1
|
Yang H, Jung S, Choi EY. E3 ubiquitin ligase TRIM38 regulates macrophage polarization to reduce hepatic inflammation by interacting with HSPA5. Int Immunopharmacol 2025; 157:114662. [PMID: 40300357 DOI: 10.1016/j.intimp.2025.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses pathologies from simple steatosis and steatohepatitis (MASH) to cirrhosis. Hepatic inflammation is a common cause of liver pathogenesis, with macrophage activation as a key indicator of both acute and chronic liver dysfunction. While M1 macrophages promote inflammation and M2 macrophages suppress it, their roles in MASLD are dynamic and shift according to disease stage and liver microenvironment. Tripartite motif (TRIM) family proteins, which possess E3 ubiquitin ligase activity, are involved in various cellular processes, including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. TRIM38 negatively regulates innate immunity and inflammation triggered by viruses, Toll-like receptor 3 and 4, and tumor necrosis factor α/interleukin-1β signaling; however, its role in liver pathogenesis remains unclear. This study investigates the role of macrophage TRIM38 in metabolic liver disease to identify key targets for controlling inflammation. TRIM38 overexpression suppressed lipopolysaccharide-induced macrophage activation and metabolic stress-induced hepatic lipid accumulation. Mechanistically, TRIM38 interacted with heat shock protein family A member 5 (HSPA5) and stabilized it via K63-dependent ubiquitination. This TRIM38-HSPA5 axis promoted the expression of M2 macrophage markers (arginase 1 and retinoic acid-related orphan receptor α), thereby ameliorating liver steatosis. Single-cell RNA sequencing revealed significant downregulation of TRIM38 expression in the liver macrophages of patients with MASLD and negative regulation of liver inflammation via modulation of macrophage polarization. Hence, macrophage TRIM38 suppresses metabolic liver disease progression via HSPA5-mediated M2 macrophage polarization and provides insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Heeyoung Yang
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Soontag Jung
- Center for Regulatory Toxicology Research, Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun-Yong Choi
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Pang Y, Wu L, Xia J, Xu X, Gao C, Hou L, Jiang L. Trim38 attenuates pressure overload‑induced cardiac hypertrophy by suppressing the TAK1/JNK/P38 signaling pathway. Int J Mol Med 2025; 55:98. [PMID: 40314083 PMCID: PMC12045468 DOI: 10.3892/ijmm.2025.5539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/20/2025] [Indexed: 05/03/2025] Open
Abstract
Pathological cardiac hypertrophy is a major contributor to heart failure (HF), resulting in high mortality rates worldwide; therefore, identifying key molecules in pathological cardiac hypertrophy is of critical importance for preventing or reversing HF. Tripartite motif 38 (Trim38) is an E3 ubiquitin ligase that serves a pivotal role in various diseases. The present study aimed to elucidate the regulatory role of Trim38 in pressure overload‑induced pathological cardiac hypertrophy and to explore its underlying molecular mechanisms. The expression of Trim38 was decreased in hypertrophic heart tissues from a murine model of transverse aortic constriction (TAC) and in neonatal rat cardiomyocytes (NRCMs) treated with phenylephrine (PE). Furthermore, Trim38 knockout (Trim38‑KO) aggravated cardiac hypertrophy after TAC, and Trim38 knockdown in cardiomyocytes increased cell cross section area, and upregulated the expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) following treatment with PE. Ubiquitinomics analysis revealed that the MAPK signaling pathway was regulated by Trim38. Furthermore, western blotting confirmed that Trim38‑KO activated TAK1 and JNK/P38. By contrast, Trim38 overexpression in NRCMs suppressed the JNK/P38 signaling pathway and inhibited the phosphorylation of TAK1. Furthermore, Trim38 knockdown resulted in a marked enhancement of TAK1 phosphorylation, concomitant with an augmentation of cardiomyocyte area and a significant upregulation of the hypertrophic biomarkers ANP and BNP. By contrast, infection with an adenovirus containing dominant‑negative TAK1 inhibited TAK1 activity, which attenuated Trim38 knockdown‑induced cardiomyocyte hypertrophy, confirming that TAK1 is a key molecule involved in the protective effects of Trim38 on cardiomyocytes. In conclusion, to the best of our knowledge, the present study is the first to reveal that Trim38 confers protection against pathological cardiac hypertrophy by inhibiting the TAK1/JNK/P38 signaling pathway; therefore, Trim38 may be a promising target for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanan Pang
- Institute of Cardiovascular Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, P.R. China
| | - Luyao Wu
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Jiachun Xia
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Xin Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by The Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chenshan Gao
- Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Lei Hou
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, P.R. China
| | - Li Jiang
- Institute of Cardiovascular Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
3
|
Ren H, Shi LF, Wang Y, Pan XY, Li S, Ma YH, Fan JH, Chen X, Yang ZY, Fan S, Zhang Y, Han S, He WR, Wan B, Qiu HJ, Zhang GP. The S273R protein of African swine fever virus antagonizes the canonical NF- κB signaling pathway by I κB α. J Virol 2025; 99:e0222524. [PMID: 40162787 PMCID: PMC12090767 DOI: 10.1128/jvi.02225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus, which is the causative agent of African swine fever (ASF), a devastating disease of suids epidemic in many countries. The virus has developed multiple strategies to evade surveillance from the host immune system. Inflammatory responses, especially the NF-κB signaling pathway, play central roles in ASFV pathogenesis and immunoevasion. In this study, we identified the ASFV S273R protein (pS273R) as an antagonist of the canonical NF-κB signaling pathway independently of its protease activity. The ectopically expressed pS273R markedly inhibited the tumor necrosis factor-alpha or interleukin-1 beta-triggered NF-κB signaling pathway in HEK293T and PK-15 cells. Silencing pS273R by RNA interference led to elevated expression levels of proinflammatory cytokines in the ASFV-infected primary porcine alveolar macrophages. Mechanistically, pS273R functioned independently of its protease activity. pS273R was associated with the NF-κB complex and interrupted the translocation of IκBα into the proteasome, resulting in the increased stability of IκBα and subsequently impaired nuclear translocation of p65. Furthermore, the core domain (amino acids 83-273) of pS273R was essential for the pS273R-mediated inhibition of the NF-κB signaling pathway. These findings demonstrate the immunosuppressive role of pS273R and provide novel insights into ASFV biological characteristics.IMPORTANCEAfrican swine fever (ASF) is a hemorrhagic disease of suids caused by African swine fever virus (ASFV), with morbidity and mortality rates of up to 100%. The disease has led to significant economic losses to the global swine industry. In this study, we identify the ASFV S273R protein (pS273R) as an antagonist of the canonical NF-κB signaling pathway. Our findings demonstrate the immunosuppressive role of pS273R, which will contribute to a better understanding of the pathogenesis of ASFV and may contribute to the development of antiviral therapies against ASF.
Collapse
Affiliation(s)
- Haojie Ren
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lan-Fang Shi
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiao-Ya Pan
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yu-He Ma
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jun-Hao Fan
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xing Chen
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhong-Yuan Yang
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shuai Fan
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuhang Zhang
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shichong Han
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wen-Rui He
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, Henan, China
| | - Bo Wan
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Gai-Ping Zhang
- International Joint Research Centre of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Bai L, Guan Z, Zhang J, Lv Z, Duan Y, Tian S. Poliumoside Exhibits Neuroprotective Effects against Cerebral Ischemia-Reperfusion Injury by Relieving Microglia-Mediated Neuronal Damage and Astrocytic Activation. ACS Chem Neurosci 2025; 16:1780-1791. [PMID: 40295176 DOI: 10.1021/acschemneuro.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Excessive activation of microglia contributes to neuronal damage and astrocytic activation during cerebral ischemia and hypoxia. Poliumoside (Pol) is a caffeoylated phenylpropanoid glycoside with significant anti-inflammatory and antioxidant functions. However, whether Pol can mediate microglia-mediated neurotoxicity in the ischemic brain remains nebulous. Here, a cerebral ischemia-reperfusion injury (CI/RI) mouse model was conducted to investigate Pol's role in microglial activation and neurotoxicity. We found that Pol significantly reduced neurological deficits, cerebral infarction volume, and neuronal damage in the CI/RI mouse model. Pol inhibited proinflammatory cytokines and microglial and astrocytic activation, while enhancing anti-inflammatory cytokines. Mechanistically, Pol markedly suppressed Fstl1, NF-κB phosphorylation, and the Nlrp3-Asc-Caspase1 inflammasome. In the oxygen-glucose-deprivation (OGD)-mediated BV2 microglia, Fstl1 overexpression significantly enhanced microglial activation. The conditioned medium of Fstl1-overexpressed microglia promoted astrocytic activation and neuronal injuries. However, Pol treatment or NF-κB pathway inhibition reversed Fstl1-mediated effects. In conclusion, Pol restrained microglia-modulated neuroinflammation and neurotoxicity in the cerebral hypoxic-ischemic model by restraining the Fstl1-NF-κB pathway.
Collapse
Affiliation(s)
- Liping Bai
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Zhiming Guan
- Department of respiratory, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jianwen Zhang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Zhigan Lv
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Yinglei Duan
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Shouyuan Tian
- Department of Anesthesiology, Cancer Hospital Affiliated Shanxi Medical University, Taiyuan 030013, China
| |
Collapse
|
5
|
Mohapatra B, Lavudi K, Kokkanti RR, Patnaik S. Regulation of NLRP3/TRIM family signaling in gut inflammation and colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189271. [PMID: 39864469 DOI: 10.1016/j.bbcan.2025.189271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
CRC (Colorectal cancer) ranks among the most prevalent tumors in humans and remains a leading cause of cancer-related mortality worldwide. Numerous studies have highlighted the connection between inflammasome over-activation and the initiation and progression of CRC. The activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome is dependent on the nuclear NF-kβ (Nuclear Factor kappa-light-chain-enhancer of activated B cells) pathway, leading to the maturation and release of inflammatory cytokines such as IL-1ß (Interleukin 1 beta) and IL-18 (Interleukin 18). While inflammation is crucial for defense mechanisms and tissue repair, excessive information can pose significant risks. Mounting evidence suggests that overactivation of the inflammasome contributes to the pathogenesis of inflammatory diseases. Consequently, there is a concerted effort to tightly regulate inflammasome activity and mitigate excessive inflammatory responses, particularly in conditions such as IBD (Inflammatory Bowel Disease), which includes Ulcerative Colitis and Crohn's Disease. The tripartite motif (TRIM) protein family, characterized by a conserved structure and rapid evolutionary diversification, includes members with critical roles in ubiquitination and other regulatory functions. Their importance in modulating inflammatory responses is widely acknowledged. This article aims to investigate the interplay between TRIM proteins and the NLRP3 Inflammasome in CRC and gut inflammation, offering insights for future research endeavors and potential therapeutic strategies.
