1
|
Fu Y, Zhu D, Chen X, Qu L, Guo M, Zhang S, Xu G, Chen Z, Li M, Chen Y. Integrative Multi-Omics Approaches Reveal Selectivity Profiles and Molecular Mechanisms of FIIN-2, a Covalent FGFR Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412578. [PMID: 39976135 PMCID: PMC11984845 DOI: 10.1002/advs.202412578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/02/2025] [Indexed: 02/21/2025]
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors are emerged as an important class of targeted therapies in oncology, targeting key pathways associated with tumor growth, angiogenesis, and resistance to conventional treatments. FIIN-2, the first irreversible covalent pan-FGFR inhibitor, has shown promise in overcoming resistance due to gatekeeper mutations; however, its selectivity and molecular mechanisms in tumors remain poorly understood. In this study, an FIIN-2 chemical probe is designed and synthesized to identify both established and novel targets in hepatocellular carcinoma (HCC) via chemoproteomic profiling. An integrative multi-omics approach, including chemoproteomic, phosphoproteomic, transcriptomic, and proteomic analyses, is utilized to elucidate the full spectrum of target proteins, signaling pathways, and downstream effectors regulated by FIIN-2 in HCC. Notably, adenosine monophosphate-activated protein kinase α1 (AMPKα1) is identified as a novel target of FIIN-2, with Cys185 identified as its covalent binding site. These findings reveal that FIIN-2 can induce autophagy by directly binding to and activating AMPKα1, influencing its anti-tumor activity in HCC cells. Overall, this study greatly advances the understanding of FIIN-2's on- and off-target effects, offering a comprehensive view of its molecular mechanisms in cancer cells. The integrative multi-omics approach provides a valuable framework for the development and optimization of covalent kinase inhibitors.
Collapse
Affiliation(s)
- Ying Fu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Dandan Zhu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xiaojuan Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Lingzhi Qu
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Ming Guo
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shuhong Zhang
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese MedicineMinistry of Educational of ChinaKey Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan ProvinceCollege of Chemistry and Chemical EngineeringHunan Normal UniversityChangshaHunan410081China
| | - Zhuchu Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Maoyu Li
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yongheng Chen
- Department of OncologyNHC Key Laboratory of Cancer Proteomics and State Local Joint Engineering Laboratory for Anticancer DrugsNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
2
|
An Y, Lv X, Xu S, Li H, Zheng P, Zhu W, Wang L. Pyrimidine-based dual-target inhibitors targeting epidermal growth factor receptor for overcoming drug resistance in cancer therapy(2006-present). Eur J Med Chem 2025; 286:117268. [PMID: 39837171 DOI: 10.1016/j.ejmech.2025.117268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
The epidermal growth factor receptor (EGFR) is a pivotal member of the epidermal growth factor receptor family, exerting crucial regulatory influence on cellular physiological processes, particularly in relation to cell growth, proliferation, and differentiation. In recent years, numerous EGFR inhibitors have been introduced to the market; unfortunately, the effectiveness of single-target EGFR inhibitors has been compromised due to the development of drug resistance caused by EGFR mutations. Despite attempts by some researchers to address this issue through combination therapy with two or more drugs, instances of dose-limiting toxicities have been observed. Consequently, EGFR dual-target inhibitors have emerged as a burgeoning field in cancer treatment, offering a novel therapeutic option for solid tumors with the added benefits of reduced risk of resistance, lower dosage requirements, diminished toxicity profiles, and enhanced efficacy. At present, a series of EGFR dual-target inhibitors with diverse structures have been developed successively. In this study, we initially investigated the pyrimidine-based EGFR dual-target inhibitors that have been reported in the past two decades and categorized them into aminopyrimidine derivatives and heterocyclic pyrimidine derivatives with increased molecular complexity. Subsequently, we comprehensively summarized the biological activity and structure-activity relationship of this class of inhibitors in the context of cancer therapy, while also exploring potential opportunities and challenges associated with their application in this field. The present study provides a partial framework to guide future endeavors in drug development.
Collapse
Affiliation(s)
- Yufeng An
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Xinya Lv
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Heqing Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| | - Linxiao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
3
|
Qian JY, Lou CY, Chen YL, Ma LF, Hou W, Zhan ZJ. A prospective therapeutic strategy: GPX4-targeted ferroptosis mediators. Eur J Med Chem 2025; 281:117015. [PMID: 39486214 DOI: 10.1016/j.ejmech.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
As a crucial regulator of oxidative homeostasis, seleno-protein glutathione peroxidase 4 (GPX4) represents the primary defense system against ferroptosis, making it a promising target with important clinical application prospects. From the discovery of covalent and allosteric sites in GPX4, substantial advancements in GPX4-targeted small molecules have been made through diverse discovery and design strategies in recent years. Moreover, as an emerging hotspot in drug development, seleno-organic compounds can functionally mimic GPX4 to reduce hydroperoxides. To facilitate the further development of selective ferroptosis mediators as potential pharmaceutical agents, this review comprehensively covers all GPX4-targeted small molecules, including inhibitors, degraders, and activators. In addition, seleno-organic compounds as GPX mimics are also included. We also provide perspectives regarding challenges and future research directions in this field.
