1
|
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis 2025; 12:101435. [PMID: 40290126 PMCID: PMC12022651 DOI: 10.1016/j.gendis.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
MYC is dysregulated in approximately 70% of human cancers, strongly suggesting its essential function in cancer. MYC regulates many biological processes, such as cell cycle, metabolism, cellular senescence, apoptosis, angiogenesis, and immune escape. MYC plays a central role in carcinogenesis and is a key regulator of tumor development and drug resistance. Therefore, MYC is one of the most alluring therapeutic targets for developing cancer drugs. Although the search for direct inhibitors of MYC is challenging, MYC cannot simply be assumed to be undruggable. Targeting the MYC-MAX complex has been an effective method for directly targeting MYC. Alternatively, indirect targeting of MYC represents a more pragmatic therapeutic approach, mainly including inhibition of the transcriptional or translational processes of MYC, destabilization of the MYC protein, and blocking genes that are synthetically lethal with MYC overexpression. In this review, we delineate the multifaceted roles of MYC in cancer progression, highlighting a spectrum of therapeutic strategies and inhibitors for cancer therapy that target MYC, either directly or indirectly.
Collapse
Affiliation(s)
- Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Liu D, Jiang Y, Ma B, Li L. Structure-based artificial intelligence-aided design of MYC-targeting degradation drugs for cancer therapy. Biochem Biophys Res Commun 2025; 766:151870. [PMID: 40288261 DOI: 10.1016/j.bbrc.2025.151870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The MYC protein is an oncoprotein that plays a crucial role in various cancers. Although its significance has been well recognized in research, the development of drugs targeting MYC remains relatively slow. In this study, we developed a novel MYC peptide inhibitor based on the MYC/MAX dimer structure, integrating artificial intelligence-assisted peptide drug design. Additionally, we introduced a chaperone-mediated autophagy signal to construct a MYC-targeted degradation drug, MYC-LYSO. By incorporating nano-selenium delivery, we further formulated an enhanced MYC degradation agent, Se-MYC-LYSO. Se-MYC-LYSO demonstrated potent efficacy in inducing MYC degradation, inhibiting tumor cell proliferation, and promoting apoptosis. Moreover, our findings indicate that the efficacy of Se-MYC-LYSO is dependent on the autophagy pathway. These results provide a novel strategy for targeting MYC in cancer therapy.
Collapse
Affiliation(s)
- Donghua Liu
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yize Jiang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Wang S, Han P, Mi P, Wang C, Lu M, Li X, Xu B, Wang H, Gao Y, Hou Y, Tan X, Liang J, Ding X, Zhang Y, Zhang T, Yuan D, Gao L, Zhang C. The Role of the Hexosamine-Sialic Acid Metabolic Pathway Mediated by GFPT1/NANS in c-Myc-Driven Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2025:101523. [PMID: 40280277 DOI: 10.1016/j.jcmgh.2025.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) frequently involves metabolic reprogramming, which promotes oncogenesis and metastasis. However, the underlying molecular mechanisms remain insufficiently explored. In this study, we aim to investigate the metabolic abnormalities in c-Myc-driven HCC development and their potential therapeutic implications. METHODS RNA sequencing and metabolomics were performed on HCC and adjacent tissues in a murine HCC model established by hydrodynamic tail-vein injection of c-Myc and sgTrp53/Cas9 plasmids. Key catalytic enzyme gene knockout was used to assess tumor formation and murine survival. Gene expression was analyzed using quantitative polymerase chain reaction, immunohistochemistry, and Western blot. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction and luciferase assays verified c-Myc regulation. RESULTS RNA sequencing data revealed that the hexosamine biosynthetic pathway was significantly activated in c-Myc-driven HCC. The rate-limiting enzyme GFPT1 (rather than GFPT2) was up-regulated in the first step of this pathway. Knocking out GFPT1 reduces tumor growth and prolongs murine survival. Human specimens showed that GFPT1 was overexpressed in HCC tissues and was associated with advanced Edmondson-Steiner grades and short patient survival. Further luciferase reporter assays confirmed that c-Myc binds directly to the promoter region of GFPT1 and activates its transcription. Subsequent examination of the downstream pathways of the hexosamine biosynthetic pathway showed that the sialic acid synthesis (but not O-GlcNac glycosylation) pathway was enhanced, which was mediated by a key enzyme, N-acetylneuraminic acid synthase. Knockout of N-acetylneuraminic acid synthase also inhibits tumor growth and extends murine survival in c-Myc-driven HCC models. CONCLUSIONS These findings indicate that the activation of the hexosamine biosynthetic pathway/sialic acid pathway is an important mechanism underlying the development of c-Myc-driven HCC. Inhibitors of GFPT1, along with anti- N-acetylneuraminic acid synthase may offer a promising therapeutic strategy.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunxue Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China; Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miao Lu
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Xu
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Haoran Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingchen Gao
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China
| | - Yanlei Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueying Tan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingguo Zhang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Gao
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Cuijuan Zhang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Boyd SR, Chamakuri S, Trostle AJ, Chen H, Liu Z, Jian A, Wang J, Malovannaya A, Young DW. MYC-Targeting PROTACs Lead to Bimodal Degradation and N-Terminal Truncation. ACS Chem Biol 2025; 20:896-906. [PMID: 40146931 DOI: 10.1021/acschembio.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
MYC is a master regulatory transcription factor whose sustained dysregulation promotes the initiation and maintenance of numerous cancers. While MYC is a regarded as a potenial therapeutic target in cancer, its intrinsically disordered structure has proven to be a formidable barrier toward the development of highly effective small molecule inhibitors. We rationalized that proteolysis targeting chimeras (PROTACs), which might accomplish the targeted degradation of MYC, would achieve more potent cell killing in MYC-driven cancer cells than reversible inhibitors. PROTACs are bifunctional small molecules designed to produce a ternary complex between a target protein and an E3 ligase leading the target's ubiquitination and degradation by the 26S proteasome. We generated PROTAC MTP3 based on modifications of the previously reported MYC-targeting compound KJ-Pyr-9. We found that MTP3 depletes endogenous full-length MYC proteins and uniquely induces increasing levels of a functional, N-terminally truncated MYC species, tMYC. Furthermore, MTP3 perturbs cellular MYC levels in favor of a tMYC-dominated state whose gene regulatory landscape is not significantly altered compared to that of wild type MYC. Moreover, although it lacks ∼10 kDa of MYC's N-terminal transactivation domain, tMYC is sufficient to maintain an oncogenic proliferative state. Our results highlight the complexities of proximity-inducing compounds against highly regulated and conformationally dynamic protein targets such as MYC and indicate that PROTACs can induce alternative outcomes beyond target protein degradation.
Collapse
Affiliation(s)
- Shelton R Boyd
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Alexander J Trostle
- Department of Pediatrics─Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Hu Chen
- Department of Pediatrics─Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Zhandong Liu
- Department of Pediatrics─Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Antrix Jian
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| |
Collapse
|
5
|
Jiang Z, Allkanjari MS, Chung PED, Tran H, Ghanbari-Azarnier R, Wang DY, Lin DJ, Min JY, Ben-David Y, Zacksenhaus E. Recent Advances in Pineoblastoma Research: Molecular Classification, Modelling and Targetable Vulnerabilities. Cancers (Basel) 2025; 17:720. [PMID: 40075567 PMCID: PMC11898778 DOI: 10.3390/cancers17050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Pineoblastoma (PB) is a rare yet lethal pediatric brain cancer of the pineal gland, a small endocrine organ that secretes melatonin to regulate the circadian rhythm. For PB patients ≤5 years of age, the overall survival rate is approximately 15%; metastatic PB is incurable. Standard treatment, including surgical resection, radiation, and systemic chemotherapy, improves survival but compromises neurocognitive function. A better understanding of the disease and the generation of preclinical models may enable re-evaluation of previous clinical trials, development of precision therapeutic strategies and improve patient outcome. Over the past 5 years, PB has been recognized to include several major subtypes driven by (i) loss of microRNA processing factors DICER and DROSHA characterized by a relatively good prognosis; (ii) loss of the retinoblastoma tumor suppressor RB1; and (iii) amplification or induction of the cMYC protooncogene, with the latter two subtypes exhibiting exceedingly poor prognosis. Recently, mouse models for the major PB subtypes (RB1-, DICER1- and DROSHA-) except MYC- have been established. This progress, including better understanding of the disease, cell of origin, tumor progression, role of autophagy, and targetable vulnerabilities, holds promise for novel therapeutic strategies to combat each subtype of this lethal childhood malignancy.
