their actin shaft. Nat Commun 2022; 13:1636. [PMID: 35347113 PMCID: PMC8960877 DOI: 10.1038/s41467-022-28961-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Filopodia are actin-rich structures, present on the surface of eukaryotic cells. These structures play a pivotal role by allowing cells to explore their environment, generate mechanical forces or perform chemical signaling. Their complex dynamics includes buckling, pulling, length and shape changes. We show that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling. Importantly, the actin core inside filopodia performs a twisting or spinning motion which is observed for a range of cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist is an emergent phenomenon of active filaments confined in a narrow channel which is supported by measured traction forces and helical buckles that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia. The authors show how tubular surface structures in all cell types, have the ability to twist and perform rotary sweeping motion to explore the extracellular environment. This has implications for migration, sensing and cell communication.
Collapse
|
36
|
Pradhan S, Williams MAK, Hale TK. Changes in the properties of membrane tethers in response to HP1α depletion in MCF7 cells. Biochem Biophys Res Commun 2022; 587:126-130. [PMID: 34872000 DOI: 10.1016/j.bbrc.2021.11.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/02/2022]
Abstract
Plasma membrane tension is known to regulate many cell functions, such as motility and membrane trafficking. Membrane tether pulling is an effective method for measuring the apparent membrane tension of cells and exploring membrane-cytoskeleton interactions. In this article, the mechanical properties of HP1α-depleted MCF7 breast cancer cells are explored in comparison to controls, by pulling membrane tethers using optical tweezers. These studies were inspired by previous findings that a loss of HP1α correlates with an increase in the invasive potential of malignant cancer cells. Specifically, the membrane tension and force relaxation curves for tethers pulled from MCF7 breast cancer cells with HP1α knockdown and their matched controls were measured, and shown to be significantly different.
Collapse
Affiliation(s)
- Susav Pradhan
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Martin A K Williams
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand.
| |
Collapse
|
37
|
Čada Š, Bryja V. Local Wnt signalling in the asymmetric migrating vertebrate cells. Semin Cell Dev Biol 2021; 125:26-36. [PMID: 34896020 DOI: 10.1016/j.semcdb.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
Wnt signalling is known to generate cellular asymmetry via Wnt/planar cell polarity pathway (Wnt/PCP). Wnt/PCP acts locally (i) to orient membrane polarity and asymmetric establishment of intercellular junctions via conserved set of PCP proteins most specifically represented by Vangl and Prickle, and (ii) to asymmetrically rearrange cytoskeletal structures via downstream effectors of Dishevelled (Dvl). This process is best described on stable phenotypes of epithelial cells. Here, however, we review the activity of Wnt signalling in migratory cells which experience the extensive rearrangements of cytoskeleton and consequently dynamic asymmetry, making the localised effects of Wnt signalling easier to distinguish. Firstly, we focused on migration of neuronal axons, which allows to study how the pre-existent cellular asymmetry can influence Wnt signalling outcome. Then, we reviewed the role of Wnt signalling in models of mesenchymal migration including neural crest, melanoma, and breast cancer cells. Last, we collected evidence for local Wnt signalling in amoeboid cells, especially lymphocytes. As the outcome of this review, we identify blank spots in our current understanding of this topic, propose models that synthesise the current observations and allow formulation of testable hypotheses for the future research.
Collapse
Affiliation(s)
- Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
38
|
Esfahani SN, Resto Irizarry AM, Xue X, Lee SBD, Shao Y, Fu J. Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. NANO TODAY 2021; 41:101310. [PMID: 34745321 PMCID: PMC8570530 DOI: 10.1016/j.nantod.2021.101310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel Byung-Deuk Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jiangping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
39
|
Deng C, Moradi M, Reinhard S, Ji C, Jablonka S, Hennlein L, Lüningschrör P, Doose S, Sauer M, Sendtner M. Dynamic remodeling of ribosomes and endoplasmic reticulum in axon terminals of motoneurons. J Cell Sci 2021; 134:272552. [PMID: 34668554 DOI: 10.1242/jcs.258785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022] Open
Abstract
In neurons, the endoplasmic reticulum (ER) forms a highly dynamic network that enters axons and presynaptic terminals and plays a central role in Ca2+ homeostasis and synapse maintenance; however, the underlying mechanisms involved in regulation of its dynamic remodeling as well as its function in axon development and presynaptic differentiation remain elusive. Here, we used high-resolution microscopy and live-cell imaging to investigate rapid movements of the ER and ribosomes in axons of cultured motoneurons after stimulation with brain-derived neurotrophic factor. Our results indicate that the ER extends into axonal growth cone filopodia, where its integrity and dynamic remodeling are regulated mainly by actin and the actin-based motor protein myosin VI (encoded by Myo6). Additionally, we found that in axonal growth cones, ribosomes assemble into 80S subunits within seconds and associate with the ER in response to extracellular stimuli, which describes a novel function of axonal ER in dynamic regulation of local translation. This article has an associated First Person interview with Chunchu Deng, joint first author of the paper.
