1
|
Thomas P, Peele EE, Yopak KE, Sulikowski JA, Kinsey ST. Lectin binding to pectoral fin of neonate little skates reared under ambient and projected-end-of-century temperature regimes. J Morphol 2024; 285:e21698. [PMID: 38669130 PMCID: PMC11064730 DOI: 10.1002/jmor.21698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The glycosylation of macromolecules can vary both among tissue structural components and by adverse conditions, potentially providing an alternative marker of stress in organisms. Lectins are proteins that bind carbohydrate moieties and lectin histochemistry is a common method to visualize microstructures in biological specimens and diagnose pathophysiological states in human tissues known to alter glycan profiles. However, this technique is not commonly used to assess broad-spectrum changes in cellular glycosylation in response to environmental stressors. In addition, the binding of various lectins has not been studied in elasmobranchs (sharks, skates, and rays). We surveyed the binding tissue structure specificity of 14 plant-derived lectins, using both immunoblotting and immunofluorescence, in the pectoral fins of neonate little skates (Leucoraja erinacea). Skates were reared under present-day or elevated (+5°C above ambient) temperature regimes and evaluated for lectin binding as an indicator of changing cellular glycosylation and tissue structure. Lectin labeling was highly tissue and microstructure specific. Dot blots revealed no significant changes in lectin binding between temperature regimes. In addition, lectins only detected in the elevated temperature treatment were Canavalia ensiformis lectin (Concanavalin A) in spindle cells of muscle and Ricinus communis agglutinin in muscle capillaries. These results provide a reference for lectin labeling in elasmobranch tissue that may aid future investigations.
Collapse
Affiliation(s)
- Peyton Thomas
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - Emily E. Peele
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - Kara E. Yopak
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - James A. Sulikowski
- 2030 SE Marine Science Drive, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97365, USA
| | - Stephen T. Kinsey
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| |
Collapse
|
2
|
Jiang Y, Curran-French S, Koh SWH, Jamil I, Gu B, Argirò L, Lopez SG, Martins C, Saalbach G, Moubayidin L. O-glycosylation of the transcription factor SPATULA promotes style development in Arabidopsis. NATURE PLANTS 2024; 10:283-299. [PMID: 38278950 PMCID: PMC10881398 DOI: 10.1038/s41477-023-01617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) and O-fucose are two sugar-based post-translational modifications whose mechanistic role in plant signalling and transcriptional regulation is still largely unknown. Here we investigated how two O-glycosyltransferase enzymes of Arabidopsis thaliana, SPINDLY (SPY) and SECRET AGENT (SEC), promote the activity of the basic helix-loop-helix transcription factor SPATULA (SPT) during morphogenesis of the plant female reproductive organ apex, the style. SPY and SEC modify amino-terminal residues of SPT in vivo and in vitro by attaching O-fucose and O-GlcNAc, respectively. This post-translational regulation does not impact SPT homo- and heterodimerization events, although it enhances the affinity of SPT for the kinase PINOID gene locus and its transcriptional repression. Our findings offer a mechanistic example of the effect of O-GlcNAc and O-fucose on the activity of a plant transcription factor and reveal previously unrecognized roles for SEC and SPY in orchestrating style elongation and shape.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Samuel W H Koh
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Iqra Jamil
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Benguo Gu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Luca Argirò
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Sergio G Lopez
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Carlo Martins
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Gerhard Saalbach
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Laila Moubayidin
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
3
|
Li P, Messina G, Lehner CF. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023; 19:e1010837. [PMID: 37428798 PMCID: PMC10359004 DOI: 10.1371/journal.pgen.1010837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Giovanni Messina
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Abstract
O-GlcNAcylation is a dynamic post-translational modification performed by two opposing enzymes: O-GlcNAc transferase and O-GlcNAcase. O-GlcNAcylation is generally believed to act as a metabolic integrator in numerous signalling pathways. The stoichiometry of this modification is tightly controlled throughout all stages of development, with both hypo/hyper O-GlcNAcylation resulting in broad defects. In this Primer, we discuss the role of O-GlcNAcylation in developmental processes from stem cell maintenance and differentiation to cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Ignacy Czajewski
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Mendaluk A, Caussinus E, Boutros M, Lehner CF. A genome-wide RNAi screen for genes important for proliferation of cultured Drosophila cells at low temperature identifies the Ball/VRK protein kinase. Chromosoma 2023; 132:31-53. [PMID: 36746786 PMCID: PMC9981717 DOI: 10.1007/s00412-023-00787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
A change in ambient temperature is predicted to disrupt cellular homeostasis by affecting all cellular processes in an albeit non-uniform manner. Diffusion is generally less temperature-sensitive than enzymes, for example, and each enzyme has a characteristic individual temperature profile. The actual effects of temperature variation on cells are still poorly understood at the molecular level. Towards an improved understanding, we have performed a genome-wide RNA interference screen with S2R + cells. This Drosophila cell line proliferates over a temperature range comparable to that tolerated by the parental ectothermic organism. Based on effects on cell counts and cell cycle profile after knockdown at 27 and 17 °C, respectively, genes were identified with an apparent greater physiological significance at one or the other temperature. While 27 °C is close to the temperature optimum, the substantially lower 17 °C was chosen to identify genes important at low temperatures, which have received less attention compared to the heat shock response. Among a substantial number of screen hits, we validated a set successfully in cell culture and selected ballchen for further evaluation in the organism. This gene encodes the conserved metazoan VRK protein kinase that is crucial for the release of chromosomes from the nuclear envelope during mitosis. Our analyses in early embryos and larval wing imaginal discs confirmed a higher requirement for ballchen function at temperatures below the optimum. Overall, our experiments validate the genome-wide screen as a basis for future characterizations of genes with increased physiological significance at the lower end of the readily tolerated temperature range.