Collapse
Affiliation(s)
- Jia-Yu Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Chao-Yuan Lou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Wei Hou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
4
|
Wu D, Sun Q, Tang H, Xiao H, Luo J, Ouyang L, Sun Q. Acquired resistance to tyrosine kinase targeted therapy: mechanism and tackling strategies. Drug Resist Updat 2025; 78:101176. [PMID: 39642660 DOI: 10.1016/j.drup.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Over the past two decades, tyrosine kinase inhibitors (TKIs) have rapidly emerged as pivotal targeted agents, offering promising therapeutic prospects for patients. However, as the cornerstone of targeted therapies, an increasing number of TKIs have been found to develop acquired resistance during treatment, making the challenge of overcoming this resistance a primary focus of current research. This review comprehensively examines the evolution of TKIs from multiple perspectives, with particular emphasis on the mechanisms underlying acquired resistance, innovative drug design strategies, inherent challenges, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qian Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haolin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiaxiang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Fan S, Chen Y, Wang W, Xu W, Tian M, Liu Y, Zhou Y, Liu D, Xia Q, Dong L. Pharmacological and Biological Targeting of FGFR1 in Cancer. Curr Issues Mol Biol 2024; 46:13131-13150. [PMID: 39590377 PMCID: PMC11593329 DOI: 10.3390/cimb46110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
FGFR1 is a key member of the fibroblast growth factor receptor family, mediating critical signaling pathways such as RAS-MAPK and PI3K-AKT. which are integral to regulating essential cellular processes, including proliferation, differentiation, and survival. Alterations in FGFR1 can lead to constitutive activation of signaling pathways that drive oncogenesis by promoting uncontrolled cell division, inhibiting apoptosis, and enhancing the metastatic potential of cancer cells. This article reviews the activation mechanisms and signaling pathways of FGFR1 and provides a detailed exposition of the types of FGFR1 aberration. Furthermore, we have compiled a comprehensive overview of current therapies targeting FGFR1 aberration in cancer, aiming to offer new perspectives for future cancer treatments by focusing on drugs that address specific FGFR1 alterations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (Y.C.); (W.W.); (W.X.); (M.T.); (Y.L.); (Y.Z.); (D.L.)
| | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (Y.C.); (W.W.); (W.X.); (M.T.); (Y.L.); (Y.Z.); (D.L.)
| |
Collapse
|
6
|
Zheng J, Zhang W, Ni D, Zhao S, He Y, Hu J, Li L, Dang Y, Guo Z, Nie S. Design, Synthesis, and Biological Evaluation of 3-Amino-pyrazine-2-carboxamide Derivatives as Novel FGFR Inhibitors. ACS Med Chem Lett 2024; 15:2019-2031. [PMID: 39563808 PMCID: PMC11571013 DOI: 10.1021/acsmedchemlett.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
FGFR has been considered a crucial oncogenic driver and promising target for cancer therapy. Herein, we reported the design and synthesis of 3-amino-N-(3,5-dihydroxyphenyl)-6-methylpyrazine-2-carboxamide derivatives as novel FGFR inhibitors. SAR exploration led to the identification of 18i as a pan-FGFR inhibitor with favorable in vitro activity against FGFR1-4. Moreover, 18i blocked the activation of FGFR and downstream signaling pathways at the submicromolar level and exhibited potent antitumor activity in multiple cancer cell lines with FGFR abnormalities. Molecular docking was performed to investigate the possible binding modes of 18i within the binding site of FGFR2. These results suggest that compound 18i is a promising candidate for further drug discovery.
Collapse
Affiliation(s)
- Jia Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Breast and Thyroid Surgery of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Dan Ni
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yi He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Linfeng Li
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Breast and Thyroid Surgery of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zufeng Guo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Breast and Thyroid Surgery of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shenyou Nie
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Deng W, Chen X, Liang H, Song X, Xiang S, Guo J, Tu Z, Zhou Y, Chen Y, Lu X. Design, synthesis and biological evaluation of 5-amino-1H-pyrazole-4-carboxamide derivatives as pan-FGFR covalent inhibitors. Eur J Med Chem 2024; 275:116558. [PMID: 38870833 DOI: 10.1016/j.ejmech.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
The aberrant activation of FGFRs plays a critical role in various cancers, leading to the development of several FGFR inhibitors in clinic. However, the emergence of drug resistance, primarily due to gatekeeper mutations in FGFRs, has limited their clinical efficacy. To address the unmet medical need, a series of 5-amino-1H-pyrazole-4-carboxamide derivatives were designed and synthesized as novel pan-FGFR covalent inhibitors targeting both wild-type and the gatekeeper mutants. The representative compound 10h demonstrated nanomolar activities against FGFR1, FGFR2, FGFR3 and FGFR2 V564F gatekeeper mutant in biochemical assays (IC50 = 46, 41, 99, and 62 nM). Moreover, 10h also strongly suppressed the proliferation of NCI-H520 lung cancer cells, SNU-16 and KATO III gastric cancer cells with IC50 values of 19, 59, and 73 nM, respectively. Further X-ray co-crystal structure revealed that 10h irreversibly binds to FGFR1. The study provides a new promising point for anticancer drug development medicated by FGFRs.