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
| | - Michelle S. Allkanjari
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
| | - Philip E. D. Chung
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
| | - Hanna Tran
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
| | - Dong-Yu Wang
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
| | - Daniel J. Lin
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
| | - Jung Yeon Min
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550004, China
| | - Eldad Zacksenhaus
- Toronto General Research Institute, University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada; (M.S.A.); (H.T.); (R.G.-A.); (D.-Y.W.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
6
|
Pont M, Marqués M, Sorolla A. Latest Therapeutical Approaches for Triple-Negative Breast Cancer: From Preclinical to Clinical Research. Int J Mol Sci 2024; 25:13518. [PMID: 39769279 PMCID: PMC11676458 DOI: 10.3390/ijms252413518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) represents roughly one-sixth of all breast cancer patients, but accounts for 30-40% of breast cancer deaths. Due to the lack of typical biomarkers exploited clinically for breast cancer, it remains very difficult to treat. Moreover, its intrinsic high heterogeneity and proneness to become resistant to the drugs administered makes the treatment management very challenging for oncologists. Herein, we outline the different therapies used currently for TNBC and list the ongoing clinical trials to provide an overview of the most recent TNBC therapeutic landscape. In addition, we highlight the emerging therapies in the preclinical stage that hold the most promise, such as epigenetic modulators, CRISPR, miniproteins, radioconjugates, cancer vaccines, and PROTACs. Moreover, we navigate through the existing limitations and challenges which hamper the development of new and more effective treatments for TNBC. Lastly, we point to emerging new directions that may revolutionize future therapy for TNBC.
Collapse
Affiliation(s)
- Mariona Pont
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Marta Marqués
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.)
| |
Collapse
|
7
|
Shah K, Ansari M, Saeed S, Wali A, Mushtaq Yasinzai M. Nilotinib: Disrupting the MYC-MAX Heterocomplex. Bioinform Biol Insights 2024; 18:11779322241267056. [PMID: 39081669 PMCID: PMC11287739 DOI: 10.1177/11779322241267056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
MYC is a transcription factor crucial for maintaining cellular homeostasis, and its dysregulation is associated with highly aggressive cancers. Despite being considered "undruggable" due to its unstable protein structure, MYC gains stability through its interaction with its partner protein, MAX. The MYC-MAX heterodimer orchestrates the expression of numerous genes that contribute to an oncogenic phenotype. Previous efforts to develop small molecules, disrupting the MYC-MAX interaction, have shown promise in vitro but none have gained clinical approval. Our current computer-aided study utilizes an approach to explore drug repurposing as a strategy for inhibiting the c-MYC-MAX interaction. We have focused on compounds from DrugBank library, including Food and Drug Administration-approved drugs or those under investigation for other medical conditions. First, we identified a potential druggable site on flat interface of the c-MYC protein, which served as the target for virtual screening. Using both activity-based and structure-based screening, we comprehensively assessed the entire DrugBank library. Structure-based virtual screening was performed on AutoDock Vina and Glide docking tools, while activity-based screening was performed on two independent quantitative structure-activity relationship models. We focused on the top 2% of hit molecules from all screening methods. Ultimately, we selected consensus molecules from these screenings-those that exhibited both a stable interaction with c-MYC and superior inhibitory activity against c-MYC-MAX interaction. Among the evaluated molecules, we identified a protein kinase inhibitor (tyrosine kinase inhibitor [TKI]) known as nilotinib as a promising candidate targeting c-MYC-MAX dimer. Molecular dynamic simulations demonstrated a stable interaction between MYC and nilotinib. The interaction with nilotinib led to the stabilization of a region of the MYC protein that is distorted in apo-MYC and is important for MAX binding. Further analysis of differentially expressed gene revealed that nilotinib, uniquely among the tested TKIs, induced a gene expression program in which half of the genes were known to be responsive to c-MYC. Our findings provide the foundation for subsequent in vitro and in vivo investigations aimed at evaluating the efficacy of nilotinib in managing MYC oncogenic activity.
Collapse
Affiliation(s)
| | | | - Samina Saeed
- Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Mushtaq Yasinzai
- Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| |
Collapse
|
8
|
Zhao C, Zhao F, Yang L, Wang Y, Wang H, Fang F, Zuo H, Li Z, He G, Zhan W, Ma X. Directly Suppressing MYC Function with Novel Alkynyl-Substituted Phenylpyrazole Derivatives that Induce Protein Degradation and Perturb MYC/MAX Interaction. J Med Chem 2024; 67:11751-11768. [PMID: 38989847 DOI: 10.1021/acs.jmedchem.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Despite being a highly sought-after therapeutic target for human malignancies, myelocytomatosis viral oncogene homologue (MYC) has been considered intractable due to its intrinsically disordered nature, making the discovery of in vivo effective inhibitors that directly block its function challenging. Herein, we report structurally novel alkynyl-substituted phenylpyrazole derivatives directly perturbing MYC function. Among them, compound 37 exhibited superior antiproliferative activities to those of MYCi975 against multiple malignant cell lines. It induced dose-dependent MYC degradation in cells with degradation observed at the concentration as low as 1.0 μM. Meanwhile, its direct suppression of MYC function was confirmed by the capability to inhibit the binding of MYC/MYC-associated protein X (MAX) heterodimer to DNA consensus sequence, induce MYC thermal instability, and disturb MYC/MAX interaction. Moreover, 37 demonstrated enhanced therapeutic efficacy over MYCi975 in a mouse allograft model of prostate cancer. Overall, 37 deserves further development for exploring MYC-targeting cancer therapeutics.
Collapse
Affiliation(s)
- Can Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liuqing Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Henian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Haojie Zuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhi Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ge He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenhu Zhan
- iCarbonX (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Xiaodong Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
9
|
Luo H, Li Q, Hong J, Huang Z, Deng W, Wei K, Lu S, Wang H, Zhang W, Liu W. Targeting TNF/IL-17/MAPK pathway in h E2A-PBX1 leukemia: effects of OUL35, KJ-Pyr-9, and CID44216842. Haematologica 2024; 109:2092-2110. [PMID: 38385270 PMCID: PMC11215385 DOI: 10.3324/haematol.2023.283647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
t(1;19)(q23;p13) is one of the most common translocation genes in childhood acute lymphoblastic leukemia (ALL) and is also present in acute myeloid leukemia (AML) and mixed-phenotype acute leukemia (MPAL). This translocation results in the formation of the oncogenic E2A-PBX1 fusion protein, which contains a trans-activating domain from E2A and a DNA-binding homologous domain from PBX1. Despite its clear oncogenic potential, the pathogenesis of E2A-PBX1 fusion protein is not fully understood (especially in leukemias other than ALL), and effective targeted clinical therapies have not been developed. To address this, we established a stable and heritable zebrafish line expressing human E2A-PBX1 (hE2A-PBX1) for high-throughput drug screening. Blood phenotype analysis showed that hE2A-PBX1 expression induced myeloid hyperplasia by increasing myeloid differentiation propensity of hematopoietic stem cells (HSPC) and myeloid proliferation in larvae, and progressed to AML in adults. Mechanistic studies revealed that hE2A-PBX1 activated the TNF/IL-17/MAPK signaling pathway in blood cells and induced myeloid hyperplasia by upregulating the expression of runx1. Interestingly, through high-throughput drug screening, three small molecules targeting the TNF/IL-17/MAPK signaling pathway were identified, including OUL35, KJ-Pyr-9, and CID44216842, which not only alleviated the hE2A-PBX1-induced myeloid hyperplasia in zebrafish but also inhibited the growth and oncogenicity of human pre-B ALL cells with E2A-PBX1. Overall, this study provides a novel hE2APBX1 transgenic zebrafish leukemia model and identifies potential targeted therapeutic drugs, which may offer new insights into the treatment of E2A-PBX1 leukemia.