Collapse
Affiliation(s)
- Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Changhe Ji
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
40
|
Myosin-X and talin modulate integrin activity at filopodia tips. Cell Rep 2021; 36:109716. [PMID: 34525374 PMCID: PMC8456781 DOI: 10.1016/j.celrep.2021.109716] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10's FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10's isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation.
Collapse
|
41
|
Zhang WC, Zheng ML, Liu J, Jin F, Dong XZ, Guo M, Li T. Modulation of Cell Behavior by 3D Biocompatible Hydrogel Microscaffolds with Precise Configuration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2325. [PMID: 34578641 PMCID: PMC8469000 DOI: 10.3390/nano11092325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Three-dimensional (3D) micronano structures have attracted much attention in tissue engineering since they can better simulate the microenvironment in vivo. Two-photon polymerization (TPP) technique provides a powerful tool for printing arbitrary 3D structures with high precision. Here, the desired 3D biocompatible hydrogel microscaffolds (3D microscaffold) with structure design referring to fibroblasts L929 have been fabricated by TPP technology, particularly considering the relative size of cell seed (cell suspension), spread cell, strut and strut spacing of scaffold. Modulation of the cell behavior has been studied by adjusting the porosity from 69.7% to 89.3%. The cell culture experiment results reveal that the obvious modulation of F-actin can be achieved by using the 3D microscaffold. Moreover, cells on 3D microscaffolds exhibit more lamellipodia than those on 2D substrates, and thus resulting in a more complicated 3D shape of single cell and increased cell surface. 3D distribution can be also achieved by employing the designed 3D microscaffold, which would effectively improve the efficiency of information exchange and material transfer. The proposed protocol enables us to better understand the cell behavior in vivo, which would provide high prospects for the further application in tissue engineering.
Collapse
Affiliation(s)
- Wei-Cai Zhang
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Mei-Ling Zheng
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Jie Liu
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Feng Jin
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Xian-Zi Dong
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Min Guo
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Teng Li
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| |
Collapse
|
42
|
Mahapatra A, Uysalel C, Rangamani P. The Mechanics and Thermodynamics of Tubule Formation in Biological Membranes. J Membr Biol 2021; 254:273-291. [PMID: 33462667 PMCID: PMC8184589 DOI: 10.1007/s00232-020-00164-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Membrane tubulation is a ubiquitous process that occurs both at the plasma membrane and on the membranes of intracellular organelles. These tubulation events are known to be mediated by forces applied on the membrane either due to motor proteins, by polymerization of the cytoskeleton, or due to the interactions between membrane proteins binding onto the membrane. The numerous experimental observations of tube formation have been amply supported by mathematical modeling of the associated membrane mechanics and have provided insights into the force-displacement relationships of membrane tubes. Recent advances in quantitative biophysical measurements of membrane-protein interactions and tubule formation have necessitated the need for advances in modeling that will account for the interplay of multiple aspects of physics that occur simultaneously. Here, we present a comprehensive review of experimental observations of tubule formation and provide context from the framework of continuum modeling. Finally, we explore the scope for future research in this area with an emphasis on iterative modeling and experimental measurements that will enable us to expand our mechanistic understanding of tubulation processes in cells.