Collapse
Affiliation(s)
- Bibhashee Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive cancer center, The Ohio State University, Columbus, OH, United States
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
6
|
Zhang Y, Tan X, Wang L, Ji D, Zhang C, Peng W, Zhu R, Wang X, Zhou J, Feng Y, Sun Y. TRIM38 Suppresses the Progression of Colorectal Cancer via Enhancing CCT6A Ubiquitination to Inhibit the MYC Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411285. [PMID: 40047371 PMCID: PMC12021106 DOI: 10.1002/advs.202411285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/14/2025] [Indexed: 04/26/2025]
Abstract
Emerging evidence reveals the pivotal function of tripartite motif protein (TRIM) in colorectal cancer (CRC). However, the precise function of TRIM38 and its underlying mechanism in CRC remains to be elucidated, especially regarding its putative ubiquitination function. Here, it is identified that TRIM38 is downregulated in CRC tissues by DNA hypermethylation of its promoter. Further analysis demonstrates that decreased TRIM38 is correlated with unfavorable clinical features and poor prognosis. Moreover, TRIM38 functions as a tumor suppressor by inhibiting cell proliferation, metastasis, and AOM/DSS-induced tumorigenesis in CRC cells. Mechanistically, TRIM38 binds to the substrate protein CCT6A, leading to the degradation and K48-linked ubiquitination of CCT6A at the K127/K138 residues. The elevation of CCT6A protein level caused by TRIM38 downregulation diminishes the degradation of c-Myc protein, thereby activating the MYC pathway. The study elucidates a novel mechanism of TRIM38/CCT6A/c-Myc axis regulating CRC, potentially offering a new therapeutic target for its treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Xinyu Tan
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Lu Wang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Dongjian Ji
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Chuan Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Wen Peng
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Renzhong Zhu
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouJiangsu225000P. R. China
| | - Xiaowei Wang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical Medicine Nanjing Medical UniversityNanjing210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Jiahui Zhou
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsu215000P. R. China
| | - Yifei Feng
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| | - Yueming Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- Colorectal Institute of Nanjing Medical UniversityNanjing210029P. R. China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational MedicineNanjing210029P. R. China
| |
Collapse
|
7
|
Li C, Shi X, Chen S, Peng X, Zong S. Novel mechanistic insights into the comorbidity of anemia and rheumatoid arthritis: Identification of therapeutic targets. Mol Immunol 2025; 180:74-85. [PMID: 40020310 DOI: 10.1016/j.molimm.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVES To investigate the mechanisms underlying the comorbidity of anemia and rheumatoid arthritis (RA) and identify promising therapeutic targets. METHODS We assessed the phenotypic linkage between anemia and RA. Using the largest genome-wide association studies (GWAS) summary statistics of European populations, we scrutinized the causal association and shared genetic architecture between the two conditions using multiple complementary approaches. RESULTS Logistic regression analysis confirmed a strong clinical association between anemia and RA. Using GWAS data, we identified a significant causal effect of RA on anemia and positive global genetic correlations between the two conditions (rg (genotype) = 0.28, P = 9.6 × 10-7; rg (gene expression) = 0.45, P = 2 × 10-3). After dividing the genome into 2495 independent regions, we identified 15 significant regions associated with both conditions, with 14 showing concordant effects. Fine-mapping at the SNP level revealed 72 % of RA-associated SNPs overlapped with anemia, most with concordant effects. Stratified Q-Q plots visualized the shared genetic enrichment, showing a 12-fold enrichment for RA conditional on anemia and 100-fold enrichment for anemia conditional on RA. Further analysis using conjFDR method pinpointed 14 pleiotropic loci, including several novel loci. Gene mapping identified 33 shared genes, with BLK and FAM167A further prioritized as the top two genes by SMR analysis. Enrichment analysis highlighted pathways related to inflammation, immune response, and iron metabolism. Blood and T cells showed significant tissue- and cell-type-specific enrichment. CONCLUSIONS This study provides novel insights into anemia-RA comorbidity mechanisms and identifies new drug targets for RA.
Collapse
Affiliation(s)
- Cun Li
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, Guangxi Zhuang 530021, China
| | - Xiongzhi Shi
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, Guangxi Zhuang 530021, China
| | - Shou Chen
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, Guangxi Zhuang 530021, China
| | - Xiaoming Peng
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, Guangxi Zhuang 530021, China
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, Guangxi Zhuang 530021, China.
| |
Collapse
|
8
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Morales AE, Dong Y, Brown T, Baid K, Kontopoulos DG, Gonzalez V, Huang Z, Ahmed AW, Bhuinya A, Hilgers L, Winkler S, Hughes G, Li X, Lu P, Yang Y, Kirilenko BM, Devanna P, Lama TM, Nissan Y, Pippel M, Dávalos LM, Vernes SC, Puechmaille SJ, Rossiter SJ, Yovel Y, Prescott JB, Kurth A, Ray DA, Lim BK, Myers E, Teeling EC, Banerjee A, Irving AT, Hiller M. Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature 2025; 638:449-458. [PMID: 39880942 PMCID: PMC11821529 DOI: 10.1038/s41586-024-08471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/28/2024] [Indexed: 01/31/2025]
Abstract
Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order1. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project generated reference-quality genomes of ten bat species, including potential viral reservoirs. Here we describe a systematic analysis covering 115 mammalian genomes that revealed that signatures of selection in immune genes are more prevalent in bats than in other mammalian orders. We found an excess of immune gene adaptations in the ancestral chiropteran branch and in many descending bat lineages, highlighting viral entry and detection factors, and regulators of antiviral and inflammatory responses. ISG15, which is an antiviral gene contributing to hyperinflammation during COVID-19 (refs. 4,5), exhibits key residue changes in rhinolophid and hipposiderid bats. Cellular infection experiments show species-specific antiviral differences and an essential role of protein conjugation in antiviral function of bat ISG15, separate from its role in secretion and inflammation in humans. Furthermore, in contrast to humans, ISG15 in most rhinolophid and hipposiderid bats has strong anti-SARS-CoV-2 activity. Our work reveals molecular mechanisms that contribute to viral tolerance and disease resistance in bats.
Collapse
Affiliation(s)
- Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Yue Dong
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Dimitrios -Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Victoria Gonzalez
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Arkadeb Bhuinya
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Graham Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Xiaomeng Li
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ping Lu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yixin Yang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Tanya M Lama
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sebastien J Puechmaille
- Institut Universitaire de France, Paris, France
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Yossi Yovel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Consortium for Inter-Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, NY, USA
| | - Joseph B Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron T Irving
- Department of Infectious Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Center for Infection, Immunity and Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China.
- Department of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
- Senckenberg Research Institute, Frankfurt, Germany.
- Faculty of Biosciences, Goethe-University, Frankfurt, Germany.
| |
Collapse
|
10
|
Fonseca D, Pisanelli G, Seoane R, Miorin L, García-Sastre A. TRIM65 regulates innate immune signaling by enhancing K6-linked ubiquitination of IRF3 and its chromatin recruitment. Cell Rep 2024; 43:114960. [PMID: 39580801 DOI: 10.1016/j.celrep.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Viral infection triggers a rapid and effective cellular response primarily mediated by interferon β (IFNβ), which induces an antiviral state through complex signaling cascades. To maintain a robust antiviral response while preventing excessive activation, the induction of IFNβ and downstream signaling are tightly regulated. Members of the tripartite-motif (TRIM) family of E3 ubiquitin (Ub) ligases play crucial roles in modulating these processes. In this study, we demonstrate that TRIM65 interacts with interferon regulatory factor 3 (IRF3), a key transcription factor downstream of multiple innate immune signaling pathways, to regulate type-I IFN production. Specifically, TRIM65 activation enables interaction of TRIM65 BBCC domain with the IAD domain of IRF3. This interaction increases K6-linked ubiquitination of IRF3, enhancing IRF3 recruitment to chromatin and subsequent binding to the IFNβ promoter. This process boosts the expression of IFNβ and interferon-stimulated genes (ISGs), thereby strengthening the control of viral infection.
Collapse
Affiliation(s)
- Danae Fonseca
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via F. Delpino 1, 80137 Naples, Italy
| | - Rocío Seoane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
11
|
Tu Y, Gao H, Zhao R, Yan J, Wu X. Molecular characteristics and pathogenic mechanisms of KPC-3 producing hypervirulent carbapenem-resistant Klebsiella pneumoniae (ST23-K1). Front Cell Infect Microbiol 2024; 14:1407219. [PMID: 39211794 PMCID: PMC11358127 DOI: 10.3389/fcimb.2024.1407219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aimed to comprehensively investigate hypervirulent carbapenem-resistant Klebsiella pneumoniae (CR-hvKP) in the Ningbo region. Importantly, we sought to elucidate its molecular characteristics and pathogenic mechanisms. This information will provide evidence-based insights for preventing and controlling nosocomial infections and facilitate improved clinical diagnosis and treatment in this region. Methods 96 carbapenem-resistant Klebsiella pneumoniae strains were collected from the Ningbo region between January 2021 and December 2022. Whole genome sequencing and bioinformatic methods were employed to identify and characterize CR-hvKP strains at the molecular level. The minimum inhibitory concentrations (MICs) of common clinical antibiotics were determined using the VITEK-2 Compact automatic microbiological analyzer. Plasmid conjugation experiments evaluated the transferability of resistance plasmids. Finally, mouse virulence assays were conducted to explore the pathogenic mechanisms. Results Among the 96 strains, a single CR-hvKP strain, designated CR-hvKP57, was identified, with an isolation frequency of 1.04%. Whole-genome sequencing revealed the strain to be ST23 serotype with a K1 capsule. This strain harbored three plasmids. Plasmid 1, a pLVPK-like virulence plasmid, carried multiple virulence genes, including rmpA, rmpA2, iroB, iucA, and terB. Plasmid 2 contained transposable element sequences such as IS15 and IS26. Plasmid 3, classified as a resistance plasmid, harbored the bla KPC-3 carbapenem resistance gene. Mouse virulence assays demonstrated a high mortality rate associated with CR-hvKP57 infection. Additionally, there was a significant increase in IL-1β, IL-6, and TNF-α levels in response to CR-hvKP57 infection, indicating varying degrees of inflammatory response. Western blot experiments further suggested that the pathogenic mechanism involves activation of the NF-κB signaling pathway. Conclusion This study confirms the emergence of hypervirulent CR-hvKP in the Ningbo region, which likely resulted from the acquisition of a pLVPK-like virulence plasmid and a bla KPC-3 resistance plasmid by the ST23-K1 type Klebsiella pneumoniae. Our findings highlight the urgent need for more judicious use of antibiotics to limit the emergence of resistance. Additionally, strengthening infection prevention and control measures is crucial to minimize the spread of virulence and resistance plasmids.