Collapse
MESH Headings
- Animals
- Humans
- Animals, Genetically Modified
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Proliferation/drug effects
- Homeodomain Proteins
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/drug therapy
- Leukemia/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- MAP Kinase Signaling System/drug effects
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Haiping Luo
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006
| | - Qiqi Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006
| | - Jiaxin Hong
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006
| | - Wenhui Deng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006
| | - Kunpeng Wei
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006
| | - Siyu Lu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006
| | - Hailong Wang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China; Department of Basic Research, Guangzhou Laboratory, Guangzhou 510320
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006.
| | - Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006.
| |
Collapse
|
10
|
Zhao W, Ouyang C, Huang C, Zhang J, Xiao Q, Zhang F, Wang H, Lin F, Wang J, Wang Z, Jiang B, Li Q. ELP3 stabilizes c-Myc to promote tumorigenesis. J Mol Cell Biol 2024; 15:mjad059. [PMID: 37771073 PMCID: PMC11054291 DOI: 10.1093/jmcb/mjad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
ELP3, the catalytic subunit of the Elongator complex, is an acetyltransferase and associated with tumor progression. However, the detail of ELP3 oncogenic function remains largely unclear. Here, we found that ELP3 stabilizes c-Myc to promote tumorigenesis in an acetyltransferase-independent manner. Mechanistically, ELP3 competes with the E3-ligase FBXW7β for c-Myc binding, resulting in the inhibition of FBXW7β-mediated ubiquitination and proteasomal degradation of c-Myc. ELP3 knockdown diminishes glycolysis and glutaminolysis and dramatically retards cell proliferation and xenograft growth by downregulating c-Myc, and such effects are rescued by the reconstitution of c-Myc expression. Moreover, ELP3 and c-Myc were found overexpressed with a positive correlation in colorectal cancer and hepatocellular carcinoma. Taken together, we elucidate a new function of ELP3 in promoting tumorigenesis by stabilizing c-Myc, suggesting that inhibition of ELP3 is a potential strategy for treating c-Myc-driven carcinomas.
Collapse
Affiliation(s)
- Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Cong Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaojiao Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qiao Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengqiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huihui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Chen S, Lu Z, Zhao Y, Xia L, Liu C, Zuo S, Jin M, Jia H, Li S, Zhang S, Yang B, Wang Z, Li J, Wang F, Yang C. Myeloid-Mas Signaling Modulates Pathogenic Crosstalk among MYC +CD63 + Endothelial Cells, MMP12 + Macrophages, and Monocytes in Acetaminophen-Induced Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306066. [PMID: 38350725 PMCID: PMC11040347 DOI: 10.1002/advs.202306066] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Acetaminophen overdose is a leading cause of acute liver failure (ALF). Despite the pivotal role of the inflammatory microenvironment in the progression of advanced acetaminophen-induced liver injury (AILI), a comprehensive understanding of the underlying cellular interactions and molecular mechanisms remains elusive. Mas is a G protein-coupled receptor highly expressed by myeloid cells; however, its role in the AILI microenvironment remains to be elucidated. A multidimensional approach, including single-cell RNA sequencing, spatial transcriptomics, and hour-long intravital imaging, is employed to characterize the microenvironment in Mas1 deficient mice at the systemic and cell-specific levels. The characteristic landscape of mouse AILI models involves reciprocal cellular communication among MYC+CD63+ endothelial cells, MMP12+ macrophages, and monocytes, which is maintained by enhanced glycolysis and the NF-κB/TNF-α signaling pathway due to myeloid-Mas deficiency. Importantly, the pathogenic microenvironment is delineated in samples obtained from patients with ALF, demonstrating its clinical relevance. In summary, these findings greatly enhance the understanding of the microenvironment in advanced AILI and offer potential avenues for patient stratification and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Zhi Lu
- Department of AutomationTsinghua UniversityBeijing100084China
- Institute for Brain and Cognitive SciencesTsinghua UniversityBeijing100084China
| | - Yudong Zhao
- Department of Liver Surgery, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Lu Xia
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Chun Liu
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Siqing Zuo
- Department of AutomationTsinghua UniversityBeijing100084China
- Institute for Brain and Cognitive SciencesTsinghua UniversityBeijing100084China
| | - Manchang Jin
- Institute for Brain and Cognitive SciencesTsinghua UniversityBeijing100084China
- School of Electrical and Information EngineeringTianjin UniversityTianjin300072China
| | - Haoyu Jia
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Shanshan Li
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Shuo Zhang
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Bo Yang
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Zhijing Wang
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Jing Li
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Fei Wang
- Division of GastroenterologySeventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518107China
| | - Changqing Yang
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| |
Collapse
|
12
|
Jakobsen ST, Jensen RAM, Madsen MS, Ravnsborg T, Vaagenso CS, Siersbæk MS, Einarsson H, Andersson R, Jensen ON, Siersbæk R. MYC activity at enhancers drives prognostic transcriptional programs through an epigenetic switch. Nat Genet 2024; 56:663-674. [PMID: 38454021 DOI: 10.1038/s41588-024-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The transcription factor MYC is overexpressed in most cancers, where it drives multiple hallmarks of cancer progression. MYC is known to promote oncogenic transcription by binding to active promoters. In addition, MYC has also been shown to invade distal enhancers when expressed at oncogenic levels, but this enhancer binding has been proposed to have low gene-regulatory potential. Here, we demonstrate that MYC directly regulates enhancer activity to promote cancer type-specific gene programs predictive of poor patient prognosis. MYC induces transcription of enhancer RNA through recruitment of RNA polymerase II (RNAPII), rather than regulating RNAPII pause-release, as is the case at promoters. This process is mediated by MYC-induced H3K9 demethylation and acetylation by GCN5, leading to enhancer-specific BRD4 recruitment through its bromodomains, which facilitates RNAPII recruitment. We propose that MYC drives prognostic cancer type-specific gene programs through induction of an enhancer-specific epigenetic switch, which can be targeted by BET and GCN5 inhibitors.
Collapse
Affiliation(s)
- Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rikke A M Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maria S Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Majken S Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hjorleifur Einarsson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robin Andersson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
13
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
14
|
Malik S, Pradeep SP, Kumar V, Xiao Y, Deng Y, Fan R, Vasquez JC, Singh V, Bahal R. Antitumor efficacy of a sequence-specific DNA-targeted γPNA-based c-Myc inhibitor. Cell Rep Med 2024; 5:101354. [PMID: 38183981 PMCID: PMC10829792 DOI: 10.1016/j.xcrm.2023.101354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Targeting oncogenes at the genomic DNA level can open new avenues for precision medicine. Significant efforts are ongoing to target oncogenes using RNA-targeted and protein-targeted platforms, but no progress has been made to target genomic DNA for cancer therapy. Here, we introduce a gamma peptide nucleic acid (γPNA)-based genomic DNA-targeted platform to silence oncogenes in vivo. γPNAs efficiently invade the mixed sequences of genomic DNA with high affinity and specificity. As a proof of concept, we establish that γPNA can inhibit c-Myc transcription in multiple cell lines. We evaluate the in vivo efficacy and safety of genomic DNA targeting in three pre-clinical models. We also establish that anti-transcription γPNA in combination with histone deacetylase inhibitors and chemotherapeutic drugs results in robust antitumor activity in cell-line- and patient-derived xenografts. Overall, this strategy offers a unique therapeutic platform to target genomic DNA to inhibit oncogenes for cancer therapy.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Sai Pallavi Pradeep
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yong Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA; Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vijender Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Cimpean M, Keppel MP, Gainullina A, Fan C, Sohn H, Schedler NC, Swain A, Kolicheski A, Shapiro H, Young HA, Wang T, Artyomov MN, Cooper MA. IL-15 Priming Alters IFN-γ Regulation in Murine NK Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1481-1493. [PMID: 37747317 PMCID: PMC10873103 DOI: 10.4049/jimmunol.2300283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
NK effector functions can be triggered by inflammatory cytokines and engagement of activating receptors. NK cell production of IFN-γ, an important immunoregulatory cytokine, exhibits activation-specific IFN-γ regulation. Resting murine NK cells exhibit activation-specific metabolic requirements for IFN-γ production, which are reversed for activating receptor-mediated stimulation following IL-15 priming. Although both cytokine and activating receptor stimulation leads to similar IFN-γ protein production, only cytokine stimulation upregulates Ifng transcript, suggesting that protein production is translationally regulated after receptor stimulation. Based on these differences in IFN-γ regulation, we hypothesized that ex vivo IL-15 priming of murine NK cells allows a switch to IFN-γ transcription upon activating receptor engagement. Transcriptional analysis of primed NK cells compared with naive cells or cells cultured with low-dose IL-15 demonstrated that primed cells strongly upregulated Ifng transcript following activating receptor stimulation. This was not due to chromatin accessibility changes in the Ifng locus or changes in ITAM signaling, but was associated with a distinct transcriptional signature induced by ITAM stimulation of primed compared with naive NK cells. Transcriptional analyses identified a common signature of c-Myc (Myc) targets associated with Ifng transcription. Although Myc marked NK cells capable of Ifng transcription, Myc itself was not required for Ifng transcription using a genetic model of Myc deletion. This work highlights altered regulatory networks in IL-15-primed cells, resulting in distinct gene expression patterns and IFN-γ regulation in response to activating receptor stimulation.
