1
|
Yao J, Song S, Liu T, Wang J, Li C, Liu J, Yuan Y, Zhao H. Isoguanosine-Induced ER Stress via AMPK Enhances Chemosensitivity in OSCC. J Dent Res 2025; 104:668-678. [PMID: 40071313 DOI: 10.1177/00220345241303168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck; however, the efficacy of existing treatment is limited and new effective strategies need to be explored. Our previous work demonstrates that isoguanosine (isoG) is a promising nucleoside molecule with superior self-assembly capability and significant anti-OSCC potential. However, the antitumor mechanism of isoG remains unclear. In this study, we reveal that the antiproliferative effect of isoG is mediated by its cellular metabolite, isoguanosine 5'-monophosphate (isoGMP), which induces excessive endoplasmic reticulum (ER) stress and cell death through adenosine monophosphate-activated protein kinase (AMPK) activation. IsoG activates AMPK and induces ER stress at low concentrations, with minimal impact on cell viability at these concentrations. To further explore the therapeutic potential of isoG, we investigated its role in modulating chemosensitivity. Our findings show that AMPK activation enhances the sensitivity of OSCC cells to 5-fluorouracil (5-FU), and the combination of isoG and 5-FU exhibits a synergistic anticancer effect. Building on the self-assembly characteristics of isoG, we developed an innovative treatment platform by introducing dynamic borate ester bonds to form an isoguanosine-phenylenediboronic acid-isoguanosine (isoGPBisoG) structure. When combined with 5-FU, this platform achieved remarkable therapeutic efficacy in 2 OSCC cell-derived xenograft models, with tumor inhibition rates of 71.0% and 56.6%, respectively, compared with control. These findings establish isoG as a potent enhancer of chemotherapeutic efficacy in OSCC via AMPK activation. More importantly, the isoGPBisoG and 5-FU combination represents a significant paradigm of a synergistic therapy platform. This novel approach offers a promising direction for the development of more effective OSCC treatments.
Collapse
Affiliation(s)
- J Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - C Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - J Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Sedlacek J. Impact of proteostasis workload on sensitivity to proteasome inhibitors in multiple myeloma. Clin Exp Med 2025; 25:176. [PMID: 40418254 DOI: 10.1007/s10238-025-01713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Genomic alterations and enormous monoclonal immunoglobulin production cause multiple myeloma to heavily depend on proteostasis mechanisms, including protein folding and degradation. These findings support the use of proteasome inhibitors for treating multiple myeloma and mantle cell lymphoma. Myeloma treatment has evolved, especially with the availability of new drugs, such as proteasome inhibitors, into therapeutic strategies for both frontline and relapsed/refractory disease settings. However, proteasome inhibitors are generally not effective enough to cure most patients. Natural resistance and eventual acquired resistance led to relapsed/refractory disease and poor prognosis. Advances in the understanding of cellular proteostasis and the development of innovative drugs that also target other proteostasis network components offer opportunities to exploit the intrinsic vulnerability of myeloma cells. This review outlines recent findings on the molecular mechanisms regulating cellular proteostasis pathways, as well as resistance, sensitivity, and escape strategies developed against proteasome inhibitors and provides a rationale and examples for novel combinations of proteasome inhibitors with FDA-approved drugs and investigational drugs targeting the NRF1 (NFE2L1)-mediated proteasome bounce-back response, redox homeostasis, heat shock response, unfolding protein response, autophagy, and VCP/p97 to increase proteotoxic stress, which can improve the efficacy of antimyeloma therapy based on proteasome inhibitors.
Collapse
Affiliation(s)
- Jindrich Sedlacek
- Department of Genetics and Microbiology, Charles University and Research Center BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic.
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic.
| |
Collapse
|
3
|
Bosakova M, Abraham SP, Wachtell D, Zieba JT, Kot A, Nita A, Czyrek AA, Koudelka A, Ursachi VC, Feketova Z, Rico-Llanos G, Svozilova K, Kocerova P, Fafilek B, Gregor T, Kotaskova J, Duran I, Vanhara P, Doubek M, Mayer J, Soucek K, Krakow D, Krejci P. Endoplasmic reticulum stress disrupts signaling via altered processing of transmembrane receptors. Cell Commun Signal 2025; 23:209. [PMID: 40307870 PMCID: PMC12044870 DOI: 10.1186/s12964-025-02208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Cell communication systems based on polypeptide ligands use transmembrane receptors to transmit signals across the plasma membrane. In their biogenesis, receptors depend on the endoplasmic reticulum (ER)-Golgi system for folding, maturation, transport and localization to the cell surface. ER stress, caused by protein overproduction and misfolding, is a well-known pathology in neurodegeneration, cancer and numerous other diseases. How ER stress affects cell communication via transmembrane receptors is largely unknown. In disease models of multiple myeloma, chronic lymphocytic leukemia and osteogenesis imperfecta, we show that ER stress leads to loss of the mature transmembrane receptors FGFR3, ROR1, FGFR1, LRP6, FZD5 and PTH1R at the cell surface, resulting in impaired downstream signaling. This is caused by downregulation of receptor production and increased intracellular retention of immature receptor forms. Reduction of ER stress by treatment of cells with the chemical chaperone tauroursodeoxycholic acid or by expression of the chaperone protein BiP resulted in restoration of receptor maturation and signaling. We show a previously unappreciated pathological effect of ER stress; impaired cellular communication due to altered receptor processing. Our findings have implications for disease mechanisms related to ER stress and are particularly important when receptor-based pharmacological approaches are used for treatment.
Collapse
Affiliation(s)
- Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Davis Wachtell
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer T Zieba
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander Kot
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Aleksandra Anna Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Adolf Koudelka
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Vlad-Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Zuzana Feketova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Gustavo Rico-Llanos
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Petra Kocerova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Ivan Duran
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Petr Vanhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Karel Soucek
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, 61265, Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic.
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic.
| |
Collapse
|
4
|
Jia M, Fu Z, Ye C, Xu W, Liu J, Wu C, Yan H. Targeting MTHFD2 alters metabolic homeostasis and synergizes with bortezomib to inhibit multiple myeloma. Cell Death Discov 2025; 11:201. [PMID: 40280919 PMCID: PMC12032361 DOI: 10.1038/s41420-025-02498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. While recent therapies have significantly improved survival in MM patients, drug resistance and refractory phenomenon underscores the urgent need of new therapeutic targets. Methylenetetrahydrofolate dehydrogenase 2(MTHFD2) has been widely reported as a potential and promising anti-cancer target, but its role and underlying mechanisms remain unclear in MM. We aimed to investigate the biologic function and mechanisms of MTHFD2 in MM. First, we demonstrated that MTHFD2 is overexpressed in MM and associated with poor prognosis. We then illustrated that targeting MTHFD2 exhibits anti-MM effects in vitro and in vivo. Mechanistically, targeting MTHFD2 inhibited glycolysis and mitochondrial respiration in MM cells. For the nonmetabolic function of MTHFD2, we found that MTHFD2 knockdown affected the unfolded protein response (UPR) via decreasing expression of the splice form of X-box binding protein 1 (XBP1s). Importantly, the level of MTHFD2 in MM cells was associated with sensitivity of bortezomib, and targeting MTHFD2 synergizes with bortezomib against MM in vitro and in vivo. In summary, our innovative findings suggest that MTHFD2 is a promising target for MM, targeting it alters metabolic homeostasis of MM and synergizes with bortezomib to inhibit MM.
Collapse
Affiliation(s)
- Mingyuan Jia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjing Ye
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyu Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Rajput SK, Minhas K, Azam I, Habib S, Shaikh U, Lalani EN. Prognostic implications of MUC1 and XBP1 concordant expression in multiple myeloma: A retrospective study. PLoS One 2025; 20:e0320934. [PMID: 40179083 PMCID: PMC11967961 DOI: 10.1371/journal.pone.0320934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Multiple myeloma (MM) is a disease of malignant plasma cells (PC) with poor survival. Disease progression and treatment relapse are attributed to MM cancer stem cells (CSCs) and signaling molecules such as MUC1 and XBP1. The study aimed to determine the prognostic value of expression of CSC-associated biomarkers, MUC1 and XBP1 in MM, which has not been explored previously. In this study, we determined the immunohistochemical expression of CSC markers (ALDH1, CD117, and CD34), MUC1, and XBP1 in 128 MM formalin-fixed paraffin-embedded bone marrow archival blocks. The expression of biomarkers was assessed for association with clinicopathological variables and patient survival. Descriptive analysis, survival plots and crude association between outcome and independent variables were assessed using Kaplan Meier and Log rank test. Univariate and multivariable analyses were performed using simple and multiple Cox regression models. The results are reported as crude and adjusted hazard ratios with 95% confidence intervals. Expression of ALDH1 and CD117 was found in 51% and 48% of the tumors, respectively. ALDH1 expression was associated with 1.83 years of reduced survival for patients with CD56-negative tumors. MUC1 expression was observed in 62%, whereas XBP1 was expressed in 48% of tumors. Combinatorial group analysis of XBP1 and MUC1 stratified patients into two prognostic groups. Cases with tumors negative for expression of MUC1 and XBP1 (XBP1-/ MUC1-) were categorized as a good prognostic group with increased survival of 3.42 years compared to cases with tumors expressing both (Worst prognosis, XBP1 + /MUC1+). Concordant expression of MUC1 and XBP1 in MM defines a subset of patients with adverse outcomes. The adjusted hazard ratio showed a four-fold increased risk of mortality associated with the concordant expression of MUC1 and XBP1 in patients > 65 years of age.