Collapse
MESH Headings
- Humans
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Design
- Drug Screening Assays, Antitumor
- Models, Molecular
- Molecular Structure
- Pyrazoles/pharmacology
- Pyrazoles/chemistry
- Pyrazoles/chemical synthesis
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/metabolism
- Structure-Activity Relationship
- Tyrosine Kinase Inhibitors/chemical synthesis
- Tyrosine Kinase Inhibitors/chemistry
- Tyrosine Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Wuqing Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Liang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Xiaojuan Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Shuang Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Jing Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Zhengchao Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China
| | - Yang Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou, 510632, China; Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Afshan S, Kim YG, Mattsson J, Åkerfelt M, Härkönen P, Baumgartner M, Nees M. Targeting the cancer cells and cancer-associated fibroblasts with next-generation FGFR inhibitors in prostate cancer co-culture models. Cancer Med 2024; 13:e70240. [PMID: 39300962 PMCID: PMC11413502 DOI: 10.1002/cam4.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Inhibition of androgen receptor (AR) signaling is the main treatment strategy in advanced prostate cancer (PCa). A subset of castration resistant prostate cancer (CRPC) bypasses the AR blockade by increased fibroblast growth factor receptor (FGFR) signaling. The first- and second-generation, non-covalent FGFR inhibitors (FGFRis) have largely failed in the clinical trials against PCa. PURPOSE In this study, we tested the drug sensitivity of LNCaP, VCaP, and CWR-R1PCa cell lines to second-generation, covalent FGFRis (FIIN1, FIIN2) and a novel FGFR downstream molecule inhibitor (FRS2αi). METHODS 2D and 3D mono- and co-cultures of cancer cells, and cancer-associated fibroblasts (CAFs) were used to mimic tumor-stroma interactions in the extracellular matrix (ECM). The treatment responses of the FGFR signaling molecules, the viability and proliferation of cancer cells, and CAFs were determined through immunoblotting, migration assay, cell viability assay, and real-time imaging. Immunofluorescent and confocal microscopy images of control and treated cultures of cancer cells and CAFs, and their morphometric data were deduced. RESULTS The FGFRis were more effective in mono-cultures of the cancer cells compared with co-cultures with CAFs. The FRS2αi was specifically effective in co-cultures with CAFs but was not cytotoxic to CAF mono-cultures as in the case of FIIN1 and FIIN2. At the molecular level, FRS2αi decreased p-FRS2α, p-ERK1/2, and activated apoptosis as monitored by cleaved caspase-3 activity in a concentration-dependent manner in the co-cultures. We observed no synergistic drug efficacy in the combination treatment of the FGFRi with ARi, enzalutamide, and darolutamide. The FRS2αi treatment led to a decrease in proliferation of cancer cell clusters in co-cultures as indicated by their reduced size and Ki67 expression. CONCLUSIONS CAFs exert a protective effect on cancer cells and should be included in the in vitro models to make them physiologically more relevant in screening and testing of FGFRis. The FRS2αi was the most potent agent in reducing the viability and proliferation of the 3D organotypic co-cultures, mainly by disrupting the contact between CAFs and cancer cell clusters. The next-generation FGFRi, FRS2αi, may be a better alternative treatment option for overcoming ARi treatment resistance in advanced PCa.
Collapse
Affiliation(s)
- Syeda Afshan
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Yu Gang Kim
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Present address:
Korea Mouse Phenotyping Center (KMPC)Seoul National UniversitySeoulSouth Korea
| | - Jesse Mattsson
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Present address:
DelSiTech LtdTurkuFinland
| | - Malin Åkerfelt
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Cell Biology, Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
| | - Pirkko Härkönen
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Martin Baumgartner
- Pediatric Molecular Neuro‐Oncology Research LaboratoryUniversity Children's Hospital ZurichZurichSwitzerland
| | - Matthias Nees
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Department of Biochemistry and Molecular BiologyMedical University of LublinLublinPoland
| |
Collapse
|
9
|
Mahapatra S, Kar P. Computational biophysical characterization of the effect of gatekeeper mutations on the binding of ponatinib to the FGFR kinase. Arch Biochem Biophys 2024; 758:110070. [PMID: 38909834 DOI: 10.1016/j.abb.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Fibroblast Growth Factor Receptor (FGFR) is connected to numerous downstream signalling cascades regulating cellular behavior. Any dysregulation leads to a plethora of illnesses, including cancer. Therapeutics are available, but drug resistance driven by gatekeeper mutation impedes the treatment. Ponatinib is an FDA-approved drug against BCR-ABL kinase and has shown effective results against FGFR-mediated carcinogenesis. Herein, we undertake molecular dynamics simulation-based analysis on ponatinib against all the FGFR isoforms having Val to Met gatekeeper mutations. The results suggest that ponatinib is a potent and selective inhibitor for FGFR1, FGFR2, and FGFR4 gatekeeper mutations. The extensive electrostatic and van der Waals interaction network accounts for its high potency. The FGFR3_VM mutation has shown resistance towards ponatinib, which is supported by their lesser binding affinity than wild-type complexes. The disengaged molecular brake and engaged hydrophobic spine were believed to be the driving factors for weak protein-ligand interaction. Taken together, the inhibitory and structural characteristics exhibited by ponatinib may aid in thwarting resistance based on Val-to-Met gatekeeper mutations at an earlier stage of treatment and advance the design and development of other inhibitors targeted at FGFRs harboring gatekeeper mutations.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| |
Collapse
|
10