Collapse
Affiliation(s)
- Maria Cimpean
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Molly P. Keppel
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anastasiia Gainullina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changxu Fan
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hyogon Sohn
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan C. Schedler
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Kolicheski
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah Shapiro
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Bhin J, Yemelyanenko J, Chao X, Klarenbeek S, Opdam M, Malka Y, Hoekman L, Kruger D, Bleijerveld O, Brambillasca CS, Sprengers J, Siteur B, Annunziato S, van Haren MJ, Martin NI, van de Ven M, Peters D, Agami R, Linn SC, Boven E, Altelaar M, Jonkers J, Zingg D, Wessels LF. MYC is a clinically significant driver of mTOR inhibitor resistance in breast cancer. J Exp Med 2023; 220:e20211743. [PMID: 37642941 PMCID: PMC10465700 DOI: 10.1084/jem.20211743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Targeting the PI3K-AKT-mTOR pathway is a promising therapeutic strategy for breast cancer treatment. However, low response rates and development of resistance to PI3K-AKT-mTOR inhibitors remain major clinical challenges. Here, we show that MYC activation drives resistance to mTOR inhibitors (mTORi) in breast cancer. Multiomic profiling of mouse invasive lobular carcinoma (ILC) tumors revealed recurrent Myc amplifications in tumors that acquired resistance to the mTORi AZD8055. MYC activation was associated with biological processes linked to mTORi response and counteracted mTORi-induced translation inhibition by promoting translation of ribosomal proteins. In vitro and in vivo induction of MYC conferred mTORi resistance in mouse and human breast cancer models. Conversely, AZD8055-resistant ILC cells depended on MYC, as demonstrated by the synergistic effects of mTORi and MYCi combination treatment. Notably, MYC status was significantly associated with poor response to everolimus therapy in metastatic breast cancer patients. Thus, MYC is a clinically relevant driver of mTORi resistance that may stratify breast cancer patients for mTOR-targeted therapies.
Collapse
Affiliation(s)
- Jinhyuk Bhin
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Department of Biomedical System Informatics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Julia Yemelyanenko
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Xue Chao
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yuval Malka
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dinja Kruger
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Onno Bleijerveld
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chiara S. Brambillasca
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Justin Sprengers
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bjørn Siteur
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stefano Annunziato
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Matthijs J. van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Reuven Agami
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sabine C. Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Epie Boven
- Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Maarten Altelaar
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Daniel Zingg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Lodewyk F.A. Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
17
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
18
|
Wallbillich NJ, Lu H. Role of c-Myc in lung cancer: Progress, challenges, and prospects. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:129-138. [PMID: 37920609 PMCID: PMC10621893 DOI: 10.1016/j.pccm.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite the recent advances in cancer therapies, the 5-year survival of non-small cell lung cancer (NSCLC) patients hovers around 20%. Inherent and acquired resistance to therapies (including radiation, chemotherapies, targeted drugs, and combination therapies) has become a significant obstacle in the successful treatment of NSCLC. c-Myc, one of the critical oncoproteins, has been shown to be heavily associated with the malignant cancer phenotype, including rapid proliferation, metastasis, and chemoresistance across multiple cancer types. The c-Myc proto-oncogene is amplified in small cell lung cancers (SCLCs) and overexpressed in over 50% of NSCLCs. c-Myc is known to actively regulate the transcription of cancer stemness genes that are recognized as major contributors to tumor progression and therapeutic resistance; thus, targeting c-Myc either directly or indirectly in mitigation of the cancer stemness phenotype becomes a promising approach for development of a new strategy against drug resistant lung cancers. This review will summarize what is currently known about the mechanisms underlying c-Myc regulation of cancer stemness and its involvement in drug resistance and offer an overview on the current progress and future prospects in therapeutically targeting c-Myc in both SCLC and NSCLC.
Collapse
Affiliation(s)
- Nicholas J. Wallbillich
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
19
|
Cimpean M, Keppel MP, Gainullina A, Fan C, Schedler NC, Swain A, Kolicheski A, Shapiro H, Young HA, Wang T, Artyomov MN, Cooper MA. IL-15 priming alters IFN-γ regulation in murine NK cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537947. [PMID: 37163083 PMCID: PMC10168240 DOI: 10.1101/2023.04.23.537947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Natural killer (NK) effector functions can be triggered by inflammatory cytokines and engagement of activating receptors. NK cell production of IFN-γ, an important immunoregulatory cytokine, exhibits activation-specific IFN-γ regulation. Resting murine NK cells exhibit activation-specific metabolic requirements for IFN-γ production, which are reversed for activating receptor-mediated stimulation following IL-15 priming. While both cytokine and activating receptor stimulation leads to similar IFN-γ protein production, only cytokine stimulation upregulates Ifng transcript, suggesting that protein production is translationally regulated after receptor stimulation. Based on these differences in IFN-γ regulation, we hypothesized that ex vivo IL-15 priming of murine NK cells allows a switch to IFN-γ transcription upon activating receptor engagement. Transcriptional analysis of primed NK cells compared to naïve cells or cells cultured with low-dose IL-15 demonstrated that primed cells strongly upregulated Ifng transcript following activating receptor stimulation. This was not due to chromatin accessibility changes in the Ifng locus or changes in ITAM signaling, but was associated with a distinct transcriptional signature induced by ITAM stimulation of primed compared to naïve NK cells. Transcriptional analyses identified a common signature of c-Myc (Myc) targets associated with Ifng transcription. While Myc marked NK cells capable of Ifng transcription, Myc itself was not required for Ifng transcription using a genetic model of Myc deletion. This work highlights altered regulatory networks in IL-15 primed cells, resulting in distinct gene expression patterns and IFN-γ regulation in response to activating receptor stimulation.
Collapse
|
20
|
Li X, Zhang Z, Gao F, Ma Y, Wei D, Lu Z, Chen S, Wang M, Wang Y, Xu K, Wang R, Xu F, Chen JY, Zhu C, Li Z, Yu H, Guan X. c-Myc-Targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-Negative Breast Cancer. J Am Chem Soc 2023; 145:9334-9342. [PMID: 37068218 DOI: 10.1021/jacs.3c02619] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with a poor clinical prognosis and no targeted therapy. The c-Myc protein is a master transcription factor and a potential therapeutic target for TNBC. In this study, we develop a PROTAC (PROteolysis TArgeting Chimera) based on TNA (threose nucleic acid) and DNA that effectively targets and degrades c-Myc. The TNA aptamer is selected in vitro to bind the c-Myc/Max heterodimer and appended to the E-box DNA sequence to create a high-affinity, biologically stable bivalent binder. The TNA-E box-pomalidomide (TEP) conjugate specifically degrades endogenous c-Myc/Max, inhibits TNBC cell proliferation, and sensitizes TNBC cells to the cyclin-dependent kinase inhibitor palbociclib in vitro. In a mouse TNBC model, combination therapy with TEP and palbociclib potently suppresses tumor growth. This study offers a promising nucleic acid-based PROTAC modality for both chemical biology studies and therapeutic interventions of TNBC.
Collapse
Affiliation(s)
- Xintong Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ze Zhang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuxuan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Dongying Wei
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhangwei Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Siqi Chen
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Mengqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yueyao Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
21
|
Karadkhelkar NM, Lin M, Eubanks LM, Janda KD. Demystifying the Druggability of the MYC Family of Oncogenes. J Am Chem Soc 2023; 145:3259-3269. [PMID: 36734615 PMCID: PMC10182829 DOI: 10.1021/jacs.2c12732] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The MYC family of oncogenes (MYC, MYCN, and MYCL) encodes a basic helix-loop-helix leucine zipper (bHLHLZ) transcriptional regulator that is responsible for moving the cell through the restriction point. Through the HLHZIP domain, MYC heterodimerizes with the bHLHLZ protein MAX, which enables this MYC-MAX complex to bind to E-box regulatory DNA elements thereby controlling transcription of a large group of genes and their proteins. Translationally, MYC is one of the foremost oncogenic targets, and deregulation of expression of the MYC family gene/proteins occurs in over half of all human tumors and is recognized as a hallmark of cancer initiation and maintenance. Additionally, unexpected roles for this oncoprotein have been found in cancers that nominally have a non-MYC etiology. Although MYC is rarely mutated, its gain of function in cancer results from overexpression or from amplification. Moreover, MYC is a pleiotropic transcription factor possessing broad pathogenic prominence making it a coveted cancer target. A widely held notion within the biomedical research community is that the reliable modulation of MYC represents a tremendous therapeutic opportunity given its role in directly potentiating oncogenesis. However, the MYC-MAX heterodimer interaction contains a large surface area with a lack of well-defined binding sites creating the perception that targeting of MYC-MAX is forbidding. Here, we discuss the biochemistry behind MYC and MYC-MAX as it relates to cancer progression associated with these transcription factors. We also discuss the notion that MYC should no longer be regarded as undruggable, providing examples that a therapeutic window is achievable despite global MYC inhibition.