Collapse
Affiliation(s)
- Sheerien Kareem Rajput
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Khurram Minhas
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - Iqbal Azam
- Department of Community Health Sciences, The Aga Khan University, Karachi, Pakistan
| | - Sadia Habib
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Usman Shaikh
- Department of Pathology and Laboratory Medicine, The Aga Khan University, Karachi, Pakistan
| | - El-Nasir Lalani
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
6
|
Barton BM, Son F, Verma A, Bal SK, Tang Q, Wang R, Umphred-Wilson K, Khan R, Trichka J, Dong H, Lentucci C, Chen X, Chen Y, Hong Y, Duy C, Elemento O, Melnick AM, Cao J, Chen X, Glimcher LH, Adoro S. IRE1α-XBP1 safeguards hematopoietic stem and progenitor cells by restricting pro-leukemogenic gene programs. Nat Immunol 2025; 26:200-214. [PMID: 39789376 DOI: 10.1038/s41590-024-02063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway. Transcriptome analysis and genome-wide mapping of XBP1 targets in HSPCs identified an '18-gene signature' of XBP1-repressed β-catenin targets that were highly expressed in acute myeloid leukemia (AML) cases with worse prognosis. Accordingly, IRE1α deficiency cooperated with a myeloproliferative oncogene in HSPCs to cause a lethal AML in mice, while genetic induction of XBP1 suppressed the leukemia stem cell program and activity of patient-derived AML cells. Thus, IRE1α-XBP1 signaling safeguards the integrity of the blood system by restricting pro-leukemogenic programs in HSPCs.
Collapse
Affiliation(s)
- Brendan M Barton
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Francheska Son
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Akanksha Verma
- Institute of Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Saswat Kumar Bal
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Katharine Umphred-Wilson
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rehan Khan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Josephine Trichka
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Claudia Lentucci
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xi Chen
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Olivier Elemento
- Institute of Computational Biomedicine, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jin Cao
- Department of Experimental Therapeutics, James P. Allison Institute, MD Anderson Cancer Center, Houston, TX, USA
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Department of Experimental Therapeutics, James P. Allison Institute, MD Anderson Cancer Center, Houston, TX, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Karmakar S, Lal G, Kumar A, Bhattacharyya S, Poluri KM, Mishra A. Ketorolac disturbs proteasome functions and induces mitochondrial abnormality-associated apoptosis. IUBMB Life 2025; 77:e2937. [PMID: 39723629 DOI: 10.1002/iub.2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are recommended to treat moderate-to-severe pain. Previous studies suggest that NSAIDs can suppress cellular proliferation and elevate apoptosis in different cancer cells. Ketorolac is an NSAID and can reduce the cancer cells' viability. However, molecular mechanisms by which Ketorolac can induce apoptosis and be helpful as an anti-tumor agent against carcinogenesis are unclear. Here, we observed treatment with Ketorolac disturbs proteasome functions, which induces aggregation of aberrant ubiquitinated proteins. Ketorolac exposure also induced the aggregation of expanded polyglutamine proteins, results cellular proteostasis disturbance. We found that the treatment of Ketorolac aggravates the accumulation of various cell cycle-linked proteins, which results in pro-apoptotic induction in cells. Ketorolac-mediated proteasome disturbance leads to mitochondrial abnormalities. Finally, we have observed that Ketorolac treatment depolarized mitochondrial membrane potential, released cytochrome c into cytoplasm, and induced apoptosis in cells, which could be due to proteasome functional depletion. Perhaps more in-depth research is required to understand the details of NSAID-based anti-proliferative molecular mechanisms that can elevate apoptosis in cancer cells and generate anti-tumor potential with the combination of putative cancer drugs.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, Maharashtra, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Ali A, Matveyenka M, Pickett DN, Rodriguez A, Kurouski D. Tubulin-Binding Region Modulates Cholesterol-Triggered Aggregation of Tau Proteins. J Neurochem 2025; 169:e16294. [PMID: 39777699 PMCID: PMC11731895 DOI: 10.1111/jnc.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau1-441, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules. Other Tau isoforms have one (1N4R) or zero (0N4R) N-terminal inserts, which makes 2N4R Tau more and 0N4R less effective in promoting microtubule self-assembly. A growing body of evidence indicates that lipids can alter the aggregation rate of Tau isoforms. However, the role of N-terminal inserts in Tau-lipid interactions remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which N-terminal inserts alter interactions of Tau isoforms with cholesterol, one of the most important lipids in plasma membranes. Our results showed that 2 N insert prevents amyloid-driven aggregation of Tau at the physiological concentration of cholesterol, while the absence of this N-terminal repeat (1N4R and 0N4R Tau) resulted in the self-assembly of Tau into toxic amyloid fibrils. We also found that the presence of cholesterol in the lipid bilayers caused a significant increase in the cytotoxicity of 1N4R and 0N4R Tau to neurons. This effect was not observed for 2N4R Tau fibrils formed in the presence of lipid membranes with low, physiological, and elevated concentrations of cholesterol. Using molecular assays, we found that Tau aggregates primarily exert cytotoxicity by damaging cell endosomes, endoplasmic reticulum, and mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Zhaliazka K, Kurouski D. Elucidation of molecular mechanisms by which amyloid β 1-42 fibrils exert cell toxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159510. [PMID: 38759921 DOI: 10.1016/j.bbalip.2024.159510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Abrupt aggregation of amyloid β1-42 (Aβ1-42) peptide in the frontal lobe is the expected underlying cause of Alzheimer's disease (AD). β-Sheet-rich oligomers and fibrils formed by Aβ1-42 exert high cell toxicity. A growing body of evidence indicates that lipids can uniquely alter the secondary structure and toxicity of Aβ1-42 aggregates. At the same time, underlying molecular mechanisms that determine this difference in toxicity of amyloid aggregates remain unclear. Using a set of molecular and biophysical assays to determine the molecular mechanism by which Aβ1-42 aggregates formed in the presence of cholesterol, cardiolipin, and phosphatidylcholine exert cell toxicity. Our findings demonstrate that rat neuronal cells exposed to Aβ1-42 fibrils formed in the presence of lipids with different chemical structure exert drastically different magnitude and dynamic of unfolded protein response (UPR) in the endoplasmic reticulum (ER) and mitochondria (MT). We found that the opposite dynamics of UPR in MT and ER in the cells exposed to Aβ1-42: cardiolipin fibrils and Aβ1-42 aggregates formed in a lipid-free environment. We also found that Aβ1-42: phosphatidylcholine fibrils upregulated ER UPR simultaneously downregulating the UPR response of MT, whereas Aβ1-42: cholesterol fibrils suppressed the UPR response of ER and upregulated UPR response of MT. We also observed progressively increasing ROS production that damages mitochondrial membranes and other cell organelles, ultimately leading to cell death.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
10
|
Hjazi A, Maroto CG, Rodriguez-Gutierrez ME, Appiah M, Ignat A, Mobayen G, Page T, McKinnon TAJ. The proteasome inhibitor carfilzomib exerts anti-inflammatory and antithrombotic effects on the endothelium. J Thromb Haemost 2024; 22:1867-1879. [PMID: 38608731 DOI: 10.1016/j.jtha.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Carfilzomib (CFZ) is a second-generation proteasome inhibitor used to treat multiple myeloma. Potent inhibition of the proteasome results in chronic proteotoxic endoplasmic reticulum (ER) stress, leading to apoptosis. While CFZ has improved survival rates in multiple myeloma, it is associated with an increased risk of cardiovascular adverse effects. While this has been putatively linked to cardiotoxicity, CFZ could potentially also exhibit adverse effects on the endothelium. OBJECTIVES To investigate the effects of CFZ on the endothelium. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with CFZ, and expression of relevant markers of ER stress, inflammation, and thrombosis was measured and functionally assessed. RESULTS CFZ failed to induce ER stress in HUVECs but induced the expression of Kruppel-like factor 4, endothelial nitric oxide synthase, tissue plasminogen activator, and thrombomodulin and reduced tumor necrosis factor alpha (TNFα)-mediated intercellular adhesion molecule 1 and tissue factor expression, suggesting a potential protective effect on the endothelium. Consistent with these observations, CFZ reduced leukocyte adhesion under shear stress and reduced factor Xa generation and fibrin clot formation on the endothelium following TNFα treatment and inhibited von Willebrand factor (VWF) and angiopoietin-2 exocytosis from Weibel-Palade bodies. Subsequently, CFZ inhibited the formation of VWF-platelet strings, and moreover, media derived from myeloma cell lines induced VWF release, a process also inhibited by CFZ. CONCLUSION These data demonstrate that CFZ is unable to induce ER stress in confluent resting endothelial cells and can conversely attenuate the prothrombotic effects of TNFα on the endothelium. This study suggests that CFZ does not negatively alter HUVECs, and proteasome inhibition of the endothelium may offer a potential way to prevent thrombosis.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Celia Gonzalez Maroto
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Maria Elena Rodriguez-Gutierrez
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Michael Appiah
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Ana Ignat
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Golzar Mobayen
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Theresa Page
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom
| | - Thomas A J McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College Academic Health Science Centre, Hammersmith Hospital, London, United Kingdom.
