1
|
Dammen-Brower K, Arbogast O, Zhu S, Qiu C, Zhang C, Khare P, Le A, Jia X, Yarema KJ. Examining structure-activity relationships of ManNAc analogs used in the metabolic glycoengineering of human neural stem cells. BIOMATERIALS ADVANCES 2025; 169:214144. [PMID: 39754871 PMCID: PMC11884250 DOI: 10.1016/j.bioadv.2024.214144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025]
Abstract
This study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers. By comparison, But elicited minimal change to these endpoints, indicating dependence on the chemical properties of the thiol group of non-natural sialic acids and not the size of this sugar's N-acyl group. Conversely, But elicited distinct intracellular responses including increased nestin expression (~6-fold) and the modulation of several metabolites identified through cell-wide screening. Metabolites up-regulated by But included dopamine and norfenenfrine, suggesting that this analog may be a drug candidate for treating neural damage associated with conditions such as Parkinson's disease. The metabolomics data also provided new insights into the neuroprotective effects of TProp when used to treat brain injury by upregulation of anti-inflammatory metabolites (e.g., α- & γ-linolenic acids) valuable for dampening injury- and treatment-related inflammation. Finally, these analogs modulate compounds that control proline (e.g., 1-pyrroline-2-carboxylate), a master regulator of many cellular activities. Overall, this study presents new mechanisms and pathways to exploit metabolic glycoengineering for neural repair and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Olivia Arbogast
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stanley Zhu
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chunfang Qiu
- Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Cissy Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Pratik Khare
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Anne Le
- Gigantest Inc, 31 Light Street, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, School of Medicine, University of Maryland, Baltimore, MD, USA; Department of Orthopedics, School of Medicine, University of Maryland, Baltimore, MD, USA; Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Kevin J Yarema
- Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA; Translational Tissue Engineering Center, Whiting School of Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tiwari SK, Chandrasekharan A, Lupitha SS, Mathew KA, Jancy SV, Halikar AM, Sanjeev VS, Sivakumar KC, Prasad T, Anurup KG, Rather AA, Tiffee P J J, Jayaprasad AG, Sivasailam A, Santhoshkumar TR. Hypoxia induced mitophagy generates reversible metabolic and redox heterogeneity with transient cell death switch driving tumorigenesis. Free Radic Biol Med 2025; 230:190-208. [PMID: 39947492 DOI: 10.1016/j.freeradbiomed.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Tumor hypoxia determines tumor growth, metastasis, drug resistance, and tumor heterogeneity through multiple mechanisms, largely dependent on the extent of hypoxia, further modulated by re-oxygenation events. In order to track the cell fates under hypoxia and re-oxygenation, we have developed a sensor cell for real-time tracking of apoptotic, necrotic, and surviving mitophagy cells under hypoxia and re-oxygenation. The study using this sensor revealed a cell death switch from apoptosis to necrosis by hypoxia-exposed cells under re-oxygenation, where mitophagy plays a key role in acquiring temporally evolving functional phenotypes, including metabolic heterogeneity and mitochondrial redox heterogeneity. RNA transcriptomics also revealed a temporally evolving genomic landscape supporting the complex transcriptional plasticity of cells as a non-genetic adaptive event. Interestingly, cells regained from these distinct stages retained their metastatic potential despite slow growth in animal models. Overall, the study demonstrated that cells acquire distinct functions by tumor hypoxia and re-oxygenation, secondarily acquiring transient functional traits and metabolic heterogeneity governed by cell inherent mitochondrial dynamics. Such cell autonomous temporal alterations in cell states governed by organelle integrity with distinct cell proliferation and apoptosis-necrosis switch may be advantageous for the growing tumor to evolve under complex microenvironmental stress, further contributing to tumorigenesis.
Collapse
Affiliation(s)
- Shivanshu Kumar Tiwari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Aneesh Chandrasekharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Santhik Subhasingh Lupitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Krupa Ann Mathew
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Shine Varghese Jancy
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aman Munirpasha Halikar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vishnu S Sanjeev
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - K C Sivakumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Tilak Prasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - K G Anurup
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aijaz Ahmad Rather
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Jain Tiffee P J
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Aparna Geetha Jayaprasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India
| | - Aswathy Sivasailam
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India; Research Centre, University of Kerala, Thiruvananthapuram, Kerala, 695534, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud P.O., Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
3
|
Menegakis A, Vennin C, Ient J, Groot AJ, Krenning L, Klompmaker R, Friskes A, Ilic M, Yaromina A, Harkes R, van den Broek B, Jakob Sonke J, De Jong M, Piepers J, van Rheenen J, Vooijs MA, Medema RH. A novel lineage-tracing tool reveals that hypoxic tumor cells drive tumor relapse after radiotherapy. Radiother Oncol 2025; 202:110592. [PMID: 39427933 PMCID: PMC11718160 DOI: 10.1016/j.radonc.2024.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Tumor hypoxia imposes a main obstacle to the efficacy of anti-cancer therapy. Understanding the cellular dynamics of individual hypoxic cells before, during and post-treatment has been hampered by the technical inability to identify and trace these cells over time. METHODS AND MATERIALS Here, we present a novel lineage-tracing reporter for hypoxic cells based on the conditional expression of a HIF1a-CreERT2-UnaG biosensor that can visualize hypoxic cells in a time-dependent manner and trace the fate of hypoxic cells over time. We combine this system with multiphoton microscopy, flow cytometry, and immunofluorescence to characterize the role of hypoxic cells in tumor relapse after irradiation in H1299 tumor spheroids and in vivo xenografts. RESULTS We validate the reporter in monolayer cultures and we show that tagged cells colocalize in spheroids and human tumor xenografts with the hypoxic marker pimonidazole. We found that irradiation of H1299-HIFcreUnaG spheroids leads to preferential outgrowth of cells from the hypoxic core. Similarly, in xenografts tumors, although initially UnaG-positive-cells coincide with pimonidazole-positive tumor areas and they are merely quiescent, upon irradiation UnaG-positive cells enrich in regrowing tumors and are mainly proliferative. CONCLUSIONS Collectively, our data provide clear evidence that the hypoxic cells drive tumor relapse after irradiation.
Collapse
Affiliation(s)
- Apostolos Menegakis
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland; Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands; Oncode Institute, Division of Tumor Biology and Tumor Immunology, the Netherlands.
| | - Claire Vennin
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jonathan Ient
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Arjan J Groot
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Lenno Krenning
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Rob Klompmaker
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Anoek Friskes
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Mila Ilic
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Rolf Harkes
- Bioimaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Bram van den Broek
- Bioimaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jan Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Monique De Jong
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jolanda Piepers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands.
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland; Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands(2).
| |
Collapse
|
4
|
Han TH, Lee J, Harmalkar DS, Kang H, Jin G, Park MK, Kim M, Yang HA, Kim J, Kwon SJ, Han TS, Choi Y, Won M, Ban HS, Lee K. Stilbenoid derivatives as potent inhibitors of HIF-1α-centric cancer metabolism under hypoxia. Biomed Pharmacother 2024; 176:116838. [PMID: 38820970 DOI: 10.1016/j.biopha.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor associated with cancer metabolism and is regarded as a potent anticancer therapeutic strategy within the hypoxic microenvironment of cancer. In this study, stilbenoid derivatives were designed, synthesized, and assessed for their capacity to inhibit HIF-1α-associated cancer metabolism and evaluated for inhibition of cancer cell viability and HIF activation. Through the structure-activity relationship studies, compound 28e was identified as the most potent derivative. Specifically, under the hypoxic condition, 28e reduced the accumulation of HIF-1α protein and the expression of its target genes related to glucose metabolism without affecting the expression of HIF-1α mRNA. Furthermore, 28e inhibited glucose uptake, glycolytic metabolism, and mitochondrial respiration, decreasing cellular ATP production under hypoxic conditions. In addition, 28e displayed significant anti-tumor effects and effectively suppressed the accumulation of HIF-1α protein in tumor tissue in vivo xenograft model. These findings suggest that our stilbenoid derivatives exert their anticancer effects by targeting HIF-1α-centered cancer metabolism under hypoxic conditions.
