1
|
Xing C, Yu X. Oxytocin and autism: Insights from clinical trials and animal models. Curr Opin Neurobiol 2025; 92:103015. [PMID: 40157057 DOI: 10.1016/j.conb.2025.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Autism spectrum disorder is a highly heritable and heterogeneous neurodevelopmental disorder, characterized by impaired social interactions and repetitive behaviors. Despite its complex etiology, increasing evidence has linked autism to the oxytocin system. The oxytocin peptide has long been known as the "social hormone," and has been shown to increase attention to social cues, elevate salience of socially relevant stimuli, and increase learning and reward in social situations. Reduced oxytocin levels and mutations in the oxytocin system have been reported in autism patients, while exogenously delivered oxytocin has been shown to alleviate social interaction deficits in both patients and animal models. Here, we summarize the results of recent clinical trials using oxytocin nasal spray to treat individuals with autism, as well as studies of autism animal models with oxytocin system deficits, and the rescue of their social behavior deficits by oxytocin. Finally, we discuss factors influencing clinical outcomes and reflect on future directions.
Collapse
Affiliation(s)
- Chuan Xing
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
2
|
Liu S, Huang J, Chen S, Platt ML, Yang Y. Multi-dimensional social relationships shape social attention in monkeys. eLife 2025; 14:RP104460. [PMID: 40052871 PMCID: PMC11888598 DOI: 10.7554/elife.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.
Collapse
Affiliation(s)
- Sainan Liu
- Division of Life Sciences and Medicine, University of Science and Technology of ChinaHeifeiChina
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Jiepin Huang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Suhao Chen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefeiChina
- Institute of Advanced Technology, University of Science and Technology of ChinaHefeiChina
| | - Michael L Platt
- Department of Psychology, School of Arts and Sciences, University of PennsylvaniaPhiladelphiaUnited States
- Marketing Department, the Wharton School of Business, University of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yan Yang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Lyu W, Li Y, Yao A, Tan QQ, Zhang R, Zhao JP, Guo K, Jiang YH, Tian R, Zhang YQ. Oxytocin improves maternal licking behavior deficits in autism-associated Shank3 mutant dogs. Transl Psychiatry 2025; 15:76. [PMID: 40050270 PMCID: PMC11885833 DOI: 10.1038/s41398-025-03296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/07/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Impaired social interaction and repetitive behavior are key features observed in individuals with autism spectrum disorder (ASD). SHANK3 is a high-confidence ASD risk gene that encodes an abundant scaffolding protein in the postsynaptic density. In wild-type (WT) domestic dogs, maternal behaviors such as licking and nursing (largely milk feeding) of puppies are most commonly observed. To address whether SHANK3 plays a role in social behaviors especially maternal behaviors, we analyzed Shank3 mutant dogs generated by CRISPR/Cas9 methodology. We found that Shank3 mutant dams exhibited a fewer and shorter licking behavior, as well as reduced nursing frequency when compared with WT dams. Additionally, a significant decrease in blood oxytocin (OXT) concentration was detected in Shank3 mutant dams. We thus conducted a vehicle-controlled experiment to examine whether a two-week intranasal OXT treatment, initiated on the 8th postpartum day, could rescue the maternal licking deficits in Shank3 mutant dams. We found that the decreased licking behavior in Shank3 mutant dams was significantly attenuated both acutely and chronically by OXT treatment. The rescue effect of OXT implicates an oxytocinergic contribution to the maternal defects in Shank3 mutant dams, suggesting a potential therapeutic strategy for SHANK3-associated ASD.
Collapse
Affiliation(s)
- Wen Lyu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Li
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China
| | - Aiyu Yao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Quan Tan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100083, China
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University Health Science Center, Beijing, 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing, 100191, China
| | - Jian-Ping Zhao
- Beijing Sinogene Biotechnology Co. Ltd, Beijing, 102200, China
| | - Kun Guo
- School of Psychology, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Yong-Hui Jiang
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Rui Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
4
|
Ma SL, Bowen MT, Dadds MR. Functional significance of some common oxytocin receptor SNPs involved in complex human traits. BMC Mol Cell Biol 2025; 26:3. [PMID: 39762756 PMCID: PMC11705901 DOI: 10.1186/s12860-024-00529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Oxytocin function is associated with a range of human traits and is often indexed by common polymorphisms of the receptor gene OXTR. Little is known however about the functional significance of these polymorphisms. OBJECTIVES To examine the effects of common polymorphisms of OXTR on transcription expression in human neural cells. METHOD The impact of four common OXTR SNPs (rs1042778, rs4686302, rs2254298 and rs237887) on OXTR gene expression were tested in human neuroblastoma cell line, SH-SY5Y, a commonly used cell line for neurological disease. SNPs were chosen as having robust evidence for associations with complex human traits after consideration of linkage patterns across OXTR. RESULTS The expression level of GG genotype of rs1042778 was significantly lower than TT genotypes. None of the other SNPs were related to functional transcription. CONCLUSIONS OXTR polymorphisms showing robust associations with complex human traits are not reliably associated with changes in transcription of OXTR. Increasing cooperation between behavioral and biological scientists is needed to bridge the gap between human trait and functional biological studies to improve our understanding of oxytocin and other important mammalian neuroendocrine processes.
Collapse
Affiliation(s)
- Suk Ling Ma
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Michael Thomas Bowen
- Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Mark R Dadds
- Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Goto H, Yamamoto Y, Tsujiguchi H, Sato T, Yamamoto R, Takeshita Y, Nakano Y, Kannon T, Hosomichi K, Suzuki K, Nakamura M, Kambayashi Y, Zhao J, Asai A, Katano K, Ogawa A, Fukushima S, Shibata A, Suzuki F, Tsuboi H, Hara A, Kometani M, Karashima S, Yoneda T, Tajima A, Nakamura H, Takamura T. Oxytocin Receptor Polymorphism Is Associated With Sleep Apnea Symptoms. J Endocr Soc 2024; 9:bvae198. [PMID: 39606181 PMCID: PMC11590662 DOI: 10.1210/jendso/bvae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 11/29/2024] Open
Abstract
Context Oxytocin supplementation improves obstructive sleep apnea (OSA), and animal studies suggest involvement of oxytocin in respiratory control. However, the relationship between endogenous oxytocin signaling and human sleep status remains undetermined. Objective In this study, we approached the contribution of the intrinsic oxytocin-oxytocin receptor (OXTR) system to OSA by genetic association analysis. Methods We analyzed the relationship between OXTR gene polymorphisms and sleep parameters using questionnaire data and sleep measurements in 305 Japanese participants. OSA symptoms were assessed in 225 of these individuals. Results The OXTR rs2254298 A allele was more frequent in those with OSA symptoms than in those without (P = .0087). Although total scores on the Pittsburgh Sleep Quality Index questionnaire did not differ between the genotypes, breathlessness and snoring symptoms associated with OSA were significantly more frequent in individuals with rs2254298 A genotype (P = .00045 and P = .0089 for recessive models, respectively) than the G genotype. A multivariable analysis confirmed these genotype-phenotype associations even after adjusting for age, sex, and body mass index in a sensitivity analysis. Furthermore, objective sleep efficiency measured by actigraph was not significantly different between genotypes; however, subjective sleep efficiency was significantly lower in the rs2254298 A genotype (P = .013) compared with the G genotype. The frequency of the A allele is higher in East Asians, which may contribute to their lean OSA phenotype. Conclusion The OXTR gene may contribute to OSA symptoms via the respiratory control system, although it could be in linkage disequilibrium with a true causal gene.
Collapse
Affiliation(s)
- Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
- Department of Biochemistry and Molecular Vascular Biology,
Kanazawa University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology,
Kanazawa University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Takehiro Sato
- Department of Human Biology and Anatomy, Graduate School of
Medicine, University of the Ryukyus, Nishihara,
Okinawa 903-0215, Japan
| | - Reina Yamamoto
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| | - Takayuki Kannon
- Department of Biomedical Data Science, School of Medicine,
Fujita Health University, Toyoake, Aichi
470-1192, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science,
Tokyo University of Pharmacy and Life Sciences,
Hachioji, Tokyo 192-0392, Japan
| | - Keita Suzuki
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Masaharu Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Yasuhiro Kambayashi
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Department of Public Health, Faculty of Veterinary Medicine,
Okayama University of Science, Imabari, Ehime
794-8555, Japan
| | - Jiaye Zhao
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Atsushi Asai
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Koji Katano
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Aya Ogawa
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Shinobu Fukushima
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Aki Shibata
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
| | - Fumihiko Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Department of Geriatric Dentistry, Ohu University School of
Dentistry, Koriyama, Fukushima
963-8611, Japan
| | - Hirohito Tsuboi
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Graduate School of Human Sciences, The University of Shiga
Prefecture, Hikone, Shiga 522-8533,
Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Mitsuhiro Kometani
- Department of Health Promotion and Medicine of the Future,
Kanazawa University Graduate School of Medical Sciences,
Kanazawa 920-8640, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa
University, Kanazawa 920-1192,
Japan
| | - Takashi Yoneda
- Department of Health Promotion and Medicine of the Future,
Kanazawa University Graduate School of Medical Sciences,
Kanazawa 920-8640, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of
Advanced Preventive Medical Sciences, Kanazawa University,
Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine,
Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa
University, Kanazawa City 920-8640,
Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa
University, Kanazawa, Ishikawa
920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa
University Graduate School of Medical Sciences,
Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
6
|
Gnanadesikan GE, Bray EE, Cook EN, Levy KM, Douglas LELC, Kennedy BS, Tecot SR, MacLean EL. Basal plasma oxytocin & fecal cortisol concentrations are highly heritable and associated with individual differences in behavior & cognition in dog puppies. Horm Behav 2024; 165:105612. [PMID: 39116461 DOI: 10.1016/j.yhbeh.2024.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Oxytocin and cortisol are hormones that can influence cognition and behavior, but the relationships between endogenous concentrations and individual differences in cognitive and behavioral phenotypes remain poorly understood. Across mammals, oxytocin has important roles in diverse social behaviors, and in dogs, it has been implicated in human-oriented behaviors such as social gaze and point-following. Cortisol, an end-product of the hypothalamic-pituitary-adrenal (HPA) axis, is often studied in relation to temperament and emotional reactivity, but it is also known to modulate executive functions. In this study, we measured basal fecal cortisol (n = 247) and plasma oxytocin (n = 249) in dog puppies from a pedigreed population (Canine Companions ®). We collected cognitive and behavioral data from these subjects (n = 247), including measures of human-oriented social cognition, memory, inhibitory control, perceptual discriminations, and temperament. Oxytocin concentrations were estimated to be very highly heritable (h2 = 0.90-0.99) and cortisol concentrations were estimated to be moderately-highly heritable (h2 = 0.43-0.47). Bayesian mixed models controlling for relatedness revealed that oxytocin concentrations were positively associated with spatial working memory and displayed a negative quadratic relationship with behavioral laterality, but no credible associations were seen for social measures. Cortisol concentrations exhibited a negative linear relationship with performance on an inhibitory control task and a negative quadratic relationship with bold behavioral reactions to a novel object. Collectively, our results suggest that individual differences in oxytocin and cortisol concentrations are under strong genetic control in dogs and are associated with phenotypic variation in aspects of temperament, behavioral laterality, and executive function.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Canine Companions for Independence, Santa Rosa, CA 95402, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Erica N Cook
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Kerinne M Levy
- Canine Companions for Independence, Santa Rosa, CA 95402, USA
| | | | | | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Almaghrbi H, Bawadi H. Genetic polymorphisms and their association with neurobiological and psychological factors in anorexia nervosa: a systematic review. Front Psychol 2024; 15:1386233. [PMID: 38979077 PMCID: PMC11229080 DOI: 10.3389/fpsyg.2024.1386233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024] Open
Abstract
Background and aims Anorexia nervosa (AN) is a complex neuropsychiatric disorder. This systematic review synthesizes evidence from diverse studies to assess and investigate the association between gene polymorphisms and psychological and neurobiological factors in patients with AN. Methods A systematic search across PubMed, PsycINFO, Scopus, and Web of Science databases, along with manual searching, was conducted. The review protocol was approved by PROSPERO (CRD42023452548). Out of 1,250 articles, 11 met the inclusion criteria. The quality of eligible articles was assessed using the Newcastle-Ottawa Scale (NOS) tool. The systematic review followed the PRISMA guidelines. Results The serotoninergic system, particularly the 5-HTTLPR polymorphism, is consistently linked to altered connectivity in the ventral attention network, impaired inhibitory control, and increased susceptibility to AN. The 5-HTTLPR polymorphism affects reward processing, motivation, reasoning, working memory, inhibition, and outcome prediction in patients with AN. The dopaminergic system, involving genes like COMT, DRD2, DRD3, and DAT1, regulates reward, motivation, and decision-making. Genetic variations in these dopaminergic genes are associated with psychological manifestations and clinical severity in patients with AN. Across populations, the Val66Met polymorphism in the BDNF gene influences personality traits, eating behaviors, and emotional responses. Genes like OXTR, TFAP2B, and KCTD15 are linked to social cognition, emotional processing, body image concerns, and personality dimensions in patients with AN. Conclusion There was an association linking multiple genes to the susceptibly and/or severity of AN. This genetic factor contributes to the complexity of AN and leads to higher diversity of its clinical presentation. Therefore, conducting more extensive research to elucidate the underlying mechanisms of anorexia nervosa pathology is imperative for advancing our understanding and potentially developing targeted therapeutic interventions for the disorder.Systematic review registration: [https://clinicaltrials.gov/], identifier [CRD42023452548].