| |
Collapse
|
11
|
Xu F, Wang L. Deciphering ER stress-unfolded protein response relationship by visualizing unfolded proteins in the ER. Cell Rep 2024; 43:114358. [PMID: 38865243 DOI: 10.1016/j.celrep.2024.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Despite the consensus that accumulation of unfolded proteins in the endoplasmic reticulum (ER) lumen, i.e. ER stress, activates the unfolded protein response (UPR), studies under physiological and pathophysiological conditions suggest that ER stress may not always trigger the UPR, and the UPR can be activated in an ER stress-independent way. To better understand how the UPR is regulated and its relationship with ER stress requires direct detection of unfolded proteins in the ER, a method that is still lacking. Here, we report a strategy of visualizing unfolded protein accumulation in the ER lumen in living cells by employing an engineered ER stress sensor, PERK, which forms fluorescence puncta upon unfolded protein binding, in a fast and reversible way. Our reporter enables us to clarify the involvement of unfolded proteins in UPR activation under several physiological conditions and suggests that persistent unfolded protein accumulation in the ER despite UPR attenuation predicts cell death.
Collapse
Affiliation(s)
- Fenfen Xu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P.R. China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
12
|
Alrasheed MA, Alamer KA, Albishi M, Alsuhibani AA, Almohammed OA, Alwhaibi A, Almajed AN, Guo JJ. Descriptive Analysis of Adverse Events Reported for New Multiple Myeloma Medications Using FDA Adverse Event Reporting System (FAERS) Databases from 2015 to 2022. Pharmaceuticals (Basel) 2024; 17:815. [PMID: 39065666 PMCID: PMC11279559 DOI: 10.3390/ph17070815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND New multiple myeloma (MM) medications have revolutionized the treatment landscape, but they are also associated with a range of adverse events (AEs). This study aims to provide a comprehensive overview of AEs reported for four new MM medications: daratumumab, ixazomib, elotuzumab, and panobinostat. METHODS This study uses a descriptive retrospective approach to analyze the FDA Adverse Event Reporting System (FAERS) from 2015 to 2022. It includes variables like medication names, report details, patient demographics, adverse events, and reporter types. The initial dataset consists of over 3700 adverse events, which are categorized into 21 groups for clarity and comparison. RESULTS The FAERS database revealed 367,756 adverse events (AEs) associated with novel multiple myeloma drugs from 2015-2022. Ixazomib had the highest number of reported AEs with 206,243 reports, followed by daratumumab with 98,872 reports, then elotuzumab with 26,193 AEs. Ixazomib's AE reports increased dramatically over the study period, rising approximately 51-fold from 1183 in 2015 to 60,835 in 2022. Of the medications studied, ixazomib also recorded the highest number of deaths (24,206), followed by daratumumab (11,624), panobinostat (7227), and elotuzumab (3349). The majority of AEs occurred in patients aged 55-64 and 65-74 years. CONCLUSIONS Ixazomib, a new MM medication, had the highest number of AEs reported. Also, it has the highest rate of reported deaths compared to other new MM medications. Clinicians should be aware of the potential AEs associated with this medication and further research is needed to understand the reasons for the high number of AEs and to develop mitigation strategies. More attention should also be paid to the safety of new multiple myeloma medications in younger patients.
Collapse
Affiliation(s)
- Marwan A. Alrasheed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (O.A.A.); (A.A.)
| | - Khalid A. Alamer
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia;
| | - Mashael Albishi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (O.A.A.); (A.A.)
| | - Abdulrahman A. Alsuhibani
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Omar A. Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (O.A.A.); (A.A.)
| | - Abdulrahman Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia; (M.A.); (O.A.A.); (A.A.)
| | - Abdullah N. Almajed
- Pharmaceutical Care Division, King Faisal Specialist Hospital and Research Centre, MBC 11, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Jeff J. Guo
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267, USA;
| |
Collapse
|
13
|
Gao J, Zhou J, Zhang M, Zhang Y, Zeng Y, Li S, Xu K, Yao R. A novel 2-iminobenzimidazole compound, XYA1353, displays in vitro and in vivo anti-myeloma activity via targeting NF-κB signaling. Mol Cell Biochem 2024; 479:843-857. [PMID: 37204666 DOI: 10.1007/s11010-023-04764-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Multiple myeloma (MM) is an accumulated disease of malignant plasma cells, which is still incurably owing to therapeutic resistance and disease relapse. Herein, we synthesized a novel 2-iminobenzimidazole compound, XYA1353, showing a potent anti-myeloma activity both in vitro and in vivo. Compound XYA1353 dose-dependently promoted MM cell apoptosis via activating caspase-dependent endogenous pathways. Moreover, compound XYA1353 could enhance bortezomib (BTZ)-mediated DNA damage via elevating γH2AX expression levels. Notably, compound XYA1353 interacted synergistically with BTZ and overcame drug resistance. RNA sequencing analysis and experiments confirmed that compound XYA1353 inhibited primary tumor growth and myeloma distal infiltration by disturbing canonical NF-κB signaling pathway via decreasing expression of P65/P50 and p-IκBα phosphorylation level. Due to its importance in regulating MM progression, compound XYA1353 alone or combined with BTZ may potentially exert therapeutic effects on multiple myeloma by suppressing canonical NF-κB signaling.
Collapse
Affiliation(s)
- Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jian Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Menghui Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yindi Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shihao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ruosi Yao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Xuzhou Ruihu Health Management and Consulting Co., Ltd, Xuzhou, Jiangsu, China.
| |
Collapse
|
14
|
Zeissig MN, Hewett DR, Mrozik KM, Panagopoulos V, Wallington-Gates CT, Spencer A, Dold SM, Engelhardt M, Vandyke K, Zannettino ACW. Expression of the chemokine receptor CCR1 decreases sensitivity to bortezomib in multiple myeloma cell lines. Leuk Res 2024; 139:107469. [PMID: 38479337 DOI: 10.1016/j.leukres.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.
Collapse
Affiliation(s)
- Mara N Zeissig
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Duncan R Hewett
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Krzysztof M Mrozik
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Craig T Wallington-Gates
- College of Medicine and Public Health, Flinders University, Adelaide, Australia; Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Andrew Spencer
- Department of Haematology, Alfred Health-Monash University, Melbourne, Australia
| | - Sandra M Dold
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
15
|
Becker B, Wottawa F, Bakr M, Koncina E, Mayr L, Kugler J, Yang G, Windross SJ, Neises L, Mishra N, Harris D, Tran F, Welz L, Schwärzler J, Bánki Z, Stengel ST, Ito G, Krötz C, Coleman OI, Jaeger C, Haller D, Paludan SR, Blumberg R, Kaser A, Cicin-Sain L, Schreiber S, Adolph TE, Letellier E, Rosenstiel P, Meiser J, Aden K. Serine metabolism is crucial for cGAS-STING signaling and viral defense control in the gut. iScience 2024; 27:109173. [PMID: 38496294 PMCID: PMC10943449 DOI: 10.1016/j.isci.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/27/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.
Collapse
Affiliation(s)
- Björn Becker
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Felix Wottawa
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Mohamed Bakr
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Eric Koncina
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Université du Luxembourg, Luxembourg, Luxembourg
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Kugler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Guang Yang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | | | - Laura Neises
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Danielle Harris
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephanie T. Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Go Ito
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Christina Krötz
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Olivia I. Coleman
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Luxembourg, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, Luxembourg, Luxembourg
- ZIEL-Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | | | - Richard Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, England, UK
| | - Luka Cicin-Sain
- Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Letellier
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Université du Luxembourg, Luxembourg, Luxembourg
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Johannes Meiser
- Luxembourg Institute of Health, Department of Cancer Research, Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
16
|
Zhang R, Yang X, Shi X, Xing E, Wang L, Hao C, Zhang Z. Bortezomib modulated the autophagy-lysosomal pathway in a TFEB-dependent manner in multiple myeloma. Leuk Res 2024; 138:107455. [PMID: 38368721 DOI: 10.1016/j.leukres.2024.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE To explore the involvement of TFEB-mediated autophagy-lysosomal mechanisms in multiple myeloma (MM) during bortezomib treatment. METHODS MM cells were exposed to bortezomib or subjected to TFEB knockdown. CCK assay was used to assess the cell proliferation. Western blotting and fluorescent staining were conducted to examine autophagy and lysosomes. The TFEB expression pattern was analyzed, and whole transcriptome sequencing was carried out. Additionally, TFEB target genes were predicted using the GTRD(http://gtrd.biouml.org/) website, and pathway analysis was performed. RESULTS Bortezomib demonstrated a dose-dependent and time dependent inhibition of cell proliferation. In MM cells treated with bortezomib, LC3B, Beclin-1, TFEB, and Lamp1 exhibited upregulation in a time- and concentration-dependent manner. LysoTracker dye labeling showed an increase in lysosomes in the bortezomib-treated group. Moreover, bortezomib elevated the expression of lysosome-associated factor Lamp1. Bortezomib promoted the nuclear translocation of TFEB, leading to decreased cytoplasmic TFEB and increased nuclear TFEB. TFEB gene silencing reversed bortezomib's inhibitory effect on MM cell lines, significantly reducing autophagosome expression and lysosome numbers. Furthermore, bioinformatic analysis identified the MAPK pathway as a potential downstream target of TFEB. CONCLUSION Bortezomib effectively inhibits MM cell proliferation and induces autophagy, partly through TFEB-mediated mechanisms, with potential involvement of the MAPK pathway.