Collapse
Affiliation(s)
- Anna Mendaluk
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Emmanuel Caussinus
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, BioQuant, Heidelberg, Germany
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Konzman D, Fukushige T, Dagnachew M, Krause M, Hanover JA. O-GlcNAc transferase plays a non-catalytic role in C. elegans male fertility. PLoS Genet 2022; 18:e1010273. [PMID: 36383567 PMCID: PMC9710795 DOI: 10.1371/journal.pgen.1010273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/30/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Animal behavior is influenced by the competing drives to maintain energy and to reproduce. The balance between these evolutionary pressures and how nutrient signaling pathways intersect with mating remains unclear. The nutrient sensor O-GlcNAc transferase, which post-translationally modifies intracellular proteins with a single monosaccharide, is responsive to cellular nutrient status and regulates diverse biological processes. Though essential in most metazoans, O-GlcNAc transferase (ogt-1) is dispensable in Caenorhabditis elegans, allowing genetic analysis of its physiological roles. Compared to control, ogt-1 males had a four-fold reduction in mean offspring, with nearly two thirds producing zero progeny. Interestingly, we found that ogt-1 males transferred sperm less often, and virgin males had reduced sperm count. ogt-1 males were also less likely to engage in mate-searching and mate-response behaviors. Surprisingly, we found normal fertility for males with hypodermal expression of ogt-1 and for ogt-1 strains with catalytic-dead mutations. This suggests OGT-1 serves a non-catalytic function in the hypodermis impacting male fertility and mating behavior. This study builds upon research on the nutrient sensor O-GlcNAc transferase and demonstrates a role it plays in the interplay between the evolutionary drives for reproduction and survival.
Collapse
Affiliation(s)
- Daniel Konzman
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mesgana Dagnachew
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Kabakci Z, Yamada H, Vernizzi L, Gupta S, Weber J, Sun MS, Lehner CF. Teflon promotes chromosomal recruitment of homolog conjunction proteins during Drosophila male meiosis. PLoS Genet 2022; 18:e1010469. [PMID: 36251690 PMCID: PMC9612826 DOI: 10.1371/journal.pgen.1010469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Meiosis in males of higher dipterans is achiasmate. In their spermatocytes, pairing of homologs into bivalent chromosomes does not include synaptonemal complex and crossover formation. While crossovers preserve homolog conjunction until anaphase I during canonical meiosis, an alternative system is used in dipteran males. Mutant screening in Drosophila melanogaster has identified teflon (tef) as being required specifically for alternative homolog conjunction (AHC) of autosomal bivalents. The additional known AHC genes, snm, uno and mnm, are needed for the conjunction of autosomal homologs and of sex chromosomes. Here, we have analyzed the pattern of TEF protein expression. TEF is present in early spermatocytes but cannot be detected on bivalents at the onset of the first meiotic division, in contrast to SNM, UNO and MNM (SUM). TEF binds to polytene chromosomes in larval salivary glands, recruits MNM by direct interaction and thereby, indirectly, also SNM and UNO. However, chromosomal SUM association is not entirely dependent on TEF, and residual autosome conjunction occurs in tef null mutant spermatocytes. The higher tef requirement for autosomal conjunction is likely linked to the quantitative difference in the amount of SUM protein that provides conjunction of autosomes and sex chromosomes, respectively. During normal meiosis, SUM proteins are far more abundant on sex chromosomes compared to autosomes. Beyond promoting SUM recruitment, TEF has a stabilizing effect on SUM proteins. Increased SUM causes excess conjunction and consequential chromosome missegregation during meiosis I after co-overexpression. Similarly, expression of SUM without TEF, and even more potently with TEF, interferes with chromosome segregation during anaphase of mitotic divisions in somatic cells, suggesting that the known AHC proteins are sufficient for establishment of ectopic chromosome conjunction. Overall, our findings suggest that TEF promotes alternative homolog conjunction during male meiosis without being part of the final physical linkage between chromosomes. Sexual reproduction depends on meiosis, a special cell division that generates haploid cells. Haploid cells have only one set of chromosomes in contrast to the diploid precursor cell, which has two sets. Haploid cells can differentiate into gametes. Fusion of two gametes during fertilization recreates the diploid state. Meiosis is distinct in males and females to produce two distinct types of compatible gametes, sperm and egg. In the fly Drosophila melanogaster, sex-specific differences are particularly pronounced. While pairing of homologous chromosomes into bivalents early in meiosis proceeds in a canonical manner in females, males use an alternative system. This system maintains homolog pairing, replacing crossovers that result from homologous recombination during canonical meiosis. Four genes (snm, uno, mnm and tef) are known to be required specifically for alternative homolog conjunction in males. Here, we demonstrate that the TEF protein binds directly to MNM. Thereby, TEF promotes the recruitment of MNM and consequentially SNM and UNO to chromosomes. However, while SNM, UNO and MNM remain on bivalent chromosomes until they are separated apart during the first meiotic division, TEF disappears prematurely, suggesting that it is not part of the final physical linkage between homologous chromosomes.
Collapse
Affiliation(s)
- Zeynep Kabakci
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Hiro Yamada
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Luisa Vernizzi
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Samir Gupta
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Joe Weber
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Michael Shoujie Sun
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F. Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
9
|
King DT, Serrano-Negrón JE, Zhu Y, Moore CL, Shoulders MD, Foster LJ, Vocadlo DJ. Thermal Proteome Profiling Reveals the O-GlcNAc-Dependent Meltome. J Am Chem Soc 2022; 144:3833-3842. [PMID: 35230102 PMCID: PMC8969899 DOI: 10.1021/jacs.1c10621] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Posttranslational modifications alter the biophysical properties of proteins and thereby influence cellular physiology. One emerging manner by which such modifications regulate protein functions is through their ability to perturb protein stability. Despite the increasing interest in this phenomenon, there are few methods that enable global interrogation of the biophysical effects of posttranslational modifications on the proteome. Here, we describe an unbiased proteome-wide approach to explore the influence of protein modifications on the thermodynamic stability of thousands of proteins in parallel. We apply this profiling strategy to study the effects of O-linked N-acetylglucosamine (O-GlcNAc), an abundant modification found on hundreds of proteins in mammals that has been shown in select cases to stabilize proteins. Using this thermal proteomic profiling strategy, we identify a set of 72 proteins displaying O-GlcNAc-dependent thermostability and validate this approach using orthogonal methods targeting specific proteins. These collective observations reveal that the majority of proteins influenced by O-GlcNAc are, surprisingly, destabilized by O-GlcNAc and cluster into distinct macromolecular complexes. These results establish O-GlcNAc as a bidirectional regulator of protein stability and provide a blueprint for exploring the impact of any protein modification on the meltome of, in principle, any organism.
