1
|
Du M, Zeng F, Wang Y, Li Y, Chen G, Jiang J, Wang Q. Assembly and Functionality of 2D Protein Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416485. [PMID: 40089855 PMCID: PMC12005781 DOI: 10.1002/advs.202416485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Indexed: 03/17/2025]
Abstract
Among the unique classes of 2D nanomaterials, 2D protein arrays garner increasing attention due to their remarkable structural stability, exceptional physiochemical properties, and tunable electronic and mechanical attributes. The interest in mimicking and surpassing the precise architecture and advanced functionality of natural protein systems drives the field of 2D protein assembly toward the development of sophisticated functional materials. Recent advancements deepen the understanding of the fundamental principles governing 2D protein self-assembly, accelerating the creation of novel functional biomaterials. These developments encompass biological, chemical, and templated strategies, facilitating the self-organization of proteins into highly ordered and intricate 2D patterns. Consequently, these 2D protein arrays create new opportunities for integrating diverse components, from small molecules to nanoparticles, thereby enhancing the performance and versatility of materials in various applications. This review comprehensively assesses the current state of 2D protein nanotechnology, highlighting the latest methodologies for directing protein assembly into precise 2D architectures. The transformative potential of 2D protein assemblies in designing next-generation biomaterials, particularly in areas such as biomedicine, catalysis, photosystems, and membrane filtration is also emphasized.
Collapse
Affiliation(s)
- Mingming Du
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Fanmeng Zeng
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - YueFei Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Ying Li
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Guangcun Chen
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jiang Jiang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Duan M, Lv C, Zang J, Leng X, Zhao G, Zhang T. Metals at the Helm: Revolutionizing Protein Assembly and Applications. Macromol Biosci 2024; 24:e2400126. [PMID: 39239781 DOI: 10.1002/mabi.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
3
|
Son S, Song WJ. Programming interchangeable and reversible heterooligomeric protein self-assembly using a bifunctional ligand. Chem Sci 2024; 15:2975-2983. [PMID: 38404387 PMCID: PMC10882485 DOI: 10.1039/d3sc05448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Protein design for self-assembly allows us to explore the emergence of protein-protein interfaces through various chemical interactions. Heterooligomers, unlike homooligomers, inherently offer a comprehensive range of structural and functional variations. Besides, the macromolecular repertoire and their applications would significantly expand if protein components could be easily interchangeable. This study demonstrates that a rationally designed bifunctional linker containing an enzyme inhibitor and maleimide can guide the formation of diverse protein heterooligomers in an easily applicable and exchangeable manner without extensive sequence optimizations. As proof of concept, we selected four structurally and functionally unrelated proteins, carbonic anhydrase, aldolase, acetyltransferase, and encapsulin, as building block proteins. The combinations of two proteins with the bifunctional linker yielded four two-component heterooligomers with discrete sizes, shapes, and enzyme activities. Besides, the overall size and formation kinetics of the heterooligomers alter upon adding metal chelators, acidic buffer components, and reducing agents, showing the reversibility and tunability in the protein self-assembly. Given that the functional groups of both the linker and protein components are readily interchangeable, our work broadens the scope of protein-assembled architectures and their potential applications as functional biomaterials.
Collapse
Affiliation(s)
- Soyeun Son
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
4
|
Han K, Zhang Z, Tezcan FA. Spatially Patterned, Porous Protein Crystals as Multifunctional Materials. J Am Chem Soc 2023; 145:19932-19944. [PMID: 37642457 DOI: 10.1021/jacs.3c06348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
While the primary use of protein crystals has historically been in crystallographic structure determination, they have recently emerged as promising materials with many advantageous properties such as high porosity, biocompatibility, stability, structural and functional versatility, and genetic/chemical tailorability. Here, we report that the utility of protein crystals as functional materials can be further augmented through their spatial patterning and control of their morphologies. To this end, we took advantage of the chemically and kinetically controllable nature of ferritin self-assembly and constructed core-shell crystals with chemically distinct domains, tunable structural patterns, and morphologies. The spatial organization within ferritin crystals enabled the generation of patterned, multi-enzyme frameworks with cooperative catalytic behavior. We further exploited the differential growth kinetics of ferritin crystal facets to assemble Janus-type architectures with an anisotropic arrangement of chemically distinct domains. These examples represent a step toward using protein crystals as reaction vessels for complex multi-step reactions and broadening their utility as functional, solid-state materials. Our results demonstrate that morphology control and spatial patterning, which are key concepts in materials science and nanotechnology, can also be applied for engineering protein crystals.
Collapse
Affiliation(s)
- Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Zhou S, Wei Y. Kaleidoscope megamolecules synthesis and application using self-assembly technology. Biotechnol Adv 2023; 65:108147. [PMID: 37023967 DOI: 10.1016/j.biotechadv.2023.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/20/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The megamolecules with high ordered structures play an important role in chemical biology and biomedical engineering. Self-assembly, a long-discovered but very appealing technique, could induce many reactions between biomacromolecules and organic linking molecules, such as an enzyme domain and its covalent inhibitors. Enzyme and its small-molecule inhibitors have achieved many successes in medical application, which realize the catalysis process and theranostic function. By employing the protein engineering technology, the building blocks of enzyme fusion protein and small molecule linker can be assembled into a novel architecture with the specified organization and conformation. Molecular level recognition of enzyme domain could provide both covalent reaction sites and structural skeleton for the functional fusion protein. In this review, we will discuss the range of tools available to combine functional domains by using the recombinant protein technology, which can assemble them into precisely specified architectures/valences and develop the kaleidoscope megamolecules for catalytic and medical application.