Collapse
Affiliation(s)
- Rongjuan Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhaung 050000, China
| | - Xinhong Yang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Xiaomin Shi
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Enhong Xing
- Department of central laboratory, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Lihong Wang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Changlai Hao
- Department of Internal Medicine, Hebei Medical University, Shijiazhaung 050000, China; Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China.
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde 067000, China.
| |
Collapse
|
17
|
Lim CH, Fang XQ, Kang H, Oh T, Lee S, Kim YS, Lim JH. ER Stress-Activated HSF1 Governs Cancer Cell Resistance to USP7 Inhibitor-Based Chemotherapy through the PERK Pathway. Int J Mol Sci 2024; 25:2768. [PMID: 38474017 DOI: 10.3390/ijms25052768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Ubiquitin-specific protease 7 inhibitors (USP7i) are considered a novel class of anticancer drugs. Cancer cells occasionally become insensitive to anticancer drugs, known as chemoresistance, by acquiring multidrug resistance, resulting in poor clinical outcomes in patients with cancer. However, the chemoresistance of cancer cells to USP7i (P22077 and P5091) and mechanisms to overcome it have not yet been investigated. In the present study, we generated human cancer cells with acquired resistance to USP7i-induced cell death. Gene expression profiling showed that heat stress response (HSR)- and unfolded protein response (UPR)-related genes were largely upregulated in USP7i-resistant cancer cells. Biochemical studies showed that USP7i induced the phosphorylation and activation of heat shock transcription factor 1 (HSF1), mediated by the endoplasmic reticulum (ER) stress protein kinase R-like ER kinase (PERK) signaling pathway. Inhibition of HSF1 and PERK significantly sensitized cancer cells to USP7i-induced cytotoxicity. Our study demonstrated that the ER stress-PERK axis is responsible for chemoresistance to USP7i, and inhibiting PERK is a potential strategy for improving the anticancer efficacy of USP7i.
Collapse
Affiliation(s)
- Chang-Hoon Lim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Xue-Quan Fang
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Hyeji Kang
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Taerim Oh
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Seonghoon Lee
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Young-Seon Kim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Ji-Hong Lim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- Center for Metabolic Diseases, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| |
Collapse
|
18
|
Zhaliazka K, Ali A, Kurouski D. Phospholipids and Cholesterol Determine Molecular Mechanisms of Cytotoxicity of α-Synuclein Oligomers and Fibrils. ACS Chem Neurosci 2024; 15:371-381. [PMID: 38166409 DOI: 10.1021/acschemneuro.3c00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, hypothalamus, and thalamus is a hallmark of Parkinson's disease. Neuronal death is linked to the abrupt aggregation of α-synuclein (α-Syn), a small membrane protein that regulates cell vesicle trafficking. α-Syn aggregation rate, as well as the secondary structure and toxicity of α-Syn fibrils, could be uniquely altered by lipids. However, molecular mechanisms that determine such a remarkable difference in the toxicity of α-Syn fibrils formed in the presence of lipids remain unclear. In this study, we used a set of molecular assays to determine the molecular mechanism by which α-Syn fibrils formed in the presence of phosphatidylcholine (PC), cardiolipin (CL), and cholesterol (Cho) exert cell toxicity. We found that rat dopaminergic cells exposed to α-Syn fibrils formed in the presence of different lipids exert drastically different magnitudes and dynamics of unfolded protein response (UPR) in the endoplasmic reticulum (ER) and mitochondria (MT). Specifically, α-Syn:CL were found to cause the strongest, whereas α-Syn fibrils formed in the absence of lipids had the lowest magnitude of the UPR cell response. We also found the opposite dynamics of the ER- and MT-UPR responses in rat dopaminergic cells exposed to protein aggregates. These results could suggest that facing severe ER stress, dopaminergic cells suppress MT-UPR response, enabling the maximal ATP production to restore their normal physiological function. These findings help to better understand complex mechanisms of cell toxicity of amyloid aggregates and ultimately find neuroprotective drug candidates that will be able to suppress the spread of Parkinson's disease.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Musa I, Yang N, Breslin J, Paulden O, Geliebter J, Tiwari R, Li XM. Inhibition of Myeloma Cell Function by Cannabinoid-Enriched Product Associated With Regulation of Telomere and TP53. Integr Cancer Ther 2024; 23:15347354241267979. [PMID: 39256983 PMCID: PMC11406604 DOI: 10.1177/15347354241267979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/11/2024] [Accepted: 06/28/2024] [Indexed: 09/12/2024] Open
Abstract
Multiple myeloma is a hematological cancer caused by the uncontrolled proliferation of abnormal plasma cells in the bone marrow, leading to excessive immunoglobulin production. Our study aimed to examine the anticancer properties of BRF1A, a cannabinoid (CBD)-enriched product, on 2 myeloma cell lines: U266 and ARH-7. We treated U266 and ARH-77 myeloma cells with varying doses of BRF1A and measured the production of IgE and IgG antibodies using ELISA. Cell viability was assessed using trypan blue and CCK-8 assays. We measured the expression of genes related to the production of IgE and IgG antibodies, IgEH, and IgGH. We determined its effect on the expression of telomerase and its phosphorylated form as an indicator of telomere stabilization. Furthermore, we determined its effect on other cancer-related targets such as NF-ĸB, c-Myc, and TP53 in U266 cells using reverse transcription polymerase chain reaction (RT-PCR) and western blotting. BRF1A reduced myeloma cell IgE and IgG production in a time and dose-dependent manner. It also suppressed the expression of p-IκBα, p-NFκB (p65), and total NFκB protein, as well as XBP1u and XBP1s. It increased the gene and protein expression of telomere and hTERT and significantly increased cancer suppressor TP53 gene and p53 protein expression. Additionally, BRF1A decreased the c-Myc gene and protein expression. Our study has shown that a CBD-enriched product can reduce the growth of myeloma cells by suppressing the critical functions of IgE- and IgG-producing cells. This study could help bridge the gap in understanding how cannabinoid-containing products affect cancer, aging, telomere, and cancer-suppressor gene activity.
Collapse
Affiliation(s)
| | - Nan Yang
- General Nutraceutical Technology LLC, Elmsford, NY, USA
| | | | | | | | - Raj Tiwari
- New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- New York Medical College, Valhalla, NY, USA
| |
Collapse
|
20
|
Zhou J, Sang X, Wang J, Xu Y, An J, Chu ZT, Saha A, Warshel A, Huang Z. Elucidation of the α-Ketoamide Inhibition Mechanism: Revealing the Critical Role of the Electrostatic Reorganization Effect of Asp17 in the Active Site of the 20S Proteasome. ACS Catal 2023; 13:14368-14376. [PMID: 39188993 PMCID: PMC11346796 DOI: 10.1021/acscatal.3c03538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The 20S proteasome is an attractive drug target for the development of anticancer agents because it plays an important role in cellular protein degradation. It has a threonine residue that can act as a nucleophile to attack inhibitors with an electrophilic warhead, forming a covalent adduct. Fundamental understanding of the reaction mechanism between covalent inhibitors and the proteasome may assist the design and refinement of compounds with the desired activity. In this study, we investigated the covalent inhibition mechanism of an α-keto phenylamide inhibitor of the proteasome. We calculated the noncovalent binding free energy using the PDLD/S-LRA/β method and the reaction free energy through the empirical valence bond method (EVB). Several possible reaction pathways were explored. Subsequently, we validated the calculated activation and reaction free energies of the most plausible pathways by performing kinetic experiments. Furthermore, the effects of different ionization states of Asp17 on the activation energy at each step were also discussed. The results revealed that the ionization states of Asp17 remarkably affect the activation energies and there is an electrostatic reorganization of Asp17 during the course of the reaction. Our results demonstrate the critical electrostatic effect of Asp17 in the active site of the 20S proteasome.