Collapse
Affiliation(s)
- Dustin T King
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jesús E Serrano-Negrón
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Yanping Zhu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Christopher L Moore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
10
|
Bai Y, Caussinus E, Leo S, Bosshardt F, Myachina F, Rot G, Robinson MD, Lehner CF. A cis-regulatory element promoting increased transcription at low temperature in cultured ectothermic Drosophila cells. BMC Genomics 2021; 22:771. [PMID: 34711176 PMCID: PMC8555087 DOI: 10.1186/s12864-021-08057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background Temperature change affects the myriad of concurrent cellular processes in a non-uniform, disruptive manner. While endothermic organisms minimize the challenge of ambient temperature variation by keeping the core body temperature constant, cells of many ectothermic species maintain homeostatic function within a considerable temperature range. The cellular mechanisms enabling temperature acclimation in ectotherms are still poorly understood. At the transcriptional level, the heat shock response has been analyzed extensively. The opposite, the response to sub-optimal temperature, has received lesser attention in particular in animal species. The tissue specificity of transcriptional responses to cool temperature has not been addressed and it is not clear whether a prominent general response occurs. Cis-regulatory elements (CREs), which mediate increased transcription at cool temperature, and responsible transcription factors are largely unknown. Results The ectotherm Drosophila melanogaster with a presumed temperature optimum around 25 °C was used for transcriptomic analyses of effects of temperatures at the lower end of the readily tolerated range (14–29 °C). Comparative analyses with adult flies and cell culture lines indicated a striking degree of cell-type specificity in the transcriptional response to cool. To identify potential cis-regulatory elements (CREs) for transcriptional upregulation at cool temperature, we analyzed temperature effects on DNA accessibility in chromatin of S2R+ cells. Candidate cis-regulatory elements (CREs) were evaluated with a novel reporter assay for accurate assessment of their temperature-dependency. Robust transcriptional upregulation at low temperature could be demonstrated for a fragment from the pastrel gene, which expresses more transcript and protein at reduced temperatures. This CRE is controlled by the JAK/STAT signaling pathway and antagonizing activities of the transcription factors Pointed and Ets97D. Conclusion Beyond a rich data resource for future analyses of transcriptional control within the readily tolerated range of an ectothermic animal, a novel reporter assay permitting quantitative characterization of CRE temperature dependence was developed. Our identification and functional dissection of the pst_E1 enhancer demonstrate the utility of resources and assay. The functional characterization of this CoolUp enhancer provides initial mechanistic insights into transcriptional upregulation induced by a shift to temperatures at the lower end of the readily tolerated range. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08057-4.
Collapse
Affiliation(s)
- Yu Bai
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Emmanuel Caussinus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stefano Leo
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Fritz Bosshardt
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Faina Myachina
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Gregor Rot
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Roubinet C, White IJ, Baum B. Asymmetric nuclear division in neural stem cells generates sibling nuclei that differ in size, envelope composition, and chromatin organization. Curr Biol 2021; 31:3973-3983.e4. [PMID: 34297912 PMCID: PMC8491657 DOI: 10.1016/j.cub.2021.06.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
Although nuclei are the defining features of eukaryotes, we still do not fully understand how the nuclear compartment is duplicated and partitioned during division. This is especially the case for organisms that do not completely disassemble their nuclear envelope upon entry into mitosis. In studying this process in Drosophila neural stem cells, which undergo asymmetric divisions, we find that the nuclear compartment boundary persists during mitosis thanks to the maintenance of a supporting nuclear lamina. This mitotic nuclear envelope is then asymmetrically remodeled and partitioned to give rise to two daughter nuclei that differ in envelope composition and exhibit a >30-fold difference in volume. The striking difference in nuclear size was found to depend on two consecutive processes: asymmetric nuclear envelope resealing at mitotic exit at sites defined by the central spindle, and differential nuclear growth that appears to depend on the available local reservoir of ER/nuclear membranes, which is asymmetrically partitioned between the two daughter cells. Importantly, these asymmetries in size and composition of the daughter nuclei, and the associated asymmetries in chromatin organization, all become apparent long before the cortical release and the nuclear import of cell fates determinants. Thus, asymmetric nuclear remodeling during stem cell divisions may contribute to the generation of cellular diversity by initiating distinct transcriptional programs in sibling nuclei that contribute to later changes in daughter cell identity and fate.
Collapse
Affiliation(s)
- Chantal Roubinet
- MRC Laboratory for Molecular Biology, University College London, London, UK; MRC Laboratory of Molecular Cell Biology, Cambridge, UK.
| | - Ian J White
- MRC Laboratory for Molecular Biology, University College London, London, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Biology, University College London, London, UK; Institute for the Physics of Living Systems, University College London, London, UK; MRC Laboratory of Molecular Cell Biology, Cambridge, UK.
| |
Collapse
|
12
|
High Dietary Sugar Reshapes Sweet Taste to Promote Feeding Behavior in Drosophila melanogaster. Cell Rep 2020; 27:1675-1685.e7. [PMID: 31067455 DOI: 10.1016/j.celrep.2019.04.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/14/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
Recent studies find that sugar tastes less intense to humans with obesity, but whether this sensory change is a cause or a consequence of obesity is unclear. To tackle this question, we study the effects of a high sugar diet on sweet taste sensation and feeding behavior in Drosophila melanogaster. On this diet, fruit flies have lower taste responses to sweet stimuli, overconsume food, and develop obesity. Excess dietary sugar, but not obesity or dietary sweetness alone, caused taste deficits and overeating via the cell-autonomous action of the sugar sensor O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) in the sweet-sensing neurons. Correcting taste deficits by manipulating the excitability of the sweet gustatory neurons or the levels of OGT protected animals from diet-induced obesity. Our work demonstrates that the reshaping of sweet taste sensation by excess dietary sugar drives obesity and highlights the role of glucose metabolism in neural activity and behavior.