Collapse
Affiliation(s)
- Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
6
|
Dzuvor CKO, Shanbhag BK, Shen HH, Haritos VS, He L. An Ultrastable Self-Assembled Antibacterial Nanospears Made of Protein. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2302409. [PMID: 37120846 DOI: 10.1002/adma.202302409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Indexed: 06/15/2023]
Abstract
Protein-based nanomaterials have broad applications in the biomedical and bionanotechnological sectors owing to their outstanding properties such as high biocompatibility and biodegradability, structural stability, sophisticated functional versatility, and being environmentally benign. They have gained considerable attention in drug delivery, cancer therapeutics, vaccines, immunotherapies, biosensing, and biocatalysis. However, so far, in the battle against the increasing reports of antibiotic resistance and emerging drug-resistant bacteria, unique nanostructures of this kind are lacking, hindering their potential next-generation antibacterial agents. Here, the discovery of a class of supramolecular nanostructures with well-defined shapes, geometries, or architectures (termed "protein nanospears") based on engineered proteins, exhibiting exceptional broad-spectrum antibacterial activities, is reported. The protein nanospears are engineered via spontaneous cleavage-dependent or precisely tunable self-assembly routes using mild metal salt-ions (Mg2+ , Ca2+ , Na+ ) as a molecular trigger. The nanospears' dimensions collectively range from entire nano- to micrometer scale. The protein nanospears display exceptional thermal and chemical stability yet rapidly disassemble upon exposure to high concentrations of chaotropes (>1 mm sodium dodecyl sulfate (SDS)). Using a combination of biological assays and electron microscopy imaging, it is revealed that the nanospears spontaneously induce rapid and irreparable damage to bacterial morphology via a unique action mechanism provided by their nanostructure and enzymatic action, a feat inaccessible to traditional antibiotics. These protein-based nanospears show promise as a potent tool to combat the growing threats of resistant bacteria, inspiring a new way to engineer other antibacterial protein nanomaterials with diverse structural and dimensional architectures and functional properties.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Bhuvana K Shanbhag
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Hsin-Hui Shen
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| | - Lizhong He
- Department of Chemical and Biological Engineering Monash University Clayton, Victoria, 3800, Australia
| |
Collapse
|
7
|
Oohora K. Supramolecular assembling systems of hemoproteins using chemical modifications. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
8
|
Jacobs M, Bansal P, Shukla D, Schroeder CM. Understanding Supramolecular Assembly of Supercharged Proteins. ACS CENTRAL SCIENCE 2022; 8:1350-1361. [PMID: 36188338 PMCID: PMC9523778 DOI: 10.1021/acscentsci.2c00730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 06/16/2023]
Abstract
Ordered supramolecular assemblies have recently been created using electrostatic interactions between oppositely charged proteins. Despite recent progress, the fundamental mechanisms governing the assembly of oppositely supercharged proteins are not fully understood. Here, we use a combination of experiments and computational modeling to systematically study the supramolecular assembly process for a series of oppositely supercharged green fluorescent protein variants. We show that net charge is a sufficient molecular descriptor to predict the interaction fate of oppositely charged proteins under a given set of solution conditions (e.g., ionic strength), but the assembled supramolecular structures critically depend on surface charge distributions. Interestingly, our results show that a large excess of charge is necessary to nucleate assembly and that charged residues not directly involved in interprotein interactions contribute to a substantial fraction (∼30%) of the interaction energy between oppositely charged proteins via long-range electrostatic interactions. Dynamic subunit exchange experiments further show that relatively small, 16-subunit assemblies of oppositely charged proteins have kinetic lifetimes on the order of ∼10-40 min, which is governed by protein composition and solution conditions. Broadly, our results inform how protein supercharging can be used to create different ordered supramolecular assemblies from a single parent protein building block.
Collapse
Affiliation(s)
- Michael
I. Jacobs
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Prateek Bansal
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles M. Schroeder
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Oranges M, Wort JL, Fukushima M, Fusco E, Ackermann K, Bode BE. Pulse Dipolar Electron Paramagnetic Resonance Spectroscopy Reveals Buffer-Modulated Cooperativity of Metal-Templated Protein Dimerization. J Phys Chem Lett 2022; 13:7847-7852. [PMID: 35976741 PMCID: PMC9421889 DOI: 10.1021/acs.jpclett.2c01719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/10/2022] [Indexed: 05/26/2023]
Abstract
Self-assembly of protein monomers directed by metal ion coordination constitutes a promising strategy for designing supramolecular architectures complicated by the noncovalent interaction between monomers. Herein, two pulse dipolar electron paramagnetic resonance spectroscopy (PDS) techniques, pulse electron-electron double resonance and relaxation-induced dipolar modulation enhancement, were simultaneously employed to study the CuII-templated dimerization behavior of a model protein (Streptococcus sp. group G, protein G B1 domain) in both phosphate and Tris-HCl buffers. A cooperative binding model could simultaneously fit all data and demonstrate that the cooperativity of protein dimerization across α-helical double-histidine motifs in the presence of CuII is strongly modulated by the buffer, representing a platform for highly tunable buffer-switchable templated dimerization. Hence, PDS enriches the family of techniques for monitoring binding processes, supporting the development of novel strategies for bioengineering structures and stable architectures assembled by an initial metal-templated dimerization.
Collapse
|
10
|
Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021; 121:13915-13935. [PMID: 34709798 DOI: 10.1021/acs.chemrev.1c00712] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form β-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew G Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
12
|
Zeng R, Lv C, Wang C, Zhao G. Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnol Adv 2021; 52:107835. [PMID: 34520791 DOI: 10.1016/j.biotechadv.2021.107835] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Elegant protein assembly to generate new biomaterials undergoes extremely rapid development for wide extension of biotechnology applications, which can be a powerful tool not only for creating nanomaterials but also for advancing understanding of the structure of life. Unique biological properties of proteins bestow these artificial biomaterials diverse functions that can permit them to be applied in encapsulation, bioimaging, biocatalysis, biosensors, photosynthetic apparatus, electron transport, magnetogenetic applications, vaccine development and antibodies design. This review gives a perspective view of the latest advances in the construction of protein-based nanomaterials. We initially start with distinguishable, specific interactions to construct sundry nanomaterials through protein self-assembly and concisely expound the assembly mechanism from the design strategy. And then, the design and construction of 0D, 1D, 2D, 3D protein assembled nanomaterials are especially highlighted. Furthermore, the potential applications have been discussed in detail. Overall, this review will illustrate how to fabricate highly sophisticated nanomaterials oriented toward applications in biotechnology based on the rules of supramolecular chemistry.