Collapse
Affiliation(s)
- Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaohong Sang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Juan Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Xu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Jing An
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Arjun Saha
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53213, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong Shenzhen 518172, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California at San Diego, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
22
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
23
|
Satapathy S, Walker H, Brown J, Gambin Y, Wilson MR. The N-end rule pathway regulates ER stress-induced clusterin release to the cytosol where it directs misfolded proteins for degradation. Cell Rep 2023; 42:113059. [PMID: 37660295 DOI: 10.1016/j.celrep.2023.113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Previous work suggests that cell stress induces release of the normally secreted chaperone clusterin (CLU) into the cytosol. We analyzed the localization of CLU in healthy and stressed cells, the mechanism of its cytosolic release, and its interactions with cytosolic misfolded proteins. Key results of this study are the following: (1) full-length CLU is released to the cytosol during stress, (2) the CLU N-terminal D1 residue is recognized by the N-end rule pathway and together with the enzyme ATE1 is essential for cytosolic release, (3) CLU can form stable complexes with cytosolic misfolded proteins and direct them to the proteasome and autophagosomes, and (4) cytosolic CLU protects cells from hypoxic stress and the cytosolic overexpression of an aggregation-prone protein. Collectively, the results suggest that enhanced cytosolic release of CLU is a stress response that can inhibit the toxicity of misfolded proteins and facilitate their targeted degradation via both autophagy and the proteasome.
Collapse
Affiliation(s)
- Sandeep Satapathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Holly Walker
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James Brown
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark R Wilson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
24
|
Solia E, Dimopoulos MA, Kastritis E. Proteasome Inhibitor-Based Regimens in the Frontline Management of Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2023; 37:689-705. [PMID: 37211495 DOI: 10.1016/j.hoc.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteasome inhibitors (PIs) have long been used in myeloma therapy but also for Waldenström macroglobulinemia. Their use has been successful and has also been investigated for the frontline management of the disease. Bortezomib was effective either as a single agent or in combination with other regimens with high response rates observed in most studies, despite its adverse effects, especially neurotoxicity, which remains a major concern. Clinical trials with second-generation PIs such as carfilzomib and ixazomib have also been conducted, always in combination with immunotherapy in previously untreated patients. They have been shown to be active and neuropathy-sparing treatment options.
Collapse
Affiliation(s)
- Eirini Solia
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
25
|
Verjan Garcia N, Hong KU, Matoba N. The Unfolded Protein Response and Its Implications for Novel Therapeutic Strategies in Inflammatory Bowel Disease. Biomedicines 2023; 11:2066. [PMID: 37509705 PMCID: PMC10377089 DOI: 10.3390/biomedicines11072066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle playing a vital role in maintaining cell homeostasis, and disruptions to its functions can have detrimental effects on cells. Dysregulated ER stress and the unfolded protein response (UPR) have been linked to various human diseases. For example, ER stress and the activation of the UPR signaling pathways in intestinal epithelial cells can either exacerbate or alleviate the severity of inflammatory bowel disease (IBD), contingent on the degree and conditions of activation. Our recent studies have shown that EPICERTIN, a recombinant variant of the cholera toxin B subunit containing an ER retention motif, can induce a protective UPR in colon epithelial cells, subsequently promoting epithelial restitution and mucosal healing in IBD models. These findings support the idea that compounds modulating UPR may be promising pharmaceutical candidates for the treatment of the disease. In this review, we summarize our current understanding of the ER stress and UPR in IBD, focusing on their roles in maintaining cell homeostasis, dysregulation, and disease pathogenesis. Additionally, we discuss therapeutic strategies that promote the cytoprotection of colon epithelial cells and reduce inflammation via pharmacological manipulation of the UPR.
Collapse
Affiliation(s)
- Noel Verjan Garcia
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kyung U Hong
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Nobuyuki Matoba
- UofL Health-Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
26
|
Clavero E, Sanchez-Maldonado JM, Macauda A, Ter Horst R, Sampaio-Marques B, Jurczyszyn A, Clay-Gilmour A, Stein A, Hildebrandt MAT, Weinhold N, Buda G, García-Sanz R, Tomczak W, Vogel U, Jerez A, Zawirska D, Wątek M, Hofmann JN, Landi S, Spinelli JJ, Butrym A, Kumar A, Martínez-López J, Galimberti S, Sarasquete ME, Subocz E, Iskierka-Jażdżewska E, Giles GG, Rybicka-Ramos M, Kruszewski M, Abildgaard N, Verdejo FG, Sánchez Rovira P, da Silva Filho MI, Kadar K, Razny M, Cozen W, Pelosini M, Jurado M, Bhatti P, Dudzinski M, Druzd-Sitek A, Orciuolo E, Li Y, Norman AD, Zaucha JM, Reis RM, Markiewicz M, Rodríguez Sevilla JJ, Andersen V, Jamroziak K, Hemminki K, Berndt SI, Rajkumar V, Mazur G, Kumar SK, Ludovico P, Nagler A, Chanock SJ, Dumontet C, Machiela MJ, Varkonyi J, Camp NJ, Ziv E, Vangsted AJ, Brown EE, Campa D, Vachon CM, Netea MG, Canzian F, Försti A, Sainz J. Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization. Int J Mol Sci 2023; 24:8500. [PMID: 37239846 PMCID: PMC10218542 DOI: 10.3390/ijms24108500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.
Collapse
Affiliation(s)
- Esther Clavero
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (E.C.); (M.J.)
| | - José Manuel Sanchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain;
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Department of Hematology, Jagiellonian University Medical College, 31-066 Kraków, Poland;
| | - Alyssa Clay-Gilmour
- Department of Biostatistics and Epidemiology, Arnold School of Public Health, University of South Carolina, Greenville, SC 29208, USA;
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Michelle A. T. Hildebrandt
- Department of Lymphoma–Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Niels Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Buda
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - Ramón García-Sanz
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (R.G.-S.); (M.E.S.)
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark;
| | - Andrés Jerez
- Department of Hematology, Experimental Hematology Unit, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| | - Daria Zawirska
- Department of Hematology, University Hospital, 30-688 Kraków, Poland;
| | - Marzena Wątek
- Holycross Medical Oncology Center, 25-735 Kielce, Poland;
- Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (D.C.)
| | - John J. Spinelli
- Division of Population Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada;
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Alfred Sokolowski Specialist Hospital in Walbrzych Oncology Support Centre for Clinical Trials, 58-309 Walbrzych, Poland
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | | | - Sara Galimberti
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - María Eugenia Sarasquete
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (R.G.-S.); (M.E.S.)
| | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | | | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia;
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Malwina Rybicka-Ramos
- Department of Hematology, Specialist Hospital No. 1 in Bytom, Academy of Silesia, Faculty of Medicine, 40-055 Katowice, Poland;
| | - Marcin Kruszewski
- Department of Hematology, University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Francisco García Verdejo
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.V.); (P.S.R.)
| | - Pedro Sánchez Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.V.); (P.S.R.)
| | - Miguel Inacio da Silva Filho
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany;
| | | | - Małgorzata Razny
- Department of Hematology, Rydygier Hospital, 31-826 Cracow, Poland;
| | - Wendy Cozen
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health Sciences, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA 92697, USA;
| | - Matteo Pelosini
- U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy;
| | - Manuel Jurado
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (E.C.); (M.J.)
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Medicine, University of Granada, 18012 Granada, Spain
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC V5Z 4E6, Canada;
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marek Dudzinski
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.D.); (M.M.)
| | - Agnieszka Druzd-Sitek
- Department of Lymphoproliferative Diseases, Maria Skłodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Enrico Orciuolo
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Aaron D. Norman
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
- Genetic Epidemiology and Risk Assessment Program, Mayo Clinic Comprehensive Cancer Center, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal and ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal;
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Miroslaw Markiewicz
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.D.); (M.M.)
| | | | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, DK-6200 Aabenraa, Denmark;
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Vicent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA; (V.R.); (S.K.K.)
| | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Shaji K. Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA; (V.R.); (S.K.K.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Charles Dumontet
- UMR INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | | | - Nicola J. Camp
- Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA;
| | - Annette Juul Vangsted
- Department of Hematology, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark;
| | - Elizabeth E. Brown
- Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (D.C.)
| | - Celine M. Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain;
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| |
Collapse
|
27
|
Chua BA, Lennan CJ, Sunshine MJ, Dreifke D, Chawla A, Bennett EJ, Signer RAJ. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 2023; 30:460-472.e6. [PMID: 36948186 PMCID: PMC10164413 DOI: 10.1016/j.stem.2023.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
Hematopoietic stem cells (HSCs) regenerate blood cells throughout life. To preserve their fitness, HSCs are particularly dependent on maintaining protein homeostasis (proteostasis). However, how HSCs purge misfolded proteins is unknown. Here, we show that in contrast to most cells that primarily utilize the proteasome to degrade misfolded proteins, HSCs preferentially traffic misfolded proteins to aggresomes in a Bag3-dependent manner and depend on aggrephagy, a selective form of autophagy, to maintain proteostasis in vivo. When autophagy is disabled, HSCs compensate by increasing proteasome activity, but proteostasis is ultimately disrupted as protein aggregates accumulate and HSC function is impaired. Bag3-deficiency blunts aggresome formation in HSCs, resulting in protein aggregate accumulation, myeloid-biased differentiation, and diminished self-renewal activity. Furthermore, HSC aging is associated with a severe loss of aggresomes and reduced autophagic flux. Protein degradation pathways are thus specifically configured in young adult HSCs to preserve proteostasis and fitness but become dysregulated during aging.