Collapse
|
13
|
Muha V, Fenckova M, Ferenbach AT, Catinozzi M, Eidhof I, Storkebaum E, Schenck A, van Aalten DMF. O-GlcNAcase contributes to cognitive function in Drosophila. J Biol Chem 2020; 295:8636-8646. [PMID: 32094227 PMCID: PMC7324509 DOI: 10.1074/jbc.ra119.010312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
O-GlcNAcylation is an abundant post-translational modification in neurons. In mice, an increase in O-GlcNAcylation leads to defects in hippocampal synaptic plasticity and learning. O-GlcNAcylation is established by two opposing enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). To investigate the role of OGA in elementary learning, we generated catalytically inactive and precise knockout Oga alleles (OgaD133N and OgaKO , respectively) in Drosophila melanogaster Adult OgaD133N and OgaKO flies lacking O-GlcNAcase activity showed locomotor phenotypes. Importantly, both Oga lines exhibited deficits in habituation, an evolutionarily conserved form of learning, highlighting that the requirement for O-GlcNAcase activity for cognitive function is preserved across species. Loss of O-GlcNAcase affected a number of synaptic boutons at the axon terminals of larval neuromuscular junction. Taken together, we report behavioral and neurodevelopmental phenotypes associated with Oga alleles and show that Oga contributes to cognition and synaptic morphology in Drosophila.
Collapse
Affiliation(s)
- Villo Muha
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom
| | - Michaela Fenckova
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Andrew T Ferenbach
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and the Faculty of Science, Radboud University, 6525XZ Nijmegen, The Netherlands
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and the Faculty of Science, Radboud University, 6525XZ Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Daan M F van Aalten
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom.
| |
Collapse
|
14
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
15
|
Okazaki R, Yamazoe K, Inoue YH. Nuclear Export of Cyclin B Mediated by the Nup62 Complex Is Required for Meiotic Initiation in Drosophila Males. Cells 2020; 9:E270. [PMID: 31979075 PMCID: PMC7072204 DOI: 10.3390/cells9020270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The central channel of the nuclear pore complex plays an important role in the selective transport of proteins between the nucleus and cytoplasm. Previous studies have demonstrated that the depletion of the Nup62 complex, constructing the nuclear pore channel in premeiotic Drosophila cells, resulted in the absence of meiotic cells. We attempted to understand the mechanism underlying the cell cycle arrest before meiosis. METHODS We induced dsRNAs against the nucleoporin mRNAs using the Gal4/UAS system in Drosophila. RESULTS The cell cycle of the Nup62-depleted cells was arrested before meiosis without CDK1 activation. The ectopic over-expression of CycB, but not constitutively active CDK1, resulted in partial rescue from the arrest. CycB continued to exist in the nuclei of Nup62-depleted cells and cells depleted of exportin encoded by emb. Protein complexes containing CycB, Emb, and Nup62 were observed in premeiotic spermatocytes. CycB, which had temporally entered the nucleus, was associated with Emb, and the complex was transported back to the cytoplasm through the central channel, interacting with the Nup62 complex. Conclusion: We proposed that CycB is exported with Emb through the channel interacting with the Nup62 complex before the onset of meiosis. The nuclear export ensures the modification and formation of sufficient CycB-CDK1 in the cytoplasm.
Collapse
Affiliation(s)
| | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto, Japan; (R.O.); (K.Y.)
| |
Collapse
|
16
|
Qin W, Xie Z, Wang J, Ou G, Wang C, Chen X. Chemoproteomic Profiling of O-GlcNAcylation in Caenorhabditis elegans. Biochemistry 2019; 59:3129-3134. [DOI: 10.1021/acs.biochem.9b00622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Zhongyun Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | | | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
17
|
Xu S, Xiao J, Yin F, Guo X, Xing L, Xu Y, Chong K. The Protein Modifications of O-GlcNAcylation and Phosphorylation Mediate Vernalization Response for Flowering in Winter Wheat. PLANT PHYSIOLOGY 2019; 180:1436-1449. [PMID: 31061102 PMCID: PMC6752917 DOI: 10.1104/pp.19.00081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/23/2019] [Indexed: 05/11/2023]
Abstract
O-GlcNAcylation and phosphorylation are two posttranslational modifications that antagonistically regulate protein function. However, the regulation of and the cross talk between these two protein modifications are poorly understood in plants. Here we investigated the role of O-GlcNAcylation during vernalization, a process whereby prolonged cold exposure promotes flowering in winter wheat (Triticum aestivum), and analyzed the dynamic profile of O-GlcNAcylated and phosphorylated proteins in response to vernalization. Altering O-GlcNAc signaling by chemical inhibitors affected the vernalization response, modifying the expression of VRN genes and subsequently affecting flowering transition. Over a vernalization time-course, O-GlcNAcylated and phosphorylated peptides were enriched from winter wheat plumules by Lectin weak affinity chromatography and iTRAQ-TiO2, respectively. Subsequent mass spectrometry and gene ontology term enrichment analysis identified 168 O-GlcNAcylated proteins that are mainly involved in responses to abiotic stimulus and hormones, metabolic processing, and gene expression; and 124 differentially expressed phosphorylated proteins that participate in translation, transcription, and metabolic processing. Of note, 31 vernalization-associated proteins were identified that carried both phosphorylation and O-GlcNAcylation modifications, of which the majority (97%) exhibited the coexisting module and the remainder exhibited the potential competitive module. Among these, TaGRP2 was decorated with dynamic O-GlcNAcylation (S87) and phosphorylation (S152) modifications, and the mutation of S87 and S152 affected the binding of TaGRP2 to the RIP3 motif of TaVRN1 in vitro. Our data suggest that a dynamic network of O-GlcNAcylation and phosphorylation at key pathway nodes regulate the vernalization response and mediate flowering in wheat.