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Camerini L, Zurchimitten G, Bock B, Xavier J, Bastos CR, Martins E, Ardais AP, Dos Santos Motta JV, Pires AJ, de Matos MB, de Ávila Quevedo L, Pinheiro RT, Ghisleni G. Genetic Variations in Elements of the Oxytocinergic Pathway are Associated with Attention/Hyperactivity Problems and Anxiety Problems in Childhood. Child Psychiatry Hum Dev 2024; 55:552-563. [PMID: 36087156 DOI: 10.1007/s10578-022-01419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Genetic alterations related to oxytocin system seem to influence the neurobiology of attention-deficit hyperactivity disorder and anxiety problems leading to greater functional, social and emotional impairment. Here, we analyzed the association of OXTR rs2254298 and CD38 rs6449182 variants with attention/hyperactivity problems and anxiety problems in children. The study enrolled 292 children and adjusted regression model revealed OXTR rs2254298 AA genotype as a risk factor for attention deficit/hyperactivity problems (PR: 2.37; PadjFDR = 0.006), attention problems (PR: 2.71; PadjFDR = 0.003) and anxiety problems (PR: 1.92; PadjFDR = 0.018). CD38 rs6449182 G allele showed as a risk factor for attention deficit/hyperactivity problems (PR: 1.56; PadjFDR = 0.028). Moreover, in silico approach for regulatory roles found markers that influence chromatin accessibility and transcription capacity. Together, these data provide genetic information of oxytocin in developmental and behavioral disorders opening a range of opportunities for future studies that clarify their neurobiology in childhood.
Collapse
Affiliation(s)
- Laísa Camerini
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriel Zurchimitten
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bertha Bock
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Janaína Xavier
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Clarissa Ribeiro Bastos
- Department of Neurosciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Evânia Martins
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ana Paula Ardais
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Andressa Jacondino Pires
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mariana Bonati de Matos
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana de Ávila Quevedo
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ricardo Tavares Pinheiro
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
- Post-Graduation Program of Health and Behavior, Laboratory of Clinical Neuroscience, Catholic University of Pelotas - UCPel, Center of Health Science, Rua Gonçalves Chaves 373, sala 324, CEP 96010-280, Pelotas, RS, Brasil.
| |
Collapse
|
9
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
10
|
Ghamari R, Tahmaseb M, Sarabi-Jamab A, Etesami SA, Mohammadzadeh A, Alizadeh F, Tehrani-Doost M. Association of verbal and non-verbal theory of mind abilities with non-coding variants of OXTR in youth with autism spectrum disorder and typically developing individuals: a case-control study. BMC Psychiatry 2024; 24:30. [PMID: 38191308 PMCID: PMC10773038 DOI: 10.1186/s12888-023-05461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The ability to attribute mental states to others is called theory of mind (ToM) and is a substantial component of social cognition. This ability is abnormally developed in individuals with autism spectrum disorder (ASD). Several studies over the past decade have identified the oxytocin receptor gene (OXTR) and its variants as promising components for explaining the molecular mechanisms underlying Theory of Mind (ToM). The main aim of this study is to examine the association between rs2268498 and rs53576, two functional single nucleotide polymorphisms (SNPs), and verbal and non-verbal ToM in children and adolescents with ASD and a group of typically developing youth. METHODS The study involved 44 children and adolescents with high-functioning ASD aged 8 to 18 years old and 44 TD individuals who were matched on age and sex. In all participants, blood samples were collected and rs2268498 and rs53576 were genotyped. Happe's Strange Stories test and the moving shapes paradigm were used to measure verbal and non-verbal ToM in all participants. RESULTS The results of permutation tests and logistic regression suggested that in TD group, rs2268498 AA carriers showed significant higher scores in variables representing verbal ToM (ToM stories and appropriateness score) whereas, in ASD group, rs53576 AA carriers exhibited significant better performance in parameters related to non-verbal ToM (ToM general rule and intentionality score). The results of hierarchical clustering in both groups support the findings by distinguishing between language-related and language-independent aspects of ToM. CONCLUSIONS In the present study, we examined the association between rs2268498 and rs53576 and social functioning in individuals with ASD and TD group. We found preliminary evidence that rs2268498 and rs53576 are associated with ToM related abilities in healthy individuals as well as in autistic individuals. Accordingly, rs2268498 and rs53576 may play an important role in predicting ToM capabilities. It will be necessary to conduct further research to address the association of genetic variants with a deficit in ToM in individuals with ASD.
Collapse
Affiliation(s)
- Rana Ghamari
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Tahmaseb
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Atiye Sarabi-Jamab
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Azar Mohammadzadeh
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), School of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mehdi Tehrani-Doost
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Skiba SA, Hansen A, McCall R, Byers A, Waldron S, Epping AJ, Taglialatela JP, Hudson ML. Linked OXTR Variants Are Associated with Social Behavior Differences in Bonobos ( Pan paniscus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573122. [PMID: 38187727 PMCID: PMC10769379 DOI: 10.1101/2023.12.22.573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) in forkhead box protein P2 (FOXP2) and oxytocin receptor (OXTR) genes have been associated with linguistic and social development in humans, as well as to symptom severity in autism spectrum disorder (ASD). Studying biobehavioral mechanisms in the species most closely related to humans can provide insights into the origins of human communication, and the impact of genetic variation on complex behavioral phenotypes. Here, we aimed to determine if bonobos (Pan paniscus) exhibit individual variation in FOXP2 and OXTR loci that have been associated with human social development and behavior. Although the ASD-related variants were reported in 13-41% of the human population, we did not find variation at these loci in our sample of 13 bonobos. However, we did identify a novel variant in bonobo FOXP2, as well as four novel variants in bonobo OXTR that were 17-184 base pairs from the human ASD variants. We also found the same linked, homozygous allelic combination across the 4 novel OXTR SNPs (homozygous TGTC) in 6 of the 13 bonobos, indicating that this combination may be under positive selection. When comparing the combined OXTR genotypes, we found significant group differences in social behavior; bonobos with zero copies of the TGTC combination were less social than bonobos with one copy of the TGTC combination. Taken together, our findings suggest that these OXTR variants may influence individual-level social behavior in bonobos and support the notion that linked genetic variants are promising risk factors for social communication deficits in humans.
Collapse
Affiliation(s)
- Sara A. Skiba
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Alek Hansen
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Ryan McCall
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Azeeza Byers
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Sarah Waldron
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Amanda J. Epping
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Jared P. Taglialatela
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Martin L. Hudson
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| |
Collapse
|
12
|
Wieting J, Jahn K, Bleich S, Frieling H, Deest M. A targeted long-read sequencing approach questions the association of OXTR methylation with high-functioning autism. Clin Epigenetics 2023; 15:195. [PMID: 38124130 PMCID: PMC10734107 DOI: 10.1186/s13148-023-01616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND DNA sequence variation and altered epigenetic regulation of the oxytocin receptor gene (OXTR) have been implicated in autism and autistic-like behaviors. While previous studies have examined subsegments of OXTR, nanopore Cas9-targeted sequencing (nCATS) allows deep characterization of entire genes with simultaneous assessment of epigenetic 5-methylcytosine (5mC) modification and without the need for prior DNA amplification or bisulfite conversion. This pilot study uses an nCATS approach to sequence the entire OXTR gene and its regulatory construct and screen for 5mC modification to compare results between individuals with high-functioning autism (HFA) and neurotypical controls (NC). METHODS Using DNA extracted from peripheral blood, OXTR (Hg38, chr3: 8750381-8770434, 20,054 base pairs) was analyzed by nCATS. 5mC modification probabilities were calculated and visualized across the gene and differential methylation analysis was performed. RESULTS Twenty adults with HFA (10 males, 10 females) and 20 age- and sex-matched NC (± 5 years) were included. There were no apparent group differences in the entire OXTR gene sequence, except for the intron variant rs918316, which was clustered in the HFA group. However, differential methylation analysis did not reveal a single significant group-dependent differentially methylated site among the 412 CpG sites captured. LIMITATIONS Limitations of this study include the small number of samples due to the pilot nature of the study, which particularly limits the relevance of the sequence variants found. It should also be noted that the use of peripheral blood material limits the ability to draw conclusions about central processes. CONCLUSIONS Previous findings of autism-associated OXTR epigenetic alterations were not reproducible with our method. In our opinion, this may lead to a reconsideration of the relevance of altered methylation at individual OXTR CpG positions in autism research. However, given the pilot nature of the study, these results need to be replicated in independent cohorts and with larger sample sizes.