Collapse
Affiliation(s)
- Bernadette A Chua
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Connor J Lennan
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mary Jean Sunshine
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniela Dreifke
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ashu Chawla
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Massoudi D, Gorman S, Kuo YM, Iwawaki T, Oakes SA, Papa FR, Gould DB. Deletion of the Unfolded Protein Response Transducer IRE1α Is Detrimental to Aging Photoreceptors and to ER Stress-Mediated Retinal Degeneration. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 37097227 PMCID: PMC10148664 DOI: 10.1167/iovs.64.4.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Purpose The unfolded protein response (UPR) is triggered when the protein folding capacity of the endoplasmic reticulum (ER) is overwhelmed and misfolded proteins accumulate in the ER, a condition referred to as ER stress. IRE1α is an ER-resident protein that plays major roles in orchestrating the UPR. Several lines of evidence implicate the UPR and its transducers in neurodegenerative diseases, including retinitis pigmentosa (RP), a group of inherited diseases that cause progressive dysfunction and loss of rod and cone photoreceptors. This study evaluated the contribution of IRE1α to photoreceptor development, homeostasis, and degeneration. Methods We used a conditional gene targeting strategy to selectively inactivate Ire1α in mouse rod photoreceptors. We used a combination of optical coherence tomography (OCT) imaging, histology, and electroretinography (ERG) to assess longitudinally the effect of IRE1α deficiency in retinal development and function. Furthermore, we evaluated the IRE1α-deficient retina responses to tunicamycin-induced ER stress and in the context of RP caused by the rhodopsin mutation RhoP23H. Results OCT imaging, histology, and ERG analyses did not reveal abnormalities in IRE1α-deficient retinas up to 3 months old. However, by 6 months of age, the Ire1α mutant animals showed reduced outer nuclear layer thickness and deficits in retinal function. Furthermore, conditional inactivation of Ire1α in rod photoreceptors accelerated retinal degeneration caused by the RhoP23H mutation. Conclusions These data suggest that IRE1α is dispensable for photoreceptor development but important for photoreceptor homeostasis in aging retinas and for protecting against ER stress-mediated photoreceptor degeneration.
Collapse
Affiliation(s)
- Dawiyat Massoudi
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Seán Gorman
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Scott A. Oakes
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States
| | - Feroz R. Papa
- Department of Medicine, Diabetes Center, Quantitative Biosciences Institute and Lung Biology Center University of California, San Francisco, San Francisco, California, United States
| | - Douglas B. Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, University of California, San Francisco, California, United States
| |
Collapse
|
29
|
Raines LN, Huang SCC. How the Unfolded Protein Response Is a Boon for Tumors and a Bane for the Immune System. Immunohorizons 2023; 7:256-264. [PMID: 37067519 PMCID: PMC10579845 DOI: 10.4049/immunohorizons.2200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
The correct folding of proteins is essential for appropriate cell function and is tightly regulated within the endoplasmic reticulum (ER). Environmental challenges and cellular conditions disrupt ER homeostasis and induce ER stress, which adversely affect protein folding and activate the unfolded protein response (UPR). It is now becoming recognized that cancer cells can overcome survival challenges posed within the tumor microenvironment by activating the UPR. Furthermore, the UPR has also been found to impose detrimental effects on immune cells by inducing immunoinhibitory activity in both tumor-infiltrating innate and adaptive immune cells. This suggests that these signaling axes may be important therapeutic targets, resulting in multifaceted approaches to eradicating tumor cells. In this mini-review, we discuss the role of the UPR in driving tumor progression and modulating the immune system's ability to target cancer cells. Additionally, we highlight some of the key unanswered questions that may steer future UPR research.
Collapse
Affiliation(s)
- Lydia N. Raines
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
30
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
31
|
Kurata K, James-Bott A, Tye MA, Yamamoto L, Samur MK, Tai YT, Dunford J, Johansson C, Senbabaoglu F, Philpott M, Palmer C, Ramasamy K, Gooding S, Smilova M, Gaeta G, Guo M, Christianson JC, Payne NC, Singh K, Karagoz K, Stokes ME, Ortiz M, Hagner P, Thakurta A, Cribbs A, Mazitschek R, Hideshima T, Anderson KC, Oppermann U. Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma. Blood Cancer J 2023; 13:12. [PMID: 36631435 PMCID: PMC9834298 DOI: 10.1038/s41408-023-00787-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.
Collapse
Affiliation(s)
- Keiji Kurata
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, 02138, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Leona Yamamoto
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Mehmet K Samur
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - James Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Filiz Senbabaoglu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Charlotte Palmer
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Karthik Ramasamy
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LD, UK
| | - Sarah Gooding
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7LD, UK
| | - Mihaela Smilova
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Giorgia Gaeta
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Manman Guo
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | | | - Maria Ortiz
- Bristol Myers Squibb, Summit, NJ, 07901, USA
| | | | - Anjan Thakurta
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Bristol Myers Squibb, Summit, NJ, 07901, USA
| | - Adam Cribbs
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
32
|
Fisher JG, Doyle ADP, Graham LV, Khakoo SI, Blunt MD. Disruption of the NKG2A:HLA-E Immune Checkpoint Axis to Enhance NK Cell Activation against Cancer. Vaccines (Basel) 2022; 10:1993. [PMID: 36560403 PMCID: PMC9783329 DOI: 10.3390/vaccines10121993] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Ligation of the inhibitory receptor NKG2A by its ligand HLA-E negatively regulates the activation of natural killer (NK) cells, as well as subsets of CD8+ T cells and innate T cell populations. NKG2A has recently become a novel immune checkpoint target for the treatment of cancer and direct antibody mediated blockade of NKG2A function is currently under assessment in two phase 3 clinical trials. In addition to direct targeting, the NKG2A:HLA-E axis can also be disrupted indirectly via multiple different targeted cancer agents that were not previously recognised to possess immunomodulatory properties. Increased understanding of immune cell modulation by targeted cancer therapies will allow for the design of rational and more efficacious drug combination strategies to improve cancer patient outcomes. In this review, we summarise and discuss the various strategies currently in development which either directly or indirectly disrupt the NKG2A:HLA-E interaction to enhance NK cell activation against cancer.
Collapse
Affiliation(s)
| | | | | | | | - Matthew D. Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
33
|
Matveyenka M, Rizevsky S, Kurouski D. Amyloid aggregates exert cell toxicity causing irreversible damages in the endoplasmic reticulum. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166485. [PMID: 35840040 PMCID: PMC10424722 DOI: 10.1016/j.bbadis.2022.166485] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Amyloid oligomers and fibrils are protein aggregates that cause an onset and progression of many neurodegenerative diseases, diabetes type 2 and systemic amyloidosis. Although a growing body of evidence shows that oligomers and fibrils trigger mitochondrial dysfunction simultaneously enhancing production of reactive oxygen species, exact mechanisms by which these protein aggregates exert their toxicities remain unclear. In this study, we used advanced microscopic and spectroscopic methods to examine topography and structure of insulin aggregates grown in the lipid-free environment, as well as in the presence of major classes of phospho- and sphingolipids. We also employed a set of molecular markers to determine the extent to which insulin aggregates induce a damage of cell endoplasmic reticulum (ER), an important cell organelle used for calcium storage, protein synthesis and folding. Our results show that insulin aggregates activate the expression of Activating Transcription Factor 6 (ATF6), a transmembrane protein that is involved in unfolded protein response (UPR) of the stressed ER. At the same time, two other ER transmembrane proteins, Inositol Requiring 1 (IRE1α) and eLF2a, the product of PKR-like ER kinase (PERK), exhibited very low expression levels. Furthermore, amyloid aggregates trigger an expression of the 78-kDa glucose-regulated protein GRP78, which is also involved in the UPR. We also observed UPR-induced expression of a proapoptotic transcription factor CHOP, which, in turn, regulates expression of caspase 3 kinase and BCL2 protein family members, including the ER localized Bax. These findings show that insulin oligomers and fibrils induce UPR-associated ER stress and ultimately fatal changes in cell homeostasis.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Viet Nam
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
34
|