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Lin Q, Serratore A, Perri J, Roy Chaudhuri T, Qu J, Ma WW, Kandel ES, Straubinger RM. Expression of fibroblast growth factor receptor 1 correlates inversely with the efficacy of single-agent fibroblast growth factor receptor-specific inhibitors in pancreatic cancer. Br J Pharmacol 2024; 181:1383-1403. [PMID: 37994108 PMCID: PMC11909478 DOI: 10.1111/bph.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Elevated fibroblast growth factor receptor (FGFR) activity correlates with pancreatic adenocarcinoma (PDAC) progression and poor prognosis. However, its potential as a therapeutic target remains largely unexplored. EXPERIMENTAL APPROACH The mechanisms of action and therapeutic effects of selective pan-FGFR inhibitors (pan-FGFRi) were explored using in vitro and in vivo PDAC models ranging from gemcitabine-sensitive to highly gemcitabine-resistant (GemR). Gain-/loss-of-function investigations were employed to define the role of individual FGFRs in cell proliferation, migration, and treatment response and resistance. RESULTS The pan-FGFRi NVP-BGJ398 significantly inhibited cell proliferation, migration, and invasion, and downregulated key cell survival- and invasiveness markers in multiple PDAC cell lines. Gemcitabine is a standard-of-care for PDAC, but development of resistance to gemcitabine (GemR) compromises its efficacy. Acquired GemR was modelled experimentally by developing highly GemR cells using escalating gemcitabine exposure in vitro and in vivo. FGFRi treatment inhibited GemR cell proliferation, migration, GemR marker expression, and tumour progression. FGFR2 or FGFR3 loss-of-function by shRNA knockdown failed to decrease cell growth, whereas FGFR1 knockdown was lethal. FGFR1 overexpression promoted cell migration more than proliferation, and reduced FGFRi-mediated inhibition of proliferation and migration. Single-agent FGFRi suppressed the viability and growth of multiple patient-derived xenografts inversely with respect to FGFR1 expression, underscoring the influence of FGFR1-dependent tumour responses to FGFRi. Importantly, secondary data analysis showed that PDAC tumours expressed FGFR1 at lower levels than in normal pancreas tissue. CONCLUSIONS AND IMPLICATIONS Single-agent FGFR inhibitors mediate selective, molecularly-targeted suppression of PDAC proliferation, and their effects are greatest in PDAC tumours expressing low-to-moderate levels of FGFR1.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Andrea Serratore
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jonathan Perri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Tista Roy Chaudhuri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
12
|
Lin K, Xia B, Wang X, He X, Zhou M, Lin Y, Qiao Y, Li R, Chen Q, Li Y, Feng J, Chen T, Chen C, Li X, Zhang H, Lu L, Liu B, Zhang X. Development of nanobodies targeting hepatocellular carcinoma and application of nanobody-based CAR-T technology. J Transl Med 2024; 22:349. [PMID: 38610029 PMCID: PMC11015683 DOI: 10.1186/s12967-024-05159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR-T) cell therapy, as an emerging anti-tumor treatment, has garnered extensive attention in the study of targeted therapy of multiple tumor-associated antigens in hepatocellular carcinoma (HCC). However, the suppressive microenvironment and individual heterogeneity results in downregulation of these antigens in certain patients' cancer cells. Therefore, optimizing CAR-T cell therapy for HCC is imperative. METHODS In this study, we administered FGFR4-ferritin (FGFR4-HPF) nanoparticles to the alpaca and constructed a phage library of nanobodies (Nbs) derived from alpaca, following which we screened for Nbs targeting FGFR4. Then, we conducted the functional validation of Nbs. Furthermore, we developed Nb-derived CAR-T cells and evaluated their anti-tumor ability against HCC through in vitro and in vivo validation. RESULTS Our findings demonstrated that we successfully obtained high specificity and high affinity Nbs targeting FGFR4 after screening. And the specificity of Nbs targeting FGFR4 was markedly superior to their binding to other members of the FGFR family proteins. Furthermore, the Nb-derived CAR-T cells, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in both experiments when in vitro and in vivo. CONCLUSIONS In summary, the results of this study suggest that the CAR-T cells derived from high specificity and high affinity Nbs, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This is an exploration of FGFR4 in the field of Nb-derived CAR-T cell therapy for HCC, holding promise for enhancing safety and effectiveness in the clinical treatment of HCC in the future.
Collapse
Affiliation(s)
- Keming Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Baijin Xia
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xuemei Wang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yidan Qiao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Rong Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qier Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yuzhuang Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jinzhu Feng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Tao Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinyu Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lijuan Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Avenue, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Xu Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu District, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
13
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
14
|
Chen X, Li H, Lin Q, Dai S, Qu L, Guo M, Zhang L, Liao J, Wei H, Xu G, Jiang L, Chen Y. Design, synthesis, and biological evaluation of selective covalent inhibitors of FGFR4. Eur J Med Chem 2024; 268:116281. [PMID: 38432058 DOI: 10.1016/j.ejmech.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Aberrant signaling via fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) has been identified as a driver of tumorigenesis and the development of many solid tumors, making FGFR4 is a promising target for anticancer therapy. Herein, we designed and synthesized a series of bis-acrylamide covalent FGFR4 inhibitors and evaluated their inhibitory activity against FGFRs, FGFR4 mutants, and their antitumor activity. CXF-007, verified by mass spectrometry and crystal structures to form covalent bonds with Cys552 of FGFR4 and Cys488 of FGFR1, exhibited stronger selectivity and potent inhibitory activity for FGFR4 and FGFR4 cysteine mutants. Moreover, CXF-007 exhibited significant antitumor activity in hepatocellular carcinoma cell lines and breast cancer cell lines through sustained inhibition of the FGFR4 signaling pathway. In summary, our study highlights a novel covalent FGFR4 inhibitor, CXF-007, which has the potential to overcome drug-induced FGFR4 mutations and might provide a new strategy for future anticancer drug discovery.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huiliang Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, China
| | - Qianmeng Lin
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, China.