Collapse
Affiliation(s)
- Nishant M. Karadkhelkar
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mingliang Lin
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Gao FY, Li XT, Xu K, Wang RT, Guan XX. c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun Signal 2023; 21:28. [PMID: 36721232 PMCID: PMC9887805 DOI: 10.1186/s12964-023-01043-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/08/2023] [Indexed: 02/01/2023] Open
Abstract
The MYC oncogenic family is dysregulated in diverse tumors which is generally linked to the poor prognosis of tumors. The members in MYC family are transcription factors which are responsible for the regulation of various genes expression. Among them, c-MYC is closely related to the progression of tumors. Furthermore, c-MYC aberrations is tightly associated with the prevalence of breast cancer. Tumor microenvironment (TME) is composed of many different types of cellular and non-cellular factors, mainly including cancer-associated fibroblasts, tumor-associated macrophages, vascular endothelial cells, myeloid-derived suppressor cells and immune cells, all of which can affect the diagnosis, prognosis, and therapeutic efficacy of breast cancer. Importantly, the biological processes occurred in TME, such as angiogenesis, immune evasion, invasion, migration, and the recruition of stromal and tumor-infiltrating cells are under the modulation of c-MYC. These findings indicated that c-MYC serves as a critical regulator of TME. Here, we aimed to summarize and review the relevant research, thus to clarify c-MYC is a key mediator between breast cancer cells and TME. Video Abstract.
Collapse
Affiliation(s)
- Fang-yan Gao
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xin-tong Li
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Kun Xu
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Run-tian Wang
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xiao-xiang Guan
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
23
|
Najnin RA, Al Mahmud MR, Rahman MM, Takeda S, Sasanuma H, Tanaka H, Murakawa Y, Shimizu N, Akter S, Takagi M, Sunada T, Akamatsu S, He G, Itou J, Toi M, Miyaji M, Tsutsui KM, Keeney S, Yamada S. ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Rep 2023; 42:111909. [PMID: 36640339 PMCID: PMC10023214 DOI: 10.1016/j.celrep.2022.111909] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Collapse
Affiliation(s)
- Rifat Ara Najnin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuro Sunada
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Gang He
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Junji Itou
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M Tsutsui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Li J, Han S, Zhu Y, Dong B. Halorotetin A: A Novel Terpenoid Compound Isolated from Ascidian Halocynthia rotetzi Exhibits the Inhibition Activity on Tumor Cell Proliferation. Mar Drugs 2023; 21:51. [PMID: 36662224 PMCID: PMC9860651 DOI: 10.3390/md21010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Halocynthia roretzi, the edible ascidian, has been demonstrated to be an important source of bioactive natural metabolites. Here, we reported a novel terpenoid compound named Halorotetin A that was isolated from tunic ethanol extract of H. roretzi by silica gel column chromatography, preparative layer chromatography (PLC), and semipreparative-HPLC. 1H and 13C NMRs, 1H-1H COSY, HSQC, HMBC, NOESY, and HRESIMS profiles revealed that Halorotetin A was a novel terpenoid compound with antitumor potentials. We therefore treated the culture cells with Halorotetin A and found that it significantly inhibited the proliferation of a series of tumor cells by exerting cytotoxicity, especially for the liver carcinoma cell line (HepG-2 cells). Further studies revealed that Halorotetin A affected the expression of several genes associated with the development of hepatocellular carcinoma (HCC), including oncogenes (c-myc and c-met) and HCC suppressor genes (TP53 and KEAP1). In addition, we compared the cytotoxicities of Halorotetin A and doxorubicin on HepG-2 cells. To our surprise, the cytotoxicities of Halorotetin A and doxorubicin on HepG-2 cells were similar at the same concentration and Halorotetin A did not significantly reduce the viability of the normal cells. Thus, our study identified a novel compound that significantly inhibited the proliferation of tumor cells, which provided the basis for the discovery of leading compounds for antitumor drugs.
Collapse
Affiliation(s)
- Jianhui Li
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shanhao Han
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuting Zhu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
25
|
Abstract
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies. However, transcription factors are conventionally considered as "undruggable." Here, we summarize the recent progresses in understanding the regulation of transcription factors in cancers and strategies to target transcription factors and co-factors for preclinical and clinical drug development, particularly focusing on c-Myc, YAP/TAZ, and β-catenin due to their significance and interplays in cancer.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
26
|
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol 2023; 13:1142111. [PMID: 36969025 PMCID: PMC10032378 DOI: 10.3389/fonc.2023.1142111] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
The MYC oncoprotein functions as a master regulator of cellular transcription and executes non-transcriptional tasks relevant to DNA replication and cell cycle regulation, thereby interacting with multiple proteins. MYC is required for fundamental cellular processes triggering proliferation, growth, differentiation, or apoptosis and also represents a major cancer driver being aberrantly activated in most human tumors. Due to its non-enzymatic biochemical functions and largely unstructured surface, MYC has remained difficult for specific inhibitor compounds to directly address, and consequently, alternative approaches leading to indirect MYC inhibition have evolved. Nowadays, multiple organic compounds, nucleic acids, or peptides specifically interfering with MYC activities are in preclinical or early-stage clinical studies, but none of them have been approved so far for the pharmacological treatment of cancer patients. In addition, specific and efficient delivery technologies to deliver MYC-inhibiting agents into MYC-dependent tumor cells are just beginning to emerge. In this review, an overview of direct and indirect MYC-inhibiting agents and their modes of MYC inhibition is given. Furthermore, we summarize current possibilities to deliver appropriate drugs into cancer cells containing derailed MYC using viral vectors or appropriate nanoparticles. Finding the right formulation to target MYC-dependent cancers and to achieve a high intracellular concentration of compounds blocking or attenuating oncogenic MYC activities could be as important as the development of novel MYC-inhibiting principles.
Collapse
|
27
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
28
|
Synthesis and biological evaluation of a novel c-Myc inhibitor against colorectal cancer via blocking c-Myc/Max heterodimerization and disturbing its DNA binding. Eur J Med Chem 2022; 243:114779. [PMID: 36209705 DOI: 10.1016/j.ejmech.2022.114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
|
29
|
Hinds JW, Feris EJ, Wilkins OM, Deary LT, Wang X, Cole MD. S146L in MYC is a context-dependent activating substitution in cancer development. PLoS One 2022; 17:e0272771. [PMID: 36018850 PMCID: PMC9417018 DOI: 10.1371/journal.pone.0272771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
MYC is one of the most dysregulated oncogenes and is thought to be fundamental to tumor formation and/or maintenance in many cancer types. This dominant pro-tumor activity makes MYC an attractive target for cancer therapy. However, MYC is a transcription factor lacking enzymatic activity, and the structure of one of its two domains is unknown e.g., its transactivation domain. Consequently, few direct MYC-targeting therapies have been developed, and none have been successful in the clinic. Nevertheless, significant effort has been devoted to understanding the mechanisms of oncogenic MYC activity with the objective of uncovering novel vulnerabilities of MYC-dependent cancers. These extensive investigations have revealed in detail how MYC translocation, amplification, and other upstream perturbations contribute to MYC activity in cancer. However, missense mutations of the MYC gene have remained relatively understudied for their potential role in MYC-mediated oncogenesis. While the function of several low-frequency mutations in MYC have been described, our understanding of other equally or more frequent mutations is incomplete. Herein, we define the function of a recurrent missense mutation in MYC resulting in the substitution S146L. This mutation enhances the interaction between MYC and its cofactor TRRAP and may enhance oncogenic MYC activity in certain cellular contexts.