Collapse
Affiliation(s)
- Jelte Wieting
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany.
| | - Kirsten Jahn
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany
| | - Stefan Bleich
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany
| | - Helge Frieling
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany
| | - Maximilian Deest
- Hannover Medical School, Department of Psychiatry, Social Psychiatry and Psychotherapy, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Laboratory for Molecular Neuroscience, Feodor-Lynen-Str. 35, 30625, Hannover, Germany
| |
Collapse
|
13
|
Fang Y, Cui Y, Yin Z, Hou M, Guo P, Wang H, Liu N, Cai C, Wang M. Comprehensive systematic review and meta-analysis of the association between common genetic variants and autism spectrum disorder. Gene 2023; 887:147723. [PMID: 37598788 DOI: 10.1016/j.gene.2023.147723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is neurodevelopmental disorder characterized by stereotyped behavior and deficits in communication and social interactions. To date, numerous studies have investigated the associations between genetic variants and ASD risk. However, the results of these published studies lack a clear consensus. In the present study, we performed a systematic review on the association between genetic variants and ASD risk. Meanwhile, we conducted a meta-analysis on available data to identify the association between the single nucleotide polymorphisms (SNPs) of candidate genes and ASD risk. METHODS We systematically searched public databases including English and Chinese from their inception to August 1, 2022. Two independent reviewers extracted data and assessed study quality. Odds ratio and 95 % confidence interval were used as effect indexes to evaluate the association between the SNPs of candidate genes and the risk of ASD. Heterogeneity was explored through subgroup, sensitivity, and meta-regression analyses. Publication bias was assessed by using Egger's and Begg's tests for funnel plot asymmetry. In addition, TSA analysis were performed to confirm the study findings. RESULTS We summarized 84 SNPs of 32 candidate genes from 81 articles included in the study. Subsequently, we analyzed 16 SNPs of eight genes by calculating pooled ORs, and identified eight significant SNPs of contactin associated protein 2 (CNTNAP2), methylentetrahydrofolate reductase (MTHFR), oxytocin receptor (OXTR), and vitamin D receptor (VDR). Results showed that seven SNPs, including the CNTNAP2 rs2710102 (homozygote, heterozygote, dominant and allelic models) and rs7794745 (heterozygote and dominant models), MTHFR C677T (homozygote, heterozygote, dominant, recessive and allelic models) and A1298C (dominant and allelic models), OXTR rs2254298 (homozygote and recessive models), VDR rs731236 (homozygote, dominant, recessive and allelic models) and rs2228570 (homozygote and recessive models), were showed to be correlated with an increased ASD risk. By contrast, the VDR rs7975232 was correlated with a decreased the risk of ASD under the homozygote and allelic models. CONCLUSION Our study summarized research evidence on the genetic variants of ASD and provides a broad and detailed overview of ASD risk genes. The C677T and A1298C polymorphisms of MTHFR, rs2710102 and rs7794745 polymorphisms of CNTNAP2, rs2254298 polymorphism of OXTR, and rs731236 and rs2228570 polymorphisms of VDR were genetic risk factors. The rs7975232 polymorphism of VDR was a genetic protective factor for ASD. Our study provides novel clues to clinicians and healthcare decision-makers to predict ASD susceptibility.
Collapse
Affiliation(s)
- Yulian Fang
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Zhaoqing Yin
- Division of Pediatrics, The People's Hospital of Dehong Autonomous Prefecture, Dehong Hospital of Kunming Medical University, Mangshi, Yunnan 678400, China
| | - Mengzhu Hou
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Pan Guo
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Nan Liu
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Institute of Environment and Health, South China Hospital, Medical School, Shenzhen 518116, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China.
| | - Mingbang Wang
- Marshall Laboratory of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong 518116, China; Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
14
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
15
|
Parker KJ. Tales from the life and lab of a female social neuroscientist. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100202. [PMID: 38108026 PMCID: PMC10724734 DOI: 10.1016/j.cpnec.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 12/19/2023] Open
Abstract
This narrative review charts my unconventional path to becoming a social neuroscientist and describes my research findings - some baffling, some serendipitous, some pivotal - in the field of neuropeptide biology. I trace my childhood as a Bell Labs "brat" to my adolescence as a soccer-playing party girl, to my early days as a graduate student, when I first encountered oxytocin and vasopressin. These two molecules instantly captivated - and held - my attention and imagination. For more than 25 years, a core goal of my research program has been to better understand how these neuropeptides regulate social functioning across a range of species (e.g., meadow voles, mice, squirrel monkeys, rhesus monkeys, and humans), and to translate fundamental insights from this work to guide development of novel pharmacotherapies to treat social impairments in clinical populations. I also discuss my experience of being a woman and a mother in STEM, and identify the important people and events which helped shape my career and the scientist I am today.
Collapse
Affiliation(s)
- Karen J. Parker
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA
- California National Primate Research Center, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Mills-Koonce WR, Grewen K, O'Shea NG, Pearson B, Strange CG, Meltzer-Brody SE, Guintivano JD, Stuebe AM. The Mood, Mother and Child Study: Protocol for a Prospective Longitudinal Study and Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e51132. [PMID: 37883133 PMCID: PMC10636628 DOI: 10.2196/51132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Perinatal depression affects >400,000 mother-child dyads in the United States every year and is associated with numerous adverse maternal and child developmental outcomes. Previous research implicates the dysregulation of oxytocin and the hypothalamic-pituitary-adrenal (HPA) axis functioning in mothers and children as potential mechanisms mediating or moderating the transmission of risk associated with maternal depression. OBJECTIVE The Mood, Mother and Child study will examine the psychobiological sources of risk and resilience within mother-child dyads affected by maternal depression. This manuscript describes (1) the study rationale and aims, (2) the research design and procedures and how they were altered in response to the COVID-19 pandemic, and (3) the data analysis plan to test the study hypotheses. METHODS This is a prospective longitudinal study with an embedded randomized controlled trial that examines (1) correlations among postpartum depression and anxiety symptoms, maternal and child oxytocin and HPA axis functioning, and child developmental outcomes and (2) the causal relationship between exogenous oxytocin and HPA reactivity. This study is funded by the National Institute of Child Health and Human Development with institutional review board approval. RESULTS Recruitment and data collection have commenced, and the expected results will be available in 2024. Analyses are presented for testing the proposed hypotheses. CONCLUSIONS The unique combination of a prospective longitudinal research design with an embedded randomized controlled trial will allow the Mood, Mother and Child study to apply a developmental lens to the study of maternal depression and anxiety symptoms from birth to middle childhood and the psychobiological mechanisms promoting risk and resiliency for both mother and child outcomes. This will be the first study that simultaneously evaluates (1) the role of oxytocin using multiple methodologies, (2) the causal relationships between exogenous oxytocin and HPA axis functioning among mothers with differing levels of depression and anxiety symptoms, and (3) the multiple mediating and moderating roles of parenting behaviors and maternal and child psychobiological characteristics. The goals of these aims are to provide insights into the psychobiological effects of oxytocin in women and inform future clinical trials to treat perinatal mood disorders. TRIAL REGISTRATION ClinicalTrials.gov NCT03593473; https://classic.clinicaltrials.gov/ct2/show/NCT03593473. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/51132.
Collapse
Affiliation(s)
- W Roger Mills-Koonce
- School of Education, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Karen Grewen
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Brenda Pearson
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chelsea Grace Strange
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Samantha E Meltzer-Brody
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jerry Dolph Guintivano
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alison M Stuebe
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Alaerts K, Daniels N, Moerkerke M, Evenepoel M, Tang T, Van der Donck S, Chubar V, Claes S, Steyaert J, Boets B, Prinsen J. At the Head and Heart of Oxytocin's Stress-Regulatory Neural and Cardiac Effects: A Chronic Administration RCT in Children with Autism. PSYCHOTHERAPY AND PSYCHOSOMATICS 2023; 92:315-328. [PMID: 37820592 DOI: 10.1159/000534114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Intranasal administration of oxytocin presents a promising new approach to reduce disability associated with an autism spectrum disorder diagnosis. Previous investigations have emphasized the amygdala as the neural foundation for oxytocin's acute effects. However, to fully understand oxytocin's therapeutic potential, it is crucial to gain insight into the neuroplastic changes in amygdala circuitry induced from chronic oxytocin administrations, particularly in pediatric populations. OBJECTIVE We aimed to examine the impact of a 4-week course of intranasal oxytocin on amygdala functional connectivity in children with autism, compared to placebo. Additionally, we investigated whether oxytocin improves cardiac autonomic arousal, as indexed by high-frequency heart rate variability. METHODS Fifty-seven children with autism aged 8-12 years (45 boys, 12 girls) participated in a double-blind, randomized pharmaco-neuroimaging trial involving twice-daily administrations of intranasal oxytocin or placebo. Resting-state fMRI scans and simultaneous, in-scanner heart rate recordings were obtained before, immediately after, and 4 weeks after the nasal spray administration period. RESULTS Significant reductions in intrinsic amygdala-orbitofrontal connectivity were observed, particularly at the 4-week follow-up session. These reductions were correlated with improved social symptoms and lower cardiac autonomic arousal. Further, oxytocin's neural and cardiac autonomic effects were modulated by epigenetic modifications of the oxytocin receptor gene. The effects were more pronounced in children with reduced epigenetic methylation, signifying heightened expression of the oxytocin receptor. CONCLUSION These findings underscore that a 4-week oxytocin administration course decreases amygdala connectivity and improves cardiac autonomic balance. Epigenetic modulators may explain inter-individual variation in responses to oxytocin.
Collapse
Affiliation(s)
- Kaat Alaerts
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
| | - Nicky Daniels
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
| | - Matthijs Moerkerke
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Margaux Evenepoel
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
| | - Tiffany Tang
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Stephanie Van der Donck
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | | | - Stephan Claes
- KU Leuven, University Psychiatric Center, Leuven, Belgium
| | - Jean Steyaert
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
- KU Leuven, University Psychiatric Center, Leuven, Belgium
| | - Bart Boets
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Jellina Prinsen
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes) Consortium, Leuven, Belgium
| |
Collapse
|
18
|
Shen LP, Li W, Pei LZ, Yin J, Xie ST, Li HZ, Yan C, Wang JJ, Zhang Q, Zhang XY, Zhu JN. Oxytocin Receptor in Cerebellar Purkinje Cells Does Not Engage in Autism-Related Behaviors. CEREBELLUM (LONDON, ENGLAND) 2023; 22:888-904. [PMID: 36040660 DOI: 10.1007/s12311-022-01466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The classical motor center cerebellum is one of the most consistent structures of abnormality in autism spectrum disorders (ASD), and neuropeptide oxytocin is increasingly explored as a potential pharmacotherapy for ASD. However, whether oxytocin targets the cerebellum for therapeutic effects remains unclear. Here, we report a localization of oxytocin receptor (OXTR) in Purkinje cells (PCs) of cerebellar lobule Crus I, which is functionally connected with ASD-implicated circuits. OXTR activation neither affects firing activities, intrinsic excitability, and synaptic transmission of normal PCs nor improves abnormal intrinsic excitability and synaptic transmission of PCs in maternal immune activation (MIA) mouse model of autism. Furthermore, blockage of OXTR in Crus I in wild-type mice does not induce autistic-like social, stereotypic, cognitive, and anxiety-like behaviors. These results suggest that oxytocin signaling in Crus I PCs seems to be uninvolved in ASD pathophysiology, and contribute to understanding of targets and mechanisms of oxytocin in ASD treatment.