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
15
|
Hamza S, Abid A, Khanum A, Chohan TA, Saleem H, Maqbool Khan K, Khurshid U, Butt J, Anwar S, Alafnan A, Ansari SA, Qayyum A, Raza A, Chohan TA. 3D-QSAR, docking and molecular dynamics simulations of novel Pyrazolo-pyridazinone derivatives as covalent inhibitors of FGFR1: a scientific approach for possible anticancer agents. J Biomol Struct Dyn 2024; 42:2242-2256. [PMID: 37211823 DOI: 10.1080/07391102.2023.2212306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
Developing highly potent covalent inhibitors of Fibroblast growth factor receptors 1 (FGFR1) has always been a challenging task. In the current study, various computational techniques, such as 3D-QSAR, covalent docking, fingerprinting analysis, MD simulation followed by MMGB/PBSA, and per-residue energy decomposition analysis were used to explore the binding mechanism of pyrazolo[3,4-d]pyridazinone derivatives to FGFR1. The high q2 and r2 values for the CoMFA and CoMSIA models, suggest that the constructed 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The structural requirements revealed by the model's contour maps were strategically used to computationally create an in-house library of more than 100 new FGFR1 inhibitors using the R-group exploration technique implemented in the SparkTM software. The compounds from the in-house library were also mapped in the 3D-QSAR model that predicts comparable pIC50 values with the experimental values. A comparison between 3D-QSAR generated contours and molecular docking conformation of ligands was performed to reveal the fundamentals to design potent FGFR1 covalent inhibitors. The estimated binding free energies (MMGB/PBSA) for the selected compounds were in agreement with the experimental value ranking of their binding affinities towards FGFR1. Furthermore, per-residue energy decomposition analysis has identified Arg627 and Glu531 to contribute significantly in improved binding affinity of compound W16. During ADME analysis, the majority of in-house library compounds exhibited pharmacokinetic properties superior to those of experimentally produced compounds. These new compounds may help researchers better understand FGFR1 inhibition and lead to the creation of novel, potent FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shafaq Hamza
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Abira Abid
- Sharif Medical and Dental College, Lahore, Punjab
| | - Affia Khanum
- Women Medical Officer, DHQ Hospital Muzaffargarh, Punjab, Pakistan
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Kashif Maqbool Khan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Juwairiya Butt
- School of Life Sciences, University of Westminster, London, UK
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aisha Qayyum
- Department of Pediatric Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Ali Raza
- College of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| |
Collapse
|
16
|
DiPeri TP, Zhao M, Evans KW, Varadarajan K, Moss T, Scott S, Kahle MP, Byrnes CC, Chen H, Lee SS, Halim AB, Hirai H, Wacheck V, Kwong LN, Rodon J, Javle M, Meric-Bernstam F. Convergent MAPK pathway alterations mediate acquired resistance to FGFR inhibitors in FGFR2 fusion-positive cholangiocarcinoma. J Hepatol 2024; 80:322-334. [PMID: 37972659 PMCID: PMC11900356 DOI: 10.1016/j.jhep.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/29/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND & AIMS There is a knowledge gap in understanding mechanisms of resistance to fibroblast growth factor receptor (FGFR) inhibitors (FGFRi) and a need for novel therapeutic strategies to overcome it. We investigated mechanisms of acquired resistance to FGFRi in patients with FGFR2-fusion-positive cholangiocarcinoma (CCA). METHODS A retrospective analysis of patients who received FGFRi therapy and underwent tumor and/or cell-free DNA analysis, before and after treatment, was performed. Longitudinal circulating tumor DNA samples from a cohort of patients in the phase I trial of futibatinib (NCT02052778) were assessed. FGFR2-BICC1 fusion cell lines were developed and secondary acquired resistance mutations in the mitogen-activated protein kinase (MAPK) pathway were introduced to assess their effect on sensitivity to FGFRi in vitro. RESULTS On retrospective analysis of 17 patients with repeat sequencing following FGFRi treatment, new FGFR2 mutations were detected in 11 (64.7%) and new alterations in MAPK pathway genes in nine (52.9%) patients, with seven (41.2%) patients developing new alterations in both the FGFR2 and MAPK pathways. In serially collected plasma samples, a patient treated with an irreversible FGFRi tested positive for previously undetected BRAF V600E, NRAS Q61K, NRAS G12C, NRAS G13D and KRAS G12K mutations upon progression. Introduction of a FGFR2-BICC1 fusion into biliary tract cells in vitro sensitized the cells to FGFRi, while concomitant KRAS G12D or BRAF V600E conferred resistance. MEK inhibition was synergistic with FGFRi in vitro. In an in vivo animal model, the combination had antitumor activity in FGFR2 fusions but was not able to overcome KRAS-mediated FGFRi resistance. CONCLUSIONS These findings suggest convergent genomic evolution in the MAPK pathway may be a potential mechanism of acquired resistance to FGFRi. CLINICAL TRIAL NUMBER NCT02052778. IMPACT AND IMPLICATIONS We evaluated tumors and plasma from patients who previously received inhibitors of fibroblast growth factor receptor (FGFR), an important receptor that plays a role in cancer cell growth, especially in tumors with abnormalities in this gene, such as FGFR fusions, where the FGFR gene is fused to another gene, leading to activation of cancer cell growth. We found that patients treated with FGFR inhibitors may develop mutations in other genes such as KRAS, and this can confer resistance to FGFR inhibitors. These findings have several implications for patients with FGFR2 fusion-positive tumors and provide mechanistic insight into emerging MAPK pathway alterations which may serve as a therapeutic vulnerability in the setting of acquired resistance to FGFRi.
Collapse
Affiliation(s)
- Timothy P DiPeri
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Kaushik Varadarajan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Tyler Moss
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Michael P Kahle
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Charnel C Byrnes
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | | | | | | | - Lawrence N Kwong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston TX, United States; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | | | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, United States; Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States.
| |
Collapse
|
17
|
Ratti M, Orlandi E, Hahne JC, Vecchia S, Citterio C, Anselmi E, Toscani I, Ghidini M. Targeting FGFR Pathways in Gastrointestinal Cancers: New Frontiers of Treatment. Biomedicines 2023; 11:2650. [PMID: 37893023 PMCID: PMC10603875 DOI: 10.3390/biomedicines11102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
In carcinogenesis of the gastrointestinal (GI) tract, the deregulation of fibroblast growth factor receptor (FGFR) signaling plays a critical role. The aberrant activity of this pathway is described in approximately 10% of gastric cancers and its frequency increases in intrahepatic cholangiocarcinomas (iCCAs), with an estimated frequency of 10-16%. Several selective FGFR inhibitors have been developed in the last few years with promising results. For example, targeting the FGFR pathway is now a fundamental part of clinical practice when treating iCCA and many clinical trials are ongoing to test the safety and efficacy of anti-FGFR agents in gastric, colon and pancreatic cancer, with variable results. However, the response rates of anti-FGFR drugs are modest and resistances emerge rapidly, limiting their efficacy and causing disease progression. In this review, we aim to explore the landscape of anti-FGFR inhibitors in relation to GI cancer, with particular focus on selective FGFR inhibitors and drug combinations that may lead to overcoming resistance mechanisms and drug-induced toxicities.