Collapse
Affiliation(s)
- Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Yin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijing Xing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Liu TW, Myschyshyn M, Sinclair DA, Vocadlo DJ. A Chemical Genetic Method for Monitoring Genome-Wide Dynamics of O-GlcNAc Turnover on Chromatin-Associated Proteins. ACS CENTRAL SCIENCE 2019; 5:663-670. [PMID: 31041386 PMCID: PMC6487452 DOI: 10.1021/acscentsci.9b00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Indexed: 05/17/2023]
Abstract
Advances in DNA sequencing are enabling new experimental modalities for studying chromatin. One emerging area is to use high-throughput DNA sequencing to monitor dynamic changes occurring to chromatin. O-Linked N-acetylglucosamine (O-GlcNAc) is a reversible protein modification found on many chromatin-associated proteins. The mechanisms by which O-GlcNAc regulates gene transcription are of high interest. Here we use DNA precipitation methods to enable monitoring time-dependent turnover of O-GlcNAc modified proteins associated with chromatin. Using an antibody-free chemical reporter strategy to map O-GlcNAc to the genome, we performed time course metabolic feeding experiments with wild-type Drosophila larvae alongside larvae lacking O-GlcNAc hydrolase (OGA), which are accordingly unable to remove O-GlcNAc. Analysis of resulting next-generation DNA sequencing data revealed that O-GlcNAc on chromatin-associated proteins at most genomic loci is processed with a half-life in hours. Notably, loss of OGA only increases this half-life by ∼3-fold. Interestingly, a small set of genomic loci are particularly sensitive to loss of OGA. In addition to these observations and new strategies to permit monitoring turnover of O-GlcNAc on chromatin, we also detail methods for coded blinding of samples alongside new normalization strategies to enable time-resolved, genome-wide analyses using chemical genetic methods. We envision these general methods will be applicable to diverse protein and nucleic acid modifications.
Collapse
|
19
|
Li W, De Schutter K, Van Damme EJM, Smagghe G. Synthesis and biological roles of O-glycans in insects. Glycoconj J 2019; 37:47-56. [DOI: 10.1007/s10719-019-09867-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/15/2019] [Indexed: 11/24/2022]
|
20
|
Hajduskova M, Baytek G, Kolundzic E, Gosdschan A, Kazmierczak M, Ofenbauer A, Beato Del Rosal ML, Herzog S, Ul Fatima N, Mertins P, Seelk-Müthel S, Tursun B. MRG-1/MRG15 Is a Barrier for Germ Cell to Neuron Reprogramming in Caenorhabditis elegans. Genetics 2019; 211:121-139. [PMID: 30425042 PMCID: PMC6325694 DOI: 10.1534/genetics.118.301674] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Chromatin regulators play important roles in the safeguarding of cell identities by opposing the induction of ectopic cell fates and, thereby, preventing forced conversion of cell identities by reprogramming approaches. Our knowledge of chromatin regulators acting as reprogramming barriers in living organisms needs improvement as most studies use tissue culture. We used Caenorhabditis elegans as an in vivo gene discovery model and automated solid-phase RNA interference screening, by which we identified 10 chromatin-regulating factors that protect cells against ectopic fate induction. Specifically, the chromodomain protein MRG-1 safeguards germ cells against conversion into neurons. MRG-1 is the ortholog of mammalian MRG15 (MORF-related gene on chromosome 15) and is required during germline development in C. elegans However, MRG-1's function as a barrier for germ cell reprogramming has not been revealed previously. Here, we further provide protein-protein and genome interactions of MRG-1 to characterize its molecular functions. Conserved chromatin regulators may have similar functions in higher organisms, and therefore, understanding cell fate protection in C. elegans may also help to facilitate reprogramming of human cells.
Collapse
Affiliation(s)
- Martina Hajduskova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Gülkiz Baytek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Ena Kolundzic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Alexander Gosdschan
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Marlon Kazmierczak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Andreas Ofenbauer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Maria Lena Beato Del Rosal
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Sergej Herzog
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Nida Ul Fatima
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefanie Seelk-Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Baris Tursun
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| |
Collapse
|
21
|
O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response. Nat Chem Biol 2018; 14:909-916. [PMID: 30127386 DOI: 10.1038/s41589-018-0120-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/10/2018] [Indexed: 11/09/2022]
Abstract
Heat shock response (HSR) is an ancient signaling pathway leading to thermoprotection of nearly all living organisms. Emerging evidence suggests that intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) serves as a molecular 'thermometer' by reporting ambient temperature fluctuations. Whether and how O-GlcNAc modification regulates HSR remains unclear. Here we report that, upon heat shock stress, the key translation initiation factor eIF4GI undergoes dynamic O-GlcNAcylation at the N-terminal region. Without O-GlcNAc modification, the preferential translation of stress mRNAs is impaired. Unexpectedly, stress mRNAs are entrapped within stress granules (SGs) that are no longer dissolved during stress recovery. Mechanistically, we show that stress-induced eIF4GI O-GlcNAcylation repels poly(A)-binding protein 1 and promotes SG disassembly, thereby licensing stress mRNAs for selective translation. Using various eIF4GI mutants created by CRISPR/Cas9, we demonstrate that eIF4GI acts as a translational switch via reversible O-GlcNAcylation. Our study reveals a central mechanism linking heat stress sensing, protein remodeling, SG dynamics and translational reprogramming.
Collapse
|
22
|
Mariappa D, Ferenbach AT, van Aalten DMF. Effects of hypo- O-GlcNAcylation on Drosophila development. J Biol Chem 2018; 293:7209-7221. [PMID: 29588363 PMCID: PMC5950000 DOI: 10.1074/jbc.ra118.002580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/21/2018] [Indexed: 01/12/2023] Open
Abstract
Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc (O-GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila, null mutants of the Polycomb gene O-GlcNAc transferase (OGT; also known as super sex combs (sxc)) display homeotic phenotypes. To dissect the requirement for O-GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxcK872M, was recessive lethal, whereas a second mutant, the hypomorphic sxcH537A, was homozygous viable. We observed that reduced total protein O-GlcNAcylation in the sxcH537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxcH537A and a null allele of Drosophila host cell factor (dHcf), encoding an extensively O-GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxcH537A flies lacking a copy of skuld (skd), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxcH537A enabled us to identify pleiotropic effects of globally reduced protein O-GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development.