Collapse
Affiliation(s)
- Li-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Zhu Pei
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Yin
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
19
|
Burenkova OV, Dolgorukova TA, An I, Kustova TA, Podturkin AA, Shurdova EM, Talantseva OI, Zhukova MA, Grigorenko EL. Endogenous oxytocin and human social interactions: A systematic review and meta-analysis. Psychol Bull 2023; 149:549-579. [PMID: 38713749 PMCID: PMC11077008 DOI: 10.1037/bul0000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
While there has been an increase in studies investigating the relationship between endogenous oxytocin (OXT) concentrations and human social interactions over the past decades, these studies still seem far from converging, both in methodological terms and in terms of their results. This systematic review and meta-analysis were aimed at a comprehensive evaluation and synthesis of empirical evidence on the relationship between endogenous OXT concentrations and human social interactions by reviewing studies published between 1970 and July 2020 and addressing various related methodological and analytical limitations. Sixty-three studies were included in the qualitative synthesis, and results from 51 studies were pooled in a meta-analysis (n = 3,741 participants). The results indicated that social interaction did not lead to an expected hormonal response in causal designs, either in a pre-post design (g = 0.079) or when comparing experimental conditions with and without social interaction (g = 0.256). However, in correlational designs, the overall mean effect size (ES) of the correlations between indicators of social interaction and OXT concentrations was significantly different from zero (z = 0.137). In both designs, subgroup analyses revealed that studies involving either parent-child interactions, or the utilization of the enzyme-linked immunosorbent assay method for OXT analysis, or unrestricted eating, drinking, or exercise before biofluid collection showed significantly higher than zero mean ESs. This review exposes the observed inconsistencies and suggests that standardized, replicable, and reliable approaches to assessing social interaction and measuring OXT concentrations need to be developed to study neurochemical mechanisms of sociality in humans. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston
- Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston
- Department of Psychology, Saint-Petersburg State University
| | | | - Iuliia An
- Department of Psychology, Saint-Petersburg State University
| | - Tatiana A. Kustova
- Center for Cognitive Sciences, Sirius University of Science and Technology
| | | | | | | | - Marina A. Zhukova
- Department of Psychology, University of Houston
- Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston
- Department of Psychology, Saint-Petersburg State University
- Center for Cognitive Sciences, Sirius University of Science and Technology
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston
- Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston
- Department of Psychology, Saint-Petersburg State University
- Center for Cognitive Sciences, Sirius University of Science and Technology
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine
- Child Study Center, Yale University
- Haskins Laboratories, Yale University
- Research Administration, Moscow State University for Psychology and Education
| |
Collapse
|
20
|
Sorenson K, Kendall E, Grell H, Kang M, Shaffer C, Hwang S. Intranasal Oxytocin in Pediatric Populations: Exploring the Potential for Reducing Irritability and Modulating Neural Responses: A Mini Review. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230008. [PMID: 37990750 PMCID: PMC10662790 DOI: 10.20900/jpbs.20230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Endogenous neuropeptide Oxytocin (OXT) plays a crucial role in modulating pro-social behavior and the neural response to social/emotional stimuli. Intranasal administration is the most common method of delivering OXT. Intranasal OXT has been implemented in clinical studies of various psychiatric disorders with mixed results, mainly related to lack of solid pharmacodynamics and pharmacokinetics model. Due to intranasal OXT's mechanism of reducing the activation of neural areas implicated in emotional responding and emotion regulation, a psychopathology with this target mechanism could be potentially excellent candidate for future clinical trial. In this regard, irritability in youth may be a very promising target for clinical studies of intranasal OXT. Here we provide a mini-review of fifteen randomized controlled trials in pediatric patients with diagnoses of autism spectrum disorder (ASD), Prader-Willi syndrome (PWS), or Phelan-McDermid syndrome (PMS). Most studies had small sample sizes and varying dosages, with changes in irritability, mainly as adverse events (AEs). Neuroimaging results showed modulation of the reward processing system and the neural areas implicated in social-emotional information processing by intranasal OXT administration. Further research is needed to determine the most effective dose and duration of OXT treatment, carefully select target psychopathologies, verify target engagement, and measure adverse event profiles.
Collapse
Affiliation(s)
- Kennet Sorenson
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Emilee Kendall
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hannah Grell
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Minjoo Kang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christopher Shaffer
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
Highly Specific Detection of Oxytocin in Saliva. Int J Mol Sci 2023; 24:ijms24054832. [PMID: 36902261 PMCID: PMC10003004 DOI: 10.3390/ijms24054832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Oxytocin is a peptide neurophysin hormone made up of nine amino acids and is used in induction of one in four births worldwide (more than 13 percent in the United States). Herein, we have developed an antibody alternative aptamer-based electrochemical assay for real-time and point-of-care detection of oxytocin in non-invasive saliva samples. This assay approach is rapid, highly sensitive, specific, and cost-effective. Our aptamer-based electrochemical assay can detect as little as 1 pg/mL of oxytocin in less than 2 min in commercially available pooled saliva samples. Additionally, we did not observe any false positive or false negative signals. This electrochemical assay has the potential to be utilized as a point-of-care monitor for rapid and real-time oxytocin detection in various biological samples such as saliva, blood, and hair extracts.
Collapse
|
22
|
Siecinski SK, Giamberardino SN, Spanos M, Hauser AC, Gibson JR, Chandrasekhar T, Trelles MDP, Rockhill CM, Palumbo ML, Cundiff AW, Montgomery A, Siper P, Minjarez M, Nowinski LA, Marler S, Kwee LC, Shuffrey LC, Alderman C, Weissman J, Zappone B, Mullett JE, Crosson H, Hong N, Luo S, She L, Bhapkar M, Dean R, Scheer A, Johnson JL, King BH, McDougle CJ, Sanders KB, Kim SJ, Kolevzon A, Veenstra-VanderWeele J, Hauser ER, Sikich L, Gregory SG. Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder. Autism Res 2023; 16:502-523. [PMID: 36609850 PMCID: PMC10023458 DOI: 10.1002/aur.2884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT), the brain's most abundant neuropeptide, plays an important role in social salience and motivation. Clinical trials of the efficacy of OT in autism spectrum disorder (ASD) have reported mixed results due in part to ASD's complex etiology. We investigated whether genetic and epigenetic variation contribute to variable endogenous OT levels that modulate sensitivity to OT therapy. To carry out this analysis, we integrated genome-wide profiles of DNA-methylation, transcriptional activity, and genetic variation with plasma OT levels in 290 participants with ASD enrolled in a randomized controlled trial of OT. Our analysis identified genetic variants with novel association with plasma OT, several of which reside in known ASD risk genes. We also show subtle but statistically significant association of plasma OT levels with peripheral transcriptional activity and DNA-methylation profiles across several annotated gene sets. These findings broaden our understanding of the effects of the peripheral oxytocin system and provide novel genetic candidates for future studies to decode the complex etiology of ASD and its interaction with OT signaling and OT-based interventions. LAY SUMMARY: Oxytocin (OT) is an abundant chemical produced by neurons that plays an important role in social interaction and motivation. We investigated whether genetic and epigenetic factors contribute to variable OT levels in the blood. To this, we integrated genetic, gene expression, and non-DNA regulated (epigenetic) signatures with blood OT levels in 290 participants with autism enrolled in an OT clinical trial. We identified genetic association with plasma OT, several of which reside in known autism risk genes. We also show statistically significant association of plasma OT levels with gene expression and epigenetic across several gene pathways. These findings broaden our understanding of the factors that influence OT levels in the blood for future studies to decode the complex presentation of autism and its interaction with OT and OT-based treatment.
Collapse
Affiliation(s)
- Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Marina Spanos
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Annalise C Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Tara Chandrasekhar
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - M D Pilar Trelles
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol M Rockhill
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Michelle L Palumbo
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Paige Siper
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mendy Minjarez
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Lisa A Nowinski
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Marler
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Lydia C Kwee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Cheryl Alderman
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jordana Weissman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brooke Zappone
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Jennifer E Mullett
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hope Crosson
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Natalie Hong
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Sheng Luo
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Lilin She
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Manjushri Bhapkar
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Russell Dean
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abby Scheer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jacqueline L Johnson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan H King
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Christopher J McDougle
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin B Sanders
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Soo-Jeong Kim
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Alexander Kolevzon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Linmarie Sikich
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
23
|
Tabak BA, Leng G, Szeto A, Parker KJ, Verbalis JG, Ziegler TE, Lee MR, Neumann ID, Mendez AJ. Advances in human oxytocin measurement: challenges and proposed solutions. Mol Psychiatry 2023; 28:127-140. [PMID: 35999276 PMCID: PMC9812775 DOI: 10.1038/s41380-022-01719-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023]
Abstract
Oxytocin, a neuropeptide known for its role in reproduction and socioemotional processes, may hold promise as a therapeutic agent in treating social impairments in patient populations. However, research has yet to uncover precisely how to manipulate this system for clinical benefit. Moreover, inconsistent use of standardized and validated oxytocin measurement methodologies-including the design and study of hormone secretion and biochemical assays-present unresolved challenges. Human studies measuring peripheral (i.e., in plasma, saliva, or urine) or central (i.e., in cerebrospinal fluid) oxytocin concentrations have involved very diverse methods, including the use of different assay techniques, further compounding this problem. In the present review, we describe the scientific value in measuring human endogenous oxytocin concentrations, common issues in biochemical analysis and study design that researchers face when doing so, and our recommendations for improving studies using valid and reliable methodologies.
Collapse
Affiliation(s)
- Benjamin A Tabak
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| | - Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Angela Szeto
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Joseph G Verbalis
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Toni E Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core Laboratory, National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Mary R Lee
- Veterans Affairs Medical Center, Washington, DC, USA
| | - Inga D Neumann
- Department of Behaviour and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Armando J Mendez
- Diabetes Research Institute, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
24
|
Polymorphisms in the oxytocin receptor and their association with apathy and impaired social cognition in Huntington's disease. Neurol Sci 2022; 43:6079-6085. [PMID: 35725858 DOI: 10.1007/s10072-022-06226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder characterized by cognitive, motor, and neuropsychiatric manifestations. Oxytocin is a neuropeptide studied for its role as a neuromodulator regulating multiple behaviors linked to social cognition. Genetic variation of oxytocin receptor (OXTR) might interact in the etiology and development of several impaired social behaviors. Our aim was to study OXTR polymorphisms and their relationship with apathy and social cognition in HD. METHODS OXTR was sequenced in 21 cases and 22 controls. We assessed apathy, anxiety, depression, and irritability (Hospital Anxiety and Depression Scale-Snaith Irritability scale, HADS-SIS) and social cognition (Ekman 60 faces test), motor symptoms and functionality with the total functional capacity (TFC), and the Unified HD rating Scale (UHDRS). RESULTS We identified ten variants in OXTR. Three variants were classified as possibly damaging (p.Arg40Gly) or probably damaging (p.Leu46Pro, p.Thr102Asn). Subjects carrying the wild-type genotype of the synonymous variant p.Val45 showed a significantly lower score in the HADS-SIS scale, related to lower irritability (p = 0.013). The only subject carrying the heterozygous genotype of the synonymous variant p.Leu62 showed a significantly higher score on Ekman scale, compared to wild-type (p = 0.049); however, this finding was not confirmed after bootstrapping. CONCLUSION Variations in OXTR could have a relevant role in the correct development of social and cognitive functions. Future approaches will include the molecular study of p.Arg40Gly, p.Leu46Pro, and p.Thr102Asn to confirm their pathogenicity, as well as the validation of the influence of p.Val45 and p.Leu62 variants for their involvement in irritability and social cognition in HD.