Collapse
Affiliation(s)
- Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Can Uysalel
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
43
|
Paraschiv A, Lagny TJ, Campos CV, Coudrier E, Bassereau P, Šarić A. Influence of membrane-cortex linkers on the extrusion of membrane tubes. Biophys J 2021; 120:598-606. [PMID: 33460596 PMCID: PMC7896025 DOI: 10.1016/j.bpj.2020.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023] Open
Abstract
The cell membrane is an inhomogeneous system composed of phospholipids, sterols, carbohydrates, and proteins that can be directly attached to underlying cytoskeleton. The protein linkers between the membrane and the cytoskeleton are believed to have a profound effect on the mechanical properties of the cell membrane and its ability to reshape. Here, we investigate the role of membrane-cortex linkers on the extrusion of membrane tubes using computer simulations and experiments. In simulations, we find that the force for tube extrusion has a nonlinear dependence on the density of membrane-cortex attachments: at a range of low and intermediate linker densities, the force is not significantly influenced by the presence of the membrane-cortex attachments and resembles that of the bare membrane. For large concentrations of linkers, however, the force substantially increases compared with the bare membrane. In both cases, the linkers provided membrane tubes with increased stability against coalescence. We then pulled tubes from HEK cells using optical tweezers for varying expression levels of the membrane-cortex attachment protein Ezrin. In line with simulations, we observed that overexpression of Ezrin led to an increased extrusion force, while Ezrin depletion had a negligible effect on the force. Our results shed light on the importance of local protein rearrangements for membrane reshaping at nanoscopic scales.
Collapse
Affiliation(s)
- Alexandru Paraschiv
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Thibaut J Lagny
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France; Sorbonne Université, Paris, France; Institut Curie, PSL Research University CNRS UMR 144, Paris, France
| | - Christian Vanhille Campos
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Evelyne Coudrier
- Institut Curie, PSL Research University CNRS UMR 144, Paris, France
| | - Patricia Bassereau
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France; Sorbonne Université, Paris, France
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
44
|
Senra D, Páez A, Gueron G, Bruno L, Guisoni N. Following the footprints of variability during filopodial growth. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:643-659. [PMID: 33141270 DOI: 10.1007/s00249-020-01473-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
Filopodia are actin-built finger-like dynamic structures that protrude from the cell cortex. These structures can sense the environment and play key roles in migration and cell-cell interactions. The growth-retraction cycle of filopodia is a complex process exquisitely regulated by intra- and extra-cellular cues, whose nature remains elusive. Filopodia present wide variation in length, lifetime and growth rate. Here, we investigate the features of filopodia patterns in fixed prostate tumor cells by confocal microscopy. Analysis of almost a thousand filopodia suggests the presence of two different populations: one characterized by a narrow distribution of lengths and the other with a much more variable pattern with very long filopodia. We explore a stochastic model of filopodial growth which takes into account diffusion and reactions involving actin and the regulatory proteins formin and capping, and retrograde flow. Interestingly, we found an inverse dependence between the filopodial length and the retrograde velocity. This result led us to propose that variations in the retrograde velocity could explain the experimental lengths observed for these tumor cells. In this sense, one population involves a wider range of retrograde velocities than the other population, and also includes low values of this velocity. It has been hypothesized that cells would be able to regulate retrograde flow as a mechanism to control filopodial length. Thus, we propound that the experimental filopodia pattern is the result of differential retrograde velocities originated from heterogeneous signaling due to cell-substrate interactions or prior cell-cell contacts.
Collapse
Affiliation(s)
- Daniela Senra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - Alejandra Páez
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428EGA, Buenos Aires, Argentina
- Unidad de Transferencia Genética, Instituto de Oncología "Ángel H. Roffo", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), C1428EGA, Buenos Aires, Argentina
| | - Luciana Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Pabellón 2, Ciudad Universitaria (1428), Buenos Aires, Argentina
| | - Nara Guisoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
45
|
Allard A, Valentino F, Sykes C, Betz T, Campillo C. Fluctuations of a membrane nanotube covered with an actin sleeve. Phys Rev E 2020; 102:052402. [PMID: 33327147 DOI: 10.1103/physreve.102.052402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
Many biological functions rely on the reshaping of cell membranes, in particular into nanotubes, which are covered in vivo by dynamic actin networks. Nanotubes are subject to thermal fluctuations, but the effect of these on cell functions is unknown. Here, we form nanotubes from liposomes using an optically trapped bead adhering to the liposome membrane. From the power spectral density of this bead, we study the nanotube fluctuations in the range of membrane tensions measured in vivo. We show that an actin sleeve covering the nanotube damps its high-frequency fluctuations because of the network viscoelasticity. Our work paves the way for further studies of the effect of nanotube fluctuations on cellular functions.