Collapse
Affiliation(s)
- Ruiqi Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
13
|
Selivanovitch E, Uchida M, Lee B, Douglas T. Substrate Partitioning into Protein Macromolecular Frameworks for Enhanced Catalytic Turnover. ACS NANO 2021; 15:15687-15699. [PMID: 34473481 PMCID: PMC9136710 DOI: 10.1021/acsnano.1c05004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spatial partitioning of chemical processes is an important attribute of many biological systems, the effect of which is reflected in the high efficiency of enzymes found within otherwise chaotic cellular environments. Barriers, often provided through the formation of compartments or phase segregation, gate the access of macromolecules and small molecules within the cell and provide an added level of metabolic control. Taking inspiration from nature, we have designed virus-like particles (VLPs) as nanoreactor compartments that sequester enzyme catalysts and have used these as building blocks to construct 3D protein macromolecular framework (PMF) materials, which are structurally characterized using small-angle X-ray scattering (SAXS). The highly charged PMFs form a separate phase in suspension, and by tuning the ionic strength, we show positively charged molecules preferentially partition into the PMF, while negatively charged molecules are excluded. This molecular partitioning was exploited to tune the catalytic activity of enzymes enclosed within the individual particles in the PMF, the results of which showed that positively charged substrates had turnover rates that were 8500× faster than their negatively charged counterparts. Moreover, the catalytic PMF led to cooperative behavior resulting in charge dependent trends opposite to those observed with individual P22 nanoreactor particles.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California 93740, Unites States
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Subramanian RH, Suzuki Y, Tallorin L, Sahu S, Thompson M, Gianneschi NC, Burkart MD, Tezcan FA. Enzyme-Directed Functionalization of Designed, Two-Dimensional Protein Lattices. Biochemistry 2021; 60:1050-1062. [PMID: 32706243 PMCID: PMC7855359 DOI: 10.1021/acs.biochem.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The design and construction of crystalline protein arrays to selectively assemble ordered nanoscale materials have potential applications in sensing, catalysis, and medicine. Whereas numerous designs have been implemented for the bottom-up construction of protein assemblies, the generation of artificial functional materials has been relatively unexplored. Enzyme-directed post-translational modifications are responsible for the functional diversity of the proteome and, thus, could be harnessed to selectively modify artificial protein assemblies. In this study, we describe the use of phosphopantetheinyl transferases (PPTases), a class of enzymes that covalently modify proteins using coenzyme A (CoA), to site-selectively tailor the surface of designed, two-dimensional (2D) protein crystals. We demonstrate that a short peptide (ybbR) or a molecular tag (CoA) can be covalently tethered to 2D arrays to enable enzymatic functionalization using Sfp PPTase. The site-specific modification of two different protein array platforms is facilitated by PPTases to afford both small molecule- and protein-functionalized surfaces with no loss of crystalline order. This work highlights the potential for chemoenzymatic modification of large protein surfaces toward the generation of sophisticated protein platforms reminiscent of the complex landscape of cell surfaces.
Collapse
Affiliation(s)
- Rohit H. Subramanian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yuta Suzuki
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Current address: Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan, 606-8501
| | - Lorillee Tallorin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Swagat Sahu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Thompson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
16
|
Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Nat Commun 2021; 12:589. [PMID: 33500404 PMCID: PMC7838286 DOI: 10.1038/s41467-020-20862-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Symmetrical protein complexes are ubiquitous in biology. Many have been re-engineered for chemical and medical applications. Viral capsids and their assembly are frequent platforms for these investigations. A means to create asymmetric capsids may expand applications. Here, starting with homodimeric Hepatitis B Virus capsid protein, we develop a heterodimer, design a hierarchical assembly pathway, and produce asymmetric capsids. In the heterodimer, the two halves have different growth potentials and assemble into hexamers. These preformed hexamers can nucleate co-assembly with other dimers, leading to Janus-like capsids with a small discrete hexamer patch. We can remove the patch specifically and observe asymmetric holey capsids by cryo-EM reconstruction. The resulting hole in the surface can be refilled with fluorescently labeled dimers to regenerate an intact capsid. In this study, we show how an asymmetric subunit can be used to generate an asymmetric particle, creating the potential for a capsid with different surface chemistries.
Collapse
|
17
|
Adachi R, Suzuki S, Mitsuda T, Morita Y, Komatsu T. Supramolecular linear coordination polymers of human serum albumin and haemoglobin. Chem Commun (Camb) 2020; 56:15585-15588. [PMID: 33245310 DOI: 10.1039/d0cc07167f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We describe the synthesis, structure, and functionalities of water-soluble linear coordination polymers of human serum albumin and haemoglobin, which are connected via a bis(terpyridyl)-Fe2+ complex. These protein fibres were self-assembled by lyophilisation and were transformed into single-wall nanotubes. The biological activities of the protein units were perfectly preserved in the long fibres.
Collapse
Affiliation(s)
- Ryo Adachi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | | | | | | | | |
Collapse
|
18
|
Higashi SL, Rozi N, Hanifah SA, Ikeda M. Supramolecular Architectures of Nucleic Acid/Peptide Hybrids. Int J Mol Sci 2020; 21:E9458. [PMID: 33322664 PMCID: PMC7763079 DOI: 10.3390/ijms21249458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
Collapse
Affiliation(s)
- Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Normazida Rozi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.R.); (S.A.H.)
| | - Sharina Abu Hanifah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.R.); (S.A.H.)