Collapse
Affiliation(s)
- Margherita Ratti
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Elena Orlandi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Jens Claus Hahne
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
| | - Stefano Vecchia
- Pharmacy Unit, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Chiara Citterio
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Elisa Anselmi
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Ilaria Toscani
- Oncology and Hematology Department, Piacenza General Hospital, Via Taverna 49, 29121 Piacenza, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
18
|
Bhujbal SP, Hah JM. An Innovative Approach to Address Neurodegenerative Diseases through Kinase-Targeted Therapies: Potential for Designing Covalent Inhibitors. Pharmaceuticals (Basel) 2023; 16:1295. [PMID: 37765103 PMCID: PMC10537995 DOI: 10.3390/ph16091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Owing to the dysregulation of protein kinase activity in various diseases such as cancer and autoimmune, cardiovascular, neurodegenerative, and inflammatory conditions, the protein kinase family has emerged as a crucial drug target in the 21st century. Notably, many kinases have been targeted to address cancer and neurodegenerative diseases using conventional ATP-mimicking kinase inhibitors. Likewise, irreversible covalent inhibitors have also been developed for different types of cancer. The application of covalent modification to target proteins has led to significant advancements in the treatment of cancer. However, while covalent drugs have significantly impacted medical treatment, their potential for neurodegenerative diseases remains largely unexplored. Neurodegenerative diseases present significant risks to brain function, leading to progressive deterioration in sensory, motor, and cognitive abilities. Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and multiple sclerosis (MS) are among the various examples of such disorders. Numerous research groups have already reported insights through reviews and research articles on FDA-approved covalent inhibitors, revealing their mechanisms and the specific covalent warheads that preferentially interact with particular amino acid residues in intricate detail. Hence, in this review, we aim to provide a concise summary of these critical topics. This summary endeavors to guide medicinal chemists in their quest to design covalent inhibitors for protein kinases, specifically targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Swapnil P. Bhujbal
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea;
| | - Jung-Mi Hah
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| |
Collapse
|
19
|
Gao L, Yamamiya I, Pinti M, Rondon JC, Marbury T, Tomlinson G, Makris L, Hangai N, Wacheck V. A phase I, open-label, single-dose study to evaluate the effect of hepatic impairment on the pharmacokinetics and safety of futibatinib. Clin Transl Sci 2023; 16:1713-1724. [PMID: 37553804 PMCID: PMC10499415 DOI: 10.1111/cts.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Futibatinib is a covalently binding FGFR1-4 inhibitor that received US Food and Drug Administration approval for the treatment of patients with previously treated, advanced intrahepatic cholangiocarcinoma harboring FGFR2 gene fusions/rearrangements. This phase I trial evaluated the pharmacokinetics (PKs), safety, and tolerability of futibatinib in subjects with impaired hepatic function and matched healthy volunteers. Twenty-two subjects with hepatic impairment (8 mild [Child-Pugh 5-6], 8 moderate [7-9], and 6 severe [10-15]) and 16 matched healthy control subjects received a single oral dose of futibatinib 20 mg. Futibatinib PKs were compared between subjects with mild/moderate/severe hepatic impairment and each corresponding control cohort and the overall control cohort. Relationships between futibatinib PKs and Child-Pugh scores and liver function tests were examined via scatter/regression plots. Compared with matched controls, the area under the plasma concentration-time curve from time zero to infinity increased by 21%/20%/18% and the maximum plasma concentration (Cmax ) increased by 43%/15%/10% in subjects with mild/moderate/severe hepatic impairment, respectively. Changes were not considered clinically relevant: geometric mean ratios were within 80%-125%, except for Cmax in subjects with mild hepatic impairment (143%). No obvious trends were observed among futibatinib PK parameters versus Child-Pugh scores, bilirubin, albumin, international normalized ratio, and aspartate aminotransferase (all p > 0.05). Futibatinib was well-tolerated, with only four grade 1 treatment-emergent adverse events (mild hepatic impairment = 2 and control = 2). The results demonstrate that futibatinib dose adjustments due to mild/moderate/severe hepatic impairment are not necessary in patients receiving futibatinib 20 mg daily.
Collapse
Affiliation(s)
- Ling Gao
- Taiho Oncology, Inc.PrincetonNew JerseyUSA
| | | | - Mark Pinti
- Taiho Oncology, Inc.PrincetonNew JerseyUSA
| | | | | | | | - Lukas Makris
- Taiho Oncology, Inc.PrincetonNew JerseyUSA
- Stathmi, Inc.New HopePennsylvaniaUSA
| | | | | |
Collapse
|
20
|
Sheth H, Limaye S, Kumar P, Shreenivas A. Sustained response on sequential anti-FGFR therapy in metastatic gall bladder cancer: a case report and literature review. J Cancer Res Clin Oncol 2023; 149:4915-4923. [PMID: 36307559 DOI: 10.1007/s00432-022-04428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Advanced gall bladder cancer (GBC) is an aggressive disease, and there is no consensus on treatment options beyond first-line chemotherapy. We report a case of an elderly male with FGFR2-altered advanced adenocarcinoma of the gallbladder who failed two prior lines of chemotherapy but had sustained response and stable disease on sequential FGFR-directed targeted therapy. DESIGN We describe a case of FGFR2-altered metastatic adenocarcinoma of the gallbladder who failed two prior lines of chemotherapy. The treatment was based on comprehensive genomic profiling when the patient was found to have FGFR2 single amino acid mutation (S252W) in one of his tissue samples. A novel therapeutic regimen with sequential anti-FGFR tyrosine kinase inhibitors was later initiated. RESULT The patient tolerated the sequential targeted therapy very well and had a sustained response and stable disease. He had an overall survival of nearly five years. Unfortunately, GBC is an aggressive disease, and there is no consensus on treatment options beyond first-line chemotherapy. CONCLUSION Through this patient, we demonstrate that advanced-metastatic GBC with FGFR alterations can be maintained on anti-FGFR therapy for prolonged periods of time, with improved survival. Therefore, we endorse the need for comprehensive genomic profiling in advanced-metastatic GBC and the need to study the role of FGFR inhibitors as a viable treatment option in these patients.