Collapse
Affiliation(s)
- Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
23
|
Trost M, Blattner AC, Leo S, Lehner CF. Drosophila dany is essential for transcriptional control and nuclear architecture in spermatocytes. Development 2017; 143:2664-76. [PMID: 27436041 DOI: 10.1242/dev.134759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023]
Abstract
The terminal differentiation of adult stem cell progeny depends on transcriptional control. A dramatic change in gene expression programs accompanies the transition from proliferating spermatogonia to postmitotic spermatocytes, which prepare for meiosis and subsequent spermiogenesis. More than a thousand spermatocyte-specific genes are transcriptionally activated in early Drosophila spermatocytes. Here we describe the identification and initial characterization of dany, a gene required in spermatocytes for the large-scale change in gene expression. Similar to tMAC and tTAFs, the known major activators of spermatocyte-specific genes, dany has a recent evolutionary origin, but it functions independently. Like dan and danr, its primordial relatives with functions in somatic tissues, dany encodes a nuclear Psq domain protein. Dany associates preferentially with euchromatic genome regions. In dany mutant spermatocytes, activation of spermatocyte-specific genes and silencing of non-spermatocyte-specific genes are severely compromised and the chromatin no longer associates intimately with the nuclear envelope. Therefore, as suggested recently for Dan/Danr, we propose that Dany is essential for the coordination of change in cell type-specific expression programs and large-scale spatial chromatin reorganization.
Collapse
Affiliation(s)
- Martina Trost
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Ariane C Blattner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Stefano Leo
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Christian F Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
24
|
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Kevin Qian
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
25
|
Selvan N, Williamson R, Mariappa D, Campbell DG, Gourlay R, Ferenbach AT, Aristotelous T, Hopkins-Navratilova I, Trost M, van Aalten DMF. A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nat Chem Biol 2017; 13:882-887. [PMID: 28604694 DOI: 10.1038/nchembio.2404] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 03/14/2017] [Indexed: 01/09/2023]
Abstract
Protein O-GlcNAcylation is a reversible post-translational modification of serines and threonines on nucleocytoplasmic proteins. It is cycled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (O-GlcNAcase or OGA). Genetic approaches in model organisms have revealed that protein O-GlcNAcylation is essential for early embryogenesis. The Drosophila melanogaster gene supersex combs (sxc), which encodes OGT, is a polycomb gene, whose null mutants display homeotic transformations and die at the pharate adult stage. However, the identities of the O-GlcNAcylated proteins involved and the underlying mechanisms linking these phenotypes to embryonic development are poorly understood. Identification of O-GlcNAcylated proteins from biological samples is hampered by the low stoichiometry of this modification and by limited enrichment tools. Using a catalytically inactive bacterial O-GlcNAcase mutant as a substrate trap, we have enriched the O-GlcNAc proteome of the developing Drosophila embryo, identifying, among others, known regulators of Hox genes as candidate conveyors of OGT function during embryonic development.
Collapse
Affiliation(s)
- Nithya Selvan
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Ritchie Williamson
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Daniel Mariappa
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.,Division of Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - David G Campbell
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.,Division of Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Tonia Aristotelous
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Iva Hopkins-Navratilova
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.,Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle-upon-Tyne, UK
| | - Daan M F van Aalten
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.,Division of Gene Regulation and Expression, University of Dundee, Dundee, UK
| |
Collapse
|
26
|
Levine ZG, Walker S. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells? Annu Rev Biochem 2017; 85:631-57. [PMID: 27294441 DOI: 10.1146/annurev-biochem-060713-035344] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.
Collapse
Affiliation(s)
- Zebulon G Levine
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
27
|
Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 2017. [PMID: 28488703 DOI: 10.1038/nrm.2017.22,+10.1038/nrn.2017.89,+10.1038/nrn.2017.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
|
28
|
Abstract
O-GlcNAcylation - the attachment of O-linked N-acetylglucosamine (O-GlcNAc) moieties to cytoplasmic, nuclear and mitochondrial proteins - is a post-translational modification that regulates fundamental cellular processes in metazoans. A single pair of enzymes - O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) - controls the dynamic cycling of this protein modification in a nutrient- and stress-responsive manner. Recent years have seen remarkable advances in our understanding of O-GlcNAcylation at levels that range from structural and molecular biology to cell signalling and gene regulation to physiology and disease. New mechanisms and functions of O-GlcNAcylation that are emerging from these recent developments enable us to begin constructing a unified conceptual framework through which the significance of this modification in cellular and organismal physiology can be understood.
Collapse
|
29
|
Walski T, De Schutter K, Van Damme EJM, Smagghe G. Diversity and functions of protein glycosylation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:21-34. [PMID: 28232040 DOI: 10.1016/j.ibmb.2017.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
30
|
Myachina F, Bosshardt F, Bischof J, Kirschmann M, Lehner CF. Drosophila beta-tubulin 97EF is upregulated at low temperature and stabilizes microtubules. Development 2017; 144:4573-4587. [DOI: 10.1242/dev.156109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022]
Abstract
Cells in ectotherms function normally within an often wide temperature range. As temperature dependence is not uniform across all the distinct biological processes, acclimation presumably requires complex regulation. The molecular mechanisms coping with the disruptive effects of temperature variation are still poorly understood. Interestingly, one of five different beta-tubulin paralogs, betaTub97EF, was among the genes up-regulated at low temperature in cultured Drosophila cells. As microtubules are known to be cold-sensitive, we analyzed whether betaTub97EF protects microtubules at low temperatures. During development at the optimal temperature (25°C), betaTub97EF was expressed in a tissue-specific pattern primarily in the gut. There, as well as in hemocytes, expression was increased at low temperature (14°C). While betaTub97EF mutants were viable and fertile at 25°C, their sensitivity within the well-tolerated range was slightly enhanced during embryogenesis specifically at low temperatures. Changing beta-tubulin isoform ratios in hemocytes demonstrated that beta-Tubulin 97EF has a pronounced microtubule stabilizing effect. Moreover, betaTub97EF is required for normal microtubule stability in the gut. These results suggest that betaTub97EF up-regulation at low temperature contributes to acclimation by stabilizing microtubules.