Collapse
Affiliation(s)
- John W. Hinds
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| | - Edmond J. Feris
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| | - Owen M. Wilkins
- Center for Quantitative Biology (CQB), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, Unites States of America
| | - Luke T. Deary
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| | - Xiaofeng Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| | - Michael D. Cole
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| |
Collapse
|
30
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
31
|
Singh A, Kumar P, Sarvagalla S, Bharadwaj T, Nayak N, Coumar MS, Giri R, Garg N. Functional inhibition of c-Myc using novel inhibitors identified through “hot spot” targeting. J Biol Chem 2022; 298:101898. [PMID: 35378126 PMCID: PMC9065629 DOI: 10.1016/j.jbc.2022.101898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Protein–protein interactions drive various biological processes in healthy as well as disease states. The transcription factor c-Myc plays a crucial role in maintaining cellular homeostasis, and its deregulated expression is linked to various human cancers; therefore, it can be considered a viable target for cancer therapeutics. However, the structural heterogeneity of c-Myc due to its disordered nature poses a major challenge to drug discovery. In the present study, we used an in silico alanine scanning mutagenesis approach to identify “hot spot” residues within the c-Myc/Myc-associated factor X interface, which is highly disordered and has not yet been systematically analyzed for potential small molecule binding sites. We then used the information gained from this analysis to screen potential inhibitors using a conformation ensemble approach. The fluorescence-based biophysical experiments showed that the identified hit molecules displayed noncovalent interactions with these hot spot residues, and further cell-based experiments showed substantial in vitro potency against diverse c-Myc-expressing cancer/stem cells by deregulating c-Myc activity. These biophysical and computational studies demonstrated stable binding of the hit compounds with the disordered c-Myc protein. Collectively, our data indicated effective drug targeting of the disordered c-Myc protein via the determination of hot spot residues in the c-Myc/Myc-associated factor X heterodimer.
Collapse
|
32
|
Wu X, Zhang Q, Guo Y, Zhang H, Guo X, You Q, Wang L. Methods for the Discovery and Identification of Small Molecules Targeting Oxidative Stress-Related Protein–Protein Interactions: An Update. Antioxidants (Basel) 2022; 11:antiox11040619. [PMID: 35453304 PMCID: PMC9025695 DOI: 10.3390/antiox11040619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
The oxidative stress response pathway is one of the hotspots of current pharmaceutical research. Many proteins involved in these pathways work through protein–protein interactions (PPIs). Hence, targeting PPI to develop drugs for an oxidative stress response is a promising strategy. In recent years, small molecules targeting protein–protein interactions (PPIs), which provide efficient methods for drug discovery, are being investigated by an increasing number of studies. However, unlike the enzyme–ligand binding mode, PPIs usually exhibit large and dynamic binding interfaces, which raise additional challenges for the discovery and optimization of small molecules and for the biochemical techniques used to screen compounds and study structure–activity relationships (SARs). Currently, multiple types of PPIs have been clustered into different classes, which make it difficult to design stationary methods for small molecules. Deficient experimental methods are plaguing medicinal chemists and are becoming a major challenge in the discovery of PPI inhibitors. In this review, we present current methods that are specifically used in the discovery and identification of small molecules that target oxidative stress-related PPIs, including proximity-based, affinity-based, competition-based, structure-guided, and function-based methods. Our aim is to introduce feasible methods and their characteristics that are implemented in the discovery of small molecules for different types of PPIs. For each of these methods, we highlight successful examples of PPI inhibitors associated with oxidative stress to illustrate the strategies and provide insights for further design.
Collapse
Affiliation(s)
- Xuexuan Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqi Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (X.G.); (Q.Y.); (L.W.); Tel.: +86-025-83271351 (Q.Y.); +86-15261483858 (L.W.)
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (X.G.); (Q.Y.); (L.W.); Tel.: +86-025-83271351 (Q.Y.); +86-15261483858 (L.W.)
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (X.G.); (Q.Y.); (L.W.); Tel.: +86-025-83271351 (Q.Y.); +86-15261483858 (L.W.)
| |
Collapse
|
33
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
34
|
Castell A, Yan Q, Fawkner K, Bazzar W, Zhang F, Wickström M, Alzrigat M, Franco M, Krona C, Cameron DP, Dyberg C, Olsen TK, Verschut V, Schmidt L, Lim SY, Mahmoud L, Hydbring P, Lehmann S, Baranello L, Nelander S, Johnsen JI, Larsson LG. MYCMI-7: A Small MYC-Binding Compound that Inhibits MYC: MAX Interaction and Tumor Growth in a MYC-Dependent Manner. CANCER RESEARCH COMMUNICATIONS 2022. [PMID: 36874405 DOI: 10.1158/27679764.crc-21-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
UNLABELLED Deregulated expression of MYC family oncogenes occurs frequently in human cancer and is often associated with aggressive disease and poor prognosis. While MYC is a highly warranted target, it has been considered "undruggable," and no specific anti-MYC drugs are available in the clinic. We recently identified molecules named MYCMIs that inhibit the interaction between MYC and its essential partner MAX. Here we show that one of these molecules, MYCMI-7, efficiently and selectively inhibits MYC:MAX and MYCN:MAX interactions in cells, binds directly to recombinant MYC, and reduces MYC-driven transcription. In addition, MYCMI-7 induces degradation of MYC and MYCN proteins. MYCMI-7 potently induces growth arrest/apoptosis in tumor cells in a MYC/MYCN-dependent manner and downregulates the MYC pathway on a global level as determined by RNA sequencing. Sensitivity to MYCMI-7 correlates with MYC expression in a panel of 60 tumor cell lines and MYCMI-7 shows high efficacy toward a collection of patient-derived primary glioblastoma and acute myeloid leukemia (AML) ex vivo cultures. Importantly, a variety of normal cells become G1 arrested without signs of apoptosis upon MYCMI-7 treatment. Finally, in mouse tumor models of MYC-driven AML, breast cancer, and MYCN-amplified neuroblastoma, treatment with MYCMI-7 downregulates MYC/MYCN, inhibits tumor growth, and prolongs survival through apoptosis with few side effects. In conclusion, MYCMI-7 is a potent and selective MYC inhibitor that is highly relevant for the development into clinically useful drugs for the treatment of MYC-driven cancer. SIGNIFICANCE Our findings demonstrate that the small-molecule MYCMI-7 binds MYC and inhibits interaction between MYC and MAX, thereby hampering MYC-driven tumor cell growth in culture and in vivo while sparing normal cells.
Collapse
Affiliation(s)
- Alina Castell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Qinzi Yan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Fawkner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wesam Bazzar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fan Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Wickström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marcela Franco
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Thale Kristin Olsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Vasiliki Verschut
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linnéa Schmidt
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sheryl Y Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Loay Mahmoud
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Hydbring
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - John Inge Johnsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Castell A, Yan Q, Fawkner K, Bazzar W, Zhang F, Wickström M, Alzrigat M, Franco M, Krona C, Cameron DP, Dyberg C, Olsen TK, Verschut V, Schmidt L, Lim SY, Mahmoud L, Hydbring P, Lehmann S, Baranello L, Nelander S, Johnsen JI, Larsson LG. MYCMI-7: A Small MYC-Binding Compound that Inhibits MYC: MAX Interaction and Tumor Growth in a MYC-Dependent Manner. CANCER RESEARCH COMMUNICATIONS 2022; 2:182-201. [PMID: 36874405 PMCID: PMC9980915 DOI: 10.1158/2767-9764.crc-21-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/14/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
Deregulated expression of MYC family oncogenes occurs frequently in human cancer and is often associated with aggressive disease and poor prognosis. While MYC is a highly warranted target, it has been considered "undruggable," and no specific anti-MYC drugs are available in the clinic. We recently identified molecules named MYCMIs that inhibit the interaction between MYC and its essential partner MAX. Here we show that one of these molecules, MYCMI-7, efficiently and selectively inhibits MYC:MAX and MYCN:MAX interactions in cells, binds directly to recombinant MYC, and reduces MYC-driven transcription. In addition, MYCMI-7 induces degradation of MYC and MYCN proteins. MYCMI-7 potently induces growth arrest/apoptosis in tumor cells in a MYC/MYCN-dependent manner and downregulates the MYC pathway on a global level as determined by RNA sequencing. Sensitivity to MYCMI-7 correlates with MYC expression in a panel of 60 tumor cell lines and MYCMI-7 shows high efficacy toward a collection of patient-derived primary glioblastoma and acute myeloid leukemia (AML) ex vivo cultures. Importantly, a variety of normal cells become G1 arrested without signs of apoptosis upon MYCMI-7 treatment. Finally, in mouse tumor models of MYC-driven AML, breast cancer, and MYCN-amplified neuroblastoma, treatment with MYCMI-7 downregulates MYC/MYCN, inhibits tumor growth, and prolongs survival through apoptosis with few side effects. In conclusion, MYCMI-7 is a potent and selective MYC inhibitor that is highly relevant for the development into clinically useful drugs for the treatment of MYC-driven cancer. Significance Our findings demonstrate that the small-molecule MYCMI-7 binds MYC and inhibits interaction between MYC and MAX, thereby hampering MYC-driven tumor cell growth in culture and in vivo while sparing normal cells.