Collapse
|
25
|
Clarke L, Zyga O, Pineo-Cavanaugh PL, Jeng M, Fischbein NJ, Partap S, Katznelson L, Parker KJ. Socio-behavioral dysfunction in disorders of hypothalamic-pituitary involvement: The potential role of disease-induced oxytocin and vasopressin signaling deficits. Neurosci Biobehav Rev 2022; 140:104770. [PMID: 35803395 PMCID: PMC10999113 DOI: 10.1016/j.neubiorev.2022.104770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Disorders involving hypothalamic and pituitary (HPIT) structures-including craniopharyngioma, Langerhans cell histiocytosis, and intracranial germ cell tumors-can disrupt brain and endocrine function. An area of emerging clinical concern in patients with these disorders is the co-occurring socio-behavioral dysfunction that persists after standard hormone replacement therapy. Although the two neuropeptides most implicated in mammalian social functioning (oxytocin and arginine vasopressin) are of hypothalamic origin, little is known about how disease-induced damage to HPIT structures may disrupt neuropeptide signaling and, in turn, impact patients' socio-behavioral functioning. Here we provide a clinical primer on disorders of HPIT involvement and a review of neuropeptide signaling and socio-behavioral functioning in relevant animal models and patient populations. This collective evidence suggests that neuropeptide signaling disruptions contribute to socio-behavioral deficits experienced by patients with disorders of HPIT involvement. A better understanding of the biological underpinnings of patients' socio-behavioral symptoms is now needed to enable the development of the first targeted pharmacological strategies by which to manage patients' socio-behavioral dysfunction.
Collapse
Affiliation(s)
- Lauren Clarke
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Olena Zyga
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Psalm L Pineo-Cavanaugh
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Michael Jeng
- Department of Pediatrics (Hematology/Oncology Division), Stanford University, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Nancy J Fischbein
- Department of Radiology, Stanford University, 450 Quarry Rd, Suite 5659, Palo Alto, CA 94304, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences (Child Neurology Division), Stanford University, 750 Welch Road, Suite 317, Palo Alto, CA 94304, USA
| | - Laurence Katznelson
- Departments of Neurosurgery and Medicine (Endocrinology Division), Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA; Department of Comparative Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Putnam PT, Chang SWC. Interplay between the oxytocin and opioid systems in regulating social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210050. [PMID: 35858101 PMCID: PMC9272147 DOI: 10.1098/rstb.2021.0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 07/30/2023] Open
Abstract
The influence of neuromodulators on brain activity and behaviour is undeniably profound, yet our knowledge of the underlying mechanisms, or ability to reliably reproduce effects across varying conditions, is still lacking. Oxytocin, a hormone that acts as a neuromodulator in the brain, is an example of this quandary; it powerfully shapes behaviours across nearly all mammalian species, yet when manipulated exogenously can produce unreliable or sometimes unexpected behavioural results across varying contexts. While current research is rapidly expanding our understanding of oxytocin, interactions between oxytocin and other neuromodulatory systems remain underappreciated in the current literature. This review highlights interactions between oxytocin and the opioid system that serve to influence social behaviour and proposes a parallel-mechanism hypothesis to explain the supralinear effects of combinatorial neuropharmacological approaches. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
27
|
Frehner SS, Dooley KT, Palumbo MC, Smith AL, Goodman MM, Bales KL, Freeman SM. Effect of sex and autism spectrum disorder on oxytocin receptor binding and mRNA expression in the dopaminergic pars compacta of the human substantia nigra. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210118. [PMID: 35858098 PMCID: PMC9272142 DOI: 10.1098/rstb.2021.0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/13/2022] [Indexed: 12/22/2022] Open
Abstract
Oxytocin is an endogenous neuropeptide hormone that influences social behaviour and bonding in mammals. Variations in oxytocin receptor (OXTR) expression may play a role in the social deficits seen in autism spectrum disorder. Previous studies from our laboratory found a dense population of OXTR in the human substantia nigra (SN), a basal ganglia structure in the midbrain that is important in both movement and reward pathways. Here, we explore whether differences in OXTR can be identified in the dopaminergic SN pars compacta of individuals with autism. Postmortem human brain tissue specimens were processed for OXTR autoradiography from four groups: males with autism, females with autism, typically developing (TD) males and TD females. We found that females with autism had significantly lower levels of OXTR than the other groups. To examine potential gene expression differences, we performed in situ hybridization in adjacent slides to visualize and quantify OXTR mRNA as well as mRNA for tyrosine hydroxylase. We found no differences in mRNA levels for either gene across the four groups. These results suggest that a dysregulation in local OXTR protein translation or increased OXTR internalization/recycling may contribute to the differences in social symptoms seen in females with autism. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Sage S. Frehner
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Kip T. Dooley
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Michelle C. Palumbo
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
- Department of Behavioral Neuroscience, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Aaron L. Smith
- Department of Radiology, Emory University, Atlanta, GA 30322, USA
| | - Mark M. Goodman
- Department of Radiology, Emory University, Atlanta, GA 30322, USA
| | - Karen L. Bales
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| | - Sara M. Freeman
- Department of Biology, Utah State University, Logan, UT 84322, USA
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
28
|
Imam B, Rahmatinia M, Shahsavani A, Khodagholi F, Hopke PK, Bazazzpour S, Hadei M, Yarahmadi M, Abdollahifar MA, Torkmahalleh MA, Kermani M, Ilkhani S, MirBehbahani SH. Autism-like symptoms by exposure to air pollution and valproic acid-induced in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59263-59286. [PMID: 35384534 DOI: 10.1007/s11356-022-19865-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Exposure to air pollution during prenatal or neonatal periods is associated with autism spectrum disorder (ASD) according to epidemiology studies. Furthermore, prenatal exposure to valproic acid (VPA) has also been found to be associated with an increased prevalence of ASD. To assess the association between simultaneous exposure to VPA and air pollutants, seven exposure groups of rats were included in current study (PM2.5 and gaseous pollutants exposed - high dose of VPA (PGE-high); PM2.5 and gaseous pollutants exposed - low dose of VPA (PGE-low); gaseous pollutants only exposed - high dose of VPA (GE-high); gaseous pollutants only exposed - low dose of VPA (GE-low); clean air exposed - high dose of VPA (CAE-high); clean air exposed - low dose of VPA (CAE-low) and clean air exposed (CAE)). The pollution-exposed rats were exposed to air pollutants from embryonic day (E0) to postnatal day 42 (PND42). In all the induced groups, decreased oxidative stress biomarkers, decreased oxytocin receptor (OXTR) levels, and increased the expression of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNF-α) were found. The volumes of the cerebellum, hippocampus, striatum, and prefrontal decreased in all induced groups in comparison to CAE. Additionally, increased numerical density of glial cells and decreased of numerical density of neurons were found in all induced groups. Results show that simultaneous exposure to air pollution and VPA can cause ASD-related behavioral deficits and air pollution reinforced the mechanism of inducing ASD ̉s in VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Bahran Imam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rahmatinia
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| | - Shahriyar Bazazzpour
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yarahmadi
- Environmental and Occupational Health Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
29
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
30
|
Kou J, Zhang Y, Zhou F, Sindermann C, Montag C, Becker B, Kendrick KM. A randomized trial shows dose-frequency and genotype may determine the therapeutic efficacy of intranasal oxytocin. Psychol Med 2022; 52:1959-1968. [PMID: 33272333 DOI: 10.1017/s0033291720003803] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The neuropeptide oxytocin is proposed as a promising therapy for social dysfunction by modulating amygdala-mediated social-emotional behavior. Although clinical trials report some benefits of chronic treatment, it is unclear whether efficacy may be influenced by dose frequency or genotype. METHODS In a randomized, double-blind, placebo-controlled pharmaco-functional magnetic resonance imaging trial (150 male subjects), we investigated acute and different chronic (every day or on alternate days for 5 days) intranasal oxytocin (24 international units) effects and oxytocin receptor genotype-mediated treatment sensitivity on amygdala responses to face emotions. We also investigated similar effects on resting-state functional connectivity between the amygdala and prefrontal cortex. RESULTS A single dose of oxytocin-reduced amygdala responses to all face emotions but for threatening (fear and anger) and happy faces, this effect was abolished after daily doses for 5 days but maintained by doses given every other day. The latter dose regime also enhanced associated anxious-arousal attenuation for fear faces. Oxytocin effects on reducing amygdala responses to face emotions only occurred in AA homozygotes of rs53576 and A carriers of rs2254298. The effects of oxytocin on resting-state functional connectivity were not influenced by either dose-frequency or receptor genotype. CONCLUSIONS Infrequent chronic oxytocin administration may be therapeutically most efficient and its anxiolytic neural and behavioral actions are highly genotype-dependent in males.
Collapse
Affiliation(s)
- Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yingying Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cornelia Sindermann
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
31
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Itskovich E, Bowling DL, Garner JP, Parker KJ. Oxytocin and the social facilitation of placebo effects. Mol Psychiatry 2022; 27:2640-2649. [PMID: 35338314 PMCID: PMC9167259 DOI: 10.1038/s41380-022-01515-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/30/2023]
Abstract
Significant clinical improvement is often observed in patients who receive placebo treatment in randomized double-blind placebo-controlled trials. While a proportion of this "improvement" reflects experimental design limitations (e.g., reliance on subjective outcomes, unbalanced groups, reporting biases), some of it reflects genuine improvement corroborated by physiological change. Converging evidence across diverse medical conditions suggests that clinically-relevant benefits from placebo treatment are associated with the activation of brain reward circuits. In parallel, evidence has accumulated showing that such benefits are facilitated by clinicians that demonstrate warmth and proficiency during interactions with patients. Here, we integrate research on these neural and social aspects of placebo effects with evidence linking oxytocin and social reward to advance a neurobiological account for the social facilitation of placebo effects. This account frames oxytocin as a key mediator of treatment success across a wide-spectrum of interventions that increase social connectedness, thereby providing a biological basis for assessing this fundamental non-specific element of medical care.