Collapse
Affiliation(s)
- Tae-Hee Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Joohan Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Dipesh S Harmalkar
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Chemistry, Government College of Arts, Science and Commerce, Sanquelim, Goa 403505, India
| | - Hyeseul Kang
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Guanghai Jin
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Min Kyung Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Minkyoung Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Hyun-A Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jinsu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Su Jeong Kwon
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
5
|
Tan J, Virtue S, Norris DM, Conway OJ, Yang M, Bidault G, Gribben C, Lugtu F, Kamzolas I, Krycer JR, Mills RJ, Liang L, Pereira C, Dale M, Shun-Shion AS, Baird HJ, Horscroft JA, Sowton AP, Ma M, Carobbio S, Petsalaki E, Murray AJ, Gershlick DC, Nathan JA, Hudson JE, Vallier L, Fisher-Wellman KH, Frezza C, Vidal-Puig A, Fazakerley DJ. Limited oxygen in standard cell culture alters metabolism and function of differentiated cells. EMBO J 2024; 43:2127-2165. [PMID: 38580776 PMCID: PMC11148168 DOI: 10.1038/s44318-024-00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024] Open
Abstract
The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.
Collapse
Affiliation(s)
- Joycelyn Tan
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sam Virtue
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Olivia J Conway
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, 50931, Germany
| | - Guillaume Bidault
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Fatima Lugtu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Ioannis Kamzolas
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - James R Krycer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Lu Liang
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Martin Dale
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Harry Jm Baird
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James A Horscroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Marcella Ma
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stefania Carobbio
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, 50931, Germany
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain.
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
6
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Weinstein AG, Gilkes DM, Godet I. Mapping the Fate of Hypoxic Cells Using an Irreversible Fluorescent Switch. Methods Mol Biol 2024; 2755:49-61. [PMID: 38319568 DOI: 10.1007/978-1-0716-3633-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hypoxia has been reported to promote tumor progression and metastasis in murine models, and patients with hypoxic tumors have a worse prognosis. Besides its effect on cancer, normal processes like embryogenesis, or other pathologies such as ischemia, depend on hypoxia-regulated mechanisms. Given the degradable nature of HIF-1/2α in the presence of oxygen, defining the role of hypoxia in modeling biological processes becomes challenging when a cell enters oxygen-rich regions within a tissue. Here, we describe a unique approach to permanently mark cells that experience hypoxia with a fluorescent protein switch that is maintained even after a cell is reoxygenated. This method consists of a dual-viral delivery system that can be transduced into any mammalian cell line.
Collapse
Affiliation(s)
- Alyssa G Weinstein
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biochemistry and Molecular Biology Program, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Inês Godet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Zhao X, Cheng H, Wang Q, Nie W, Yang Y, Yang X, Zhang K, Shi J, Liu J. Regulating Photosensitizer Metabolism with DNAzyme-Loaded Nanoparticles for Amplified Mitochondria-Targeting Photodynamic Immunotherapy. ACS NANO 2023; 17:13746-13759. [PMID: 37438324 DOI: 10.1021/acsnano.3c03308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondria-specific photosensitizer accumulation is highly recommended for photodynamic therapy and mitochondrial DNA (mtDNA) oxidative damage-based innate immunotherapy but remains challenging. 5-Aminolevulinic acid (ALA), precursor of photosensitizer protoporphyrin IX (PpIX), can induce the exclusive biosynthesis of PpIX in mitochondria. Nevertheless, its photodynamic effect is limited by the intracellular biotransformation of ALA in tumors. Here, we report a photosensitizer metabolism-regulating strategy using ALA/DNAzyme-co-loaded nanoparticles (ALA&Dz@ZIF-PEG) for mitochondria-targeting photodynamic immunotherapy. The zeolitic imidazolate framework (ZIF-8) nanoparticles can be disassembled and release large amounts of zinc ions (Zn2+) within tumor cells. Notably, Zn2+ can relieve tumor hypoxia for promoting the conversion of ALA to PpIX. Moreover, Zn2+ acts as a cofactor of rationally designed DNAzyme for silencing excessive ferrochelatase (FECH; which catalyzes PpIX into photoinactive Heme), cooperatively promoting the exclusive accumulation of PpIX in mitochondria via the "open source and reduced expenditure" manner. Subsequently, the photodynamic effects derived from PpIX lead to the damage and release of mtDNA and activate the innate immune response. In addition, the released Zn2+ further enhances the mtDNA/cGAS-STING pathway mediated innate immunity. The ALA&Dz@ZIF-PEG system induced 3 times more PpIX accumulation than ALA-loaded liposome, significantly enhancing tumor regression in xenograft tumor models.
Collapse
Affiliation(s)
- Xiu Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Qiongwei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Yue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, People's Republic of China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, People's Republic of China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
9
|
Zhang Y, Zhao P, Chen X, Xu C, Guo J, Qu X, Hu X, Gao H, Huang P, Zhang J. Near Infrared-Activatable Methylene Blue Polypeptide Codelivery of the NO Prodrug via π-π Stacking for Cascade Reactive Oxygen Species Amplification-Mediated Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12750-12765. [PMID: 36852940 DOI: 10.1021/acsami.2c21280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The application of photodynamic therapy (PDT) has attracted remarkable interest in cancer treatment because of the advantages of noninvasiveness and spatiotemporal selectivity. However, the PDT efficiency is considerably limited by photosensitizer (PS) quenching and severe hypoxia in solid tumors. Herein, a kind of near infrared (NIR)-activatable methylene blue (MB) peptide nanocarrier was developed for codelivery of nitric oxide (NO) prodrug JSK, expecting a cascade of reactive oxygen species (ROS) amplification-mediated antitumor PDT. In detail, MB was conjugated to water-soluble polyethylene glycol-polylysine (PEG-PLL) through NIR-photocleavable 10-N-carbamoyl bonds, and the subsequent amphiphilic conjugates (mPEG-PLL-MB) self-assembled into nanoparticles (NPs), which allowed JSK codelivery via π-π stacking interactions. MB in quenched state in mPEG-PLL-MB/JSK NPs could be photoactivated by NIR light locoregionally in a controlled manner due to the photocleavage of carbamoyl bonds. Apart from ROS production, assembly disturbance and even disintegration of mPEG-PLL-MB/JSK occurred along with MB activation that subsequently freed JSK, which was further triggered by intracellularly overexpressed glutathione (GSH) and glutathione S-transferase (GST) to sustain the release of NO. NO then served as a hypoxia relief agent through inhibition of cellular respiration to economize O2, cooperating with MB activation and GSH depletion, which synergistically enabled a cascade of ROS amplification to augment PDT for mitochondrial apoptosis-mediated tumor inhibition in vitro and in vivo. Therefore, this pioneering strategy of cascade amplification of ROS addressed the key issues of PS inactivation, hypoxia resistance, and ROS neutralization in a three-pronged approach, which hold great promise in efficient antitumor PDT.
Collapse
Affiliation(s)
- Yu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Peng Zhao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiaoai Chen
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Chang Xu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Jingzhe Guo
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Xiuli Hu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
10
|
Mohamed BM, Ward MP, Bates M, Spillane CD, Kelly T, Martin C, Gallagher M, Heffernan S, Norris L, Kennedy J, Saadeh FA, Gleeson N, Brooks DA, Brooks RD, Selemidis S, O'Toole S, O'Leary JJ. Ex vivo expansion of circulating tumour cells (CTCs). Sci Rep 2023; 13:3704. [PMID: 36879003 PMCID: PMC9988863 DOI: 10.1038/s41598-023-30733-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating tumour cells (CTCs) are a critical intermediate step in the process of cancer metastasis. The reliability of CTC isolation/purification has limited both the potential to report on metastatic progression and the development of CTCs as targets for therapeutic intervention. Here we report a new methodology, which optimises the culture conditions for CTCs using primary cancer cells as a model system. We exploited the known biology that CTCs thrive in hypoxic conditions, with their survival and proliferation being reliant on the activation of hypoxia-inducible factor 1 alpha (HIF-1α). We isolated epithelial-like and quasi-mesenchymal CTC phenotypes from the blood of a cancer patient and successfully cultured these cells for more than 8 weeks. The presence of CTC clusters was required to establish and maintain long-term cultures. This novel methodology for the long-term culture of CTCs will aid in the development of downstream applications, including CTC theranostics.