Collapse
Affiliation(s)
- Alina Castell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Qinzi Yan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Fawkner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wesam Bazzar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fan Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Wickström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marcela Franco
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Thale Kristin Olsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Vasiliki Verschut
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linnéa Schmidt
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sheryl Y Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Loay Mahmoud
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Hydbring
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - John Inge Johnsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Helweg LP, Windmöller BA, Burghardt L, Storm J, Förster C, Wethkamp N, Wilkens L, Kaltschmidt B, Banz-Jansen C, Kaltschmidt C. The Diminishment of Novel Endometrial Carcinoma-Derived Stem-like Cells by Targeting Mitochondrial Bioenergetics and MYC. Int J Mol Sci 2022; 23:ijms23052426. [PMID: 35269569 PMCID: PMC8910063 DOI: 10.3390/ijms23052426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of tumor cells harboring properties that include self-renewal, multi-lineage differentiation, tumor reconstitution, drug resistance and invasiveness, making them key players in tumor relapse. In the present paper, we develop new CSC models and analyze the molecular pathways involved in survival to identify targets for the establishment of novel therapies. Endometrial carcinoma-derived stem-like cells (ECSCs) were isolated from carcinogenic gynecological tissue and analyzed regarding their expression of prominent CSC markers. Further, they were treated with the MYC-signaling inhibitor KJ-Pyr-9, chemotherapeutic agent carboplatin and type II diabetes medication metformin. ECSC populations express common CSC markers, such as Prominin-1 and CD44 antigen as well as epithelial-to-mesenchymal transition markers, Twist, Snail and Slug, and exhibit the ability to form free-floating spheres. The inhibition of MYC signaling and treatment with carboplatin as well as metformin significantly reduced the cell survival of ECSC-like cells. Further, treatment with metformin significantly decreased the mitochondrial membrane potential of ECSC-like cells, while the extracellular lactate concentration was increased. The established ECSC-like populations represent promising in vitro models to further study the contribution of ECSCs to endometrial carcinogenesis. Targeting MYC signaling as well as mitochondrial bioenergetics has shown promising results in the diminishment of ECSCs, although molecular signaling pathways need further investigations.
Collapse
Affiliation(s)
- Laureen P. Helweg
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Correspondence: ; Tel.: +49-0521-106-5619
| | - Beatrice A. Windmöller
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| | - Leonie Burghardt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
| | - Jonathan Storm
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Nils Wethkamp
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Institute of Pathology, KRH Hospital Nordstadt, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany;
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Constanze Banz-Jansen
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
- Department of Gynecology and Obstetrics, and Perinatal Center, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (B.A.W.); (L.B.); (J.S.); (B.K.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e.V., 33615 Bielefeld, Germany; (C.F.); (L.W.); (C.B.-J.)
| |
Collapse
|
37
|
Cellular experiments to study the inhibition of c-Myc/MAX heterodimerization. Methods Enzymol 2022; 675:193-205. [DOI: 10.1016/bs.mie.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Llombart V, Mansour MR. Therapeutic targeting of "undruggable" MYC. EBioMedicine 2022; 75:103756. [PMID: 34942444 PMCID: PMC8713111 DOI: 10.1016/j.ebiom.2021.103756] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
c-MYC controls global gene expression and regulates cell proliferation, cell differentiation, cell cycle, metabolism and apoptosis. According to some estimates, MYC is dysregulated in ≈70% of human cancers and strong evidence implicates aberrantly expressed MYC in both tumor initiation and maintenance. In vivo studies show that MYC inhibition elicits a prominent anti-proliferative effect and sustained tumor regression while any alteration on healthy tissue remains reversible. This opens an exploitable window for treatment that makes MYC one of the most appealing therapeutic targets for cancer drug development. This review describes the main functional and structural features of the protein structure of MYC and provides a general overview of the most relevant or recently identified interactors that modulate MYC oncogenic activity. This review also summarizes the different approaches aiming to abrogate MYC oncogenic function, with a particular focus on the prototype inhibitors designed for the direct and indirect targeting of MYC.
Collapse
Affiliation(s)
- Victor Llombart
- UCL Cancer Institute, University College London, Department of Haematology, London WC1E 6DD, UK
| | - Marc R Mansour
- UCL Cancer Institute, University College London, Department of Haematology, London WC1E 6DD, UK; UCL Great Ormond Street Institute of Child Health, Developmental Biology and Cancer, London, UK.
| |
Collapse
|
39
|
Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, Kenney TMG, Wei Y, Andrews DW, Sunnerhagen M, Arrowsmith CH, Raught B, Penn LZ. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021; 21:579-591. [PMID: 34188192 DOI: 10.1038/s41568-021-00367-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a 'coalition model', as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis.
Collapse
Affiliation(s)
| | - Diana Resetca
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cornelia Redel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Lin
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alannah S MacDonald
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tristan M G Kenney
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Wei
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David W Andrews
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Cruz-Ruiz S, Urióstegui-Arcos M, Zurita M. The transcriptional stress response and its implications in cancer treatment. Biochim Biophys Acta Rev Cancer 2021; 1876:188620. [PMID: 34454982 DOI: 10.1016/j.bbcan.2021.188620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells require high levels of transcription to survive and maintain their cancerous phenotype. For several years, global transcription inhibitors have been used in the treatment of cancer. However, recent advances in understanding the functioning of the basal transcription machinery and the discovery of new drugs that affect the components of this machinery have generated a new boom in the use of this type of drugs to treat cancer. Inhibiting transcription at the global level in the cell generates a stress situation in which the cancer cell responds by overexpressing hundreds of genes in response to this transcriptional stress. Many of these over-transcribed genes encode factors that may be involved in the selection of cells resistant to the treatment and with a greater degree of malignancy. In this study, we reviewed various examples of substances that inhibit global transcription, as well as their targets, that have a high potential to be used against cancer. We also analysed what kinds of genes are overexpressed in the response to transcriptional stress by different substances and finally we discuss what types of studies are necessary to understand this type of stress response to have more tools to fight cancer.
Collapse
Affiliation(s)
- Samantha Cruz-Ruiz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Maritere Urióstegui-Arcos
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mor., Mexico.
| |
Collapse
|
41
|
Martínez-Martín S, Soucek L. MYC inhibitors in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:842-865. [PMID: 35582389 PMCID: PMC8992455 DOI: 10.20517/cdr.2021.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, some of the earliest connections among the higher expression of proto-oncogenes (such as MYC), genetic rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the current status of the different compounds, including the results of their clinical testing, and propose to continue with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care therapies to overcome resistance and enable better management of myeloma treatment.
Collapse
Affiliation(s)
- Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
42
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Singh A, Kumar A, Kumar P, Nayak N, Bhardwaj T, Giri R, Garg N. A novel inhibitor L755507 efficiently blocks c-Myc-MAX heterodimerization and induces apoptosis in cancer cells. J Biol Chem 2021; 297:100903. [PMID: 34157284 PMCID: PMC8294579 DOI: 10.1016/j.jbc.2021.100903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023] Open
Abstract
c-Myc is a transcription factor that plays a crucial role in cellular homeostasis, and its deregulation is associated with highly aggressive and chemotherapy-resistant cancers. After binding with partner MAX, the c-Myc-MAX heterodimer regulates the expression of several genes, leading to an oncogenic phenotype. Although considered a crucial therapeutic target, no clinically approved c-Myc-targeted therapy has yet been discovered. Here, we report the discovery via computer-aided drug discovery of a small molecule, L755507, which functions as a c-Myc inhibitor to efficiently restrict the growth of diverse Myc-expressing cells with low micromolar IC50 values. L755507 successfully disrupts the c-Myc-MAX heterodimer, resulting in decreased expression of c-Myc target genes. Spectroscopic and computational experiments demonstrated that L755507 binds to the c-Myc peptide and thereby stabilizes the helix-loop-helix conformation of the c-Myc transcription factor. Taken together, this study suggests that L755507 effectively inhibits the c-Myc-MAX heterodimerization and may be used for further optimization to develop a c-Myc-targeted antineoplastic drug.