Collapse
Affiliation(s)
- Elena Itskovich
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel L. Bowling
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph P. Garner
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Karen J. Parker
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
33
|
DuBois M, Tseng A, Francis SM, Haynos AF, Peterson CB, Jacob S. Utility of Downstream Biomarkers to Assess and Optimize Intranasal Delivery of Oxytocin. Pharmaceutics 2022; 14:1178. [PMID: 35745751 PMCID: PMC9228821 DOI: 10.3390/pharmaceutics14061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT), a mammalian neurohormone associated with social cognition and behavior, can be administered in its synthetic form intranasally (IN) and impact brain chemistry and behavior. IN-OT shows potential as a noninvasive intervention for disorders characterized by social challenges, e.g., autism spectrum disorder (ASD) and anorexia nervosa (AN). To evaluate IN-OT's efficacy, we must quantify OT uptake, availability, and clearance; thus, we assessed OT levels in urine (uOT) before and after participants (26 ASD, 7 AN, and 7 healthy controls) received 40 IU IN-OT or placebo across two sessions using double-blind, placebo-controlled crossover designs. We also measured uOT and plasma (pOT) levels in a subset of participants to compare the two sampling methods. We found significantly higher uOT and pOT following intranasal delivery of active compound versus placebo, but analyses yielded larger effect sizes and more clearly differentiated pre-post-OT levels for uOT than pOT. Further, we applied a two-step cluster (TSC), blinded backward-chaining approach to determine whether active/placebo groups could be identified by uOT and pOT change alone; uOT levels may serve as an accessible and accurate systemic biomarker for OT dose-response. Future studies will explore whether uOT levels correlate directly with behavioral targets to improve dosing for therapeutic goals.
Collapse
Affiliation(s)
| | | | | | | | | | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.D.); (A.T.); (S.M.F.); (A.F.H.); (C.B.P.)
| |
Collapse
|
34
|
Skyberg AM, Beeler-Duden S, Goldstein AM, Gancayco CA, Lillard AS, Connelly JJ, Morris JP. Neuroepigenetic impact on mentalizing in childhood. Dev Cogn Neurosci 2022; 54:101080. [PMID: 35158164 PMCID: PMC8844842 DOI: 10.1016/j.dcn.2022.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Mentalizing, or the ability to understand the mental states and intentions of others, is an essential social cognitive function that children learn and continue to cultivate into adolescence. While most typically developing children acquire sufficient mentalizing skills, individual differences in mentalizing persist throughout childhood and are likely influenced by a combination of cognitive functioning, the social environment, and biological factors. DNA methylation of the oxytocin receptor gene (OXTRm) impacts gene expression and is associated with increased brain activity in mentalizing regions during displays of animacy in healthy young adults. The establishment, fine-tuning, and implications of such associations in the context of broader social functioning remain unclear. Using a developmental neuroimaging epigenetic approach, we investigated the contributions of OXTRm to individual variability in brain function during animate motion perception in middle childhood. We find that higher levels of OXTRm are associated with increased neural responses in the left temporo-parietal junction and inferior frontal gyrus. We also find a positive association between neural activity in LTPJ and social skills. These findings provide evidence of epigenetic influence on the developing child brain and demonstrate that variability in neural social perception in childhood is multifaceted with contributions from individual social experience and the endogenous oxytocin system.
Collapse
Affiliation(s)
- Amalia M Skyberg
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | - Stefen Beeler-Duden
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | - Alison M Goldstein
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | | | - Angeline S Lillard
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | - Jessica J Connelly
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | - James P Morris
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA.
| |
Collapse
|
35
|
Cai XE, Le J, Shou XJ, Wu-Yun GW, Wang XX, Han SP, Han JS, Kendrick KM, Zhang R. The salience of competing nonsocial objects reduces gaze toward social stimuli, but not the eyes, more in typically developing than autistic boys. Autism Res 2022; 15:1043-1055. [PMID: 35357777 DOI: 10.1002/aur.2714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Decreased attention to social information is considered an early emerging symptom of autism spectrum disorder (ASD), although the underlying causes remain controversial. Here we explored the impact of nonsocial object salience on reduced attention to social stimuli in male ASD compared with typically developing (TD) children. Correlations with blood concentrations of neuropeptides linked with social cognition were also investigated. Eye-tracking was performed in 102 preschool-aged boys (50 ASD, 52 TD) using a paradigm with social (faces) versus nonsocial (objects) stimuli presented in pairs in two conditions where nonsocial stimulus salience was varied. Basal oxytocin (OXT) and vasopressin concentrations were measured in blood. Compared with TD boys those with ASD viewed social stimuli less only when they were paired with low-salience nonsocial objects. Additionally, boys with ASD spent less time than TD ones viewing facial features, particularly the eyes. In TD boys, OXT concentrations and cognitive development scores were positively associated with time spent viewing the eye region, whereas for boys with ASD associations with time spent viewing faces were negative. Reduced gaze toward social stimuli in ASD relative to TD individuals may therefore be influenced by how salient the paired nonsocial objects are for the latter. On the other hand, reduced interest in the eyes of faces in boys with ASD is not influenced by how salient competing nonsocial stimuli are. Basal OXT concentrations and cognitive development scores are predictive of time spent viewing social stimuli in TD boys (eyes) and those with ASD (faces) but in the opposite direction. LAY SUMMARY: Children with autism exhibit reduced attention to social paired with nonsocial stimuli compared to typically developing children. Using eye-tracking we show this difference is due to typically developing rather than autistic boys being more influenced by how interesting competing nonsocial objects are. On the other hand, reduced time looking at the eyes in autistic relative to typically developing boys is unaffected by nonsocial object salience. Time spent viewing social stimuli is associated with cognitive development and blood levels of oxytocin.
Collapse
Affiliation(s)
- Xiao-E Cai
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Key Laboratory for Neuroscience, Ministry of Health, Beijing, China.,Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Jiao Le
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Jing Shou
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Key Laboratory for Neuroscience, Ministry of Health, Beijing, China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Key Laboratory of Brain Imaging and Connectomics and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gao-Wa Wu-Yun
- Department of Preschool Education, Teachers' College of Beijing Union University, Beijing, China
| | - Xiao-Xi Wang
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Key Laboratory for Neuroscience, Ministry of Health, Beijing, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Song-Ping Han
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Key Laboratory for Neuroscience, Ministry of Health, Beijing, China
| | - Ji-Sheng Han
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Key Laboratory for Neuroscience, Ministry of Health, Beijing, China
| | - Keith M Kendrick
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education, Key Laboratory for Neuroscience, Ministry of Health, Beijing, China.,Autism Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
36
|
Al-Ali Z, Yasseen AA, Al-Dujailli A, Al-Karaqully AJ, McAllister KA, Jumaah AS. The oxytocin receptor gene polymorphism rs2268491 and serum oxytocin alterations are indicative of autism spectrum disorder: A case-control paediatric study in Iraq with personalized medicine implications. PLoS One 2022; 17:e0265217. [PMID: 35316293 PMCID: PMC8939799 DOI: 10.1371/journal.pone.0265217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Impairment of social functioning skills is a key hallmark of autism. The neuropeptide oxytocin (OXT) is a blood-based biomarker of social functioning, and a candidate for individualized treatment of ASD. The effects of OXT on the social brain are mediated by the OXT receptor (OXTR). This study assessed the clinical utility of blood OXT serum levels and the OXT receptor (OXTR) genotype as biomarkers of autism and its severity in a pediatric population in Iraq.
Methods
Blood samples were collected from patients with a clinical diagnosis of ASD (n = 60) and corresponding age and gender matched healthy controls (n = 60). All clinical samples were processed at the Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa in Iraq. Blood serum was assayed for OXT by sandwich ELISA. Receiver operator analysis (ROC) determined area under the curve (AUC), cutoff values, and sensitivity and specificity of OXT values for accuracy of diagnosis of ASD. Isolated genomic DNA was genotyped for the OXTR gene rs2268491(C/T) SNP using allele-specific PCR. The significance of genotype (CC, CT, and TT) and allele (C and T) distributions in different patient groups was assessed using odd ratios (OR) with 95% confidence intervals (CI) and the Chi-square test. All statistical analysis was performed used SPSS software.
Results
Study characteristics in the ASD population revealed a high level of consanguinity (36.66%), and ASD recurrence rate (11.66%) and family history (28.33%). OXT levels in patients with ASD (157.58±28.81 pg/ml) were significantly higher (p = 0.003) compared to controls (75.03±6.38 pg/ml). Within stratified ASD severity groups—OXT levels were significantly different (P = 0.032). ROC analysis determined similar AUC values for overall ASD (0.807), and stratified mild (0.793), moderate (0.889), and severe categories (0.795). The best cutoff for diagnosis of ASD was 83.8 pg/ml OXT with a sensitivity and specificity of 80% and 72.1% respectively. OXTR gene rs2268491(C/T) genotyping found that ASD patients have significantly lower (p = 0.021) genotype CC frequency and a significantly higher (p = 0.04) occurrence of the heterozygous CT genotype relative to controls. ASD subjects produced highest OXT levels with the TT genotype. T allele distribution was higher in ASD males. ASD males had significantly lower distribution of the CC genotype (48.89%) compared to females (80%) (Chi-square test: χ2 = 4.43, df = 1, p = 0.035). Whereas distribution of the CT genotype was significantly higher in autistic males (44.45%) compared to females (13.33%) (Chi-square test: χ2 = 4.68, df = 1, p = 0.03).
Conclusion
Peripheral OXT levels and OXTR genetic alterations are potential biomarkers of social functioning in the ASD patient setting. The stratification of patients with ASD into severity categories shows significant differences both in OXT levels and OXTR (rs2268491, C/T) genotype and allele distributions, that can be sex dependent. OXT based therapies will require personalized medicine tactics to correctly identify patients with ASD who require neuropeptide boosting in social settings.
Collapse
Affiliation(s)
- Zainab Al-Ali
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kerbala, Kerbala, Kerbala Governorate, Iraq
| | - Akeel Abed Yasseen
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Arafat Al-Dujailli
- Department of Internal Medicine, Faculty of Medicine, University of Kufa, Kufa, Najaf Governorate, Iraq
| | - Ahmed Jafar Al-Karaqully
- Head of Psychiatric Department, Alhussain Teaching Hospital, Kerbala City, Kerbala Governorate, Iraq
| | | | - Alaa Salah Jumaah
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
37
|
Uljarević M, Bott NT, Libove RA, Phillips JM, Parker KJ, Hardan AY. Characterizing Emotion Recognition and Theory of Mind Performance Profiles in Unaffected Siblings of Autistic Children. Front Psychol 2022; 12:736324. [PMID: 35283803 PMCID: PMC8907847 DOI: 10.3389/fpsyg.2021.736324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Emotion recognition skills and the ability to understand the mental states of others are crucial for normal social functioning. Conversely, delays and impairments in these processes can have a profound impact on capability to engage in, maintain, and effectively regulate social interactions. Therefore, this study aimed to compare the performance of 42 autistic children (Mage = 8.25 years, SD = 2.22), 45 unaffected siblings (Mage = 8.65 years, SD = 2.40), and 41 typically developing (TD) controls (Mage = 8.56 years, SD = 2.35) on the Affect Recognition (AR) and Theory of Mind (TOM) subtests of the Developmental Neuropsychological Assessment Battery. There were no significant differences between siblings and TD controls. Autistic children showed significantly poorer performance on AR when compared to TD controls and on TOM when compared to both TD controls and unaffected siblings. An additional comparison of ASD, unaffected sibling and TD control subsamples, matched on full-scale IQ, revealed no group differences for either AR or TOM. AR and TOM processes have received less research attention in siblings of autistic children and remain less well characterized. Therefore, despite limitations, findings reported here contribute to our growing understanding of AR and TOM abilities in siblings of autistic children and highlight important future research directions.