Collapse
|
12
|
Zhang K, Lin G, Nie Z, Jin S, Bing X, Li Z, Li M. TRIM38 suppresses migration, invasion, metastasis, and proliferation in non-small cell lung cancer (NSCLC) via regulating the AMPK/NF-κB/NLRP3 pathway. Mol Cell Biochem 2024; 479:2069-2079. [PMID: 37566200 DOI: 10.1007/s11010-023-04823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Accumulating data have revealed the pivotal function of tripartite motif protein 38 (TRIM38) in tumors. In view of this, this investigation aims to explore the function and potential mechanism of TRIM38 in non-small cell lung cancer (NSCLC). A xenotypic tumor model was established in vivo by subcutaneously injecting NSCLC cells (2 × 106 cells) in tail vein of each mouse. Relative expression of TRIM38 mRNA was detected via quantitative real-time polymerase chain reaction (qRT-PCR). For exploring the role of TRIM38 in vivo and in vitro, mice or NSCLC cells were divided into two groups: the vector group and the TRIM38 overexpression group. Also, protein expression levels of TRIM38, Vimentin, E-cadherin, and N-cadherin were determined using western blotting and immunohistochemistry staining. Tumor nodules of mouse lung tissues were assessed via performing H&E staining. Moreover, proliferation of NSCLC cells was evaluated through colony formation and CCK-8 assays. Further, migration and invasion of NSCLC cells were assessed through wound healing and transwell assays. Protein levels of pathway-related proteins including p-p65, p65, IκB, p-IκB, p-AMPK, AMPK, and NLRP3 were examined through western blotting analysis. Tumor lung tissues of mice and NSCLC cells showed low protein and mRNA expression of TRIM38. Functionally, up-regulation of TRIM38 reduced the number of tumor nodules and suppressed epithelial-to-mesenchymal transition (EMT) in lung tissues of mice. Furthermore, up-regulation of TRIM38 in NSCLC cells inhibited migration, invasion, EMT, and proliferation. With respect to the mechanism, in vivo experiments, the inhibitory effects of TRIM38 overexpression on tumor nodules, and EMT were reversed by AMPK inhibitor. In vitro experiments, TRIM38 overexpression caused down-regulation of p-IκB and p-p65 as well as up-regulation of p-AMPK. The inhibitory effects of TRIM38 overexpression on migration, proliferation, invasion, and EMT of NSCLC cells were reversed by overexpression of NLRP3. Concurrently, AMPK inhibitor enhanced the TRIM38-overexpressed NSCLC cell's abilities in migration, clone formation, invasion, and proliferation. TRIM38 regulated the AMPK/NF-κB/NLRP3 pathway to suppress the NSCLC's progression and development.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Zhenkai Nie
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Shan Jin
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Xiaohan Bing
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Zhantao Li
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China
| | - Mingru Li
- Department of Thoracic Surgery, China Aerospace Science & Industry Corporation 731 Hospital, No. 3, Zhen Gang Nan Li, Yun Gang, Feng Tai District, Beijing, 100074, China.
| |
Collapse
|
13
|
Liu J, Deng Y, Wang A, Liu B, Zhou X, Yin T, Wang Y, Tang T, Qiu Y, Chen J, Yang J. Investigation into the role of the MITA-TRIM38 interaction in regulating pyroptosis and maintaining immune tolerance at the maternal-fetal interface. Cell Death Dis 2023; 14:780. [PMID: 38012139 PMCID: PMC10682411 DOI: 10.1038/s41419-023-06314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The maternal-fetal interface shares similarities with tumor tissues in terms of the immune microenvironment. Normal pregnancy is maintained due to the immunosuppressed state, but pyroptosis induced by MITA can trigger the body's immune response and disrupt the immunosuppressed state of the maternal-fetal interface, leading to abortion. In this study, we explored the role of MITA and TRIM38 in regulating pyroptosis and maintaining the immune tolerance of the maternal-fetal interface during pregnancy. Our findings show that the interaction between MITA and TRIM38 plays a crucial role in maintaining the immunosuppressed state of the maternal-fetal interface. Specifically, we observed that TRIM38-mediated K48 ubiquitination of MITA was higher in M2 macrophages, leading to low expression levels of MITA and thus inhibiting pyroptosis. Conversely, in M1 macrophages, the ubiquitination of K48 was lower, resulting in higher expression levels of MITA and promoting pyroptosis. Our results also indicated that pyroptosis played an important role in hindering the transformation of M1 to M2 and maintaining the immunosuppressed state of the maternal-fetal interface. These discoveries help elucidate the mechanisms that support the preservation of the immune tolerance microenvironment at the maternal-fetal interface, playing a vital role in ensuring successful pregnancy.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yan Deng
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - An Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Bowen Liu
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Tang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, China.
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Zhang J, Zhang Y, Ren Z, Yan D, Li G. The role of TRIM family in metabolic associated fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1210330. [PMID: 37867509 PMCID: PMC10585262 DOI: 10.3389/fendo.2023.1210330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) ranks among the most prevalent chronic liver conditions globally. At present, the mechanism of MAFLD has not been fully elucidated. Tripartite motif (TRIM) protein is a kind of protein with E3 ubiquitin ligase activity, which participates in highly diversified cell activities and processes. It not only plays an important role in innate immunity, but also participates in liver steatosis, insulin resistance and other processes. In this review, we focused on the role of TRIM family in metabolic associated fatty liver disease. We also introduced the structure and functions of TRIM proteins. We summarized the TRIM family's regulation involved in the occurrence and development of metabolic associated fatty liver disease, as well as insulin resistance. We deeply discussed the potential of TRIM proteins as targets for the treatment of metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Jingyue Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yingming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Chen X, Li LF, Yang ZY, Li M, Fan S, Shi LF, Ren ZY, Cao XJ, Zhang Y, Han S, Wan B, Qiu HJ, Zhang G, He WR. The African swine fever virus I10L protein inhibits the NF- κB signaling pathway by targeting IKK β. J Virol 2023; 97:e0056923. [PMID: 37607059 PMCID: PMC10537781 DOI: 10.1128/jvi.00569-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023] Open
Abstract
Proinflammatory factors play important roles in the pathogenesis of African swine fever virus (ASFV), which is the causative agent of African swine fever (ASF), a highly contagious and severe hemorrhagic disease. Efforts in the prevention and treatment of ASF have been severely hindered by knowledge gaps in viral proteins responsible for modulating host antiviral responses. In this study, we identified the I10L protein (pI10L) of ASFV as a potential inhibitor of the TNF-α- and IL-1β-triggered NF-κB signaling pathway, the most canonical and important part of host inflammatory responses. The ectopically expressed pI10L remarkably suppressed the activation of NF-κB signaling in HEK293T and PK-15 cells. The ASFV mutant lacking the I10L gene (ASFVΔI10L) induced higher levels of proinflammatory cytokines production in primary porcine alveolar macrophages (PAMs) compared with its parental ASFV HLJ/2018 strain (ASFVWT). Mechanistic studies suggest that pI10L inhibits IKKβ phosphorylation by reducing the K63-linked ubiquitination of NEMO, which is necessary for the activation of IKKβ. Morever, pI10L interacts with the kinase domain of IKKβ through its N-terminus, and consequently blocks the association of IKKβ with its substrates IκBα and p65, leading to reduced phosphorylation. In addition, the nuclear translocation efficiency of p65 was also altered by pI10L. Further biochemical evidence supported that the amino acids 1-102 on pI10L were essential for the pI10L-mediated suppression of the NF-κB signaling pathway. The present study clarifies the immunosuppressive activity of pI10L, and provides novel insights into the understanding of ASFV pathobiology and the development of vaccines against ASF. IMPORTANCE African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. To date, few safe and effective vaccines or antiviral strategies have been marketed due to large gaps in knowledge regarding ASFV pathobiology and immune evasion mechanisms. In this study, we deciphered the important role of the ASFV-encoded I10L protein in the TNF-α-/IL-1β-triggered NF-κB signaling pathway. This study provides novel insights into the pathogenesis of ASFV and thus contributes to the development of vaccines against ASF.
Collapse
Affiliation(s)
- Xing Chen
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhong-Yuan Yang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meilin Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shuai Fan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lan-Fang Shi
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zi-Yu Ren
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xue-Jing Cao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High-Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
| | - Wen-Rui He
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Yu Y, Xia Q, Zhan G, Gao S, Han T, Mao M, Li X, Wang Y. TRIM67 alleviates cerebral ischemia‒reperfusion injury by protecting neurons and inhibiting neuroinflammation via targeting IκBα for K63-linked polyubiquitination. Cell Biosci 2023; 13:99. [PMID: 37248543 DOI: 10.1186/s13578-023-01056-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Excessive and unresolved neuroinflammation plays an important role in the pathophysiology of many neurological disorders, such as ischemic stroke, yet there are no effective treatments. Tripartite motif-containing 67 (TRIM67) plays a crucial role in the control of inflammatory disease and pathogen infection-induced inflammation; however, the role of TRIM67 in cerebral ischemia‒reperfusion injury remains poorly understood. RESULTS In the present study, we demonstrated that the expression level of TRIM67 was significantly reduced in middle cerebral artery occlusion and reperfusion (MCAO/R) mice and primary cultured microglia subjected to oxygen-glucose deprivation and reperfusion. Furthermore, a significant reduction in infarct size and neurological deficits was observed in mice after TRIM67 upregulation. Interestingly, TRIM67 upregulation alleviated neuroinflammation and cell death after cerebral ischemia‒reperfusion injury in MCAO/R mice. A mechanistic study showed that TRIM67 bound to IκBα, reduced K48-linked ubiquitination and increased K63-linked ubiquitination, thereby inhibiting its degradation and promoting the stability of IκBα, ultimately inhibiting NF-κB activity after cerebral ischemia. CONCLUSION Taken together, this study demonstrated a previously unidentified mechanism whereby TRIM67 regulates neuroinflammation and neuronal apoptosis and strongly indicates that upregulation of TRIM67 may provide therapeutic benefits for ischemic stroke.
Collapse
Affiliation(s)
- Yongbo Yu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qian Xia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Gao
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Tangrui Han
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Meng Mao
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghong Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
17
|
Yao X, Dong R, Hu S, Liu Z, Hu F, Cheng X, Wang X, Ma T, Tian S, Zhang XJ, Hu Y, Bai L, Li H, Zhang P. Tripartite motif 38 alleviates the pathological process of NAFLD/NASH by promoting TAB2 degradation. J Lipid Res 2023:100382. [PMID: 37116711 PMCID: PMC10394331 DOI: 10.1016/j.jlr.2023.100382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide, without any FDA-approved pharmacological intervention in clinic. The TRIM (tripartite motif-containing) family plays essential roles in innate immune and hepatic inflammation. TRIM38, as one of the important members in TRIM family, was largely reported to be involved in the regulation of innate immune and inflammatory responses. However, the functional roles of TRIM38 in NAFLD remains largely unknown. Here, the expression of TRIM38 was first detected in liver samples of both NAFLD mice model and patients diagnosed with NAFLD. We found TRIM38 expression was downregulated in NAFLD liver tissues compared with normal liver tissues. Genetic TRIM38 knockout in vivo showed that TRIM38 depletion deteriorated the HFD and HFHC diet-induced hepatic steatosis and HFHC diet-induced liver inflammation and fibrosis. In particular, we found that the effects of hepatocellular lipid accumulation and inflammation induced by palmitic acid and oleic acid (PA+OA) was aggravated by TRIM38 depletion but mitigated by TRIM38 overexpression in vitro. Mechanically, RNA-seq analysis demonstrated that TRIM38 ameliorated NASH progression by attenuating the activating of mitogen-activated protein kinase (MAPK) signaling pathway. We further found that TRIM38 interacted with TGF-β-activated kinase 1 (TAK1) binding protein 2 (TAB2) and promoted its protein degradation, thus inhibiting the TAK1-MAPK signal cascades. In summary, our study revealed that TRIM38 could suppress hepatic steatosis, inflammatory and fibrosis in NAFLD via promoting TAB2 degradation. TRIM38 could be a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Xinxin Yao
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ruixiang Dong
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Sha Hu
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Zhen Liu
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Fengjiao Hu
- Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Cheng
- Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China; Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Xiaoming Wang
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tengfei Ma
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| | - Song Tian
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yufeng Hu
- Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China; Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Lan Bai
- Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China; Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China.