Xu H, Xu G, Xu Q, Xu C, Zhou X, Bai Y, Yin L, Ding Y, Wang W. MLN2238 exerts its anti-tumor effects via regulating ROS/JNK/mitochondrial signaling pathways in intrahepatic cholangiocarcinoma. Front Pharmacol 2022; 13:1040847. [PMID: 36386204 PMCID: PMC9659592 DOI: 10.3389/fphar.2022.1040847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Background: Intrahepatic Cholangiocarcinoma (iCCA) is a highly malignant tumor with limited treatment options that contributes largely to cancer-related deaths worldwide. Compared with traditional transcriptomic analysis, single-cell RNA sequencing (scRNA-seq) is emerging as a more advanced and popular tool for the in-depth exploration of cellular diversity and molecular complexity. As a next-generation proteasome inhibitor, MLN2238 presents better pharmacodynamics, pharmacokinetics, and therapeutic responses in various cancers. However, its effects and mechanisms of action in iCCA remain unknown. Methods: iCCA tumor heterogeneity was determined based on 4,239 qualified scRNA-seq data from 10 iCCA samples. The potential biological roles of proteasome-related genes in iCCA were investigated using a pseudo-trajectory reconstruction. The effect of MLN2238 on iCCA cell proliferation was estimated using the CCK-8, EdU, and clone formation assays. Flow cytometry was used to examine the effect of added MLN2238 on cell cycle and apoptosis levels. Autophagic flux was detected using AdPlus-mCherry-GFP-LC3B cells. ROS levels and mitochondrial membrane potential were determined using DCFH-DA probing and JC-1 staining. JNK activation and mitochondrial apoptosis were observed using western blotting and immunofluorescence microscopy, respectively. Finally, we used a tumor-bearing mouse model to validate its efficacy in vivo for iCCA treatment. Results: Proteasome-related genes were dysregulated in iCCA progression and expressed at higher levels in tumor tissues. MLN2238 suppressed cell proliferation, blocked the cell cycle in the G2/M phase, promoted apoptosis, and induced cytoprotective autophagy in iCCA cells. Furthermore, MLN2238 increased ROS levels and activated the JNK signaling pathway. Inhibition of ROS and JNK activation by NAC and SP600125 significantly reversed MLN2238-induced apoptosis. MLN2238 also suppressed the growth of iCCA tumors in vivo. Conclusion: Proteasome-related genes play pivotal roles in iCCA development. MLN2238, as a proteasome inhibitor, induces apoptosis in iCCA cells through ROS/JNK/mitochondrial signaling pathways, and hence, making MLN2238 a potential therapeutic choice for iCCA.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Guangyu Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qianhui Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chang Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaohu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lu Yin
- Department of Pathology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Hangzhou, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Roman-Trufero M, Auner HW, Edwards CM. Multiple myeloma metabolism - a treasure trove of therapeutic targets? Front Immunol 2022; 13:897862. [PMID: 36072593 PMCID: PMC9441940 DOI: 10.3389/fimmu.2022.897862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma is an incurable cancer of plasma cells that is predominantly located in the bone marrow. Multiple myeloma cells are characterized by distinctive biological features that are intricately linked to their core function, the assembly and secretion of large amounts of antibodies, and their diverse interactions with the bone marrow microenvironment. Here, we provide a concise and introductory discussion of major metabolic hallmarks of plasma cells and myeloma cells, their roles in myeloma development and progression, and how they could be exploited for therapeutic purposes. We review the role of glucose consumption and catabolism, assess the dependency on glutamine to support key metabolic processes, and consider metabolic adaptations in drug-resistant myeloma cells. Finally, we examine the complex metabolic effects of proteasome inhibitors on myeloma cells and the extracellular matrix, and we explore the complex relationship between myeloma cells and bone marrow adipocytes.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Holger W. Auner
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Claire M. Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Lim JJ, Hooi L, Dan YY, Bonney GK, Zhou L, Chow PKH, Chee CE, Toh TB, Chow EKH. Rational drug combination design in patient-derived avatars reveals effective inhibition of hepatocellular carcinoma with proteasome and CDK inhibitors. J Exp Clin Cancer Res 2022; 41:249. [PMID: 35971164 PMCID: PMC9377092 DOI: 10.1186/s13046-022-02436-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) remains difficult to treat due to limited effective treatment options. While the proteasome inhibitor bortezomib has shown promising preclinical activity in HCC, clinical trials of bortezomib showed no advantage over the standard-of-care treatment sorafenib, highlighting the need for more clinically relevant therapeutic strategies. Here, we propose that rational drug combination design and validation in patient-derived HCC avatar models such as patient-derived xenografts (PDXs) and organoids can improve proteasome inhibitor-based therapeutic efficacy and clinical potential.
Methods
HCC PDXs and the corresponding PDX-derived organoids (PDXOs) were generated from primary patient samples for drug screening and efficacy studies. To identify effective proteasome inhibitor-based drug combinations, we applied a hybrid experimental-computational approach, Quadratic Phenotypic Optimization Platform (QPOP) on a pool of nine drugs comprising proteasome inhibitors, kinase inhibitors and chemotherapy agents. QPOP utilizes small experimental drug response datasets to accurately identify globally optimal drug combinations.
Results
Preliminary drug screening highlighted the increased susceptibility of HCC PDXOs towards proteasome inhibitors. Through QPOP, the combination of second-generation proteasome inhibitor ixazomib (Ixa) and CDK inhibitor dinaciclib (Dina) was identified to be effective against HCC. In vitro and in vivo studies demonstrated the synergistic pro-apoptotic and anti-proliferative activity of Ixa + Dina against HCC PDXs and PDXOs. Furthermore, Ixa + Dina outperformed sorafenib in mitigating tumor formation in mice. Mechanistically, increased activation of JNK signaling mediates the combined anti-tumor effects of Ixa + Dina in HCC tumor cells.
Conclusions
Rational drug combination design in patient-derived avatars highlights the therapeutic potential of proteasome and CDK inhibitors and represents a feasible approach towards developing more clinically relevant treatment strategies for HCC.
Collapse
|
37
|
Prevention of alloimmune rejection using XBP1-deleted bone marrow-derived dendritic cells in heart transplantation. J Heart Lung Transplant 2022; 41:1660-1671. [DOI: 10.1016/j.healun.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
|
38
|
Prolonged proteasome inhibition antagonizes TGFβ1-dependent signalling by promoting the lysosomal-targeting of TGFβ receptors. Cell Signal 2022; 98:110414. [PMID: 35901932 DOI: 10.1016/j.cellsig.2022.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
Impairing autophagy disrupts transforming growth factor beta 1 (TGFβ1) signalling and epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Since autophagy and proteasome-mediated degradation are interdependent, we investigated how prolonged downregulation of proteasomal catalytic activity affected TGFβ1-dependent signalling and EMT. Proteasome-dependent degradation was inhibited in A549 and H1299 NSCLC cells using MG132 and lactacystin, which are reversible and irreversible proteasome inhibitors, respectively. We observed that inhibiting proteasomal activity for 24 h decreased TGFβ-dependent nuclear accumulation of Smad2/3. Time course studies were then carried out to characterize the time frame of this observation. Short-term (< 8 h) proteasome inhibition resulted in increased receptor regulated Smad (R-Smad) phosphorylation and steady-state TGFβ receptor type II (TGFβRII) levels. However, prolonged (8-24 h) proteasome inhibition decreased TGFβ1-dependent R-Smad phosphorylation and steady-state TGFβRI and TGFβRII levels. Furthermore, proteasome inhibition blunted TGFβ-dependent E- to N-Cadherin shift, stress fiber formation, and increased cellular apoptosis via the TAK-1-TRAF6-p38 MAPK pathway. Interestingly, proteasome inhibition also increased autophagic flux, steady-state microtubule-associated protein light chain 3B-II and active uncoordinated 51-like autophagy activating kinase 1 levels, and co-localization of lysosomes with autophagy cargo proteins and autophagy-related proteins. Finally, we observed that proteasome inhibition increased TGFβRII endocytosis and trafficking to lysosomes and we conclude that prolonged proteasome inhibition disrupts TGFβ signalling outcomes through altered TGFβ receptor trafficking.
Collapse
|
39
|
Wei W, Li Y, Wang C, Gao S, Zhao Y, Yang Z, Wang H, Gao Z, Jiang Y, He Y, Zhao L, Gao H, Yao X, Hu Y. Diterpenoid Vinigrol specifically activates ATF4/DDIT3-mediated PERK arm of unfolded protein response to drive non-apoptotic death of breast cancer cells. Pharmacol Res 2022; 182:106285. [PMID: 35662627 DOI: 10.1016/j.phrs.2022.106285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022]
Abstract
Vinigrol is a natural diterpenoid with unprecedented chemical structure, driving great efforts into its total synthesis in the past decades. Despite anti-hypertension and anti-clot ever reported, comprehensive investigations on bioactions and molecular mechanisms of Vinigrol are entirely missing. Here we firstly carried out a complete functional prediction of Vinigrol using a transcriptome-based strategy coupled with multiple bioinformatic analyses and identified "anti-cancer" as the most prominent biofunction ahead of anti-hypertension and anti-depression/psychosis. Broad cytotoxicity was subsequently confirmed on multiple cancer types. Further mechanistic investigation on several breast cancer cells revealed that its anti-cancer effect was mainly through activating PERK/eIF2α arm of unfolded protein response (UPR) and subsequent non-apoptotic cell death independent of caspase activities. The other two branches of UPR, IRE1α and ATF6, were functionally irrelevant to Vinigrol-induced cell death. Using CRISPR/Cas9-based gene activation, repression, and knockout systems, we identified the essential contribution of ATF4 and DDIT3, not ATF6, to the death process. This study unraveled a broad anti-cancer function of Vinigrol and its underlying targets and regulatory mechanisms. It paved the way for further inspection on the structure-efficacy relationship of the whole compound family, making them a novel cluster of PERK-specific stress activators for experimental and clinical uses.