Collapse
Affiliation(s)
- Hardik Sheth
- Department of General Medicine, D Y Patil University School of Medicine, Mumbai, Maharashtra, India
| | - Sewanti Limaye
- Department of Medical Oncology, Sir HN Reliance Foundation Hospital and Research Center, Mumbai, Maharashtra, India
| | | | - Aditya Shreenivas
- Department of Medical Oncology, Cancer Center Froedtert Hospital, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
21
|
Koo TY, Lai H, Nomura DK, Chung CYS. N-Acryloylindole-alkyne (NAIA) enables imaging and profiling new ligandable cysteines and oxidized thiols by chemoproteomics. Nat Commun 2023; 14:3564. [PMID: 37322008 PMCID: PMC10272157 DOI: 10.1038/s41467-023-39268-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Cysteine has been exploited as the binding site of covalent drugs. Its high sensitivity to oxidation is also important for regulating cellular processes. To identify new ligandable cysteines which can be hotspots for therapy and to better study cysteine oxidations, we develop cysteine-reactive probes, N-acryloylindole-alkynes (NAIAs), which have superior cysteine reactivity owing to delocalization of π electrons of the acrylamide warhead over the whole indole scaffold. This allows NAIAs to probe functional cysteines more effectively than conventional iodoacetamide-alkyne, and to image oxidized thiols by confocal fluorescence microscopy. In mass spectrometry experiments, NAIAs successfully capture new oxidized cysteines, as well as a new pool of ligandable cysteines and proteins. Competitive activity-based protein profiling experiments further demonstrate the ability of NAIA to discover lead compounds targeting these cysteines and proteins. We show the development of NAIAs with activated acrylamide for advancing proteome-wide profiling and imaging ligandable cysteines and oxidized thiols.
Collapse
Affiliation(s)
- Tin-Yan Koo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Hinyuk Lai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Clive Yik-Sham Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, P. R. China.
| |
Collapse
|
22
|
Karasic TB, Eads JR, Goyal L. Precision Medicine and Immunotherapy Have Arrived for Cholangiocarcinoma: An Overview of Recent Approvals and Ongoing Clinical Trials. JCO Precis Oncol 2023; 7:e2200573. [PMID: 37053534 PMCID: PMC10309532 DOI: 10.1200/po.22.00573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/31/2023] [Indexed: 04/15/2023] Open
Affiliation(s)
- Thomas B. Karasic
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA
| | - Jennifer R. Eads
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA
| | - Lipika Goyal
- Department of Medicine, Division of Hematology and Oncology, Stanford Cancer Center, Palo Alto, CA
| |
Collapse
|
23
|
Mahapatra S, Jonniya NA, Koirala S, Ursal KD, Kar P. The FGF/FGFR signalling mediated anti-cancer drug resistance and therapeutic intervention. J Biomol Struct Dyn 2023; 41:13509-13533. [PMID: 36995019 DOI: 10.1080/07391102.2023.2191721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 03/31/2023]
Abstract
Fibroblast Growth Factor (FGF) ligands and their receptors are crucial factors driving chemoresistance in several malignancies, challenging the efficacy of currently available anti-cancer drugs. The Fibroblast growth factor/receptor (FGF/FGFR) signalling malfunctions in tumor cells, resulting in a range of molecular pathways that may impact its drug effectiveness. Deregulation of cell signalling is critical since it can enhance tumor growth and metastasis. Overexpression and mutation of FGF/FGFR induce regulatory changes in the signalling pathways. Chromosomal translocation facilitating FGFR fusion production aggravates drug resistance. Apoptosis is inhibited by FGFR-activated signalling pathways, reducing multiple anti-cancer medications' destructive impacts. Angiogenesis and epithelial-mesenchymal transition (EMT) are facilitated by FGFRs-dependent signalling, which correlates with drug resistance and enhances metastasis. Further, lysosome-mediated drug sequestration is another prominent method of resistance. Inhibition of FGF/FGFR by following a plethora of therapeutic approaches such as covalent and multitarget inhibitors, ligand traps, monoclonal antibodies, recombinant FGFs, combination therapy, and targeting lysosomes and micro RNAs would be helpful. As a result, FGF/FGFR suppression treatment options are evolving nowadays. To increase positive impacts, the processes underpinning the FGF/FGFR axis' role in developing drug resistance need to be clarified, emphasizing the need for more studies to develop novel therapeutic options to address this significant problem. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
24
|
Li C, Dai Y, Kong X, Wang B, Peng X, Wu H, Shen Y, Yang Y, Ji Y, Wang D, Li S, Li X, Shi Y, Geng M, Zheng M, Ai J, Liu H. Structural Optimization of Fibroblast Growth Factor Receptor Inhibitors for Treating Solid Tumors. J Med Chem 2023; 66:3226-3249. [PMID: 36802596 DOI: 10.1021/acs.jmedchem.2c01507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Small-molecule fibroblast growth factor receptor (FGFR) inhibitors have emerged as a promising antitumor therapy. Herein, by further optimizing the lead compound 1 under the guidance of molecular docking, we obtained a series of novel covalent FGFR inhibitors. After careful structure-activity relationship analysis, several compounds were identified to exhibit strong FGFR inhibitory activity and relatively better physicochemical and pharmacokinetic properties compared with those of 1. Among them, 2e potently and selectively inhibited the kinase activity of FGFR1-3 wildtype and high-incidence FGFR2-N549H/K-resistant mutant kinase. Furthermore, it suppressed cellular FGFR signaling, exhibiting considerable antiproliferative activity in FGFR-aberrant cancer cell lines. In addition, the oral administration of 2e in the FGFR1-amplified H1581, FGFR2-amplified NCI-H716, and SNU-16 tumor xenograft models demonstrated potent antitumor efficacy, inducing tumor stasis or even tumor regression.