Collapse
Affiliation(s)
- Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland. .,Trinity St James's Cancer Institute, Dublin 8, Ireland. .,Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland.
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Mark Bates
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Cathy D Spillane
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Tanya Kelly
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Michael Gallagher
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Sheena Heffernan
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Lucy Norris
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John Kennedy
- HOPE Directorate, St. James's Hospital, Dublin 8, Ireland
| | - Feras Abu Saadeh
- Division of Gynaecological Oncology, St. James's Hospital, Dublin 8, Ireland
| | - Noreen Gleeson
- Division of Gynaecological Oncology, St. James's Hospital, Dublin 8, Ireland
| | - Doug A Brooks
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland.,Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland.,Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity St James's Cancer Institute, Dublin 8, Ireland
| |
Collapse
|
11
|
Kshitiz, Afzal J, Suhail Y, Chang H, Hubbi ME, Hamidzadeh A, Goyal R, Liu Y, Sun P, Nicoli S, Dang CV, Levchenko A. Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells. Cell Syst 2022; 13:1048-1064.e7. [PMID: 36462504 PMCID: PMC10012408 DOI: 10.1016/j.cels.2022.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/10/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Response to hypoxia is a highly regulated process, but little is known about single-cell responses to hypoxic conditions. Using fluorescent reporters of hypoxia response factor-1α (HIF-1α) activity in various cancer cell lines and patient-derived cancer cells, we show that hypoxic responses in individual cancer cells can be highly dynamic and variable. These responses fall into three classes, including oscillatory activity. We identify a molecular mechanism that can account for all three response classes, implicating reactive-oxygen-species-dependent chaperone-mediated autophagy of HIF-1α in a subset of cells. Furthermore, we show that oscillatory response is modulated by the abundance of extracellular lactate in a quorum-sensing-like mechanism. We show that oscillatory HIF-1α activity rescues hypoxia-mediated inhibition of cell division and causes broad suppression of genes downregulated in cancers and activation of genes upregulated in many cancers, suggesting a mechanism for aggressive growth in a subset of hypoxic tumor cells.
Collapse
Affiliation(s)
- Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Junaid Afzal
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Hao Chang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Maimon E Hubbi
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Archer Hamidzadeh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Ruchi Goyal
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Peng Sun
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Stefania Nicoli
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Chi V Dang
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; Ludwig Institute for Cancer Research, New York, NY 10016, USA; The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA.
| |
Collapse
|
12
|
Godet I, Doctorman S, Wu F, Gilkes DM. Detection of Hypoxia in Cancer Models: Significance, Challenges, and Advances. Cells 2022; 11:686. [PMID: 35203334 PMCID: PMC8869817 DOI: 10.3390/cells11040686] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The rapid proliferation of cancer cells combined with deficient vessels cause regions of nutrient and O2 deprivation in solid tumors. Some cancer cells can adapt to these extreme hypoxic conditions and persist to promote cancer progression. Intratumoral hypoxia has been consistently associated with a worse patient prognosis. In vitro, 3D models of spheroids or organoids can recapitulate spontaneous O2 gradients in solid tumors. Likewise, in vivo murine models of cancer reproduce the physiological levels of hypoxia that have been measured in human tumors. Given the potential clinical importance of hypoxia in cancer progression, there is an increasing need to design methods to measure O2 concentrations. O2 levels can be directly measured with needle-type probes, both optical and electrochemical. Alternatively, indirect, noninvasive approaches have been optimized, and include immunolabeling endogenous or exogenous markers. Fluorescent, phosphorescent, and luminescent reporters have also been employed experimentally to provide dynamic measurements of O2 in live cells or tumors. In medical imaging, modalities such as MRI and PET are often the method of choice. This review provides a comparative overview of the main methods utilized to detect hypoxia in cell culture and preclinical models of cancer.
Collapse
Affiliation(s)
- Inês Godet
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; (S.D.); (F.W.)
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Steven Doctorman
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; (S.D.); (F.W.)
| | - Fan Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; (S.D.); (F.W.)
| | - Daniele M. Gilkes
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; (S.D.); (F.W.)
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Zhou R, Zeng X, Zhao H, Chen Q, Wu P. Combating the hypoxia limit of photodynamic therapy through reversing the survival-related pathways of cancer cells. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Luo G, Feng R, Li W, Chen Y, Sun Y, Ma J, Duo Y, Wen T. Dcf1 induces glioblastoma cells apoptosis by blocking autophagy. Cancer Med 2022; 11:207-223. [PMID: 34799992 PMCID: PMC8704163 DOI: 10.1002/cam4.4440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dcf1 has been demonstrated to play vital roles in many CNS diseases, it also has a destructive role on cell mitochondria in glioma cells and promotes the autophagy. Hitherto, it is unclear whether the viability of glioblastoma cells is affected by Dcf1, in particular Dcf1 possesses broad localization on different organelles, and the organelles interaction frequently implicated in cancer cells survival. METHODS Surgically excised WHO grade IV human glioblastoma tissues were collected and cells isolated for culturing. RT-PCR and DNA sequencing assay to estimate the abundance and mutation of Dcf1. iTRAQ sequencing and bioinformatic analysis were performed. Subsequently, immunoprecipitation assay to evaluate the degradation of HistoneH2A isomers by UBA52 ubiquitylation. Transmission electron microscopy (TEM) was applied to observe the structure change of mitochondria and autophagosome. Organelle isolated assay to determine the distribution of protein. Cell cycle and apoptosis were evaluated by flow cytometric assays. RESULTS Dcf1 was downregulated in WHO grade IV tumor without mutation, and overexpression of Dcf1 was found to significantly regulate glioblastoma cells. One hundred and seventy-six differentially expressed proteins were identified by iTRAQ sequencing. Furthermore, we confirmed that overexpression of Dcf1 destabilized the structure of the nucleosome via UBA52 ubiquitination to downregulate HistoneH2A.X but not macroH2A or HistoneH2A.Z, decreased the mitochondrial DNA copy number and inhibited the mitochondrial biogenesis, thus causing mitochondrial destruction and dysfunction in order to supply cellular energy and induce mitophagy preferentially but not apoptosis. Dcf1 also has disrupted the integrity of lysosomes to block autolysosome degradation and autophagy and to increase the release of Cathepsin B and D from lysosomes into cytosol. These proteins cleaved and activated BID to induce glioblastoma cells apoptosis. CONCLUSIONS In this study, we demonstrated that unmutated Dcf1 expression is negatively related to the malignancy of glioblastoma, Dcf1 overexpression causes nucleosomes destabilization, mitochondria destruction and dysfunction to induce mitophagy preferentially, and block autophagy by impairing lysosomes to induce apoptosis in glioblastoma.
Collapse
Affiliation(s)
- Guanghong Luo
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
- Department of Radiation OncologyThe Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhouChina
| | - Ruili Feng
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
| | - Wengang Li
- Department of NeurosurgeryShanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Yanlu Chen
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
| | - Yangyang Sun
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
| | - Junfeng Ma
- Department of NeurosurgeryShanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Tieqiao Wen
- Laboratory of Molecular Neural BiologySchool of Life SciencesShanghai UniversityShanghaiChina
| |
Collapse
|
15
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
16
|
Saydmohammed M, Jha A, Mahajan V, Gavlock D, Shun TY, DeBiasio R, Lefever D, Li X, Reese C, Kershaw EE, Yechoor V, Behari J, Soto-Gutierrez A, Vernetti L, Stern A, Gough A, Miedel MT, Lansing Taylor D. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp Biol Med (Maywood) 2021; 246:2420-2441. [PMID: 33957803 PMCID: PMC8606957 DOI: 10.1177/15353702211009228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a complex disease that involves multiple organ systems including a critical role for the liver. Non-alcoholic fatty liver disease (NAFLD) is a key component of the metabolic syndrome and fatty liver is linked to a range of metabolic dysfunctions that occur in approximately 25% of the population. A panel of experts recently agreed that the acronym, NAFLD, did not properly characterize this heterogeneous disease given the associated metabolic abnormalities such as type 2 diabetes mellitus (T2D), obesity, and hypertension. Therefore, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as the new term to cover the heterogeneity identified in the NAFLD patient population. Although many rodent models of NAFLD/NASH have been developed, they do not recapitulate the full disease spectrum in patients. Therefore, a platform has evolved initially focused on human biomimetic liver microphysiology systems that integrates fluorescent protein biosensors along with other key metrics, the microphysiology systems database, and quantitative systems pharmacology. Quantitative systems pharmacology is being applied to investigate the mechanisms of NAFLD/MAFLD progression to select molecular targets for fluorescent protein biosensors, to integrate computational and experimental methods to predict drugs for repurposing, and to facilitate novel drug development. Fluorescent protein biosensors are critical components of the platform since they enable monitoring of the pathophysiology of disease progression by defining and quantifying the temporal and spatial dynamics of protein functions in the biosensor cells, and serve as minimally invasive biomarkers of the physiological state of the microphysiology system experimental disease models. Here, we summarize the progress in developing human microphysiology system disease models of NAFLD/MAFLD from several laboratories, developing fluorescent protein biosensors to monitor and to measure NAFLD/MAFLD disease progression and implementation of quantitative systems pharmacology with the goal of repurposing drugs and guiding the creation of novel therapeutics.