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
19
|
Merg AD, Touponse G, Genderen EV, Blum TB, Zuo X, Bazrafshan A, Siaw HMH, McCanna A, Brian Dyer R, Salaita K, Abrahams JP, Conticello VP. Shape-Shifting Peptide Nanomaterials: Surface Asymmetry Enables pH-Dependent Formation and Interconversion of Collagen Tubes and Sheets. J Am Chem Soc 2020; 142:19956-19968. [DOI: 10.1021/jacs.0c08174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gavin Touponse
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | | | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hew Ming Helen Siaw
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Arthur McCanna
- The Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jan Pieter Abrahams
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | | |
Collapse
|
20
|
Zhang W, Mo S, Liu M, Liu L, Yu L, Wang C. Rationally Designed Protein Building Blocks for Programmable Hierarchical Architectures. Front Chem 2020; 8:587975. [PMID: 33195088 PMCID: PMC7658299 DOI: 10.3389/fchem.2020.587975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023] Open
Abstract
Diverse natural/artificial proteins have been used as building blocks to construct a variety of well-ordered nanoscale structures over the past couple of decades. Sophisticated protein self-assemblies have attracted great scientific interests due to their potential applications in disease diagnosis, illness treatment, biomechanics, bio-optics and bio-electronics, etc. This review outlines recent efforts directed to the creation of structurally defined protein assemblies including one-dimensional (1D) strings/rings/tubules, two-dimensional (2D) planar sheets and three-dimensional (3D) polyhedral scaffolds. We elucidate various innovative strategies for manipulating proteins to self-assemble into desired architectures. The emergent applications of protein assemblies as versatile platforms in medicine and material science with improved performances have also been discussed.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Díaz S, Insua I, Bhak G, Montenegro J. Sequence Decoding of 1D to 2D Self‐Assembling Cyclic Peptides. Chemistry 2020; 26:14765-14770. [DOI: 10.1002/chem.202003265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/09/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Sandra Díaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Ghibom Bhak
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela 15782 Spain
| |
Collapse
|
22
|
Bailey JB, Tezcan FA. Tunable and Cooperative Thermomechanical Properties of Protein-Metal-Organic Frameworks. J Am Chem Soc 2020; 142:17265-17270. [PMID: 32972136 DOI: 10.1021/jacs.0c07835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We recently introduced protein-metal-organic frameworks (protein-MOFs) as chemically designed protein crystals, composed of ferritin nodes that predictably assemble into 3D lattices upon coordination of various metal ions and ditopic, hydroxamate-based linkers. Owing to their unique tripartite construction, protein-MOFs possess extremely sparse lattice connectivity, suggesting that they might display unusual thermomechanical properties. Leveraging the synthetic modularity of ferritin-MOFs, we investigated the temperature-dependent structural dynamics of six distinct frameworks. Our results show that the thermostabilities of ferritin-MOFs can be tuned through the metal component or the presence of crowding agents. Our studies also reveal a framework that undergoes a reversible and isotropic first-order phase transition near-room temperature, corresponding to a 4% volumetric change within 1 °C and a hysteresis window of ∼10 °C. This highly cooperative crystal-to-crystal transformation, which stems from the soft crystallinity of ferritin-MOFs, illustrates the advantage of modular construction strategies in discovering tunable-and unpredictable-material properties.
Collapse
Affiliation(s)
- Jake B Bailey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Benavides BS, Valandro S, Cioloboc D, Taylor AB, Schanze KS, Kurtz DM. Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry 2020; 59:1618-1629. [PMID: 32283930 PMCID: PMC7927158 DOI: 10.1021/acs.biochem.9b01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron storage protein bacterioferritin (Bfr) binds up to 12 hemes b at specific sites in its protein shell. The heme b can be substituted with the photosensitizer Zn(II)-protoporphyrin IX (ZnPP), and photosensitized reductive iron release from the ferric oxyhydroxide {[FeO(OH)]n} core inside the ZnPP-Bfr protein shell was demonstrated [Cioloboc, D., et al. (2018) Biomacromolecules 19, 178-187]. This report describes the X-ray crystal structure of ZnPP-Bfr and the effects of loaded iron on the photophysical properties of the ZnPP. The crystal structure of ZnPP-Bfr shows a unique six-coordinate zinc in the ZnPP with two axial methionine sulfur ligands. Steady state and transient ultraviolet-visible absorption and luminescence spectroscopies show that irradiation with light overlapping the Soret absorption causes oxidation of ZnPP to the cation radical ZnPP•+ only when the ZnPP-Bfr is loaded with [FeO(OH)]n. Femtosecond transient absorption spectroscopy shows that this photooxidation occurs from the singlet excited state (1ZnPP*) on the picosecond time scale and is consistent with two oxidizing populations of Fe3+, which do not appear to involve the ferroxidase center iron. We propose that [FeO(OH)]n clusters at or near the inner surface of the protein shell are responsible for ZnPP photooxidation. Hopping of the photoinjected electrons through the [FeO(OH)]n would effectively cause migration of Fe2+ through the inner cavity to pores where it exits the protein. Reductive iron mobilization is presumed to be a physiological function of Bfrs. The phototriggered Fe3+ reduction could be used to identify the sites of iron mobilization within the Bfr protein shell.
Collapse
Affiliation(s)
- Brenda S Benavides
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Silvano Valandro
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniela Cioloboc
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology and X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio (UT Health San Antonio), San Antonio, Texas 78229, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Donald M Kurtz
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
24
|
Sun H, Li Y, Yu S, Liu J. Hierarchical Self-Assembly of Proteins Through Rationally Designed Supramolecular Interfaces. Front Bioeng Biotechnol 2020; 8:295. [PMID: 32426335 PMCID: PMC7212437 DOI: 10.3389/fbioe.2020.00295] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
With the increasing advances in the basic understanding of pathogenesis mechanism and fabrication of advanced biological materials, protein nanomaterials are being developed for their potential bioengineering research and biomedical applications. Among different fabrication strategies, supramolecular self-assembly provides a versatile approach to construct hierarchical nanostructures from polyhedral cages, filaments, tubules, monolayer sheets to even cubic crystals through rationally designed supramolecular interfaces. In this mini review, we will briefly recall recent progress in reconstituting protein interfaces for hierarchical self-assembly and classify by the types of designed protein-protein interactions into receptor-ligand recognition, electrostatic interaction, metal coordination, and non-specific interaction networks. Moreover, some attempts on functionalization of protein superstructures for bioengineering and/or biomedical applications are also shortly discussed. We believe this mini review will outline the stream of hierarchical self-assembly of proteins through rationally designed supramolecular interfaces, which would open minds in visualizing protein-protein recognition and assembly in living cells and organisms, and even constructing multifarious functional bionanomaterials.
Collapse
Affiliation(s)
- Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Yan Li
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
25
|
Lv X, Cui S, Gu Y, Li J, Du G, Liu L. Enzyme Assembly for Compartmentalized Metabolic Flux Control. Metabolites 2020; 10:E125. [PMID: 32224973 PMCID: PMC7241084 DOI: 10.3390/metabo10040125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Enzyme assembly by ligand binding or physically sequestrating enzymes, substrates, or metabolites into isolated compartments can bring key molecules closer to enhance the flux of a metabolic pathway. The emergence of enzyme assembly has provided both opportunities and challenges for metabolic engineering. At present, with the development of synthetic biology and systems biology, a variety of enzyme assembly strategies have been proposed, from the initial direct enzyme fusion to scaffold-free assembly, as well as artificial scaffolds, such as nucleic acid/protein scaffolds, and even some more complex physical compartments. These assembly strategies have been explored and applied to the synthesis of various important bio-based products, and have achieved different degrees of success. Despite some achievements, enzyme assembly, especially in vivo, still has many problems that have attracted significant attention from researchers. Here, we focus on some selected examples to review recent research on scaffold-free strategies, synthetic artificial scaffolds, and physical compartments for enzyme assembly or pathway sequestration, and we discuss their notable advances. In addition, the potential applications and challenges in the applications are highlighted.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shixiu Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Bowen BJ, McGarrity AR, Szeto JYA, Pudney CR, Jones DD. Switching protein metalloporphyrin binding specificity by design from iron to fluorogenic zinc. Chem Commun (Camb) 2020; 56:4308-4311. [PMID: 32186552 DOI: 10.1039/d0cc00596g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metalloporphyrins play important roles in areas ranging from biology to nanoscience. Using computational design, we converted metalloporphyrin specificity of cytochrome b562 from iron to fluorogenic zinc. The new variant had a near total preference for zinc representing a switch in specificity, which greatly enhanced the negligible aqueous fluorescence of free ZnPP in vitro and in vivo.