| | - Hongliang Li
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Gannan Innovation and Translational Medicine Research Institute, Ganzhou, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Peng Zhang
- Basic Medical School, Wuhan University, Wuhan, China; Institute of Model Animal, Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Zhang J, Cao L, Gao A, Ren R, Yu L, Li Q, Liu Y, Qi W, Hou Y, Sui W, Su G, Zhang Y, Zhang C, Zhang M. E3 ligase RNF99 negatively regulates TLR-mediated inflammatory immune response via K48-linked ubiquitination of TAB2. Cell Death Differ 2023; 30:966-978. [PMID: 36681779 PMCID: PMC10070438 DOI: 10.1038/s41418-023-01115-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Innate immunity is the first line to defend against pathogenic microorganisms, and Toll-like receptor (TLR)-mediated inflammatory responses are an essential component of innate immunity. However, the regulatory mechanisms of TLRs in innate immunity remain unperfected. We found that the expression of E3 ligase Ring finger protein 99 (RNF99) decreased significantly in peripheral blood monocytes from patients infected with Gram negative bacteria (G-) and macrophages stimulated by TLRs ligands, indicating the role of RNF99. We also demonstrated for the first time, the protective role of RNF99 against LPS-induced septic shock and dextran sodium sulfate (DSS)-induced colitis using RNF99 knockout mice (RNF99-/-) and bone marrow-transplanted mice. In vitro experiments revealed that RNF99 deficiency significantly promoted TLR-mediated inflammatory cytokine expression and activated the NF-κB and MAPK pathways in macrophages. Mechanistically, in both macrophages and HEK293 cell line with TLR4 stably transfection, RNF99 interacted with and degraded TAK1-binding protein (TAB) 2, a regulatory protein of the kinase TAK1, via the lysine (K)48-linked ubiquitin-proteasomal pathway on lysine 611 of TAB2, which further regulated the TLR-mediated inflammatory response. Overall, these findings indicated the physiological significance of RNF99 in macrophages in regulating TLR-mediated inflammatory reactions. It provided new insight into TLRs signal transduction, and offered a novel approach for preventing bacterial infections, endotoxin shock, and other inflammatory ills.
Collapse
Affiliation(s)
- Jie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lei Cao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Amy Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruiqing Ren
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liwen Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qian Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yapeng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenqian Qi
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yonghao Hou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guohai Su
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China.
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Cardiovascular Disease Research Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
19
|
Sokolova O, Maubach G, Naumann M. Helicobacter pylori regulates TIFA turnover in gastric epithelial cells. Eur J Cell Biol 2023; 102:151307. [PMID: 36965415 DOI: 10.1016/j.ejcb.2023.151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The human pathogen Helicobacter pylori induces a strong inflammatory response in gastric mucosa manifested by the recruitment of neutrophils and macrophages to the places of infection, and by changes in epithelial integrity and function. At the molecular level, this innate immune response is essentially dependent on the activation of NF-κB transcription factors regulating the expression of chemotactic factors, e.g., IL-8. Recently, it has been demonstrated that the NF-κB signaling pathway is triggered by the bacterial heptose metabolites, which activate the host ALPK1-TIFA axis. TIFA has been suggested to promote oligomerization and activity of the E3 ubiquitin ligase TRAF6, which further stimulates TAK1-IKK signaling. Here, we demonstrate that ALPK1-dependent TIFA activation in H. pylori-infected gastric epithelial cells is followed in time by a decline in TIFA levels, and that this process is impeded by inhibitors of the proteasomal and lysosomal degradation. According to our data, TRAF2, TRAF6, TAK1 or NEMO are not required for TIFA degradation. Additionally, H. pylori promotes the interaction of TIFA with free polyubiquitin as well as with optineurin, TAX1BP1 and LAMP1, which are known protein adaptors involved in intracellular trafficking to lysosomes.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Gunter Maubach
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
20
|
He WR, Yuan J, Ma YH, Zhao CY, Yang ZY, Zhang Y, Han S, Wan B, Zhang GP. Modulation of Host Antiviral Innate Immunity by African Swine Fever Virus: A Review. Animals (Basel) 2022; 12:2935. [PMID: 36359059 PMCID: PMC9653632 DOI: 10.3390/ani12212935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/27/2023] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and fatal disease found in swine. However, the viral proteins and mechanisms responsible for immune evasion are poorly understood, which has severely hindered the development of vaccines. This review mainly focuses on studies involving the innate antiviral immune response of the host and summarizes the latest studies on ASFV genes involved in interferon (IFN) signaling and inflammatory responses. We analyzed the effects of candidate viral proteins on ASFV infection, replication and pathogenicity and identified potential molecular targets for novel ASFV vaccines. These efforts will contribute to the construction of novel vaccines and wonder therapeutics for ASF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
21
|
Azzarito G, Kurmann L, Leeners B, Dubey RK. Micro-RNA193a-3p Inhibits Breast Cancer Cell Driven Growth of Vascular Endothelial Cells by Altering Secretome and Inhibiting Mitogenesis: Transcriptomic and Functional Evidence. Cells 2022; 11:cells11192967. [PMID: 36230929 PMCID: PMC9562882 DOI: 10.3390/cells11192967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BC) cell secretome in the tumor microenvironment (TME) facilitates neo-angiogenesis by promoting vascular endothelial cell (VEC) growth. Drugs that block BC cell growth or angiogenesis can restrict tumor growth and are of clinical relevance. Molecules that can target both BC cell and VEC growth as well as BC secretome may be more effective in treating BC. Since small non-coding microRNAs (miRs) regulate cell growth and miR193a-3p has onco-suppressor activity, we investigated whether miR193a-3p inhibits MCF-7-driven growth (proliferation, migration, capillary formation, signal transduction) of VECs. Using BC cells and VECs grown in monolayers or 3D spheroids and gene microarrays, we demonstrate that: pro-growth effects of MCF-7 and MDA-MB231 conditioned medium (CM) are lost in CM collected from MCF-7/MDA-MB231 cells pre-transfected with miR193a-3p (miR193a-CM). Moreover, miR193a-CM inhibited MAPK and Akt phosphorylation in VECs. In microarray gene expression studies, miR193a-CM upregulated 553 genes and downregulated 543 genes in VECs. Transcriptomic and pathway enrichment analysis of differentially regulated genes revealed downregulation of interferon-associated genes and pathways that induce angiogenesis and BC/tumor growth. An angiogenesis proteome array confirmed the downregulation of 20 pro-angiogenesis proteins by miR193a-CM in VECs. Additionally, in MCF-7 cells and VECs, estradiol (E2) downregulated miR193a-3p expression and induced growth. Ectopic expression of miR193a-3p abrogated the growth stimulatory effects of estradiol E2 and serum in MCF-7 cells and VECs, as well as in MCF-7 and MCF-7+VEC 3D spheroids. Immunostaining of MCF-7+VEC spheroid sections with ki67 showed miR193a-3p inhibits cell proliferation. Taken together, our findings provide first evidence that miR193a-3p abrogates MCF-7-driven growth of VECs by altering MCF-7 secretome and downregulating pro-growth interferon signals and proangiogenic proteins. Additionally, miR193a-3p inhibits serum and E2-induced growth of MCF-7, VECs, and MCF-7+VEC spheroids. In conclusion, miRNA193a-3p can potentially target/inhibit BC tumor angiogenesis via a dual mechanism: (1) altering proangiogenic BC secretome/TME and (2) inhibiting VEC growth. It may represent a therapeutic molecule to target breast tumor growth.
Collapse
Affiliation(s)
- Giovanna Azzarito
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
22
|
Liu B, Yang L, Wu Y, Zhao X. Protective effect of Limosilactobacillus fermentum HFY06 on dextran sulfate sodium-induced colitis in mice. Front Microbiol 2022; 13:935792. [PMID: 36171753 PMCID: PMC9512270 DOI: 10.3389/fmicb.2022.935792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Ulcerative colitis is one of the main gastrointestinal diseases that threaten human health. This study investigated the effect of Limosilactobacillus fermentum HFY06 (LF-HFY06) on dextran sulfate sodium (DSS)-induced murine colitis. The protective effect of LF-HFY06 was evaluated by examining the length and histopathological sections of colon, related biochemical indicators, and genes related to inflammation. Direct and microscopic observations showed that LF-HFY06 increased the length of the colon and ameliorated the pathological damage induced by DSS. The biochemical indicators showed that LF-HFY06 enhanced the activities of antioxidant enzymes total superoxide dismutase (T-SOD) and catalase (CAT) in serum, while reducing the level of malondialdehyde (MDA). It was also observed that the serum inflammatory cytokines levels of tumor necrosis factor-α (TNF-α), interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and IL-12 were decreased, and the anti-inflammatory cytokine IL-10 level was increased. The qPCR experiment revealed that LF-HFY06 downregulated the mRNA expression levels of nuclear factor-κB-p65 (Rela), Tnf, Il 1b, Il 6, and prostaglandin-endoperoxide synthase 2 (Ptgs2) in colon tissues, and upregulated the mRNA expression of NF-κB inhibitor-α (Nfkbia) and Il 10. These data indicated that LF-HFY06 inhibited inflammation through the NF-κB signaling pathway to prevent the occurrence and development of colitis. This research demonstrates that probiotics LF-HFY06 have the potential to prevent and treat colitis.
Collapse
Affiliation(s)
- Bihui Liu
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Lei Yang
- Department of Urology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ya Wu
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
- *Correspondence: Xin Zhao,
| |
Collapse
|
23
|
Wang M, Ling C, Cao J, Yin Y, Chang X, Wu J, Cheng T. Role of Tripartite Motif-Containing 3 Protein (TRIM3) in Rheumatoid Arthritis and Its Mechanism. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim: To discuss TRIM3’s effects and relative mechanisms in RA development. Materials and methods: Using FLS as research object in our study. Present study divided into two steps, first step, discussing TRIM3 depressing effects in normal FLS cell; next, using IL-1β
stimulating to make RA cell model, TRIM3 overexpression in RA model to observe cell biological activities. Measuring IL-6 and TNF-α levels by ELISA kit; evaluating cell proliferation by MTT and EdU assay; relative proteins including TRIM3, TAB2 and NF-κB(p65) proteins
expression using WB method. Results: With TRIM3 knockdown, FLS cell proliferation were significantly increased with IL-6, TNF-α levels significantly up-regulation (P < 0.001, respectively). Meanwhile, TAB2 protein expression significantly depressing and NF-κB(p65)
protein significantly increasing; those were similar as IL-1β stimulating RA cell model in FLS cell line. In RA cell model, transfection TRIM3 in FLS cell, the cell proliferation was significantly depressed with IL-1β, TNF-α levels depressing, and TAB2
protein expression significantly increasing and NF-κB(p65) protein significantly depressing. Conclusion: TRIM3 knockdown might be a result to RA development; with TRIM3 overexpression, RA induced FLS hyperproliferation significantly improved with TAB2 up-regulation and
NF-κB(p65) down-regulation in vitro.