Collapse
Affiliation(s)
- Mirko Uljarević
- Faculty of Medicine, Dentistry, and Health Sciences, Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Psychology and Counseling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Nicholas T. Bott
- Department of Medicine, Clinical Excellence Research Center, Stanford University School of Medicine, Stanford, CA, United States
- PGSP-Stanford Consortium, Department of Psychology, Palo Alto University, Palo Alto, CA, United States
| | - Robin A. Libove
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer M. Phillips
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Karen J. Parker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Antonio Y. Hardan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
38
|
Kohlhoff J, Cibralic S, Hawes D, Eapen V. Oxytocin receptor gene (OXTR) polymorphisms and social, emotional and behavioral functioning in children and adolescents: a systematic narrative review. Neurosci Biobehav Rev 2022; 135:104573. [PMID: 35149102 DOI: 10.1016/j.neubiorev.2022.104573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
This study systematically reviewed available evidence regarding associations between polymorphisms of the oxytocin receptor (OXTR) gene and socio-emotional and behavioral functioning in children and adolescents. The search yielded 69 articles, which were grouped into nine categories: depression, anxiety, and internalizing symptoms, alcohol abuse, borderline personality disorder, conduct disorder symptoms or diagnosis, autism spectrum disorder, Attention deficit hyperactivity disorder, early childhood attachment and behavior, pro-social skills, and resilience. Direct and/or gene x environment interactions were identified in over half of the studies. ASD and conduct disorder (including callous unemotional traits) were the diagnoses that were most studied and for which there was the strongest evidence of direct links with OXTR polymorphisms. In most studies identifying gene x environment interactions, the candidate OXTR polymorphism was rs53576. Results suggest that OXTR polymorphisms are associated with social, emotional or behavioural functioning in children and adolescents. The mixed findings do, however, highlight the need for further research.
Collapse
Affiliation(s)
- Jane Kohlhoff
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia; Karitane, P.O. Box 241, Villawood NSW 2163, Australia.
| | - Sara Cibralic
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia.
| | - David Hawes
- School of Psychology, Faculty of Science, University of Sydney, Camperdown NSW 2006, Australia.
| | - Valsamma Eapen
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia; Academic Unit of Child Psychiatry and Clinical Academic, South West Sydney Local Health District, Liverpool Hospital, Elizabeth Street, Liverpool NSW 2170, Australia.
| |
Collapse
|
39
|
Pichugina YA, Maksimova IV, Berezovskaya MA, Afanaseva NA, Pichugin AB, Dmitrenko DV, Timechko EE, Salmina AB, Lopatina OL. Salivary oxytocin in autistic patients and in patients with intellectual disability. Front Psychiatry 2022; 13:969674. [PMID: 36506430 PMCID: PMC9729552 DOI: 10.3389/fpsyt.2022.969674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Assessing the role of oxytocin (OT) in the regulation of social interaction is a promising area that opens up new opportunities for studying the mechanisms of developing autism spectrum disorders (ASD). AIM To assess the correlation between the salivary OT level and age-related and psychopathological symptoms of children with intellectual disability (ID) and ASD. METHODS We used the clinical and psychopathological method to assess the signs of ASD based on International Classification of Diseases (ICD-10), the severity of ASD was specified by the selected Russian type version "Childhood Autism Rating Scale" (CARS). Patients of both groups had an IQ score below 70 points. RESULTS The median and interquartile range of salivary OT levels in patients with ID and ASD were 23.897 [14.260-59.643] pg/mL, and in the group ID without ASD - Me = 50.896 [33.502-83.774] pg/mL (p = 0.001). The severity of ASD on the CARS scale Me = 51.5 [40.75-56.0] score in the group ID with ASD, and in the group ID without ASD-at the level of Me = 32 [27.0-38.0] points (p < 0.001). According to the results of correlation-regression analysis in the main group, a direct correlation was established between salivary OT level and a high degree of severity of ASD Rho = 0.435 (p = 0.005). There was no correlation between the salivary OT level and intellectual development in the group ID with ASD, Rho = 0.013 (p = 0.941) and we have found a relationship between oxytocin and intellectual development in the group ID without ASD, Rho = 0.297 (p = 0.005). There was no correlation between salivary OT and age, ASD and age. CONCLUSION The results of this study indicate that patients in the group ID with ASD demonstrated a lower level of salivary OT concentration and a direct relationship between the maximum values of this indicator and the severity of autistic disorders, in contrast to patients in the group ID without ASD.
Collapse
Affiliation(s)
- Yulia A Pichugina
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Irina V Maksimova
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Marina A Berezovskaya
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Natalya A Afanaseva
- Department of Psychiatry and Narcology, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Aleksey B Pichugin
- Social Neuroscience Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Diana V Dmitrenko
- Department of Medical Genetics of Clinical Neurophysiology, Institute of Postgraduate Education, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.,Medical Genetic Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Elena E Timechko
- Medical Genetic Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Alla B Salmina
- Laboratory of Experimental Brain Cytology, Department of Brain Studies, Research Center of Neurology, Moscow, Russia.,Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Olga L Lopatina
- Social Neuroscience Laboratory, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia.,Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
40
|
Structure-function relationships of the disease-linked A218T oxytocin receptor variant. Mol Psychiatry 2022; 27:907-917. [PMID: 34980886 PMCID: PMC9054668 DOI: 10.1038/s41380-021-01241-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Various single nucleotide polymorphisms (SNPs) in the oxytocin receptor (OXTR) gene have been associated with behavioral traits, autism spectrum disorder (ASD) and other diseases. The non-synonymous SNP rs4686302 results in the OXTR variant A218T and has been linked to core characteristics of ASD, trait empathy and preterm birth. However, the molecular and intracellular mechanisms underlying those associations are still elusive. Here, we uncovered the molecular and intracellular consequences of this mutation that may affect the psychological or behavioral outcome of oxytocin (OXT)-treatment regimens in clinical studies, and provide a mechanistic explanation for an altered receptor function. We created two monoclonal HEK293 cell lines, stably expressing either the wild-type or A218T OXTR. We detected an increased OXTR protein stability, accompanied by a shift in Ca2+ dynamics and reduced MAPK pathway activation in the A218T cells. Combined whole-genome and RNA sequencing analyses in OXT-treated cells revealed 7823 differentially regulated genes in A218T compared to wild-type cells, including 429 genes being associated with ASD. Furthermore, computational modeling provided a molecular basis for the observed change in OXTR stability suggesting that the OXTR mutation affects downstream events by altering receptor activation and signaling, in agreement with our in vitro results. In summary, our study provides the cellular mechanism that links the OXTR rs4686302 SNP with genetic dysregulations associated with aspects of ASD.
Collapse
|
41
|
Çalışkan E, Şahin MN, Güldağ MA. Oxytocin and Oxytocin Receptor Gene Regulation in Williams Syndrome: A Systematic Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:623-635. [PMID: 34970101 PMCID: PMC8686774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Williams Syndrome (WS) is a rare genetic multisystem disorder that occurs because of a deletion of approximately 25 genes in the 7q11.23 chromosome region. This causes dysmorphic facial appearances, multiple congenital cardiovascular defects, delayed motor skills, and abnormalities in connective tissues and the endocrine system. The patients are mostly diagnosed with mild to moderate mental retardation, however, they have a hyper sociable, socially dis-inhibited, and outgoing personality, empathetic behavior, and are highly talkative. Oxytocin (OT), a neuropeptide synthesized at the hypothalamus, plays an important role in cognition and behavior, and is thought to be affecting WS patients' attitudes at its different amounts. Oxytocin receptor gene (OXTR), on chromosome 3p25.3, is considered regulating oxytocin receptors, via which OT exerts its effect. WS is a crucial disorder to understand gene, hormone, brain, and behavior associations in terms of sociality and neuropsychiatric conditions. Alterations to the WS gene region offer an opportunity to deepen our understandings of autism spectrum disorder, schizophrenia, anxiety, or depression. We aim to systematically present the data available of OT/OXTR regulation and expression, and the evidence for whether these mechanisms are dysregulated in WS. These results are important, as they predict strong epigenetic control over social behavior by methylation, single nucleotide polymorphisms, and other alterations. The comparison and collaboration of these studies may help to establish a better treatment or management approach for patients with WS if backed up with future research.
Collapse
Affiliation(s)
- Elif Çalışkan
- Trakya University School of Medicine, Edirne,
Turkey,To whom all correspondence should be addressed:
Elif Çalışkan, Trakya University School of Medicine, Edirne, Turkey;
| | | | | |
Collapse
|
42
|
Leng G, Leng RI. Oxytocin: A citation network analysis of 10 000 papers. J Neuroendocrinol 2021; 33:e13014. [PMID: 34328668 DOI: 10.1111/jne.13014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 11/29/2022]
Abstract
Our understanding of the oxytocin system has been built over the last 70 years by the work of hundreds of scientists, reported in thousands of papers. Here, we construct a map to that literature, using citation network analysis in conjunction with bibliometrics. The map identifies ten major 'clusters' of papers on oxytocin that differ in their particular research focus and that densely cite papers from the same cluster. We identify highly cited papers within each cluster and in each decade, not because citations are a good indicator of quality, but as a guide to recognising what questions were of wide interest at particular times. The clusters differ in their temporal profiles and bibliometric features; here, we attempt to understand the origins of these differences.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rhodri I Leng
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
43
|
Ogi A, Naef V, Santorelli FM, Mariti C, Gazzano A. Oxytocin Receptor Gene Polymorphism in Lactating Dogs. Animals (Basel) 2021; 11:ani11113099. [PMID: 34827831 PMCID: PMC8614403 DOI: 10.3390/ani11113099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Oxytocin is commonly known for its role in mammalian bonding. Several studies have proved that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans, but studies on the possible correlation between canine social behavior and oxytocin are mainly focused on the human–dog bond, and there are no data on the possible correlation between oxytocin receptor gene polymorphism and the maternal behavior of this species. Since mother–litter interactions could have a severe impact in determining later behavior in domestic dogs, the aim of this work was to investigate the possible correlation between salivary oxytocin, maternal care and the one known single-nucleotide polymorphism (rs8679684) located in the untranslated regulatory region of the oxytocin receptor gene in 19 lactating Labrador Retriever dogs. A significant correlation between oxytocin receptor gene polymorphism, peripheral oxytocin and maternal behavior in dogs was found. This implies that a more functional oxytocinergic system would lead to better mothering in dogs. Abstract Genetic variations in the oxytocinergic system, known to regulate social behavior throughout the evolution of mammals, are believed to account for differences in mammalian social behavior. Particularly, polymorphic variants of the oxytocin receptor (OXTR) gene have been associated with behavioral variations in both humans and dogs. In this study, we offered evidence of the correlation between levels of salivary oxytocin (sOXT), maternal behavior and a single-nucleotide gene variant in OXTR (rs8679684) in nineteen lactating Labrador Retriever dogs. Carriers of at least one copy of the minor A allele showed higher levels of sOXT and maternal care in comparison with the homozygous T allele carriers. Considering the relevance of mother care in newborn development, these findings could help us to better understand the possible impact of variants in the OXTR gene in selecting dams.