Collapse
|
27
|
Engineering protein assemblies with allosteric control via monomer fold-switching. Nat Commun 2019; 10:5703. [PMID: 31836707 PMCID: PMC6911049 DOI: 10.1038/s41467-019-13686-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
The macromolecular machines of life use allosteric control to self-assemble, dissociate and change shape in response to signals. Despite enormous interest, the design of nanoscale allosteric assemblies has proven tremendously challenging. Here we present a proof of concept of allosteric assembly in which an engineered fold switch on the protein monomer triggers or blocks assembly. Our design is based on the hyper-stable, naturally monomeric protein CI2, a paradigm of simple two-state folding, and the toroidal arrangement with 6-fold symmetry that it only adopts in crystalline form. We engineer CI2 to enable a switch between the native and an alternate, latent fold that self-assembles onto hexagonal toroidal particles by exposing a favorable inter-monomer interface. The assembly is controlled on demand via the competing effects of temperature and a designed short peptide. These findings unveil a remarkable potential for structural metamorphosis in proteins and demonstrate key principles for engineering protein-based nanomachinery. The design of protein assemblies is a major thrust for biomolecular engineering and nanobiotechnology. Here the authors demonstrate a general mechanism for designing allosteric macromolecular assemblies and showcase a proof of concept for engineered allosteric protein assembly.
Collapse
|
28
|
Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability. Nat Commun 2019; 10:5545. [PMID: 31804480 PMCID: PMC6895169 DOI: 10.1038/s41467-019-13491-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
Abstract
Proteins are versatile natural building blocks with highly complex and multifunctional architectures, and self-assembled protein structures have been created by the introduction of covalent, noncovalent, or metal-coordination bonding. Here, we report the robust, selective, and reversible metal coordination properties of unnatural chelating amino acids as the sufficient and dominant driving force for diverse protein self-assembly. Bipyridine-alanine is genetically incorporated into a D3 homohexamer. Depending on the position of the unnatural amino acid, 1-directional, crystalline and noncrystalline 2-directional, combinatory, and hierarchical architectures are effectively created upon the addition of metal ions. The length and shape of the structures is tunable by altering conditions related to thermodynamics and kinetics of metal-coordination and subsequent reactions. The crystalline 1-directional and 2-directional biomaterials retain their native enzymatic activities with increased thermal stability, suggesting that introducing chelating ligands provides a specific chemical basis to synthesize diverse protein-based functional materials while retaining their native structures and functions. Precise manipulation of protein self-assembly in vitro is challenging. Here, the authors developed an approach for driving metal-mediated reversible protein assembly by genetically installing a bipyridine residue into an oligomeric (D3) protein.
Collapse
|
29
|
Affiliation(s)
- Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
30
|
Affiliation(s)
- Aleksei Solomonov
- Department of Materials and Interfaces Weizmann Institute of Science 7610001 Rehovot Israel
| | - Ulyana Shimanovich
- Department of Materials and Interfaces Weizmann Institute of Science 7610001 Rehovot Israel
| |
Collapse
|
31
|
Malay AD, Miyazaki N, Biela A, Chakraborti S, Majsterkiewicz K, Stupka I, Kaplan CS, Kowalczyk A, Piette BMAG, Hochberg GKA, Wu D, Wrobel TP, Fineberg A, Kushwah MS, Kelemen M, Vavpetič P, Pelicon P, Kukura P, Benesch JLP, Iwasaki K, Heddle JG. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 2019; 569:438-442. [PMID: 31068697 DOI: 10.1038/s41586-019-1185-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
Abstract
Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.
Collapse
Affiliation(s)
- Ali D Malay
- Heddle Initiative Research Unit, RIKEN, Saitama, Japan.,Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| | - Naoyuki Miyazaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Artur Biela
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Soumyananda Chakraborti
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Majsterkiewicz
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Izabela Stupka
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Craig S Kaplan
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Agnieszka Kowalczyk
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | | | - Georg K A Hochberg
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Di Wu
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Tomasz P Wrobel
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Adam Fineberg
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Manish S Kushwah
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Mitja Kelemen
- Jožef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | | | - Philipp Kukura
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Jonathan G Heddle
- Heddle Initiative Research Unit, RIKEN, Saitama, Japan. .,Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
32
|
Conroy F, Rossi T, Ashmead H, Crowther JM, Mitra AK, Gerrard JA. Engineering peroxiredoxin 3 to facilitate control over self-assembly. Biochem Biophys Res Commun 2019; 512:263-268. [PMID: 30885432 DOI: 10.1016/j.bbrc.2019.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Oligomeric proteins are abundant in nature and are useful for a range of nanotechnological applications; however, a key requirement in using these proteins is controlling when and how they form oligomeric assemblies. Often, protein oligomerisation is triggered by various cellular signals, allowing for controllable oligomerisation. An example of this is human peroxiredoxin 3 (Prx), a stable protein that natively forms dimers, dodecameric rings, stacks, and tubes in response to a range of environmental stimuli. Although we know the key environmental stimuli for switching between different oligomeric states of Prx, we still have limited molecular knowledge and control over the formation and size of the protein's stacks and tubes. Here, we have generated a range of Prx mutants with either a decreased or knocked out ability to stack, and used both imaging and solution studies to show that Prx stacks through electrostatic interactions that are stabilised by a hydrogen bonding network. Furthermore, we show that altering the length of the polyhistidine tag will alter the length of the Prx stacks, with longer polyhistidine tags giving longer stacks. Finally, we have analysed the effect a variety of heavy metals have on the oligomeric state of Prx, wherein small transition metals like nickel enhances Prx stacking, while larger positively charged metals like tungstate ions can prevent Prx stacking. This work provides further structural characterisation of Prx, to enhance its use as a platform from which to build protein nanostructures for a variety of applications.