Collapse
Affiliation(s)
- Manush Saydmohammed
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vineet Mahajan
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Li
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vijay Yechoor
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, PA 15261, USA
- UPMC Liver Clinic, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Larry Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Alvarez R, Mandal D, Chittiboina P. Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors. Cells 2021; 10:cells10112913. [PMID: 34831136 PMCID: PMC8616071 DOI: 10.3390/cells10112913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
PFKFB3 is a bifunctional enzyme that modulates and maintains the intracellular concentrations of fructose-2,6-bisphosphate (F2,6-P2), essentially controlling the rate of glycolysis. PFKFB3 is a known activator of glycolytic rewiring in neoplastic cells, including central nervous system (CNS) neoplastic cells. The pathologic regulation of PFKFB3 is invoked via various microenvironmental stimuli and oncogenic signals. Hypoxia is a primary inducer of PFKFB3 transcription via HIF-1alpha. In addition, translational modifications of PFKFB3 are driven by various intracellular signaling pathways that allow PFKFB3 to respond to varying stimuli. PFKFB3 synthesizes F2,6P2 through the phosphorylation of F6P with a donated PO4 group from ATP and has the highest kinase activity of all PFKFB isoenzymes. The intracellular concentration of F2,6P2 in cancers is maintained primarily by PFKFB3 allowing cancer cells to evade glycolytic suppression. PFKFB3 is a primary enzyme responsible for glycolytic tumor metabolic reprogramming. PFKFB3 protein levels are significantly higher in high-grade glioma than in non-pathologic brain tissue or lower grade gliomas, but without relative upregulation of transcript levels. High PFKFB3 expression is linked to poor survival in brain tumors. Solitary or concomitant PFKFB3 inhibition has additionally shown great potential in restoring chemosensitivity and radiosensitivity in treatment-resistant brain tumors. An improved understanding of canonical and non-canonical functions of PFKFB3 could allow for the development of effective combinatorial targeted therapies for brain tumors.
Collapse
Affiliation(s)
- Reinier Alvarez
- Department of Neurological Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Disorders, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA;
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
- Correspondence:
| |
Collapse
|
18
|
Luna Yolba R, Visentin V, Hervé C, Chiche J, Ricci J, Méneyrol J, Paillasse MR, Alet N. EVT-701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti-tumor activity in models of solid cancers. Pharmacol Res Perspect 2021; 9:e00854. [PMID: 34478236 PMCID: PMC8415080 DOI: 10.1002/prp2.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.
Collapse
Affiliation(s)
| | | | | | - Johanna Chiche
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | - Jean‐Ehrland Ricci
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | | | | | | |
Collapse
|
19
|
Shen YA, Chen CL, Huang YH, Evans EE, Cheng CC, Chuang YJ, Zhang C, Le A. Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Curr Opin Chem Biol 2021; 62:64-81. [PMID: 33721588 PMCID: PMC8570367 DOI: 10.1016/j.cbpa.2021.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Targeting glutamine catabolism has been attracting more research attention on the development of successful cancer therapy. Catalytic enzymes such as glutaminase (GLS) in glutaminolysis, a series of biochemical reactions by which glutamine is converted to glutamate and then alpha-ketoglutarate, an intermediate of the tricarboxylic acid (TCA) cycle, can be targeted by small molecule inhibitors, some of which are undergoing early phase clinical trials and exhibiting promising safety profiles. However, resistance to glutaminolysis targeting treatments has been observed, necessitating the development of treatments to combat this resistance. One option is to use synergy drug combinations, which improve tumor chemotherapy's effectiveness and diminish drug resistance and side effects. This review will focus on studies involving the glutaminolysis pathway and diverse combination therapies with therapeutic implications.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Hsuan Huang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Emily Elizabeth Evans
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Chia Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jie Chuang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering Baltimore, MD 21218, USA.
| |
Collapse
|
20
|
The Intratumoral Heterogeneity of Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:149-160. [PMID: 34014541 DOI: 10.1007/978-3-030-65768-0_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is one of the deadliest diseases in the world, causing over half a million deaths a year in the USA alone. Despite recent advances made in the field of cancer biology and the therapies that have been developed [1, 2], it is clear that more advances are necessary for us to classify cancer as curable. The logical question that arises is simple: Why, despite all the technologies and medical innovations of our time, has a complete cure eluded us? This chapter sheds light on one of cancer's most impactful attributes: its heterogeneity and, more specifically, the intratumoral heterogeneity of cancer metabolism. Simply put, what makes cancer one of the deadliest diseases is its ability to change and adapt. Cancer cells' rapid evolution, coupled with their irrepressible ability to divide, gives most of them the advantage over our immune systems. In this chapter, we delve into the complexities of this adaptability and the vital role that metabolism plays in the rise and progression of this heterogeneity.
Collapse
|
21
|
Antonio MJ, Zhang C, Le A. Different Tumor Microenvironments Lead to Different Metabolic Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:137-147. [PMID: 34014540 DOI: 10.1007/978-3-030-65768-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The beginning of the twenty-first century offered new advances in cancer research, including new knowledge about the tumor microenvironment (TME). Because TMEs provide the niches in which cancer cells, fibroblasts, lymphocytes, and immune cells reside, they play a crucial role in cancer cell development, differentiation, survival, and proliferation. Throughout cancer progression, the TME constantly evolves, causing cancer cells to adapt to the new conditions. The heterogeneity of cancer, evidenced by diverse proliferation rates, cellular structures, metabolisms, and gene expressions, presents challenges for cancer treatment despite the advances in research. This chapter discusses how different TMEs lead to specific metabolic adaptations that drive cancer progression.
Collapse
Affiliation(s)
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
22
|
Bose S, Zhang C, Le A. Glucose Metabolism in Cancer: The Warburg Effect and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:3-15. [PMID: 34014531 PMCID: PMC9639450 DOI: 10.1007/978-3-030-65768-0_1] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate even in the presence of oxygen. The significance of this finding, later termed the Warburg effect, went unnoticed by the broader scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics, which would later open the doors to new cancer therapies [2, 3].
Collapse
Affiliation(s)
- Sminu Bose
- Division of Hematology and Oncology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
23
|
Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab 2020; 32:341-352. [PMID: 32668195 PMCID: PMC7483781 DOI: 10.1016/j.cmet.2020.06.019] [Citation(s) in RCA: 438] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts.