Collapse
Affiliation(s)
- Mingjun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Chen Ling
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Jing Cao
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Yufeng Yin
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Tao Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| |
Collapse
|
24
|
Lu Z, Deng M, Ma G, Chen L. TRIM38 protects H9c2 cells from hypoxia/reoxygenation injury via the TRAF6/TAK1/NF- κB signalling pathway. PeerJ 2022; 10:e13815. [PMID: 36061751 PMCID: PMC9435518 DOI: 10.7717/peerj.13815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023] Open
Abstract
Tripartite motif (TRIM) 38 is a ubiquitin E3 protein ligase that is involved in various intracellular physiological processes. However, the role of TRIM38 in myocardial ischaemia/reperfusion (I/R) injury remains to be elucidated. We aimed to establish an in vitro cellular hypoxia/reperfusion (H/R) model to explore the role and potential mechanisms of TRIM38 in H9c2, a rat cardiomyoblast cell line. Recombinant adenoviruses for silencing or overexpressing TRIM38 were constructed and transfected into H9c2 cells. Western blotanalysisshowed that TRIM38 expression was significantly decreased after H/R injury. Functionally, TRIM38 expression relieved inflammatory responses and oxidative stress, and inhibited H/R-induced apoptosis in H9c2 cells. Mechanistically, TRIM38 overexpression inhibited H/R-induced transforming growth factor beta-activated kinase 1 (TAK1)/nuclear factor-kappa B (NF-κB) pathway activity in H9c2 cells. The opposite results were observed after TRIM38 knockdown. Furthermore, H/R-induced injury aggravated by TRIM38 deficiency in H9c2 cells was reversed upon treatment with 5Z-7-oxozeaenol, a TAK1 inhibitor. Therefore, TRIM38 reduction attenuated the anti-apoptotic capacity and anti-inflammatory potential of H/R-stimulated H9c2 cells by activating the TAK1/NF-κB signalling pathway. Specifically, TRIM38 alleviated H/R-induced H9c2 cell injury by promoting TNF receptor-associated factor 6 degradation, which led to the inactivation of the TAK1/NF-κB signalling pathway. Thus, our study provides new insights into the molecular mechanisms underlying H/R-induced myocardial injuries.
Collapse
Affiliation(s)
- Zhengri Lu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Mengen Deng
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China,Department of Cardiology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Jin F, Xi Y, Xie D, Wang Q. Comprehensive analysis reveals a 5-gene signature and immune cell infiltration in Alzheimer’s disease with qPCR validation. Front Genet 2022; 13:913535. [PMID: 36092935 PMCID: PMC9454400 DOI: 10.3389/fgene.2022.913535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Over 50 million people around the world currently are suffering from Alzheimer’s disease (AD) without any effective therapy. Neuroinflammation plays a pivotal role in AD, which leads us to probe the profile of immune cell infiltration in AD. Here, we analyzed a microarray dataset (GSE44770) containing 115 AD and 115 control samples to determine biomarkers and immune infiltration characteristics of AD by multiple bioinformatics methods. First, we identified 3,840 DEGs (1892 upregulated and 1948 downregulated) by using the limma package and 2,697 hub genes by constructing a weighted gene correlation network, and they had a total of 2,167 intersecting genes. Second, combining the LASSO logistic regression and SVM-RFE, we obtained five biomarkers (DGKG, MAP3K7IP2, NFKBIE, VIP, and PCCB), which may reveal the key pathogenetic features of AD and serve as diagnostic markers assessed by the ROC curve (AUC = 0.9716) and validation of another AD dataset (GSE33000) (AUC = 0.9388). Third, immune cell infiltration analysis revealed that compared with control samples, plasma cells, CD8 T cells, T follicular helper cells, and activated NK cells infiltrated less in AD; Monocytes, M2 macrophages, and neutrophils infiltrated more in AD. Neutrophils and activated NK cells demonstrated the most significant and negative correlation. Then, Spearman correlation analysis between the five biomarkers and immune infiltrating cells revealed that all of them were significantly associated with plasma cells. Finally, mRNA levels of VIP and PCCB were conformed in a murine AD model. In conclusion, DGKG, MAP3K7IP2, NFKBIE, VIP, and PCCB may be used as diagnostic markers of AD, and the disruption of the delicate immune balance may be a key process in the onset and development of AD.
Collapse
Affiliation(s)
- Fanmao Jin
- Lishui People's Hospital, Lishui, Zhejiang, China
| | - Yuemei Xi
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China
| | - De Xie
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China
| | - Qiang Wang
- School of Medicine, Xiamen University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, Fujian, China
- *Correspondence: Qiang Wang,
| |
Collapse
|
26
|
Tripartite Motif 38 Attenuates Cardiac Fibrosis after Myocardial Infarction by Suppressing TAK1 Activation via TAB2/3 Degradation. iScience 2022; 25:104780. [PMID: 35982795 PMCID: PMC9379576 DOI: 10.1016/j.isci.2022.104780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
The role of tripartite motif (TRIM) 38, a ubiquitin E3 ligase regulating various pathophysiological processes, in cardiac fibrosis remains unclear. Here, a model of angiotensin II and myocardial infarction (MI)-induced fibrosis was established to explore its role in cardiac fibrosis and its underlying mechanisms. Cardiac fibrosis in the mouse MI model was mitigated by TRIM38 overexpression, but aggravated by its depletion. Consistently, in vitro overexpression or knockdown of TRIM38 ameliorated or aggravated the proliferation and secretion of cardiac fibroblasts (CFs) exposed to fibrotic stimulation, respectively. Mechanistically, TRIM38 suppressed cardiac fibrosis progression by attenuating TAK1/MAPK signaling. Inhibiting TAK1/MAPK signaling with a pharmacological inhibitor greatly reversed the effects of TRIM38 knockdown on CF secretion. Specifically, TRIM38 interacted with and “targeted” TAB2 and TAB3 for degradation, subsequently inhibiting TAK1 phosphorylation and negatively regulating MAPK signaling. These findings can help develop therapeutic strategies to treat and prevent cardiac fibrosis. TRIM38 expression is negatively correlated with cardiac fibrosis progression TRIM38 ameliorates the proliferation and secretion of CFs post fibrotic stimulation TRIM38 overexpression attenuates cardiac fibrosis progression in MI mice TRIM38 inhibits the TAK1/MAPK pathway by targeting the degradation of TAB2 and TAB3
Collapse
|
27
|
Fan W, Liu X, Zhang J, Qin L, Du J, Li X, Qian S, Chen H, Qian P. TRIM67 Suppresses TNFalpha-Triggered NF-kB Activation by Competitively Binding Beta-TrCP to IkBa. Front Immunol 2022; 13:793147. [PMID: 35273593 PMCID: PMC8901487 DOI: 10.3389/fimmu.2022.793147] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB plays an important role in modulation of inflammatory pathways, which are associated with inflammatory diseases, neurodegeneration, apoptosis, immune responses, and cancer. Increasing evidence indicates that TRIM proteins are crucial role in the regulation of NF-κB signaling pathways. In this study, we identified TRIM67 as a negative regulator of TNFα-triggered NF-κB activation. Ectopic expression of TRIM67 significantly represses TNFα-induced NF-κB activation and the expression of pro-inflammatory cytokines TNFα and IL-6. In contrast, Trim67 depletion promotes TNFα-induced expression of TNFα, IL-6, and Mcp-1 in primary mouse embryonic fibroblasts. Mechanistically, we found that TRIM67 competitively binding β-transducin repeat-containing protein (β-TrCP) to IκBα results inhibition of β-TrCP-mediated degradation of IκBα, which finally caused inhibition of TNFα-triggered NF-κB activation. In summary, our findings revealed that TRIM67 function as a novel negative regulator of NF-κB signaling pathway, implying TRIM67 might exert an important role in regulation of inflammation disease and pathogen infection caused inflammation.
Collapse
Affiliation(s)
- Wenchun Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinyan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuxing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Suhong Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Yang Y, Huang Y, Zeng Z. Advances in cGAS-STING Signaling Pathway and Diseases. Front Cell Dev Biol 2022; 10:800393. [PMID: 35186921 PMCID: PMC8851069 DOI: 10.3389/fcell.2022.800393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Pathogens can produce conserved pathogen-associated molecular patterns (PAMPs) after invading the body, which can be specifically recognized by host pattern recognition receptors (PRRs). In recent years, it has been found that cytoplasmic DNA receptors recognize exogenous DNA inducing activation of interferon 1 (IFN1), which is a rapid advance in various research areas. The cyclic GMP–AMP synthase (cGAS) stimulator of interferon gene (STING) signaling pathway is a critical natural immune pathway in cells. Early studies revealed that it plays a crucial regulatory role in pathogen infection and tumor, and it is associated with various human autoimmune diseases. Recently studies have found that activation of cGAS-STING signaling pathway is related to different organ injuries. The present review elaborates on the regulation of the cGAS-STING signaling pathway and its role in various diseases, aiming to provide a theoretical basis for immunotherapy targeting this pathway.
Collapse
|
29
|
Zhang XZ, Li FH, Wang XJ. Regulation of Tripartite Motif-Containing Proteins on Immune Response and Viral Evasion. Front Microbiol 2021; 12:794882. [PMID: 34925304 PMCID: PMC8671828 DOI: 10.3389/fmicb.2021.794882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Tripartite motif-containing proteins (TRIMs), exhibiting ubiquitin E3 ligase activity, are involved in regulation of not only autophagy and apoptosis but also pyrotosis and antiviral immune responses of host cells. TRIMs play important roles in modulating signaling pathways of antiviral immune responses via type I interferon, NF-κB, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and Nrf2. However, viruses are able to antagonize TRIM activity or evenly utilize TRIMs for viral replication. This communication presents the current understanding of TRIMs exploited by viruses to evade host immune response.