Collapse
Affiliation(s)
- Frankie Conroy
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand.
| | - Tatiana Rossi
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Helen Ashmead
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand; Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Jennifer M Crowther
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Alok K Mitra
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Juliet A Gerrard
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand.
| |
Collapse
|
33
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang L, Gong C, Yuan X, Wei G. Controlling the Self-Assembly of Biomolecules into Functional Nanomaterials through Internal Interactions and External Stimulations: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E285. [PMID: 30781679 PMCID: PMC6410314 DOI: 10.3390/nano9020285] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/02/2023]
Abstract
Biomolecular self-assembly provides a facile way to synthesize functional nanomaterials. Due to the unique structure and functions of biomolecules, the created biological nanomaterials via biomolecular self-assembly have a wide range of applications, from materials science to biomedical engineering, tissue engineering, nanotechnology, and analytical science. In this review, we present recent advances in the synthesis of biological nanomaterials by controlling the biomolecular self-assembly from adjusting internal interactions and external stimulations. The self-assembly mechanisms of biomolecules (DNA, protein, peptide, virus, enzyme, metabolites, lipid, cholesterol, and others) related to various internal interactions, including hydrogen bonds, electrostatic interactions, hydrophobic interactions, π⁻π stacking, DNA base pairing, and ligand⁻receptor binding, are discussed by analyzing some recent studies. In addition, some strategies for promoting biomolecular self-assembly via external stimulations, such as adjusting the solution conditions (pH, temperature, ionic strength), adding organics, nanoparticles, or enzymes, and applying external light stimulation to the self-assembly systems, are demonstrated. We hope that this overview will be helpful for readers to understand the self-assembly mechanisms and strategies of biomolecules and to design and develop new biological nanostructures or nanomaterials for desired applications.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| | - Coucong Gong
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Xinzhu Yuan
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China.
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
35
|
Simon AJ, Zhou Y, Ramasubramani V, Glaser J, Pothukuchy A, Gollihar J, Gerberich JC, Leggere JC, Morrow BR, Jung C, Glotzer SC, Taylor DW, Ellington AD. Supercharging enables organized assembly of synthetic biomolecules. Nat Chem 2019; 11:204-212. [DOI: 10.1038/s41557-018-0196-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/26/2018] [Indexed: 11/09/2022]
|
36
|
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48:5564-5595. [DOI: 10.1039/c8cs01003j] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
- Faculty of Physics and Astronomy
- University of Jena
| | - Coucong Gong
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Gang Wei
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
- Cixi Institute of Biomedical Engineering
| |
Collapse
|
37
|
Kuan SL, Bergamini FRG, Weil T. Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 2018; 47:9069-9105. [PMID: 30452046 PMCID: PMC6289173 DOI: 10.1039/c8cs00590g] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 01/08/2023]
Abstract
Nature has evolved an optimal synthetic factory in the form of translational and posttranslational processes by which millions of proteins with defined primary sequences and 3D structures can be built. Nature's toolkit gives rise to protein building blocks, which dictates their spatial arrangement to form functional protein nanostructures that serve a myriad of functions in cells, ranging from biocatalysis, formation of structural networks, and regulation of biochemical processes, to sensing. With the advent of chemical tools for site-selective protein modifications and recombinant engineering, there is a rapid development to develop and apply synthetic methods for creating structurally defined, functional protein nanostructures for a broad range of applications in the fields of catalysis, materials and biomedical sciences. In this review, design principles and structural features for achieving and characterizing functional protein nanostructures by synthetic approaches are summarized. The synthetic customization of protein building blocks, the design and introduction of recognition units and linkers and subsequent assembly into structurally defined protein architectures are discussed herein. Key examples of these supramolecular protein nanostructures, their unique functions and resultant impact for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| | - Fernando R. G. Bergamini
- Institute of Chemistry
, Federal University of Uberlândia – UFU
,
38400-902 Uberlândia
, MG
, Brazil
| | - Tanja Weil
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| |
Collapse
|
38
|
Dang DT, van Onzen AHAM, Dorland YL, Brunsveld L. Cucurbit[8]uril Reactivation of an Inactivated Caspase-8 Mutant Reveals Differentiated Enzymatic Substrate Processing. Chembiochem 2018; 19:2490-2494. [PMID: 30300966 PMCID: PMC6391946 DOI: 10.1002/cbic.201800521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 01/26/2023]
Abstract
Caspase-8 constructs featuring an N-terminal FGG sequence allow for selective twofold recognition by cucurbit[8]uril, which leads to an increase of the enzymatic activity in a cucurbit[8]uril dose-dependent manner. This supramolecular switching has enabled for the first time the study of the same caspase-8 in its two extreme states; as full monomer and as cucurbit[8]uril induced dimer. A mutated, fully monomeric caspase-8 (D384A), which is enzymatically inactive towards its natural substrate caspase-3, could be fully reactivated upon addition of cucurbit[8]uril. In its monomeric state caspase-8 (D384A) still processes a small synthetic substrate, but not the natural caspase-3 substrate, highlighting the close interplay between protein dimerization and active site rearrangement for substrate selectivity. The ability to switch the caspase-8 activity by a supramolecular system thus provides a flexible approach to studying the activity of a protein at different oligomerization states.
Collapse
Affiliation(s)
- Dung T. Dang
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering, andInstitute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Arthur H. A. M. van Onzen
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering, andInstitute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Yvonne L. Dorland
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering, andInstitute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering, andInstitute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| |
Collapse
|
39
|
Subramanian R, Smith SJ, Alberstein RG, Bailey JB, Zhang L, Cardone G, Suominen L, Chami M, Stahlberg H, Baker TS, Tezcan FA. Self-Assembly of a Designed Nucleoprotein Architecture through Multimodal Interactions. ACS CENTRAL SCIENCE 2018; 4:1578-1586. [PMID: 30555911 PMCID: PMC6276041 DOI: 10.1021/acscentsci.8b00745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 06/09/2023]
Abstract
The co-self-assembly of proteins and nucleic acids (NAs) produces complex biomolecular machines (e.g., ribosomes and telomerases) that represent some of the most daunting targets for biomolecular design. Despite significant advances in protein and DNA or RNA nanotechnology, the construction of artificial nucleoprotein complexes has largely been limited to cases that rely on the NA-mediated spatial organization of protein units, rather than a cooperative interplay between protein- and NA-mediated interactions that typify natural nucleoprotein assemblies. We report here a structurally well-defined synthetic nucleoprotein assembly that forms through the synergy of three types of intermolecular interactions: Watson-Crick base pairing, NA-protein interactions, and protein-metal coordination. The fine thermodynamic balance between these interactions enables the formation of a crystalline architecture under highly specific conditions.