Collapse
|
24
|
Chung CH, Lu KY, Lee WC, Hsu WJ, Lee WF, Dai JZ, Shueng PW, Lin CW, Mi FL. Fucoidan-based, tumor-activated nanoplatform for overcoming hypoxia and enhancing photodynamic therapy and antitumor immunity. Biomaterials 2020; 257:120227. [PMID: 32738653 DOI: 10.1016/j.biomaterials.2020.120227] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Multifunctional nanoplatforms combined with photodynamic therapy (PDT) and anticancer drugs have shown great promising in cancer therapy. However, their efficacy is limited by the low specificity, low oxygen levels, and a tolerant tumor immune microenvironment. Herein, we developed a biocompatible theranostic nanoplatform (FM@VP) based on co-assembly of a nanocomplex formed by a functional polysaccharide fucoidan and a bioreducible polyamidoamine (PAMAM) dendrimer, a photosensitizer verteporfin (VP), and MnO2 nanoparticles (a tumor microenvironment responsive oxygen evolving nanomaterial) into a multifunctional nanoparticle cluster. The dendrimer-fucoidan polyionic nanocomplex (DFPN) specifically targeted P-selectin-overexpressed triple-negative breast cancer (TNBC) and the tumor-associated vasculature, and was sensitive to glutathione (GSH) in tumor. More importantly, this FM@VP nanocomplex simultaneously overcame tumor hypoxia, suppressed oncogenic signaling, and attenuated tumor-mediated immunosuppression, resulting in improving therapeutic efficacy of PDT while enhancing antitumor immunity and anti-metastasis. This discovery provides a powerful strategy for synergetic cancer targeting/photodynamic/immunotherapy and could serve as a safe clinical translational approach.
Collapse
Affiliation(s)
- Chu-Hung Chung
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Ying Lu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Bioengineering, Taipei Medical University, Taipei, Taiwan
| | - Wei-Cheng Lee
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Jing Hsu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Fu Lee
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei, Taiwan
| | - Jia-Zih Dai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Bioengineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
25
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
26
|
Cyclin-Dependent Kinase and Antioxidant Gene Expression in Cancers with Poor Therapeutic Response. Pharmaceuticals (Basel) 2020; 13:ph13020026. [PMID: 32033319 PMCID: PMC7169466 DOI: 10.3390/ph13020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
Pancreatic cancer, hepatocellular carcinoma (HCC), and mesothelioma are treatment-refractory cancers, and patients afflicted with these cancers generally have a very poor prognosis. The genomics of these tumors were analyzed as part of The Cancer Genome Atlas (TCGA) project. However, these analyses are an overview and may miss pathway interactions that could be exploited for therapeutic targeting. In this study, the TCGA Pan-Cancer datasets were queried via cBioPortal for correlations among mRNA expression of key genes in the cell cycle and mitochondrial (mt) antioxidant defense pathways. Here we describe these correlations. The results support further evaluation to develop combination treatment strategies that target these two critical pathways in pancreatic cancer, hepatocellular carcinoma, and mesothelioma.
Collapse
|
27
|
PI3K/AKT/β-Catenin Signaling Regulates Vestigial-Like 1 Which Predicts Poor Prognosis and Enhances Malignant Phenotype in Gastric Cancer. Cancers (Basel) 2019; 11:cancers11121923. [PMID: 31816819 PMCID: PMC6966677 DOI: 10.3390/cancers11121923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/05/2023] Open
Abstract
Although gastric cancer is a common cause of cancer mortality worldwide, its biological heterogeneity limits the available therapeutic options. Therefore, identifying novel therapeutic targets for developing effective targeted therapy of gastric cancer is a pressing need. Here, we investigate molecular function and regulatory mechanisms of Vestigial-like 1 (VGLL1) in gastric cancer. Microarray analysis of 556 gastric cancer tissues revealed that VGLL1 was a prognostic biomarker that correlated with PI3KCA and PI3KCB. VGLL1 regulates the proliferation of gastric cancer cells, as shown in live cell imaging, sphere formation, and in vivo xenograft model. Tail vein injection of NUGC3 cells expressing shVGLL1 resulted in less lung metastasis occurring when compared to the control. In contrast, larger metastatic lesions in lung and liver were detected in the VGLL1-overexpressing NUGC3 cell xenograft excision mouse model. Importantly, VGLL1 expression is transcriptionally regulated by the PI3K-AKT-β-catenin pathway. Subsequently, MMP9, a key molecule in gastric cancer, was explored as one of target genes that were transcribed by VGLL1-TEAD4 complex, a component of the transcription factor. Taken together, PI3K/AKT/β-catenin signaling regulates the transcription of VGLL1, which promotes the proliferation and metastasis in gastric cancer. This finding suggests VGLL1 as a novel prognostic biomarker and a potential therapeutic target.
Collapse
|
28
|
The Metabolic Interplay between Cancer and Other Diseases. Trends Cancer 2019; 5:809-821. [PMID: 31813458 DOI: 10.1016/j.trecan.2019.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Over the past decade, knowledge of cancer metabolism has expanded exponentially and has provided several clinically relevant targets for cancer therapy. Although these current approaches have shown promise, there are very few studies showing how seemingly unrelated metabolic processes in other diseases can readily occur in cancer. Moreover, the striking metabolic overlap between cancer and other diseases such as diabetes, cardiovascular, neurological, obesity, and aging has provided key therapeutic strategies that have even begun to be translated into clinical trials. These promising results necessitate consideration of the interconnected metabolic network while studying the metabolism of cancer. This review article discusses how cancer metabolism is intertwined with systemic metabolism and how knowledge from other diseases can help to broaden therapeutic opportunities for cancer.
Collapse
|
29
|
Godet I, Shin YJ, Ju JA, Ye IC, Wang G, Gilkes DM. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun 2019; 10:4862. [PMID: 31649238 PMCID: PMC6813355 DOI: 10.1038/s41467-019-12412-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
Hypoxia is known to be detrimental in cancer and contributes to its development. In this work, we present an approach to fate-map hypoxic cells in vivo in order to determine their cellular response to physiological O2 gradients as well as to quantify their contribution to metastatic spread. We demonstrate the ability of the system to fate-map hypoxic cells in 2D, and in 3D spheroids and organoids. We identify distinct gene expression patterns in cells that experienced intratumoral hypoxia in vivo compared to cells exposed to hypoxia in vitro. The intratumoral hypoxia gene-signature is a better prognostic indicator for distant metastasis-free survival. Post-hypoxic tumor cells have an ROS-resistant phenotype that provides a survival advantage in the bloodstream and promotes their ability to establish overt metastasis. Post-hypoxic cells retain an increase in the expression of a subset of hypoxia-inducible genes at the metastatic site, suggesting the possibility of a 'hypoxic memory.'
Collapse
Affiliation(s)
- Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yu Jung Shin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Julia A Ju
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - I Chae Ye
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Guannan Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
30
|
Baby V, Labroussaa F, Lartigue C, Rodrigue S. [Synthetic chromosomes: rewriting the code of life]. Med Sci (Paris) 2019; 35:753-760. [PMID: 31625897 DOI: 10.1051/medsci/2019153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The past decade has seen vast improvements in DNA synthesis and assembly methods. The creation of synthetic DNA molecules is becoming easier and more affordable, such that entire chromosomes can now be synthesized. These advances mark the beginning of synthetic genomics, a new discipline interested in the construction of complete genomes tailored for the study and application of biological systems. From viral genome synthesis to the reconstruction of the yeast 16 chromosomes, we discuss the main discoveries, the regulations and ethical considerations along with the potential of this emerging discipline for the future.
Collapse
Affiliation(s)
- Vincent Baby
- INRA, UMR 1332 de biologie du fruit et pathologie, 71 avenue E. Bourlaux, 33140 Villenave d'Ornon, France - Univ. Bordeaux, UMR 1332 de biologie du fruit et pathologie, 71 avenue E. Bourlaux 33140 Villenave d'Ornon, France
| | - Fabien Labroussaa
- Institute of veterinary bacteriology of Bern, Vetsuisse Faculty, University of Bern, 3001 Berne, Suisse
| | - Carole Lartigue
- INRA, UMR 1332 de biologie du fruit et pathologie, 71 avenue E. Bourlaux, 33140 Villenave d'Ornon, France - Univ. Bordeaux, UMR 1332 de biologie du fruit et pathologie, 71 avenue E. Bourlaux 33140 Villenave d'Ornon, France
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada
| |
Collapse
|
31
|
Hoang G, Udupa S, Le A. Application of metabolomics technologies toward cancer prognosis and therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:191-223. [PMID: 31451214 DOI: 10.1016/bs.ircmb.2019.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Altered metabolism is one of the defining features of cancer. Since the discovery of the Warburg effect in 1924, research into the metabolic aspects of cancer has been reinvigorated over the past decade. Metabolomics is an invaluable tool for gaining insights into numerous biochemical processes including those related to cancer metabolism and metabolic aspects of other diseases. The combination of untargeted and targeted metabolomics approaches has greatly facilitated the discovery of many cancer biomarkers with prognostic potential. Using mass spectrometry-based stable isotope-resolved metabolomics (SIRM) with isotopic labeling, a powerful tool used in pathway analysis, researchers have discovered novel cancer metabolic pathways and metabolic targets for therapeutic application. Metabolomics technologies provide invaluable metabolic insights reflecting cancer progression in coordination with genomics and proteomics aspects. The systematic study of metabolite levels in the metabolome and their dynamics within a biological organism has been, in recent years, applied across a wide range of fields. Metabolomics technologies have been applied to both early clinical trials and pre-clinical research in several essential aspects of human health. This chapter will give an overview of metabolomics technologies and their application in the discovery of novel pathways using isotopic labeled and non-labeled metabolomics.