Collapse
Affiliation(s)
- Wencheng Wei
- Harbin Institute of Technology, Harbin 150000, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yunfei Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Chuanxi Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Sanxing Gao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yan Zhao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zhenyu Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Hao Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Ziying Gao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yanxiang Jiang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yuan He
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Li Zhao
- Department of Head and Neck Surgical Oncology, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100000, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
| |
Collapse
|
40
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
41
|
IRE1α Inhibitors as a Promising Therapeutic Strategy in Blood Malignancies. Cancers (Basel) 2022; 14:cancers14102526. [PMID: 35626128 PMCID: PMC9139960 DOI: 10.3390/cancers14102526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Synthesis, folding, and structural maturation of proteins occur in the endoplasmic reticulum (ER). Accumulation of misfolded or unfolded proteins in the ER lumen contributes to the induction of ER stress and activation of the unfolded protein response (UPR) signaling pathway. Under ER stress, the UPR tries to maintain cellular homeostasis through different pathways, including the inositol-requiring enzyme 1 alpha (IRE1α)-dependent ones. IRE1α is located in an ER membrane, and it is evolutionarily the oldest UPR sensor. Activation of IRE1α via ER stress triggers the formation of the spliced form of XBP1 (XBP1s), which has been linked to a pro-survival effect in cancer cells. The role of IRE1α is critical for blood cancer cells, and it was found that the levels of IRE1α and XBP1s are elevated in various hematological malignancies. This review paper is focused on summarizing the latest knowledge about the role of IRE1α and on the assessment of the potential utility of IRE1α inhibitors in blood cancers.
Collapse
|
42
|
Prognostic Risk Signature and Comprehensive Analyses of Endoplasmic Reticulum Stress-Related Genes in Lung Adenocarcinoma. J Immunol Res 2022; 2022:6567916. [PMID: 35571564 PMCID: PMC9096573 DOI: 10.1155/2022/6567916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the main pathological subtype of non-small-cell lung cancer. Endoplasmic reticulum stress (ERS) has been found to be involved in multiple tumor-related biological processes. At present, a comprehensive analysis of ERS-related genes in LUAD is still lacking. A total of 1034 samples from TCGA and GEO were used to screen differentially expressed genes. Further, Random Forest algorithm was utilized to screen characteristic genes related to prognosis. Then, LASSO Cox regression was used to construct a prognostic signature. Taking the median of signature score as the threshold, patients were separated into high-risk (HR) group and low-risk (LR) group. Tumor mutation burden (TMB), immune cell infiltration, cancer stem cell infiltration, expression of HLA, and immune checkpoints of the two risk groups were analyzed. TIDE score was used to evaluate the response of the two risk groups to immunotherapy. Finally, the gene expression was verified in clinical tissues with RT-qPCR. An eight-gene signature (ADRB2, AGER, CDKN3, GJB2, SFTPC, SLC2A1, SLC6A4, and SSR4) was constructed. TMB and cancer stem cell infiltration were higher in the HR group than the LR group. TIDE score and expression level of HLA were higher in the LR group than the HR group. Expression level of immune checkpoints, including CD28, CD27, IDO2, and others, were higher in the LR group. Multiple drugs approved by FAD, targeting ERS-related genes, were available for the treatment of LUAD. In summary, we established a stable prognostic model based on ERS-related genes to help the classification of LUAD patients and looked for new treatment strategies from aspects of immunity, tumor mutation, and tumor stem cell infiltration.
Collapse
|
43
|
Metabolic Vulnerabilities in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14081905. [PMID: 35454812 PMCID: PMC9029117 DOI: 10.3390/cancers14081905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) remains an incurable malignancy with eventual emergence of refractory disease. Metabolic shifts, which ensure the availability of sufficient energy to support hyperproliferation of malignant cells, are a hallmark of cancer. Deregulated metabolic pathways have implications for the tumor microenvironment, immune cell function, prognostic significance in MM and anti-myeloma drug resistance. Herein, we summarize recent findings on metabolic abnormalities in MM and clinical implications driven by metabolism that may consequently inspire novel therapeutic interventions. We highlight some future perspectives on metabolism in MM and propose potential targets that might revolutionize the field.
Collapse
|
44
|
Gao H, He C, Hua R, Guo Y, Wang B, Liang C, Gao L, Shang H, Xu JD. Endoplasmic Reticulum Stress of Gut Enterocyte and Intestinal Diseases. Front Mol Biosci 2022; 9:817392. [PMID: 35402506 PMCID: PMC8988245 DOI: 10.3389/fmolb.2022.817392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum, a vast reticular membranous network from the nuclear envelope to the plasma membrane responsible for the synthesis, maturation, and trafficking of a wide range of proteins, is considerably sensitive to changes in its luminal homeostasis. The loss of ER luminal homeostasis leads to abnormalities referred to as endoplasmic reticulum (ER) stress. Thus, the cell activates an adaptive response known as the unfolded protein response (UPR), a mechanism to stabilize ER homeostasis under severe environmental conditions. ER stress has recently been postulated as a disease research breakthrough due to its significant role in multiple vital cellular functions. This has caused numerous reports that ER stress-induced cell dysfunction has been implicated as an essential contributor to the occurrence and development of many diseases, resulting in them targeting the relief of ER stress. This review aims to outline the multiple molecular mechanisms of ER stress that can elucidate ER as an expansive, membrane-enclosed organelle playing a crucial role in numerous cellular functions with evident changes of several cells encountering ER stress. Alongside, we mainly focused on the therapeutic potential of ER stress inhibition in gastrointestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer. To conclude, we reviewed advanced research and highlighted future treatment strategies of ER stress-associated conditions.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuexin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
45
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
46
|
NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma. Cell Death Dis 2022; 13:197. [PMID: 35236820 PMCID: PMC8891287 DOI: 10.1038/s41419-022-04629-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) remains an incurable plasma cell cancer characterized by abnormal secretion of monoclonal immunoglobulins. The molecular mechanism that regulates the drug sensitivity of MM cells is being intensively studied. Here, we report an unexpected finding that the protein encoded by neural precursor cell-expressed developmentally downregulated gene 4L (NEDD4L), which is a HECT E3 ligase, binds the 19S proteasome, limiting its proteolytic function and enhancing autophagy. Suppression of NEDD4L expression reduced bortezomib (Bor) sensitivity in vitro and in vivo, mainly through autophagy inhibition mediated by low NEDD4L expression, which was rescued by an autophagy activator. Clinically, elevated expression of NEDD4L is associated with a considerably increased probability of responding to Bor, a prolonged response duration, and improved overall prognosis, supporting both the use of NEDD4L as a biomarker to identify patients most likely to benefit from Bor and the regulation of NEDD4L as a new approach in myeloma therapy.
Collapse
|
47
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Modulation of Cellular Redox Parameters for Improving Therapeutic Responses in Multiple Myeloma. Antioxidants (Basel) 2022; 11:antiox11030455. [PMID: 35326105 PMCID: PMC8944660 DOI: 10.3390/antiox11030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Raised oxidative stress and abnormal redox status are typical features of multiple myeloma cells, and the identification of the intimate mechanisms that regulate the relationships between neoplastic cells and redox homeostasis may reveal possible new anti-myeloma therapeutic targets to increase the effectiveness of anti-myeloma drugs synergistically or to eradicate drug-resistant clones while reducing toxicity toward normal cells. An alteration of the oxidative state is not only responsible for the onset of multiple myeloma and its progression, but it also appears essential for the therapeutic response and for developing any chemoresistance. Our review aimed to evaluate the literature’s current data on the effects of oxidative stress on the response to drugs generally employed in the therapy of multiple myeloma, such as proteasome inhibitors, immunomodulators, and autologous transplantation. In the second part of the review, we analyzed the possibility of using other substances, often of natural origin, to modulate the oxidative stress to interfere with the progression of myelomatous disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
48
|
Wang Q, Lin Z, Wang Z, Ye L, Xian M, Xiao L, Su P, Bi E, Huang YH, Qian J, Liu L, Ma X, Yang M, Xiong W, Zu Y, Pingali SR, Xu B, Yi Q. RARγ activation sensitizes human myeloma cells to carfilzomib treatment through the OAS-RNase L innate immune pathway. Blood 2022; 139:59-72. [PMID: 34411225 DOI: 10.1182/blood.2020009856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-β response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.
Collapse
Affiliation(s)
- Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Zhijuan Lin
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhuo Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Enguang Bi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Yung-Hsing Huang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Lintao Liu
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Xingzhe Ma
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Maojie Yang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, Texas; and
| | - Sai Ravi Pingali
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
49
|
Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, Silva GN. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Front Oncol 2021; 11:740796. [PMID: 34858819 PMCID: PMC8631731 DOI: 10.3389/fonc.2021.740796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.
Collapse
Affiliation(s)
| | | | - Dharshika Rajalingam
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Gayathri N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
50
|
MicroRNA-214 in Health and Disease. Cells 2021; 10:cells10123274. [PMID: 34943783 PMCID: PMC8699121 DOI: 10.3390/cells10123274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.
Collapse
|