Collapse
Affiliation(s)
- Rohit
H. Subramanian
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Sarah J. Smith
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Robert G. Alberstein
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Jake B. Bailey
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Ling Zhang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Giovanni Cardone
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Lauri Suominen
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Mohamed Chami
- C−CINA,
Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Henning Stahlberg
- C−CINA,
Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Timothy S. Baker
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Division
of Biological Sciences, University of California,
San Diego, La Jolla, California 92093, United States
| | - F. Akif Tezcan
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Pacaud B, Leclercq L, Dechézelles JF, Nardello-Rataj V. Hybrid Core-Shell Nanoparticles by “Plug and Play” Self-Assembly. Chemistry 2018; 24:17672-17676. [DOI: 10.1002/chem.201804155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Benjamin Pacaud
- CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Loïc Leclercq
- CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Jean-François Dechézelles
- CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| | - Véronique Nardello-Rataj
- CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide; Univ. Lille; 59000 Lille France
| |
Collapse
|
41
|
Künzle M, Eckert T, Beck T. Metal-Assisted Assembly of Protein Containers Loaded with Inorganic Nanoparticles. Inorg Chem 2018; 57:13431-13436. [PMID: 30351078 DOI: 10.1021/acs.inorgchem.8b01995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein containers are suitable building blocks for bioinorganic materials. Here, we show that high concentrations of magnesium ions induce the formation of a unitary protein scaffold, whereas low magnesium concentration leads to a binary protein scaffold. The molecular interactions in the protein scaffold were characterized with X-ray crystallography to high resolution. We show that the unitary framework can be applied for the assembly of inorganic nanoparticles such as metal oxides into highly ordered bioinorganic structures. Our work emphasizes the structural tunability of protein-container-based materials, important for adjusting emerging properties of such materials.
Collapse
Affiliation(s)
- Matthias Künzle
- Institute of Inorganic Chemistry , RWTH Aachen University , 52074 Aachen , Germany
| | - Thomas Eckert
- Institute of Physical Chemistry , RWTH Aachen University , 52074 Aachen , Germany
| | - Tobias Beck
- Institute of Inorganic Chemistry , RWTH Aachen University , 52074 Aachen , Germany.,I3TM , RWTH Aachen University , 52074 Aachen , Germany.,JARA SOFT and JARA FIT , RWTH Aachen University , 52074 Aachen , Germany
| |
Collapse
|
42
|
Tian Y, Polzer FB, Zhang HV, Kiick KL, Saven JG, Pochan DJ. Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed Peptides. Biomacromolecules 2018; 19:4286-4298. [DOI: 10.1021/acs.biomac.8b01163] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Tian
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Frank B. Polzer
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Huixi Violet Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kristi L. Kiick
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Darrin J. Pochan
- Materials Science and Engineering Department, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
43
|
Thomas A, Matthaei JF, Baneyx F. A Self-Assembling Two-Dimensional Protein Array is a Versatile Platform for the Assembly of Multicomponent Nanostructures. Biotechnol J 2018; 13:e1800141. [PMID: 30168658 DOI: 10.1002/biot.201800141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/12/2018] [Indexed: 01/15/2023]
Abstract
Rationally designed two-dimensional (2D) arrays that support the assembly of nanoscale components are of interest for catalysis, sensing, and biomedical applications. The computational redesign of a protein called TTM that undergoes calcium-induced self-assembly into nanostructured lattices capable of growing to dozens of micrometers are previously reported. The work demonstrates here that the N- and C-termini of the constituent monomers are solvent-accessible and that they can be modified with a hexahistidine extension, a gold-binding peptide, or a biotinylation tag to decorate nickel-nitriloacetic acid beads with self-assembled protein islands, conjugate gold nanoparticles to planar arrays, or control the immobilization density of avidin molecules onto 2D lattices through co-polymerization of biotinylated and wild type TTM monomers. These results showcase the potential of TTM as a versatile 2D scaffold for the fabrication of hierarchical structures comprising a broad range of nanoscale elements.
Collapse
Affiliation(s)
- Alexander Thomas
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195, USA
| | - James F Matthaei
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195, USA
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Alcala-Torano R, Walther M, Sommer DJ, Park CK, Ghirlanda G. Rational design of a hexameric protein assembly stabilized by metal chelation. Biopolymers 2018; 109:e23233. [PMID: 30191549 DOI: 10.1002/bip.23233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022]
Abstract
Protein-based self-assembled nanostructures hold tremendous promise as smart materials. One strategy to control the assembly of individual protein modules takes advantage of the directionality and high affinity bonding afforded by metal chelation. Here, we describe the use of 2,2'-bipyridine units (Bpy) as side chains to template the assembly of large structures (MW approx. 35 000 Da) in a metal-dependent manner. The structures are trimers of independently folded 3-helix bundles, and are held together by 2 Me(Bpy)3 complexes. The assemblies are stable to thermal denaturation, and are more than 90% helical at 90°C. Circular dichroism spectroscopy shows that one of the 2 possible (Bpy)3 enantiomers is favored over the other. Because of the sequence pliability of the starting peptides, these constructs could find use to organize functional groups at controlled positions within a supramolecular assembly.