Collapse
Affiliation(s)
- Giang Hoang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, United States
| | - Sunag Udupa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
32
|
Reactive oxygen species and cancer: A complex interaction. Cancer Lett 2019; 452:132-143. [PMID: 30905813 DOI: 10.1016/j.canlet.2019.03.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Elevated levels of Reactive Oxygen Species (ROS), increased antioxidant ability and the maintenance of redox homeostasis can cumulatively contribute to tumor progression and metastasis. The sources and the role of ROS in a heterogeneous tumor microenvironment can vary at different stages of tumor: initiation, development, and progression, thus making it a complex subject. In this review, we have summarized the sources of ROS generation in cancer cells, its role in the tumor microenvironment, the possible functions of ROS and its important scavenger systems in tumor progression with special emphasis on solid tumors.
Collapse
|
33
|
Yu W, Liu T, Zhang M, Wang Z, Ye J, Li CX, Liu W, Li R, Feng J, Zhang XZ. O 2 Economizer for Inhibiting Cell Respiration To Combat the Hypoxia Obstacle in Tumor Treatments. ACS NANO 2019; 13:1784-1794. [PMID: 30698953 DOI: 10.1021/acsnano.8b07852] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypoxia, a ubiquitously aberrant phenomenon implicated in tumor growth, causes severe tumor resistance to therapeutic interventions. Instead of the currently prevalent solution through intratumoral oxygen supply, we put forward an "O2-economizer" concept by inhibiting the O2 consumption of cell respiration to spare endogenous O2 and overcome the hypoxia barrier. A nitric oxide (NO) donor responsible for respiration inhibition and a photosensitizer for photodynamic therapy (PDT) are co-loaded into poly(d,l-lactide- co-glycolide) nanovesicles to provide a PDT-specific O2 economizer. Once accumulating in tumors and subsequently responding to the locally reductive environment, the carried NO donor undergoes breakdown to produce NO for inhibiting cellular respiration, allowing more O2 in tumor cells to support the profound enhancement of PDT. Depending on the biochemical reallocation of cellular oxygen resource, this O2-economizer concept offers a way to address the important issue of hypoxia-induced tumor resistance to therapeutic interventions, including but not limited to PDT.
Collapse
Affiliation(s)
- Wuyang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Zixu Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Jingjie Ye
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Wenlong Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Runqing Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| |
Collapse
|
34
|
Diedrich JD, Herroon MK, Rajagurubandara E, Podgorski I. The Lipid Side of Bone Marrow Adipocytes: How Tumor Cells Adapt and Survive in Bone. Curr Osteoporos Rep 2018; 16:443-457. [PMID: 29869753 PMCID: PMC6853185 DOI: 10.1007/s11914-018-0453-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Bone marrow adipocytes have emerged in recent years as key contributors to metastatic progression in bone. In this review, we focus specifically on their role as the suppliers of lipids and discuss pro-survival pathways that are closely linked to lipid metabolism, affected by the adipocyte-tumor cell interactions, and likely impacting the ability of the tumor cell to thrive in bone marrow space and evade therapy. RECENT FINDINGS The combined in silico, pre-clinical, and clinical evidence shows that in adipocyte-rich tissues such as bone marrow, tumor cells rely on exogenous lipids for regulation of cellular energetics and adaptation to harsh metabolic conditions of the metastatic niche. Adipocyte-supplied lipids have a potential to alter the cell's metabolic decisions by regulating glycolysis and respiration, fatty acid oxidation, lipid desaturation, and PPAR signaling. The downstream effects of lipid signaling on mitochondrial homeostasis ultimately control life vs. death decisions, providing a mechanism for gaining survival advantage and reduced sensitivity to treatment. There is a need for future research directed towards identifying the key metabolic and signaling pathways that regulate tumor dependence on exogenous lipids and consequently drive the pro-survival behavior in the bone marrow niche.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
35
|
Kim H, Lin Q, Yun Z. The hypoxic tumor microenvironment in vivo selects tumor cells with increased survival against genotoxic stresses. Cancer Lett 2018; 431:142-149. [PMID: 29859297 DOI: 10.1016/j.canlet.2018.05.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
Abstract
Tumor sensitivity to radiation therapy has been known to be dependent on O2 concentrations. However, radiosensitivity of naturally occurring hypoxic tumor cells remains to be well fully investigated in direct comparison to that of their adjacent non-hypoxic tumor cells within the same tumor. We developed a hypoxia-sensing xenograft model using the hypoxia-response element (HRE)-driven enhanced green fluorescence protein (EGFP) as a hypoxia reporter to identify hypoxic tumor cells in situ. Here, we have found that naturally hypoxic tumor cells are moderately radioresistant compared to their neighboring non-hypoxic tumor cells in the same tumor. These naturally hypoxic tumor cells are proficient at repairing DNA damages and resist apoptosis induced by genotoxic stresses, which involves activation of the ATM/CHK1/CHK2 DNA damage-sensing pathway. Inhibition of the checkpoint kinases sensitizes the ex vivo hypoxic tumor cells to ionizing irradiation. Second, the new functional phenotypes acquired by the hypoxic tumor cells in vivo are stable even after they are maintained under non-hypoxic conditions. These new results strongly suggest that the hypoxic tumor microenvironment is capable of selecting stable tumor cell populations with increased resistance to genotoxic stresses and enhanced survival.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Qun Lin
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Zhong Yun
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
36
|
Kim H, Lin Q, Glazer PM, Yun Z. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res 2018; 20:16. [PMID: 29510720 PMCID: PMC5840770 DOI: 10.1186/s13058-018-0944-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/19/2018] [Indexed: 12/23/2022] Open
Abstract
Background Tumor hypoxia is an independent prognostic factor associated with poor patient survival. Emerging evidence suggests that hypoxia can potentially maintain or enhance the stem cell phenotype of both normal stem cells and cancer cells. However, it remains to be determined whether cell fate is regulated in vivo by the hypoxic tumor microenvironment (TME). Methods We established a hypoxia-sensing xenograft model to identify hypoxic tumor cell in vivo primarily using human breast cancer cell lines MDA-MB-231 and MCF7. Hypoxic tumor cells were identified in situ by fluorescence of green fluorescence protein. They were further isolated from xenografts, purified and sorted by flow cytometry for detailed analysis of their stem cell characteristics. Results We have found that hypoxic tumor cells freshly isolated from xenografts contain increased subpopulations of tumor cells with cancer stem cell (CSC)-like characteristics. The CSC characteristics of the hypoxic tumor cells are further enhanced upon re-implantation in vivo, whereas secondary xenografts derived from the non-hypoxic tumor cells remain similar to the primary xenografts. Interestingly, the phenotypes exhibited by the hypoxic tumor cells are stable and remain distinctively different from those of the non-hypoxic tumor cells isolated from the same tumor mass even when they are maintained under the same ambient culture conditions. Mechanistically, the PI3K/AKT pathway is strongly potentiated in the hypoxic tumor cells and is required to maintain the CSC-like phenotype. Importantly, the differential cell fates between hypoxic and non-hypoxic tumor cells are only found in tumor cells isolated from the hypoxic TME in vivo and are not seen in tumor cells treated by hypoxia in vitro alone. Conclusions These previously unknown observations suggest that the hypoxic TME may promote malignant progression and therapy resistance by coordinating induction, selection and/or preferential maintenance of the CSC-like phenotype in tumor cells. Electronic supplementary material The online version of this article (10.1186/s13058-018-0944-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Qun Lin
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA
| | - Zhong Yun
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT, 06520-8040, USA.