Collapse
Affiliation(s)
- A Allard
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, UPMC, Paris 06, Paris, France
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, 91025 Évry-Courcouronnes, France
| | - F Valentino
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, UPMC, Paris 06, Paris, France
| | - C Sykes
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, UPMC, Paris 06, Paris, France
| | - T Betz
- Institute of Cell Biology, Cells in Motion Interfaculty Center, Centre for Molecular Biology of Inflammation, 48149 Münster, Germany
| | - C Campillo
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, 91025 Évry-Courcouronnes, France
| |
Collapse
|
46
|
1'H-Indole-3'-Carbonyl-Thiazole-4-Carboxylic Acid Methyl Ester Blocked Human Glioma Cell Invasion via Aryl Hydrocarbon Receptor's Regulation of Cytoskeletal Contraction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2616930. [PMID: 33083460 PMCID: PMC7556083 DOI: 10.1155/2020/2616930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
Abstract
Blocking glioma cell invasion has been challenging due to cancer cells that can swiftly switch their migration mode, and agents that can block more than one migration mode are sought after. We found that small molecule 2-(1H-indole-3-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous aryl hydrocarbon receptor (AHR) agonist, can block more than one mode of glioma cell migration, based on cultured cell behavior captured by videos. Data from wound-healing assays and mouse xenograft glioma models corroborated ITE's migration-inhibiting effects while knocking down AHR by siRNA abolished these effects. To identify genes that mediated ITE-AHR's effect, we first collected gene expression changes upon ITE treatment by RNA-seq, then compared them against literature reported migration-related genes in glioma and that were potentially regulated by AHR. MYH9, a component of nonmuscle myosin IIA (NMIIA), was confirmed to be reduced by ITE treatment. When MYH9 was overexpressed in the glioma cells, a good correlation was observed between the expression level and the cell migration ability, determined by wound-healing assay. Correspondingly, overexpression of MYH9 abrogated ITE's migration-inhibiting effects, indicating that ITE-AHR inhibited cell migration via inhibiting MYH9 expression. MYH9 is essential for cell migration in 3D confined space and not a discovered target of AHR; the fact that ITE affects MYH9 via AHR opens a new research and development avenue.
Collapse
|
47
|
Periodic Oscillations of Myosin-II Mechanically Proofread Cell-Cell Connections to Ensure Robust Formation of the Cardiac Vessel. Curr Biol 2020; 30:3364-3377.e4. [DOI: 10.1016/j.cub.2020.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/14/2020] [Accepted: 06/12/2020] [Indexed: 01/08/2023]
|
48
|
Xin H, Li Y, Liu YC, Zhang Y, Xiao YF, Li B. Optical Forces: From Fundamental to Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001994. [PMID: 32715536 DOI: 10.1002/adma.202001994] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Optical forces, generally arising from changes of field gradients or linear momentum carried by photons, form the basis for optical trapping and manipulation. Advances in optical forces help to reveal the nature of light-matter interactions, giving answers to a wide range of questions and solving problems across various disciplines, and are still yielding new insights in many exciting sciences, particularly in the fields of biological technology, material applications, and quantum sciences. This review focuses on recent advances in optical forces, ranging from fundamentals to applications for biological exploration. First, the basics of different types of optical forces with new light-matter interaction mechanisms and near-field techniques for optical force generation beyond the diffraction limit with nanometer accuracy are described. Optical forces for biological applications from in vitro to in vivo are then reviewed. Applications from individual manipulation to multiple assembly into functional biophotonic probes and soft-matter superstructures are discussed. At the end future directions for application of optical forces for biological exploration are provided.
Collapse
Affiliation(s)
- Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
49
|
Padhi A, Singh K, Franco-Barraza J, Marston DJ, Cukierman E, Hahn KM, Kapania RK, Nain AS. Force-exerting perpendicular lateral protrusions in fibroblastic cell contraction. Commun Biol 2020; 3:390. [PMID: 32694539 PMCID: PMC7374753 DOI: 10.1038/s42003-020-01117-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Karanpreet Singh
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Janusz Franco-Barraza
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Marston
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Klaus M Hahn
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rakesh K Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
50
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|