Collapse
Affiliation(s)
- Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fu-Huang Li
- Beijing General Station of Animal Husbandry Service (South Section), Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Li F, Huang H, Zhu F, Zhou X, Yang Z, Zhao X. A Mixture of Lactobacillus fermentum HFY06 and Arabinoxylan Ameliorates Dextran Sulfate Sodium-Induced Acute Ulcerative Colitis in Mice. J Inflamm Res 2021; 14:6575-6585. [PMID: 34908859 PMCID: PMC8664413 DOI: 10.2147/jir.s344695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Colitis is one of the main gastrointestinal diseases threatening human health. Materials and Methods In this study, a synbiotic composed of arabinoxylan (AX) and Lactobacillus fermentum HFY06 was tested to determine its ability to relieve dextran sulfate sodium (DSS)-induced colitis. Results The experimental results showed that the synergistic effect of AX and L. fermentum HFY06 alleviated the weight loss of DSS-mediated colitis mice and lowered the disease activity index (DAI) score. Determination of biochemical indicators found that the synbiotic composed of AX and L. fermentum HFY06 increased the body’s antioxidant capacity and reduced inflammation. The histopathological examination results showed that the colonic crypts of the mice in the model group were disordered, goblet cells were lost, and the mucous membrane was severely damaged. However, the combination of AX and L. fermentum HFY06 can significantly reverse the histopathological changes in the colon mediated by DSS. The gene expression of colon tissue was further determined, and the results showed that the synergistic effect of AX and L. fermentum HFY06 inhibited the activation of the NF-κB signaling pathway, downregulated the mRNA expression levels of nuclear factor-κB-p65 (NF-κBp65), upregulated the mRNA expression of NF-κB inhibitor-α (IκB-α), inhibited the release of cytokines tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2), and exerted anti-colitis effects. Conclusion This study shows that the synbiotic composed of AX and L. fermentum HFY06 has the potential to prevent and treat colitis.
Collapse
Affiliation(s)
- Fang Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Hui Huang
- Department of Pain Medicine, The Ninth People's Hospital of Chongqing, Chongqing, 400700, People's Republic of China
| | - Fulejia Zhu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| |
Collapse
|
31
|
Liao BW, Zhang HY, Du WT, Ran Y, Wang YY, Xu ZS. FAM177A1 Inhibits IL-1β-Induced Signaling by Impairing TRAF6-Ubc13 Association. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:3090-3097. [PMID: 34799425 DOI: 10.4049/jimmunol.2100561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
The proinflammatory cytokine IL-1β is a crucial mediator of inflammatory responses. IL-1β-induced signaling is finely regulated by various mechanisms, and its imbalance is involved in a variety of diseases. In this study, we identified FAM177A1, a protein of unknown function, as a negative regulator of IL-1β-induced signaling in human cells. Overexpression of FAM177A1 inhibited IL-1β-triggered activation of NF-κB and transcription of inflammatory genes, whereas knockdown of FAM177A1 showed the opposite effects. Mechanistically, FAM177A1 competitively bound to the E3 ubiquitin ligase TRAF6 and impaired its interaction with the E2-conjugating enzyme Ubc13; therefore, it inhibited TRAF6-mediated polyubiquitination and recruitment of downstream signaling molecules. These findings reveal a function of FAM177A1 and promote our understanding of the regulatory mechanisms of IL-1β-induced inflammatory responses.
Collapse
Affiliation(s)
- Bo-Wei Liao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Tian Du
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Yong Ran
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; and University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Wang X, He H, Rui W, Zhang N, Zhu Y, Xie X. TRIM38 triggers the uniquitination and degradation of glucose transporter type 1 (GLUT1) to restrict tumor progression in bladder cancer. J Transl Med 2021; 19:508. [PMID: 34906161 PMCID: PMC8670142 DOI: 10.1186/s12967-021-03173-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Loss-of-function mutations or abnormal expressions of E ubiquitin ligases contributes to tumorigenesis. TRIM38 was reported to regulate immunity, inflammatory responses or apoptosis, but its roles in tumor progression remain inconclusive. This study aimed to investigate the functional roles of TRIM38 in bladder cancer to identify effective targets. METHODS Firstly, the expression data of ubiquitination-associated genes were derived from the TCGA-BLCA cohort. Univariate Cox regression method was utilized to screen prognostic genes. Colony formation assay, Transwell assay, sphere formation assays were used to assess functional roles of TRIM38. TAP/MS assay was used to identify downstream substrates of TRIM38. Fresh clinical BLCA tissues were collected to evaluate the clinicopathological features of patients with different TRIM38 expression. The subcutaneous tumor models were established to determine the drug efficacy of BAY-876. RESULTS A list of ubiquitination-associated signature was identified based on the screening in TCGA-BLCA cohort. Subsequent validations revealed that TRIM38 was a significant suppressor in tumors, which was expressed lowly in BLCA. Kaplan-Meier analysis and correlation analysis suggested that patients with low TRIM38 expressions had shorter survival time and advanced clinical characteristics. Targeting TRIM38 reinforced BLCA cells proliferation, migration and stemness. Mechanistically, TRIM38 interacted with GLUT1, thereby promoting its ubiquitinoylation and degradation. Furthermore, TRIM38 deficiency relied on accumulated GLUT1 proteins to enhance BLCA malignant features and cellular glycolytic capacity. We accordingly investigated the efficacy of GLUT1 inhibitor (BAY-876) in BLCA and determined its IC50 values across cell lines. Tumor xenograft models further validated that BAY-876 could effectively suppress the in vivo growth of TRIM38low/- BLCA. CONCLUSIONS Our results suggested that TRIM38 plays a tumor suppressive role in BLCA pathogenesis and TRIM38/GLUT1 axis is a therapeutic vulnerability for clinical treatment, which possessing great translational significance.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Rui Jin 2nd Road, Shanghai, China
| | - Hongchao He
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Rui Jin 2nd Road, Shanghai, China
| | - Wenbin Rui
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Rui Jin 2nd Road, Shanghai, China
| | - Ning Zhang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Rui Jin 2nd Road, Shanghai, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Rui Jin 2nd Road, Shanghai, China.
| | - Xin Xie
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Rui Jin 2nd Road, Shanghai, China.
| |
Collapse
|
33
|
Roy M, Singh K, Shinde A, Singh J, Mane M, Bedekar S, Tailor Y, Gohel D, Vasiyani H, Currim F, Singh R. TNF-α-induced E3 ligase, TRIM15 inhibits TNF-α-regulated NF-κB pathway by promoting turnover of K63 linked ubiquitination of TAK1. Cell Signal 2021; 91:110210. [PMID: 34871740 DOI: 10.1016/j.cellsig.2021.110210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023]
Abstract
Ubiquitin E3-ligases are recruited at different steps of TNF-α-induced NF-κB activation; however, their role in temporal regulation of the pathway remains elusive. The study systematically identified TRIMs as potential feedback regulators of the TNF-α-induced NF-κB pathway. We further observed that TRIM15 is "late" response TNF-α-induced gene and inhibits the TNF-α-induced NF-κB pathway in several human cell lines. TRIM15 promotes turnover of K63-linked ubiquitin chains in a PRY/SPRY domain-dependent manner. TRIM15 interacts with TAK1 and inhibits its K63-linked ubiquitination, thus NF-κB activity. Further, TRIM15 interacts with TRIM8 and inhibits cytosolic translocation to antagonize TRIM8 modualted NF-κB. TRIM8 and TRIM15 also show functionally inverse correlation in psoriasis condition. In conclusion, TRIM15 is TNF-α-induced late response gene and inhibits TNF-α induced NF-κB pathway hence a feedback modulator to keep the proinflammatory NF-κB pathway under control.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Kritarth Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Sawani Bedekar
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Yamini Tailor
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
34
|
Zhao J, Cai B, Shao Z, Zhang L, Zheng Y, Ma C, Yi F, Liu B, Gao C. TRIM26 positively regulates the inflammatory immune response through K11-linked ubiquitination of TAB1. Cell Death Differ 2021; 28:3077-3091. [PMID: 34017102 PMCID: PMC8563735 DOI: 10.1038/s41418-021-00803-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Protein ubiquitination plays an important role in the regulation of TGF-β-activated kinase 1 (TAK1)-mediated NF-κB activation. It is well established that TAK1 activation is tightly regulated with its binding partners, TAK1-binding proteins (TAB1-3). However, the tight regulation of TAK1 activation remains elusive. Here, using Trim26-knockout mice and Trim26-transgenic mice, we found that TRIM26 acts as a positive regulator of TAK1 activation by ubiquitinating its binding partner TAB1. Knockout of Trim26 inhibited TAK1 activation and downstream kinases activation, thus decreasing the induction of proinflammatory cytokines following LPS, TNF-α, and IL-1β stimulation. Mechanistically, TRIM26 catalyzes the K11-linked polyubiquitination of TAB1 at Lys294, Lys319, and Lys335 to enhance the activation of TAK1 and subsequent NF-κB and MAPK signaling. Consequently, Trim26 deficiency protects mice from LPS-induced septic shock in vivo. Moreover, Trim26 deficiency attenuates the severity of dextran sodium sulfate (DSS)-induced colitis. Thus, these finding provides a novel insight into how TAK1 activation is regulated through TRIM26-mediated ubiquitination of TAB1 and reveals the new function of TRIM26 in the regulation of the inflammatory innate immune response.
Collapse
Affiliation(s)
- Jian Zhao
- grid.27255.370000 0004 1761 1174Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| | - Baoshan Cai
- grid.27255.370000 0004 1761 1174Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| | - Zhugui Shao
- grid.27255.370000 0004 1761 1174Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| | - Lei Zhang
- grid.27255.370000 0004 1761 1174Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| | - Yi Zheng
- grid.27255.370000 0004 1761 1174Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| | - Chunhong Ma
- grid.27255.370000 0004 1761 1174Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| | - Fan Yi
- grid.27255.370000 0004 1761 1174Department of Pharmacology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| | - Bingyu Liu
- grid.27255.370000 0004 1761 1174Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| | - Chengjiang Gao
- grid.27255.370000 0004 1761 1174Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong PR China
| |
Collapse
|
35
|
TRIM proteins in fibrosis. Biomed Pharmacother 2021; 144:112340. [PMID: 34678729 DOI: 10.1016/j.biopha.2021.112340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is an outcome of tissue repair after different types of injuries. The homeostasis of extracellular matrix is broken, and excessive deposition occurs, affecting the normal function of tissues and organs, which could become prostrated in serious cases.Finding a suitable target to regulate the repair process and reduce the damage caused by fibrosis is a hot research topic at present. The TRIM family is number of one of the E3 ubiquitin ligase subfamilies and participates in various biological processes including intracellular signal transduction, apoptosis, autophagy, and immunity by regulating the ubiquitination of target proteins. For the past few years, the important role of TRIM in the occurrence and development of fibrosis has been gradually revealed. In this review, we focus on the recent emerging topics on TRIM proteins in the regulation of fibrosis, fibrosis-related cytokines and pathways.
Collapse
|
36
|
Hu S, Li Y, Wang B, Peng K. TRIM38 protects chondrocytes from IL-1β-induced apoptosis and degeneration via negatively modulating nuclear factor (NF)-κB signaling. Int Immunopharmacol 2021; 99:108048. [PMID: 34426118 DOI: 10.1016/j.intimp.2021.108048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
Tripartite motif protein 38 (TRIM38) has been documented as a vital modulator of inflammation. However, the relevance of TRIM38 in osteoarthritis is not yet known. In this work, we aimed to explore any possible effects of TRIM38 on interleukin-1β (IL-1β)-stimulated chondrocytes, an in vitro cellular model of osteoarthritis. Analyzing our data showed significant decreases in the levels of TRIM38 in chondrocytes following IL-1β stimulation. Gain-of-function studies revealed that overexpression of TRIM38 markedly increased the viability of IL-1β-stimulated chondrocytes while decreasing their rate of apoptosis and degeneration. Conversely, depletion of TRIM38 enhanced the sensitivity of chondrocytes to IL-1β-induced injury. Further research demonstrated that TRIM38 was capable of inhibiting IL-1β-induced activation of nuclear factor (NF)-κB signaling. Reactivation of NF-κB markedly reversed TRIM38-overexpression-mediated effects, while inhibition of NF-κB significantly abolished TRIM38-depletion-induced effects in IL-1β-stimulated chondrocytes. In summary, the findings of this work suggest that TRIM38 is capable of ameliorating IL-1β-induced apoptosis and degeneration of chondrocytes via suppression of NF-κB signaling. Our work indicates a potential role of TRIM38 in osteoarthritis and proposes it as a new therapeutic target for osteoarthritis.