| |
Collapse
|
37
|
Stiers PJ, van Gastel N, Moermans K, Stockmans I, Carmeliet G. An Ectopic Imaging Window for Intravital Imaging of Engineered Bone Tissue. JBMR Plus 2018; 2:92-102. [PMID: 30283894 PMCID: PMC6124161 DOI: 10.1002/jbm4.10028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/16/2023] Open
Abstract
Tissue engineering is a promising branch of regenerative medicine, but its clinical application remains limited because thorough knowledge of the in vivo repair processes in these engineered implants is limited. Common techniques to study the different phases of bone repair in mice are destructive and thus not optimal to gain insight into the dynamics of this process. Instead, multiphoton‐intravital microscopy (MP‐IVM) allows visualization of (sub)cellular processes at high resolution and frequency over extended periods of time when combined with an imaging window that permits optical access to implants in vivo. In this study, we have developed and validated an ectopic imaging window that can be placed over a tissue‐engineered construct implanted in mice. This approach did not interfere with the biological processes of bone regeneration taking place in these implants, as evidenced by histological and micro–computed tomography (μCT)‐based comparison to control ectopic implants. The ectopic imaging window permitted tracking of individual cells over several days in vivo. Furthermore, the use of fluorescent reporters allowed visualization of the onset of angiogenesis and osteogenesis in these constructs. Taken together, this novel imaging window will facilitate further analysis of the spatiotemporal regulation of cellular processes in bone tissue–engineered implants and provides a powerful tool to enhance the therapeutic potential of bone tissue engineering. © 2017 The Authors JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pieter-Jan Stiers
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium.,Prometheus Division of Skeletal Tissue Engineering KU Leuven Leuven Belgium
| | - Nick van Gastel
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium.,Prometheus Division of Skeletal Tissue Engineering KU Leuven Leuven Belgium
| | - Karen Moermans
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium
| | - Ingrid Stockmans
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology Department of Chronic Diseases, Metabolism and Ageing KU Leuven Leuven Belgium.,Prometheus Division of Skeletal Tissue Engineering KU Leuven Leuven Belgium
| |
Collapse
|
38
|
The Intratumoral Heterogeneity of Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1063:131-145. [DOI: 10.1007/978-3-319-77736-8_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
39
|
Lukong KE. Understanding breast cancer - The long and winding road. BBA CLINICAL 2017; 7:64-77. [PMID: 28194329 PMCID: PMC5300293 DOI: 10.1016/j.bbacli.2017.01.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/28/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022]
Abstract
Background Despite a remarkable increase in the depth of our understanding and management of breast cancer in the past 50 years, the disease is still a major public health problem worldwide and poses significant challenges. The palpability of breast tumors has facilitated diagnosis and documentation since ancient times. The earliest descriptions of breast cancer date back to around 3500 BCE. For centuries to follow, theories by Hippocrates (460 BCE) and Galen (200 CE), attributing the cause of breast cancer to an “excess of black bile” and treatment options including the use of opium and castor oil, prevailed. Surgical resection was introduced in the 18th century. The advent of modern medicine led to the development of novel treatment options that include hormonal, targeted and chemo-therapies. There are still several therapeutic challenges including the treatment of triple negative breast cancer (TNBC), and overcoming drug resistance. Scope of review The increased incidence and awareness of breast cancer has led to significant changes in diagnosis and treatment in recent decades. But, mankind has come a long way. Herein, I have traced how our understanding of breast cancer has evolved from the early description of the disease around 460 BCE as “black bile-containing crab-like tumors” to the conventional as a heterogeneous disease with high degree of diversity between and within tumors, as well as among breast cancer patients. How is breast cancer treated today and how do risk factors, breast cancer subtype and drug resistance contribute to the therapeutic challenges at the turn of the 21st century? Major conclusions Breast cancer remains a serious public health issue worldwide. However, appreciable growth in our understanding of breast cancer in the past century has led to remarkable progress in the early detection, treatment and prevention of the disease. The clinical focus is shifting more towards tailored therapy as more targets are characterized and novel highly innovative approaches are developed. General significance Tracing the history of breast cancer, highlights how increased awareness of the disease, and progress in research and development have enhance our understanding of the disease. The humoral, lymphatic and anti-hormonal theories of breast cancer Introduction of radical mastectomy, radiotherapy, mammography, and targeted therapy The introduction of randomized trial Breast cancer foundations, awareness and the Angelina Jolie effect Promising future for tailored therapy
Collapse
|
40
|
Sundstrom A, Bar-Sagi D, Mishra B. Simulating Heterogeneous Tumor Cell Populations. PLoS One 2016; 11:e0168984. [PMID: 28030620 PMCID: PMC5193460 DOI: 10.1371/journal.pone.0168984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor's resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2-diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior.
Collapse
Affiliation(s)
- Andrew Sundstrom
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY, United States of America
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Bud Mishra
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY, United States of America
| |
Collapse
|
41
|
Butler DC, Joshi SN, Genst ED, Baghel AS, Dobson CM, Messer A. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ. PLoS One 2016; 11:e0165964. [PMID: 27824888 PMCID: PMC5100967 DOI: 10.1371/journal.pone.0165964] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022] Open
Abstract
Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn) are closely associated with synucleinopathies, including Parkinson’s disease (PD). VH14 is a human single domain intrabody selected against the non-amyloid component (NAC) hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.
Collapse
Affiliation(s)
- David C. Butler
- Neural Stem Cell Institute, Rensselaer, NY, 12144, United States of America; and Department of Biomedical Sciences; University at Albany, Albany, NY, 12208, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Shubhada N. Joshi
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Erwin De Genst
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Ankit S. Baghel
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Anne Messer
- Neural Stem Cell Institute, Rensselaer, NY, 12144, United States of America; and Department of Biomedical Sciences; University at Albany, Albany, NY, 12208, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, 12208, United States of America
- * E-mail:
| |
Collapse
|
42
|
Xu HN, Tchou J, Feng M, Zhao H, Li LZ. Optical redox imaging indices discriminate human breast cancer from normal tissues. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:114003. [PMID: 27896360 PMCID: PMC5136669 DOI: 10.1117/1.jbo.21.11.114003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/27/2016] [Indexed: 05/20/2023]
Abstract
Our long-term goal was to investigate the potential of incorporating redox imaging technique as a breast cancer (BC) diagnosis component to increase the positive predictive value of suspicious imaging finding and to reduce unnecessary biopsies and overdiagnosis. We previously found that precancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. We also revealed abnormal mitochondrial redox state in cancerous specimens from three BC patients. Here, we extend our study to include biopsies of 16 patients. Tissue aliquots were collected from both apparently normal and cancerous tissues from the affected cancer-bearing breasts shortly after surgical resection. All specimens were snap-frozen and scanned with the Chance redox scanner, i.e., the three-dimensional cryogenic NADH/Fp (reduced nicotinamide adenine dinucleotide/oxidized flavoproteins) fluorescence imager. We found both Fp and NADH in the cancerous tissues roughly tripled that in the normal tissues ( p < 0.05 ). The redox ratio Fp/(NADH + Fp) was ? 27 % higher in the cancerous tissues ( p < 0.05 ). Additionally, Fp, or NADH, or the redox ratio alone could predict cancer with reasonable sensitivity and specificity. Our findings suggest that the optical redox imaging technique can provide parameters independent of clinical factors for discriminating cancer from noncancer breast tissues in human patients.