Collapse
Affiliation(s)
- Ashutosh Singh
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ankur Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Prateek Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Namyashree Nayak
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Taniya Bhardwaj
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
44
|
Whitfield JR, Soucek L. The long journey to bring a Myc inhibitor to the clinic. J Cell Biol 2021; 220:212429. [PMID: 34160558 PMCID: PMC8240852 DOI: 10.1083/jcb.202103090] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The oncogene Myc is deregulated in the majority of human tumors and drives numerous hallmarks of cancer. Despite its indisputable role in cancer development and maintenance, Myc is still undrugged. Developing a clinical inhibitor for Myc has been particularly challenging owing to its intrinsically disordered nature and lack of a binding pocket, coupled with concerns regarding potentially deleterious side effects in normal proliferating tissues. However, major breakthroughs in the development of Myc inhibitors have arisen in the last couple of years. Notably, the direct Myc inhibitor that we developed has just entered clinical trials. Celebrating this milestone, with this Perspective, we pay homage to the different strategies developed so far against Myc and all of the researchers focused on developing treatments for a target long deemed undruggable.
Collapse
Affiliation(s)
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Peptomyc S.L., Barcelona, Spain
| |
Collapse
|
45
|
Salvianolic acid B noncovalently interacts with disordered c-Myc: a computational and spectroscopic-based study. Future Med Chem 2021; 13:1341-1352. [PMID: 34114895 DOI: 10.4155/fmc-2021-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aims: c-Myc, along with its partner MAX, regulates the expression of several genes, leading to an oncogenic phenotype. The MAX interacting interface of c-Myc is disordered and uncharacterized for small molecule binding. Salvianolic acid B possesses numerous therapeutic properties, including anticancer activity. The current study was designed to elucidate the interaction of the Sal_Ac_B with the disordered bHLH domain of c-Myc using computational and biophysical techniques. Materials & methods: The binding of Sal_Ac_B with Myc was studied using computational and biophysical techniques, including molecular docking and simulation, fluorescence lifetime, circular dichroism and anisotropy. Results & conclusions: The study demonstrated a high binding potential of Sal_Ac_B against the disordered Myc peptide. The binding of the compounds leads to an overall conformational change in Myc. Moreover, an extensive simulation study showed a stable Sal_Ac_B/Myc binding.
Collapse
|
46
|
Synthetic fluorescent MYC probe: Inhibitor binding site elucidation and development of a high-throughput screening assay. Bioorg Med Chem 2021; 42:116246. [PMID: 34130216 DOI: 10.1016/j.bmc.2021.116246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/22/2023]
Abstract
We report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain. Point mutations of this site produced functional MYC constructs resistant to inhibition in an oncogenic transformation assay by compounds that displace the probe. Utilizing this probe, we have developed a high-throughput assay to identify MYC inhibitor scaffolds. Screening of a diversity library (N = 1408, 384-well) and a library of pharmacologically active compounds (N = 1280, 1536-well) yielded molecules with greater drug-like properties than the probe. One lead is a potent inhibitor of oncogenic transformation and is specific for MYC relative to resistant mutants and transformation-inducing oncogenes. This method is simple, inexpensive, and does not require protein modification, DNA binding, or the dimer partner MAX. This assay presents an opportunity for MYC inhibition researchers to discover unique scaffolds.
Collapse
|
47
|
Biesaga M, Frigolé-Vivas M, Salvatella X. Intrinsically disordered proteins and biomolecular condensates as drug targets. Curr Opin Chem Biol 2021; 62:90-100. [PMID: 33812316 PMCID: PMC7616887 DOI: 10.1016/j.cbpa.2021.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Intrinsically disordered domains represent attractive therapeutic targets because they play key roles in cancer, as well as in neurodegenerative and infectious diseases. They are, however, considered undruggable because they do not form stable binding pockets for small molecules and, therefore, have not been prioritized in drug discovery. Under physiological solution conditions many biomedically relevant intrinsically disordered proteins undergo phase separation processes leading to the formation of mesoscopic highly dynamic assemblies, generally known as biomolecular condensates that define environments that can be quite different from the solutions surrounding them. In what follows, we review key recent findings in this area and show how biomolecular condensation can offer opportunities for modulating the activities of intrinsically disordered targets.
Collapse
Affiliation(s)
- Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marta Frigolé-Vivas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
48
|
Windmöller BA, Beshay M, Helweg LP, Flottmann C, Beermann M, Förster C, Wilkens L, Greiner JFW, Kaltschmidt C, Kaltschmidt B. Novel Primary Human Cancer Stem-Like Cell Populations from Non-Small Cell Lung Cancer: Inhibition of Cell Survival by Targeting NF-κB and MYC Signaling. Cells 2021; 10:cells10051024. [PMID: 33925297 PMCID: PMC8145874 DOI: 10.3390/cells10051024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that cancer stem cells (CSCs), a small subpopulation of self-renewal cancer cells, are responsible for tumor growth, treatment resistance, and cancer relapse and are thus of enormous clinical interest. Here, we aimed to isolate new CSC-like cells derived from human primary non-small cell lung cancer (NSCLC) specimens and to analyze the influence of different inhibitors of NF-κB and MYC signaling on cell survival. CSC-like cells were established from three squamous cell carcinomas (SCC) and three adenocarcinomas (AC) of the lung and were shown to express common CSC markers such as Prominin-1, CD44-antigen, and Nestin. Further, cells gave rise to spherical cancer organoids. Inhibition of MYC and NF-κB signaling using KJ-Pyr-9, dexamethasone, and pyrrolidinedithiocarbamate resulted in significant reductions in cell survival for SCC- and AC-derived cells. However, inhibition of the protein–protein interaction of MYC/NMYC proto-oncogenes with Myc-associated factor X (MAX) using KJ-Pyr-9 revealed the most promising survival-decreasing effects. Next to the establishment of six novel in vitro models for studying NSCLC-derived CSC-like populations, the presented investigations might provide new insights into potential novel therapies targeting NF-κB/MYC to improve clinical outcomes in NSCLC patients. Nevertheless, the full picture of downstream signaling still remains elusive.
Collapse
Affiliation(s)
- Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Correspondence: ; Tel.: +49-0521-106-5629
| | - Morris Beshay
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Department of General Thoracic Surgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, 33617 Bielefeld, Germany
| | - Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Clara Flottmann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Miriam Beermann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
49
|
Duffy MJ, O'Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev 2021; 94:102154. [PMID: 33524794 DOI: 10.1016/j.ctrv.2021.102154] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
The MYC gene which consists of 3 paralogs, C-MYC, N-MYC and L-MYC, is one of the most frequently deregulated driver genes in human cancer. Because of its high prevalence of deregulation and its causal role in cancer formation, maintenance and progression, targeting MYC is theoretically an attractive strategy for treating cancer. As a potential anticancer target, MYC was traditionally regarded as undruggable due to the absence of a suitable pocket for high-affinity binding by low molecular weight inhibitors. In recent years however, several compounds that directly or indirectly inhibit MYC have been shown to have anticancer activity in preclinical tumor models. Amongst the most detailed investigated strategies for targeting MYC are inhibition of its binding to its obligate interaction partner MAX, prevention of MYC expression and blocking of genes exhibiting synthetic lethality with overexpression of MYC. One of the most extensively investigated MYC inhibitors is a peptide/mini-protein known as OmoMYC. OmoMYC, which acts by blocking the binding of all 3 forms of MYC to their target promoters, has been shown to exhibit anticancer activity in a diverse range of preclinical models, with minimal side effects. Based on its broad efficacy and limited toxicity, OmoMYC is currently being developed for evaluation in clinical trials. Although no compound directly targeting MYC has yet progressed to clinical testing, APTO-253, which partly acts by decreasing expression of MYC, is currently undergoing a phase I clinical trial in patients with relapsed/refractory acute myeloid leukemia or myelodysplastic syndrome.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland.
| | - Shane O'Grady
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Minhong Tang
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin 4, Ireland
| |
Collapse
|
50
|
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 2021; 20:3. [PMID: 33397405 PMCID: PMC7780693 DOI: 10.1186/s12943-020-01291-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023] Open
Abstract
c-Myc is a transcription factor that is constitutively and aberrantly expressed in over 70% of human cancers. Its direct inhibition has been shown to trigger rapid tumor regression in mice with only mild and fully reversible side effects, suggesting this to be a viable therapeutic strategy. Here we reassess the challenges of directly targeting c-Myc, evaluate lessons learned from current inhibitors, and explore how future strategies such as miniaturisation of Omomyc and targeting E-box binding could facilitate translation of c-Myc inhibitors into the clinic.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mara Gerhardt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|