Collapse
Affiliation(s)
- Shouye Hu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province 710054, PR China
| | - Yanqi Li
- Department of Respiratory, Xi'an Children's Hospital, Xi'an, Shaanxi Province 710003, PR China
| | - Bo Wang
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province 710054, PR China
| | - Kan Peng
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province 710054, PR China.
| |
Collapse
|
37
|
CHIP promotes the activation of NF-κB signaling through enhancing the K63-linked ubiquitination of TAK1. Cell Death Discov 2021; 7:246. [PMID: 34535633 PMCID: PMC8448743 DOI: 10.1038/s41420-021-00637-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/15/2023] Open
Abstract
Transcriptional factor nuclear factor κB (NF-κB) can be activated by various intracellular or extracellular stimuli and its dysregulation leads to pathological conditions, such as neurodegenerative disorders, infection, and cancer. The carboxyl terminus of HSC70-interacting protein (CHIP), a pathogenic gene of spinocerebellar autosomal recessive 16 (SCAR16), plays an important roles in protein degradation, trafficking, and multiple signaling transductions. It has been reported that CHIP participates in the regulation of NF-κB signaling, and the mutant of CHIP (p.T246M) leads to the occurrence of SCAR16. However, the detailed mechanism of CHIP and CHIP (p.T246M) in the regulation of NF-κB signaling in neurological disorders remains unclear. Here, we found that CHIP promoted the activation of NF-κB signaling, while the knockdown had the opposite effect. Furthermore, CHIP interacted with TAK1 and targeted it for K63-linked ubiquitination. Finally, CHIP enhanced the interaction between TAK1 and NEMO. However, CHIP (p.T246M) couldn't upregulate NF-κB signaling, potentiate the ubiquitination of TAK1, and enhance the interactions. Taken together, our study demonstrated for the first time that CHIP positively regulates NF-κB signaling by targeting TAK1 and enhancing its K63-linked ubiquitination.
Collapse
|
38
|
Roy M, Singh R. TRIMs: selective recruitment at different steps of the NF-κB pathway-determinant of activation or resolution of inflammation. Cell Mol Life Sci 2021; 78:6069-6086. [PMID: 34283248 PMCID: PMC11072854 DOI: 10.1007/s00018-021-03900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
TNF-α-induced NF-κB pathway is an essential component of innate and adaptive immune pathway, and it is tightly regulated by various post-translational modifications including ubiquitination. Oscillations in NF-κB activation and temporal gene expression are emerging as critical determinants of inflammatory response, however, the regulators of unique outcomes in different patho-physiological conditions are not well understood. Tripartite Motif-containing proteins (TRIMs) are RING domain-containing E3 ligases involved in the regulation of cellular homeostasis, metabolism, cell death, inflammation, and host defence. Emerging reports suggest that TRIMs are recruited at different steps of TNF-α-induced NF-κB pathway and modulate via their E3 ligase activity. TRIMs show synergy and antagonism in the regulation of the NF-κB pathway and also regulate it in a feedback manner. TRIMs also regulate pattern recognition receptors (PRRs) mediated inflammatory pathways and may have evolved to directly regulate a specific arm of immune signalling. The review emphasizes TRIM-mediated ubiquitination and modulation of TNF-α-regulated temporal and NF-κB signaling and its possible impact on unique transcriptional and functional outcomes.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
39
|
Gu Z, Chen X, Yang W, Qi Y, Yu H, Wang X, Gong Y, Chen Q, Zhong B, Dai L, Qi S, Zhang Z, Zhang H, Hu H. The SUMOylation of TAB2 mediated by TRIM60 inhibits MAPK/NF-κB activation and the innate immune response. Cell Mol Immunol 2021; 18:1981-1994. [PMID: 33184450 PMCID: PMC8322076 DOI: 10.1038/s41423-020-00564-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/27/2020] [Indexed: 02/05/2023] Open
Abstract
Activation of the TAK1 signalosome is crucial for mediating the innate immune response to pathogen invasion and is regulated by multiple layers of posttranslational modifications, including ubiquitination, SUMOylation, and phosphorylation; however, the underlying molecular mechanism is not fully understood. In this study, TRIM60 negatively regulated the formation and activation of the TAK1 signalosome. Deficiency of TRIM60 in macrophages led to enhanced MAPK and NF-κB activation, accompanied by elevated levels of proinflammatory cytokines but not IFN-I. Immunoprecipitation-mass spectrometry assays identified TAB2 as the target of TRIM60 for SUMOylation rather than ubiquitination, resulting in impaired formation of the TRAF6/TAB2/TAK1 complex and downstream MAPK and NF-κB pathways. The SUMOylation sites of TAB2 mediated by TRIM60 were identified as K329 and K562; substitution of these lysines with arginines abolished the SUMOylation of TAB2. In vivo experiments showed that TRIM60-deficient mice showed an elevated immune response to LPS-induced septic shock and L. monocytogenes infection. Our data reveal that SUMOylation of TAB2 mediated by TRIM60 is a novel mechanism for regulating the innate immune response, potentially paving the way for a new strategy to control antibacterial immune responses.
Collapse
Affiliation(s)
- Zhiwen Gu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xueying Chen
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu Qi
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiaomeng Wang
- Department of Virology, College of Life Sciences, Department of Immunology, Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Yanqiu Gong
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Qianqian Chen
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Zhong
- Department of Virology, College of Life Sciences, Department of Immunology, Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Lunzhi Dai
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, USA, 77030.
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
40
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
41
|
Wang R, Zheng Z, Mao S, Zhang W, Liu J, Li C, Liu S, Yao X. Construction and Validation of a Novel Eight-Gene Risk Signature to Predict the Progression and Prognosis of Bladder Cancer. Front Oncol 2021; 11:632459. [PMID: 34268106 PMCID: PMC8276675 DOI: 10.3389/fonc.2021.632459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The progression from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) increases the risk of death. It is therefore important to find new relevant molecular models that will allow for effective prediction of the progression and prognosis of bladder cancer (BC). Using RNA-Sequence data of 49 BC patients in Shanghai tenth people's hospital (STPH) and weighted gene co-expression network analysis methods, a co-expression network of genes was developed and three key modules associated with malignant progression were selected. Based on the genes in three key modules, an eight-gene risk signature was established using univariate Cox regression and the Least absolute shrinkage and selection operator Cox model in The Cancer Genome Atlas Program (TCGA) and validated in validation sets. Subsequently, a nomogram based on the risk signature was constructed for prognostic prediction. The mRNA and protein expression levels of eight genes in cell lines and tissues were further investigated. The novel eight-gene risk signature was closely related to the malignant clinical features of BC and could predict the prognosis of patients in the training dataset (TCGA) and four validation sets (GSE32894, GSE13507, IMvigor210 trial, and STPH). The nomogram showed good prognostic prediction and calibration. The mRNA and protein expression levels of the eight genes were differentially expressed in cell lines and tissues. In our study, we established a novel eight-gene risk signature that could predict the progression and prognoses of BC patients.
Collapse
Affiliation(s)
- Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongtai Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Jin Z, Zhu Z. The role of TRIM proteins in PRR signaling pathways and immune-related diseases. Int Immunopharmacol 2021; 98:107813. [PMID: 34126340 DOI: 10.1016/j.intimp.2021.107813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022]
Abstract
Pattern recognition receptors (PRRs) are a kind of recognition molecules mainly expressed on innate immune cells. PRRs recognize one or more kinds of pathogen-associated molecular patterns (PAMPs), inducing the production of interleukin (IL), tumor necrosis factor (TNF), interferon (IFN) and other related cytokines to aggravate immune-related diseases. PPR signaling pathways play an important role in both innate and adaptive immune system, and they are easy to be activated or regulated. Tripartite motif (TRIM) proteins are a group of highly conserved proteins in structure. Most of TRIM proteins contain RING domain, which is thought to play a role in ubiquitination. TRIM proteins are involved in viral immunity, inflammatory response, autophagy, and tumor growth. In this review, we focus on the regulation of TRIM proteins on PRR signaling pathways and their roles in immune-related diseases.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern, Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
43
|
Jia X, Zhao C, Zhao W. Emerging Roles of MHC Class I Region-Encoded E3 Ubiquitin Ligases in Innate Immunity. Front Immunol 2021; 12:687102. [PMID: 34177938 PMCID: PMC8222901 DOI: 10.3389/fimmu.2021.687102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
The major histocompatibility complex (MHC) class I (MHC-I) region contains a multitude of genes relevant to immune response. Multiple E3 ubiquitin ligase genes, including tripartite motif 10 (TRIM10), TRIM15, TRIM26, TRIM27, TRIM31, TRIM38, TRIM39, TRIM40, and RING finger protein 39 (RNF39), are organized in a tight cluster, and an additional two TRIM genes (namely TRIM38 and TRIM27) telomeric of the cluster within the MHC-I region. The E3 ubiquitin ligases encoded by these genes possess important roles in controlling the intensity of innate immune responses. In this review, we discuss the E3 ubiquitin ligases encoded within the MHC-I region, highlight their regulatory roles in innate immunity, and outline their potential functions in infection, inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyuan Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
44
|
Huang C, Liu Q, Tang Q, Jing X, Wu T, Zhang J, Zhang G, Zhou J, Zhang Z, Zhao Y, Huang H, Xia Y, Yan J, Xiao J, Li Y, He J. Hepatocyte-specific deletion of Nlrp6 in mice exacerbates the development of non-alcoholic steatohepatitis. Free Radic Biol Med 2021; 169:110-121. [PMID: 33857628 DOI: 10.1016/j.freeradbiomed.2021.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Previous studies have established that deficiency in Nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain containing 6 (Nlrp6) changes the configuration of the gut microbiota, which leads to hepatic steatosis. Here, we aimed to determine the hepatic function of Nlrp6 in lipid metabolism and inflammation and its role in the development of non-alcoholic steatohepatitis (NASH). METHODS Nlrp6Loxp/Loxp and hepatocyte-specific Nlrp6-knockout mice were fed a high-fat diet (HFD) or methionine-choline deficient (MCD) diet to induce fatty liver or steatohepatitis, respectively. Primary hepatocytes were isolated to further explore the underlying mechanisms in vitro. In addition, we used adenovirus to overexpress Nlrp6 in ob/ob mice to demonstrate its role in NASH. RESULTS Hepatic Nlrp6 expression was downregulated in NASH patients and in obese mice. Hepatocyte-specific Nlrp6 deficiency promoted HFD- or MCD diet-induced lipid accumulation and inflammation, whereas Nlrp6 overexpression in ob/ob mice had beneficial effects. In vitro studies demonstrated that knockdown of Nlrp6 aggravated hepatic steatosis and inflammation in hepatocytes, but its overexpression markedly attenuated these abnormalities. Moreover, both in vitro and in vivo study demonstrated that Nlrp6 inhibited Cd36-mediated lipid uptake. Nlrp6 deficiency-enhanced fatty acid uptake was blocked by a Cd36 inhibitor in hepatocytes. Nlrp6 ablation increased the expression of proinflammatory cytokines, likely as a result of increased NF-κB phosphorylation and activation. Mechanistically, Nlrp6 promoted the degradation of transforming growth factor-β-activated kinase 1 (TAK1)-binding protein 2/3 (TAB2/3) via a lysosomal-dependent pathway, which suppressed NF-κB activation. CONCLUSIONS Nlrp6 may play a key role in the pathological process of NASH by inhibiting Cd36 and NF-κB pathways. It may be a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Cuiyuan Huang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhang Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Guorong Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Zhou
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zijing Zhang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yingnan Zhao
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Huang
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiamin Yan
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia Xiao
- Clinical Research Institute, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Jinhan He
- Department of Pharmacy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
45
|
Yao L, Xu L, Zhou L, Wu S, Zou W, Chen M, Chen J, Peng H. Toxoplasma gondii Type-I ROP18 Targeting Human E3 Ligase TRIM21 for Immune Escape. Front Cell Dev Biol 2021; 9:685913. [PMID: 34124071 PMCID: PMC8187923 DOI: 10.3389/fcell.2021.685913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an intracellular pathogen that exerts its virulence through inhibiting host’s innate immune responses, which is mainly related to the type II interferon (IFN-γ) response. IFN-γ inducible tripartite motif 21 (TRIM21), an E3 ligase, plays an important role in anti-infection responses against the intracellular pathogens including bacteria, virus, and parasite. We found that T. gondii virulence factor ROP18 of the type I RH strain (TgROP18I) interacted with human TRIM21, and promoted the latter’s phosphorylation, which subsequently accelerated TRIM21 degradation through lysosomal pathway. Furthermore, TRIM21 protein level was found to be upregulated during RH and CEP strains of T. gondii infection. TRIM21 knocking down reduced the ubiquitin labeling on the parasitophorous vacuole membrane (PVM) [which led to parasitophorous vacuole (PV) acidification and death of CEP tachyzoites], and relieved the inhibition of CEP proliferation induced by IFN-γ in human foreskin fibroblast (HFF) cells which was consistent with the result of TRIM21 overexpression. On the other hand, TRIM21 overexpression enhanced the inhibition of CEP proliferation, and inhibited the binding of IκB-α with p65 to activate the IFN-γ-inducible NF-κB pathway, which might be resulted by TRIM21-IκB-α interaction. In brief, our research identified that in human cells, IFN-γ-inducible TRIM21 functioned in the innate immune responses against type III T. gondii infection; however, TgROP18I promoted TRIM21 phosphorylation, leading to TRIM21 degradation for immune escape in type I strain infection.