Collapse
Affiliation(s)
- He N. Xu
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Molecular Imaging Laboratory, B6 Blockley Hall, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Johnson Research Foundation, Britton Chance Laboratory of Redox Imaging, R171 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Julia Tchou
- University of Pennsylvania, Perelman School of Medicine, Division of Endocrine and Oncologic Surgery, Department of Surgery, West Pavilion 3rd Floor, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Abramson Cancer Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Rena Rowan Breast Center, West Pavilion, 3rd Floor, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Min Feng
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Molecular Imaging Laboratory, B6 Blockley Hall, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Johnson Research Foundation, Britton Chance Laboratory of Redox Imaging, R171 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Huaqing Zhao
- Temple University, School of Medicine, Department of Clinical Sciences, Kresge Room 218, 3440 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Lin Z. Li
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Molecular Imaging Laboratory, B6 Blockley Hall, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Johnson Research Foundation, Britton Chance Laboratory of Redox Imaging, R171 John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
- University of Pennsylvania, Perelman School of Medicine, Abramson Cancer Center, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
43
|
Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc Natl Acad Sci U S A 2016; 113:E5328-36. [PMID: 27559084 DOI: 10.1073/pnas.1611406113] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Targeting glutamine metabolism via pharmacological inhibition of glutaminase has been translated into clinical trials as a novel cancer therapy, but available drugs lack optimal safety and efficacy. In this study, we used a proprietary emulsification process to encapsulate bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a selective but relatively insoluble glutaminase inhibitor, in nanoparticles. BPTES nanoparticles demonstrated improved pharmacokinetics and efficacy compared with unencapsulated BPTES. In addition, BPTES nanoparticles had no effect on the plasma levels of liver enzymes in contrast to CB-839, a glutaminase inhibitor that is currently in clinical trials. In a mouse model using orthotopic transplantation of patient-derived pancreatic tumor tissue, BPTES nanoparticle monotherapy led to modest antitumor effects. Using the HypoxCR reporter in vivo, we found that glutaminase inhibition reduced tumor growth by specifically targeting proliferating cancer cells but did not affect hypoxic, noncycling cells. Metabolomics analyses revealed that surviving tumor cells following glutaminase inhibition were reliant on glycolysis and glycogen synthesis. Based on these findings, metformin was selected for combination therapy with BPTES nanoparticles, which resulted in significantly greater pancreatic tumor reduction than either treatment alone. Thus, targeting of multiple metabolic pathways, including effective inhibition of glutaminase by nanoparticle drug delivery, holds promise as a novel therapy for pancreatic cancer.
Collapse
|
44
|
Margineantu DH, Hockenbery DM. Mitochondrial functions in stem cells. Curr Opin Genet Dev 2016; 38:110-117. [DOI: 10.1016/j.gde.2016.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022]
|
45
|
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. SCIENCE ADVANCES 2016; 2:e1600200. [PMID: 27386546 PMCID: PMC4928883 DOI: 10.1126/sciadv.1600200] [Citation(s) in RCA: 2023] [Impact Index Per Article: 224.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2016] [Indexed: 04/14/2023]
Abstract
Tumors reprogram pathways of nutrient acquisition and metabolism to meet the bioenergetic, biosynthetic, and redox demands of malignant cells. These reprogrammed activities are now recognized as hallmarks of cancer, and recent work has uncovered remarkable flexibility in the specific pathways activated by tumor cells to support these key functions. In this perspective, we provide a conceptual framework to understand how and why metabolic reprogramming occurs in tumor cells, and the mechanisms linking altered metabolism to tumorigenesis and metastasis. Understanding these concepts will progressively support the development of new strategies to treat human cancer.
Collapse
Affiliation(s)
- Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Corresponding author. (R.J.D.); (N.S.C.)
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Corresponding author. (R.J.D.); (N.S.C.)
| |
Collapse
|
46
|
Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy. Int J Mol Sci 2015; 16:25536-51. [PMID: 26512660 PMCID: PMC4632814 DOI: 10.3390/ijms161025536] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/07/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022] Open
Abstract
Hypoxia, which is common during tumor progression, plays important roles in tumor biology. Failure in cell death in response to hypoxia contributes to progression and metastasis of tumors. On the one hand, the metabolic and oxidative stress following hypoxia could lead to cell death by triggering signal cascades, like LKB1/AMPK, PI3K/AKT/mTOR, and altering the levels of effective components, such as the Bcl-2 family, Atg and p62. On the other hand, hypoxia-induced autophagy can serve as a mechanism to turn over nutrients, so as to mitigate the adverse condition and then avoid cell death potentially. Due to the effective role of hypoxia, this review focuses on the crosstalk in cell death under hypoxia in tumor progression. Additionally, the illumination of cell death in hypoxia could shed light on the clinical applications of cell death targeted therapy.
Collapse
|
47
|
Cheng G, Zielonka J, McAllister D, Hardy M, Ouari O, Joseph J, Dwinell MB, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted cationic antioxidants and analogs: Role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Lett 2015; 365:96-106. [PMID: 26004344 DOI: 10.1016/j.canlet.2015.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
One of the proposed mechanisms for tumor proliferation involves redox signaling mediated by reactive oxygen species such as superoxide and hydrogen peroxide generated at moderate levels. Thus, the antiproliferative and anti-tumor effects of certain antioxidants were attributed to their ability to mitigate intracellular reactive oxygen species (ROS). Recent reports support a role for mitochondrial ROS in stimulating tumor cell proliferation. In this study, we compared the antiproliferative effects and the effects on mitochondrial bioenergetic functions of a mitochondria-targeted cationic carboxyproxyl nitroxide (Mito-CP), exhibiting superoxide dismutase (SOD)-like activity and a synthetic cationic acetamide analog (Mito-CP-Ac) lacking the nitroxide moiety responsible for the SOD activity. Results indicate that both Mito-CP and Mito-CP-Ac potently inhibited tumor cell proliferation. Both compounds altered mitochondrial and glycolytic functions, and intracellular citrate levels. Both Mito-CP and Mito-CP-Ac synergized with 2-deoxy-glucose (2-DG) to deplete intracellular ATP, inhibit cell proliferation and induce apoptosis in pancreatic cancer cells. We conclude that mitochondria-targeted cationic agents inhibit tumor proliferation via modification of mitochondrial bioenergetics pathways rather than by dismutating and detoxifying mitochondrial superoxide.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Donna McAllister
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Olivier Ouari
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Joy Joseph
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
48
|
Kim A. Mitochondrial DNA somatic mutation in cancer. Toxicol Res 2015; 30:235-42. [PMID: 25584142 PMCID: PMC4289923 DOI: 10.5487/tr.2014.30.4.235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
Cancer cells are known to drastically alter cellular energy metabolism. The Warburg effect has been known for over 80 years as pertaining cancer-specific aerobic glycolysis. As underlying molecular mechanisms are elucidated so that cancer cells alter the cellular energy metabolism for their advantage, the significance of the modulation of metabolic profiles is gaining attention. Now, metabolic reprogramming is becoming an emerging hallmark of cancer. Therapeutic agents that target cancer energy metabolism are under intensive investigation, but these investigations are mostly focused on the cytosolic glycolytic processes. Although mitochondrial oxidative phosphorylation is an integral part of cellular energy metabolism, until recently, it has been regarded as an auxiliary to cytosolic glycolytic processes in cancer energy metabolism. In this review, we will discuss the importance of mitochondrial respiration in the metabolic reprogramming of cancer, in addition to discussing the justification for using mitochondrial DNA somatic mutation as metabolic determinants for cancer sensitivity in glucose limitation.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk, Korea
| |
Collapse
|
49
|
Abstract
Mitochondria cooperate with their host cells by contributing to bioenergetics, metabolism, biosynthesis, and cell death or survival functions. Reactive oxygen species (ROS) generated by mitochondria participate in stress signalling in normal cells but also contribute to the initiation of nuclear or mitochondrial DNA mutations that promote neoplastic transformation. In cancer cells, mitochondrial ROS amplify the tumorigenic phenotype and accelerate the accumulation of additional mutations that lead to metastatic behaviour. As mitochondria carry out important functions in normal cells, disabling their function is not a feasible therapy for cancer. However, ROS signalling contributes to proliferation and survival in many cancers, so the targeted disruption of mitochondria-to-cell redox communication represents a promising avenue for future therapy.
Collapse
Affiliation(s)
- Simran S Sabharwal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Paul T Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|