Collapse
Affiliation(s)
- Faina Myachina
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Fritz Bosshardt
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Johannes Bischof
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| | - Moritz Kirschmann
- Center for Microscopy and Image Analysis, University of Zurich, 8057 Zurich, Switzerland
| | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
31
|
Abstract
O-GlcNAc-ylation is the post-translational addition of an O-linked β-N-acetylglucosamine to the serine and threonine residues of thousands of proteins in eukaryotic cells. Specifically, half of the thirty different types of protein components in the nuclear pore complex (NPC) are modified by O-GlcNAc, of which the majority are intrinsically disordered nucleoporins (Nups) containing multiple phenylalanine-glycine (FG) repeats. Moreover, these FG-Nups form a strict selectivity barrier with a high density of O-GlcNAc in the NPC to mediate bidirectional trafficking between the cytoplasm and nucleus. However, the roles that O-GlcNAc plays in the structure and function of the NPC remain obscure. In this review paper, we will discuss the current knowledge of O-GlcNAc-ylated Nups, highlight some new techniques used to probe O-GlcNAc's roles in the nuclear pore, and finally propose a new model for the effect of O-GlcNAc on the NPC's permeability.
Collapse
Affiliation(s)
- Andrew Ruba
- Department of Biology, Temple University, Philadelphia, PA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA
| |
Collapse
|
32
|
Drosophila Nnf1 paralogs are partially redundant for somatic and germ line kinetochore function. Chromosoma 2016; 126:145-163. [DOI: 10.1007/s00412-016-0579-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
33
|
Ostrowski A, Gundogdu M, Ferenbach AT, Lebedev AA, van Aalten DMF. Evidence for a Functional O-Linked N-Acetylglucosamine (O-GlcNAc) System in the Thermophilic Bacterium Thermobaculum terrenum. J Biol Chem 2015; 290:30291-305. [PMID: 26491011 PMCID: PMC4683255 DOI: 10.1074/jbc.m115.689596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 01/07/2023] Open
Abstract
Post-translational modification of proteins is a ubiquitous mechanism of signal transduction in all kingdoms of life. One such modification is addition of O-linked N-acetylglucosamine to serine or threonine residues, known as O-GlcNAcylation. This unusual type of glycosylation is thought to be restricted to nucleocytoplasmic proteins of eukaryotes and is mediated by a pair of O-GlcNAc-transferase and O-GlcNAc hydrolase enzymes operating on a large number of substrate proteins. Protein O-GlcNAcylation is responsive to glucose and flux through the hexosamine biosynthetic pathway. Thus, a close relationship is thought to exist between the level of O-GlcNAc proteins within and the general metabolic state of the cell. Although isolated apparent orthologues of these enzymes are present in bacterial genomes, their biological functions remain largely unexplored. It is possible that understanding the function of these proteins will allow development of reductionist models to uncover the principles of O-GlcNAc signaling. Here, we identify orthologues of both O-GlcNAc cycling enzymes in the genome of the thermophilic eubacterium Thermobaculum terrenum. The O-GlcNAcase and O-GlcNAc-transferase are co-expressed and, like their mammalian orthologues, localize to the cytoplasm. The O-GlcNAcase orthologue possesses activity against O-GlcNAc proteins and model substrates. We describe crystal structures of both enzymes, including an O-GlcNAcase·peptide complex, showing conservation of active sites with the human orthologues. Although in vitro activity of the O-GlcNAc-transferase could not be detected, treatment of T. terrenum with an O-GlcNAc-transferase inhibitor led to inhibition of growth. T. terrenum may be the first example of a bacterium possessing a functional O-GlcNAc system.
Collapse
Affiliation(s)
| | | | - Andrew T Ferenbach
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, United Kingdom and
| | - Andrey A Lebedev
- Science Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, United Kingdom
| | - Daan M F van Aalten
- From the Division of Molecular Microbiology and Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, United Kingdom and
| |
Collapse
|
34
|
Mariappa D, Selvan N, Borodkin V, Alonso J, Ferenbach AT, Shepherd C, Navratilova IH, vanAalten DMF. A mutant O-GlcNAcase as a probe to reveal global dynamics of protein O-GlcNAcylation during Drosophila embryonic development. Biochem J 2015; 470:255-262. [PMID: 26348912 PMCID: PMC4941924 DOI: 10.1042/bj20150610] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022]
Abstract
O-GlcNAcylation is a reversible type of serine/threonine glycosylation on nucleocytoplasmic proteins in metazoa. Various genetic approaches in several animal models have revealed that O-GlcNAcylation is essential for embryogenesis. However, the dynamic changes in global O-GlcNAcylation and the underlying mechanistic biology linking them to embryonic development is not understood. One of the limiting factors towards characterizing changes in O-GlcNAcylation has been the limited specificity of currently available tools to detect this modification. In the present study, harnessing the unusual properties of an O-GlcNAcase (OGA) mutant that binds O-GlcNAc (O-N-acetylglucosamine) sites with nanomolar affinity, we uncover changes in protein O-GlcNAcylation as a function of Drosophila development.