Collapse
Affiliation(s)
- Lijie Yao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liqing Xu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijuan Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuizhen Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weihao Zou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiating Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongjuan Peng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A 2021; 118:2015416118. [PMID: 33431678 DOI: 10.1073/pnas.2015416118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor κB (NF-κB)-mediated signaling pathway plays a crucial role in the regulation of inflammatory process, innate and adaptive immune responses. The hyperactivation of inflammatory response causes host cell death, tissue damage, and autoinflammatory disorders, such as sepsis and inflammatory bowel disease. However, how these processes are precisely controlled is still poorly understood. In this study, we demonstrated that ankyrin repeat and suppressor of cytokine signaling box containing 1 (ASB1) is involved in the positive regulation of inflammatory responses by enhancing the stability of TAB2 and its downstream signaling pathways, including NF-κB and mitogen-activated protein kinase pathways. Mechanistically, unlike other members of the ASB family that induce ubiquitination-mediated degradation of their target proteins, ASB1 associates with TAB2 to inhibit K48-linked polyubiquitination and thereby promote the stability of TAB2 upon stimulation of cytokines and lipopolysaccharide (LPS), which indicates that ASB1 plays a noncanonical role to further stabilize the target protein rather than induce its degradation. The deficiency of Asb1 protects mice from Salmonella typhimurium- or LPS-induced septic shock and increases the survival of mice. Moreover, Asb1-deficient mice exhibited less severe colitis and intestinal inflammation induced by dextran sodium sulfate. Given the crucial role of ASB proteins in inflammatory signaling pathways, our study offers insights into the immune regulation in pathogen infection and inflammatory disorders with therapeutic implications.
Collapse
|
47
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
48
|
Lei H, Ma Y, Tan J, Liu Q. Helicobacter pylori Regulates the Apoptosis of Human Megakaryocyte Cells via NF-κB/IL-17 Signaling. Onco Targets Ther 2021; 14:2065-2074. [PMID: 33776453 PMCID: PMC7989681 DOI: 10.2147/ott.s268056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/12/2020] [Indexed: 01/15/2023] Open
Abstract
Objective To investigate the role of Helicobacter pylori (HP) on the regulation of NF-κB/IL-17 signaling, mechanisms underlying apoptosis in human megakaryocyte cell lines Dami. Methods Firstly, the mouse model of immune thrombocytopenia (ITP) was established. Then, the mice were subjected to gastric perfusion with HP. Next, the changes in platelet and bone marrow megakaryocyte classification were assessed in each group. Human megakaryocyte Dami cells were treated with HP in vitro for 3, 6, or 9 h; and the rates of apoptosis in each group were then evaluated with flow cytometry. Fluorescent quantitative PCR and Western blotting were implemented for assessing the expression of Bcl-2 and Bax, which are related to apoptosis, and p65, which is associated with the NF-κB pathway. The expression of these proteins was also evaluated after treatment with PDTC, an inhibitor of the NF-κB pathway inhibitor. Results In vivo, exogenous administration of HP was found to increase the optical density value for the anti-HP antibody in HP-infected BALB/c mice. Meanwhile, the platelet counts in the HP-infected ITP mice model were significantly reduced compared with non-infected ITP mice. In vitro, the apoptotic rate of Dami cells increased gradually with the prolongation of the exposure to HP; the most noticeable change was at 6 h, and there was a significant difference between 0 h and 6 h. The expression of Bax, p-p65, and IL-17 also increased progressively with the prolongation HP exposure, while the expression of anti-apoptotic Bcl-2 protein decreased gradually, especially at 6 h, and the expression of total p65 did not change significantly compared with baseline. Anecdotally, these effects were reversed by the application of pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB signaling. Conclusion HP can promote platelet destruction in ITP mice, and the underlying mechanisms may be related to accelerating apoptosis of megakaryocytes by the activation of the NF-κB/IL-17 pathway.
Collapse
Affiliation(s)
- Huyi Lei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Shao Xing University (Shao Xing Municipal Hospital), Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yongyong Ma
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jie Tan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
49
|
Shen Z, Wei L, Yu ZB, Yao ZY, Cheng J, Wang YT, Song XT, Li M. The Roles of TRIMs in Antiviral Innate Immune Signaling. Front Cell Infect Microbiol 2021; 11:628275. [PMID: 33791238 PMCID: PMC8005608 DOI: 10.3389/fcimb.2021.628275] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
The Tripartite motif (TRIM) protein family, which contains over 80 members in human sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated in regulating various cellular functions, including cell cycle process, autophagy, and immune response. The dysfunction of TRIMs may lead to numerous diseases, such as systemic lupus erythematosus (SLE). Lots of studies in recent years have demonstrated that many TRIM proteins exert antiviral roles. TRIM proteins could affect viral replication by regulating the signaling pathways of antiviral innate immune responses. Besides, TRIM proteins can directly target viral components, which can lead to the degradation or functional inhibition of viral protein through degradative or non-degradative mechanisms and consequently interrupt the viral lifecycle. However, new evidence suggests that some viruses may manipulate TRIM proteins for their replication. Here, we summarize the latest discoveries on the interactions between TRIM protein and virus, especially TRIM proteins’ role in the signaling pathway of antiviral innate immune response and the direct “game” between them.
Collapse
Affiliation(s)
- Zhou Shen
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China.,Center Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Bo Yu
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Zhi-Yan Yao
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Jing Cheng
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Tong Wang
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Tian Song
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Miao Li
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
50
|
Chen SY, Zhang HP, Li J, Shi JH, Tang HW, Zhang Y, Zhang JK, Wen PH, Wang ZH, Shi XY, He YT, Hu BW, Yang H, Guo WZ, Zhang SJ. Tripartite Motif-Containing 27 Attenuates Liver Ischemia/Reperfusion Injury by Suppressing Transforming Growth Factor β-Activated Kinase 1 (TAK1) by TAK1 Binding Protein 2/3 Degradation. Hepatology 2021; 73:738-758. [PMID: 32343849 PMCID: PMC7898667 DOI: 10.1002/hep.31295] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (I/R) injury, which mainly involves inflammatory responses and apoptosis, is a common cause of organ dysfunction in liver transplantation (LT). As a critical mediator of inflammation and apoptosis in various cell types, the role of tripartite motif-containing (TRIM) 27 in hepatic I/R injury remains worthy of study. APPROACH AND RESULTS This study systemically evaluated the putative role of TRIM27/transforming growth factor β-activated kinase 1 (TAK1)/JNK (c-Jun N-terminal kinase)/p38 signaling in hepatic I/R injury. TRIM27 expression was significantly down-regulated in liver tissue from LT patients, mice subjected to hepatic I/R surgery, and hepatocytes challenged by hypoxia/reoxygenation (H/R) treatment. Subsequently, using global Trim27 knockout mice (Trim27-KO mice) and hepatocyte-specific Trim27 transgenic mice (Trim27-HTG mice), TRIM27 functions to ameliorate liver damage, reduce the inflammatory response, and prevent cell apoptosis. In parallel in vitro studies, activating TRIM27 also prevented H/R-induced hepatocyte inflammation and apoptosis. Mechanistically, TRIM27 constitutively interacted with the critical components, TAK1 and TAK1 binding protein 2/3 (TAB2/3), and promoted the degradation of TAB2/3, leading to inactivation of TAK1 and the subsequent suppression of downstream JNK/p38 signaling. CONCLUSIONS TRIM27 is a key regulator of hepatic I/R injury by mediating the degradation of TAB2/3 and suppression of downstream TAK1-JNK/p38 signaling. TRIM27 may be a promising approach to protect the liver against I/R-mediated hepatocellular damage in transplant recipients.
Collapse
Affiliation(s)
- San-Yang Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Hua-Peng Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Jie Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Hong-Wei Tang
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Zhi-Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Xiao-Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Yu-Ting He
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Bo-Wen Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Han Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina.,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouChina.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouChina
| |
Collapse
|