Collapse
Affiliation(s)
- Asahi Ogi
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
- Correspondence:
| | - Valentina Naef
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
| | - Filippo Maria Santorelli
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, 56128 Calambrone, Italy; (V.N.); (F.M.S.)
| | - Chiara Mariti
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (C.M.); (A.G.)
| |
Collapse
|
44
|
Abstract
Endophenotypes are measurable markers of genetic vulnerability to current or future disorder. Autism spectrum disorder (ASD) is well-suited to be examined within an endophenotype framework given past and current emphases on the broader autism phenotype and early detection. We conducted a scoping review to identify potential socially-related endophenotypes of ASD. We focused on paradigms related to sociality (e.g., theory of mind (TOM), social attention), which comprise most of this literature. We integrated findings from traditional behavioral paradigms with brain-based measures (e.g., electroencephalography, functional magnetic resonance imaging). Broadly, infant research regarding social attention and responsivity (Research Domain Criteria (RDoC) domain of affiliation) and attention to faces and voices (social communication) finds consistent abnormality in vulnerable infant siblings. Several additional paradigms that have shown differences in vulnerable infants and young children include animacy perception tasks (perception and understanding of others), measures of recognition and response to familiar faces (attachment), and joint attention and false-belief tasks (understanding mental states). Research areas such as alexithymia (the perception and understanding of self), empathic responding, and vocal prosody may hold interest; however, challenges in measurement across populations and age ranges is a limiting factor. Future work should address sex differences and age dependencies, specificity to ASD, and heterogeneous genetic pathways to disorder within samples individuals with ASD and relatives.
Collapse
|
45
|
Mayer AV, Preckel K, Ihle K, Piecha FA, Junghanns K, Reiche S, Rademacher L, Müller-Pinzler L, Stolz DS, Kamp-Becker I, Stroth S, Roepke S, Küpper C, Engert V, Singer T, Kanske P, Paulus FM, Krach S. Assessment of Reward-Related Brain Function After a Single Dose of Oxytocin in Autism: A Randomized Controlled Trial. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:136-146. [PMID: 36325162 PMCID: PMC9616329 DOI: 10.1016/j.bpsgos.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by difficulties in social communication and interaction, which have been related to atypical neural processing of rewards, especially in the social domain. As intranasal oxytocin has been shown to modulate activation of the brain’s reward circuit, oxytocin might ameliorate the processing of social rewards in ASD and thus improve social difficulties. Methods In this randomized, double-blind, placebo-controlled, crossover functional magnetic resonance imaging study, we examined effects of a 24-IU dose of intranasal oxytocin on reward-related brain function in 37 men with ASD without intellectual impairment and 37 age- and IQ-matched control participants. Participants performed an incentive delay task that allows the investigation of neural activity associated with the anticipation and receipt of monetary and social rewards. Results Nonsignificant tests suggested that oxytocin did not influence neural processes related to the anticipation of social or monetary rewards in either group. Complementary Bayesian analyses indicated moderate evidence for a null model, relative to an alternative model. Our results were inconclusive regarding possible oxytocin effects on amygdala responsiveness to social rewards during reward consumption. There were no significant differences in reward-related brain function between the two groups under placebo. Conclusions Our results do not support the hypothesis that intranasal oxytocin generally enhances activation of reward-related neural circuits in men with and without ASD.
Collapse
|
46
|
Huang M, Liu K, Wei Z, Feng Z, Chen J, Yang J, Zhong Q, Wan G, Kong XJ. Serum Oxytocin Level Correlates With Gut Microbiome Dysbiosis in Children With Autism Spectrum Disorder. Front Neurosci 2021; 15:721884. [PMID: 34658767 PMCID: PMC8517432 DOI: 10.3389/fnins.2021.721884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
To investigate the levels of serum oxytocin (OT) in children with autism spectrum disorder (ASD) and explore the association between OT levels and gut microbiota relative abundances, we recruited 39 children with ASD children-mother dyads and 44 healthy controls. Serum OT levels were determined via enzyme-linked immunosorbent assay and gut microbiota abundances were determined by 16S rRNA sequencing. We found that the OT level of ASD was lower than the healthy control group overall (P < 0.05). Furthermore, we present preliminary evidence of gut microbiome dysbiosis observed among children with ASD to lower levels of OT based on correlational analysis between serum OT and specific gut microbiota abundances (P < 0.05). We also found sex-related differences in serum OT levels and GIS index (P < 0.05). However, the generalizability of findings relevant to females with ASD require further validation in future studies involving larger sample sizes and balanced sex distributions due to the small number of females involved in this study. Nonetheless, these new findings further our understanding of the effects of low serum OT levels among individuals with ASD, which provides preliminary evidence in hopes of guiding future study design or mechanistic studies. The findings of the present study may be suggestive of potential ASD subtypes based on ASD severity and gut microbiome composition that may facilitate the prediction of the therapeutic responses of OT among those with ASD.
Collapse
Affiliation(s)
- Minshi Huang
- Department of Child Psychology and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zhen Wei
- Department of Child Psychology and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhe Feng
- Department of Child Psychology and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jierong Chen
- Department of Child Psychology and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jie Yang
- Department of Child Psychology and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Qin Zhong
- Department of Child Psychology and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Guobin Wan
- Department of Child Psychology and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Medicine and Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Measuring Affinity of Ligands to the Oxytocin Receptor Using Radioligand Binding. Methods Mol Biol 2021. [PMID: 34550578 DOI: 10.1007/978-1-0716-1759-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Two aims of oxytocin receptor (OTR)-targeted drug discovery are development of selective OTR-binding PET tracers and development of brain-permeable selective OTR agonists. By allowing measurement of central OTR binding site occupancy after administration of intranasal oxytocin, OTR PET tracers inform an understanding of the conflicting effects on pro-social behaviors seen with administration of intranasal oxytocin in human studies. By mitigating pharmacokinetic and pharmacodynamic limitations of intranasal oxytocin, development of brain-permeable selective OTR agonists may produce therapies for mental disorders that involve asocial symptoms. A key step in development of new OTR-targeting PET radioligands and small molecule agonists is measurement of OTR affinity. One technique that can quantitate the affinity of candidate ligands for the OTR is competition radioligand binding. This chapter describes the materials, methods, and considerations of experimental design required to conduct the steps of competition radioligand binding for OTR drug discovery.
Collapse
|
48
|
Dobewall H, Keltikangas-Järvinen L, Saarinen A, Lyytikäinen LP, Zwir I, Cloninger R, Raitakari OT, Lehtimäki T, Hintsanen M. Genetic differential susceptibility to the parent-child relationship quality and the life span development of compassion. Dev Psychobiol 2021; 63:e22184. [PMID: 34423428 DOI: 10.1002/dev.22184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 11/11/2022]
Abstract
The development of compassion for others might be influenced by the social experiences made during childhood and has a genetic component. No research has yet investigated whether the parent-child relationship quality interacts with genetic variation in the oxytocin and dopamine systems in predicting compassion over the life span. In the prospective Young Finns Study (N = 2099, 43.9% men), we examined the interaction between mother-reported emotional warmth and intolerance toward their child assessed in 1980 (age of participants, 3-18 years) and two established genetic risk scores for oxytocin levels and dopamine signaling activity. Dispositional compassion for others was measured with the Temperament and Character Inventory 1997, 2001, and 2012 (age of participants, 20-50 years). We found a gene-environment interaction (p = .031) that remained marginally significant after adjustment for multiple testing. In line with the differential susceptibility hypothesis, only participants who carry alleles associated with low dopamine signaling activity had higher levels of compassion when growing up with emotionally warm parents, whereas they had lower levels of compassion when their parents were emotionally cold. Children's genetic variability in the dopamine system might result in plasticity to early environmental influences that have a long-lasting effect on the development of compassion. However, our findings need replication.
Collapse
Affiliation(s)
- Henrik Dobewall
- Division of Psychology, Faculty of Education, University of Oulu, Oulu, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Aino Saarinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Igor Zwir
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States.,Department of Computer Science, University of Granada, Granada, Spain
| | - Robert Cloninger
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Finnish Cardiovascular Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mirka Hintsanen
- Division of Psychology, Faculty of Education, University of Oulu, Oulu, Finland
| |
Collapse
|
49
|
Plemeniti Tololeski B, Suhodolčan Grabner A, Kumperscak HG. Adolescents With Autism Spectrum Disorder and Anorexia Nervosa Comorbidity: Common Features and Treatment Possibilities With Cognitive Remediation Therapy and Oxytocin. Front Psychiatry 2021; 12:686030. [PMID: 34413796 PMCID: PMC8369034 DOI: 10.3389/fpsyt.2021.686030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Autistic traits or autism spectrum disorder (ASD) can be found in 4% to 52% of anorexic patients, which makes the treatment of these patients very challenging. In this review, possible ways to treat ASD and anorexia nervosa (AN) comorbidity in children and adolescents are summarized. Over recent years, the focus has shifted from searching for the evidence of connections between these two disorders, which have started with Gillberg's study in 1983, to searching for more effective and holistic treatment of this comorbidity. The latter is known to contribute to more severe courses and worse prognosis, which is probably related to the obstacles in both diagnosing and treating. Since AN usually starts in early adolescence and high-functioning ASD children seem to begin struggling with increased pressure in adolescence, while various comorbidities can occur, it is important to improve the treatment of this comorbidity in young patients and to tailor it specifically in terms of diagnosing. In this paper, a literature review is conducted on common features and promising treatment possibilities. We describe cognitive remediation therapy and the promising pharmacotherapeutic candidate oxytocin with a special focus on adolescents.
Collapse
Affiliation(s)
- Barbara Plemeniti Tololeski
- Centre for Mental Health, Unit for Adolescent Psychiatry, University Psychiatric Hospital Ljubljana, Ljubljana, Slovenia
| | | | - Hojka Gregoric Kumperscak
- Department for Child and Adolescent Psychiatry, University Medical Centre, Maribor, Slovenia
- Faculty for Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
50
|
John S, Jaeggi AV. Oxytocin levels tend to be lower in autistic children: A meta-analysis of 31 studies. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 25:2152-2161. [PMID: 34308675 DOI: 10.1177/13623613211034375] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT Oxytocin is a hormone that mediates interpersonal relationships through enhancing social recognition, social memory, and reducing stress. It is released centrally into the cerebrospinal fluid, as well as peripherally into the blood, where it can easily be measured. Some studies indicate that the oxytocin system with its social implications might be different in people with autism spectrum disorder. With summarizing evidence of 31 studies, this meta-analysis suggests that children with autism spectrum disorder have lower blood oxytocin levels compared to neurotypical individuals. This might not be the case for adults with autism spectrum disorder, where we could not find a difference. Our findings motivate further exploration of the oxytocin system in children with autism spectrum disorder. This could lead to therapeutic options in treating autism spectrum disorder in childhood.
Collapse
|