Collapse
Affiliation(s)
| | - Mathieu Walther
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Dayn J Sommer
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | - Chad K Park
- Department of Biochemistry, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
45
|
Manuguri S, Webster K, Yewdall NA, An Y, Venugopal H, Bhugra V, Turner A, Domigan LJ, Gerrard JA, Williams DE, Malmström J. Assembly of Protein Stacks With in Situ Synthesized Nanoparticle Cargo. NANO LETTERS 2018; 18:5138-5145. [PMID: 30047268 DOI: 10.1021/acs.nanolett.8b02055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of proteins to form hierarchical structures through self-assembly provides an opportunity to synthesize and organize nanoparticles. Ordered nanoparticle assemblies are a subject of widespread interest due to the potential to harness their emergent functions. In this work, the toroidal-shaped form of the protein peroxiredoxin, which has a pore size of 7 nm, was used to organize iron oxyhydroxide nanoparticles. Iron in the form of Fe2+ was sequestered into the central cavity of the toroid ring using metal-binding sites engineered there and then hydrolyzed to form iron oxyhydroxide particles bound into the protein pore. By precise manipulation of the pH, the mineralized toroids were organized into stacks confining one-dimensional nanoparticle assemblies. We report the formation and the procedures leading to the formation of such nanostructures and their characterization by chromatography and microscopy. Electrostatic force microscopy clearly revealed the formation of iron-containing nanorods as a result of the self-assembly of the iron-loaded protein. This research bodes well for the use of peroxiredoxin as a template with which to form nanowires and structures for electronic and magnetic applications.
Collapse
Affiliation(s)
- Sesha Manuguri
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | | | - N Amy Yewdall
- Biomolecular Interaction Centre and School of Biological Sciences , University of Canterbury , Christchurch 8140 , New Zealand
| | | | | | - Vaibhav Bhugra
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | | | - Laura J Domigan
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - Juliet A Gerrard
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - David E Williams
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| | - Jenny Malmström
- MacDiarmid Institute for Advanced Materials and Nanotechnology , 6140 Wellington , New Zealand
| |
Collapse
|
46
|
|
47
|
Zhang J, Wang X, Zhou K, Chen G, Wang Q. Self-Assembly of Protein Crystals with Different Crystal Structures Using Tobacco Mosaic Virus Coat Protein as a Building Block. ACS NANO 2018; 12:1673-1679. [PMID: 29350903 DOI: 10.1021/acsnano.7b08316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a typical cylinder-shaped tobacco mosaic virus coat protein (TMVCP) is employed as an anisotropic building block to assemble into triclinic and hexagonal close-packed (HCP) protein crystals by introducing cysteine residues at the 1 and 3 sites and four histidine residues at the C-terminal, respectively. The engineered functional groups of cysteine and histidine in the TMVCP and the self-assembly conditions determine the thermodynamics and kinetics in the self-assembly process for forming different crystal structures. The results show that the TMVCPs are thermodynamically driven to form triclinic crystals due to the formation of disulfide bonds between neighboring TMVCPs. On the other hand, the self-assembly of HCP crystals is kinetically directed by the strong metal-histidine chelation. This work not only greatly expands TMVCP for fabricating promising nanomaterials but also represents an approach to adjusting the protein crystal structures by tuning the thermodynamics and kinetics during crystallization.
Collapse
Affiliation(s)
- Jianting Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Xiao Wang
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Kun Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University , Shanghai 201210, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China , Hefei 230026, China
| |
Collapse
|
48
|
Yang G, Wu L, Chen G, Jiang M. Precise protein assembly of array structures. Chem Commun (Camb) 2018; 52:10595-605. [PMID: 27384233 DOI: 10.1039/c6cc04190f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The assembly of proteins into various nano-objects with regular and periodic microstructures, i.e. protein arrays, is a fast-growing field in materials science. Due to the structural complexity of proteins, reports in this field are still quite limited. In this review, we summarize the recent developments in protein array construction by different driving forces, including electrostatic interactions, metal-ligand interactions, molecular recognition and protein-protein interactions. In line with our particular interest, assemblies driven by molecular recognition are particularly explored. Finally, functionalities of the obtained protein arrays are briefly discussed.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Libin Wu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Guosong Chen
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Ming Jiang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
49
|
Künzle M, Lach M, Beck T. Crystalline protein scaffolds as a defined environment for the synthesis of bioinorganic materials. Dalton Trans 2018; 47:10382-10387. [DOI: 10.1039/c8dt01192c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We discuss synthetic strategies and applications of highly ordered bioinorganic materials based on crystalline protein scaffolds.
Collapse
Affiliation(s)
- Matthias Künzle
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| | - Marcel Lach
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| | - Tobias Beck
- RWTH Aachen University
- Institute of Inorganic Chemistry
- JARA-SOFT (Researching Soft Matter)
- and I3TM
- 52074 Aachen
| |
Collapse
|
50
|
Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schäfer KH, Keck CM, Jacob C. Natural Nanoparticles: A Particular Matter Inspired by Nature. Antioxidants (Basel) 2017; 7:antiox7010003. [PMID: 29286304 PMCID: PMC5789313 DOI: 10.3390/antiox7010003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
During the last couple of decades, the rapidly advancing field of nanotechnology has produced a wide palette of nanomaterials, most of which are considered as “synthetic” and, among the wider public, are often met with a certain suspicion. Despite the technological sophistication behind many of these materials, “nano” does not always equate with “artificial”. Indeed, nature itself is an excellent nanotechnologist. It provides us with a range of fine particles, from inorganic ash, soot, sulfur and mineral particles found in the air or in wells, to sulfur and selenium nanoparticles produced by many bacteria and yeasts. These nanomaterials are entirely natural, and, not surprisingly, there is a growing interest in the development of natural nanoproducts, for instance in the emerging fields of phyto- and phyco-nanotechnology. This review will highlight some of the most recent—and sometimes unexpected—advances in this exciting and diverse field of research and development. Naturally occurring nanomaterials, artificially produced nanomaterials of natural products as well as naturally occurring or produced nanomaterials of natural products all show their own, particular chemical and physical properties, biological activities and promise for applications, especially in the fields of medicine, nutrition, cosmetics and agriculture. In the future, such natural nanoparticles will not only stimulate research and add a greener outlook to a traditionally high-tech field, they will also provide solutions—pardon—suspensions for a range of problems. Here, we may anticipate specific biogenic factories, valuable new materials based on waste, the effective removal of contaminants as part of nano-bioremediation, and the conversion of poorly soluble substances and materials to biologically available forms for practical uses.
Collapse
Affiliation(s)
- Sharoon Griffin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
- Institute of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, 35037 Marburg, Germany.
| | - Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482 Zweibruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Sarfraz
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Azubuike Peter Ebokaiwe
- Department of Chemistry/Biochemistry and Molecular Biology, Federal University, Ndufu-Alike Ikwo, 482131 Ndufu-Alike, Nigeria.
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482 Zweibruecken, Germany.
| | - Cornelia M Keck
- Institute of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, 35037 Marburg, Germany.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|