Collapse
Affiliation(s)
- Daniel Mariappa
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Nithya Selvan
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Vladimir Borodkin
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Jana Alonso
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Andrew T. Ferenbach
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Claire Shepherd
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Iva Hopkins Navratilova
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Daan M. F. vanAalten
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
35
|
Zhu Y, Liu TW, Cecioni S, Eskandari R, Zandberg WF, Vocadlo DJ. O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains. Nat Chem Biol 2015; 11:319-25. [PMID: 25774941 DOI: 10.1038/nchembio.1774] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022]
Abstract
Nucleocytoplasmic glycosylation of proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) is recognized as a conserved post-translational modification found in all metazoans. O-GlcNAc has been proposed to regulate diverse cellular processes. Impaired cellular O-GlcNAcylation has been found to lead to decreases in the levels of various proteins, which is one mechanism by which O-GlcNAc seems to exert its varied physiological effects. Here we show that O-GlcNAcylation also occurs cotranslationally. This process protects nascent polypeptide chains from premature degradation by decreasing cotranslational ubiquitylation. Given that hundreds of proteins are O-GlcNAcylated within cells, our findings suggest that cotranslational O-GlcNAcylation may be a phenomenon regulating proteostasis of an array of nucleocytoplasmic proteins. These findings set the stage to assess whether O-GlcNAcylation has a role in protein quality control in a manner that bears similarity with the role played by N-glycosylation within the secretory pathway.
Collapse
Affiliation(s)
- Yanping Zhu
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ta-Wei Liu
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Razieh Eskandari
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wesley F Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David J Vocadlo
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
36
|
Neves A, Busso C, Gönczy P. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits. eLife 2015; 4:e04810. [PMID: 25929283 PMCID: PMC4415524 DOI: 10.7554/elife.04810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 04/02/2015] [Indexed: 12/24/2022] Open
Abstract
All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism.
Collapse
Affiliation(s)
- Aitana Neves
- Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
37
|
A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin. Chromosoma 2015; 124:429-42. [PMID: 25894967 PMCID: PMC4666902 DOI: 10.1007/s00412-015-0513-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
O-linked β-N-Acetylglucosamine (O-GlcNAc) is a posttranslational modification that is catalyzed by O-GlcNAc transferase (Ogt) and found on a plethora of nuclear and cytosolic proteins in animals and plants. Studies in different model organisms revealed that while O-GlcNAc is required for selected processes in Caenorhabditis elegans and Drosophila, it has evolved to become required for cell viability in mice, and this has challenged investigations to identify cellular functions that critically require this modification in mammals. Nevertheless, a principal cellular process that engages O-GlcNAcylation in all of these species is the regulation of gene transcription. Here, we revisit several of the primary experimental observations that led to current models of how O-GlcNAcylation affects gene expression. In particular, we discuss the role of the stable association of Ogt with the transcription factors Hcf1 and Tet, the two main Ogt-interacting proteins in nuclei of mammalian cells. We also critically evaluate the evidence that specific residues on core histones, including serine 112 of histone 2B (H2B-S112), are O-GlcNAcylated in vivo and discuss possible physiological effects of these modifications. Finally, we review our understanding of the role of O-GlcNAcylation in Drosophila, where recent studies suggest that the developmental defects in Ogt mutants are all caused by lack of O-GlcNAcylation of a single transcriptional regulator, the Polycomb repressor protein Polyhomeotic (Ph). Collectively, this reexamination of the experimental evidence suggests that a number of recently propagated models about the role of O-GlcNAcylation in transcriptional control should be treated cautiously.
Collapse
|
38
|
Keembiyehetty C, Love DC, Harwood KR, Gavrilova O, Comly ME, Hanover JA. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J Biol Chem 2015; 290:7097-113. [PMID: 25596529 DOI: 10.1074/jbc.m114.617779] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-GlcNAc cycling is maintained by the reciprocal activities of the O-GlcNAc transferase and the O-GlcNAcase (OGA) enzymes. O-GlcNAc transferase is responsible for O-GlcNAc addition to serine and threonine (Ser/Thr) residues and OGA for its removal. Although the Oga gene (MGEA5) is a documented human diabetes susceptibility locus, its role in maintaining insulin-glucose homeostasis is unclear. Here, we report a conditional disruption of the Oga gene in the mouse. The resulting homozygous Oga null (KO) animals lack OGA enzymatic activity and exhibit elevated levels of the O-GlcNAc modification. The Oga KO animals showed nearly complete perinatal lethality associated with low circulating glucose and low liver glycogen stores. Defective insulin-responsive GSK3β phosphorylation was observed in both heterozygous (HET) and KO Oga animals. Although Oga HET animals were viable, they exhibited alterations in both transcription and metabolism. Transcriptome analysis using mouse embryonic fibroblasts revealed deregulation in the transcripts of both HET and KO animals specifically in genes associated with metabolism and growth. Additionally, metabolic profiling showed increased fat accumulation in HET and KO animals compared with WT, which was increased by a high fat diet. Reduced insulin sensitivity, glucose tolerance, and hyperleptinemia were also observed in HET and KO female mice. Notably, the respiratory exchange ratio of the HET animals was higher than that observed in WT animals, indicating the preferential utilization of glucose as an energy source. These results suggest that the loss of mouse OGA leads to defects in metabolic homeostasis culminating in obesity and insulin resistance.
Collapse
Affiliation(s)
| | - Dona C Love
- From the Laboratory of Cell Biology and Biochemistry and
| | | | - Oksana Gavrilova
- Mouse Metabolic Core Laboratory, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - John A Hanover
- From the Laboratory of Cell Biology and Biochemistry and
| |
Collapse
|
39
|
Alonso J, Schimpl M, van Aalten DMF. O-GlcNAcase: promiscuous hexosaminidase or key regulator of O-GlcNAc signaling? J Biol Chem 2014; 289:34433-9. [PMID: 25336650 PMCID: PMC4263850 DOI: 10.1074/jbc.r114.609198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
O-GlcNAc signaling is regulated by an opposing pair of enzymes: O-GlcNAc transferase installs and O-GlcNAcase (OGA) removes the modification from proteins. The dynamics and regulation of this process are only beginning to be understood as the physiological functions of both enzymes are being probed using genetic and pharmacological approaches. This minireview charts the discovery and functional and structural analysis of OGA and summarizes the insights gained from recent studies using OGA inhibition, gene knock-out, and overexpression. We identify several areas of “known unknowns” that would benefit from future research, such as the enigmatic C-terminal domain of OGA.
Collapse
Affiliation(s)
- Jana Alonso
- From the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit and
| | - Marianne Schimpl
- From the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit and
| | - Daan M F van Aalten
- From the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit and Division of Molecular Microbiology, College of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom
| |
Collapse
|