Collapse
Affiliation(s)
- Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yang Dai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangtai Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xia Peng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hengbo Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Shen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanchen Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yinchun Ji
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Danyi Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangjie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xutong Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqiang Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Besch A, Marsiglia WM, Mohammadi M, Zhang Y, Traaseth NJ. Gatekeeper mutations activate FGF receptor tyrosine kinases by destabilizing the autoinhibited state. Proc Natl Acad Sci U S A 2023; 120:e2213090120. [PMID: 36791110 PMCID: PMC9974468 DOI: 10.1073/pnas.2213090120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Many types of human cancers are being treated with small molecule ATP-competitive inhibitors targeting the kinase domain of receptor tyrosine kinases. Despite initial successful remission, long-term treatment almost inevitably leads to the emergence of drug resistance mutations at the gatekeeper residue hindering the access of the inhibitor to a hydrophobic pocket at the back of the ATP-binding cleft. In addition to reducing drug efficacy, gatekeeper mutations elevate the intrinsic activity of the tyrosine kinase domain leading to more aggressive types of cancer. However, the mechanism of gain-of-function by gatekeeper mutations is poorly understood. Here, we characterized fibroblast growth factor receptor (FGFR) tyrosine kinases harboring two distinct gatekeeper mutations using kinase activity assays, NMR spectroscopy, bioinformatic analyses, and MD simulations. Our data show that gatekeeper mutations destabilize the autoinhibitory conformation of the DFG motif locally and of the kinase globally, suggesting they impart gain-of-function by facilitating the kinase's ability to populate the active state.
Collapse
Affiliation(s)
- Alida Besch
- Department of Chemistry, New York University, New York, NY10003
| | | | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, NY10016
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY10003
- Simons Center for Computational Physical Chemistry, New York University, New York, NY10003
| | | |
Collapse
|
26
|
Min JY, Chun KS, Kim DH. The versatile utility of cysteine as a target for cancer treatment. Front Oncol 2023; 12:997919. [PMID: 36741694 PMCID: PMC9893486 DOI: 10.3389/fonc.2022.997919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
Owing to its unique nucleophilicity, cysteine is an attractive sulfhydryl-containing proteinogenic amino acid. It is also utilized in various metabolic pathways and redox homeostasis, as it is used for the component of major endogenous antioxidant glutathione and the generation of sulfur-containing biomolecules. In addition, cysteine is the most nucleophilic amino acid of proteins and can react with endogenous or exogenous electrophiles which can result in the formation of covalent bonds, which can alter the cellular states and functions. Moreover, post-translational modifications of cysteines trigger redox signaling and affect the three-dimensional protein structure. Protein phosphorylation mediated by kinases and phosphatases play a key role in cellular signaling that regulates many physiological and pathological processes, and consequently, the modification of cysteine regulates its activities. The modification of cysteine residues in proteins is critically important for the design of novel types of pharmacological agents. Therefore, in cancer metabolism and cancer cell survival, cysteine plays an essential role in redox regulation of cellular status and protein function. This review summarizes the diverse regulatory mechanisms of cysteine bound to or free from proteins in cancer. Furthermore, it can enhance the comprehension of the role of cysteine in tumor biology which can help in the development of novel effective cancer therapies.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea,*Correspondence: Do-Hee Kim,
| |
Collapse
|
27
|
Storandt MH, Jin Z, Mahipal A. Pemigatinib in cholangiocarcinoma with a FGFR2 rearrangement or fusion. Expert Rev Anticancer Ther 2022; 22:1265-1274. [PMID: 36408971 DOI: 10.1080/14737140.2022.2150168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) accounts for approximately 3% of gastrointestinal malignancies and is associated with a high mortality rate. Recent progress in the understanding of cholangiocarcinoma tumorigenesis and molecular markers has led to the development of several targeted therapies applicable to this disease. Fibroblast growth factor receptor 2 (FGFR2) gene fusion or translocation, resulting in constitutive activation of the FGFR tyrosine kinase, has been identified as a driver of oncogenesis in 10-15% of intrahepatic CCA. Pemigatinib is an FGFR inhibitor that has demonstrated survival benefit in the second line setting for treatment of CCA with FGFR2 fusion or rearrangement refractory to chemotherapy. Pemigatinib was the first targeted therapy to be approved by the FDA for treatment of cholangiocarcinoma. AREAS COVERED This article reviews FGFR and its dysregulation in oncogenesis, FGFR inhibitors, especially pemigatinib, utilized in treatment of CCA, common adverse events associated with FGFR inhibitors, and future directions in the field of targeted drug development for CCA. EXPERT OPINION FGFR inhibitors, including pemigatinib, have shown promise in the management of CCA with FGFR2 fusion or rearrangement; however, acquired resistance remains a major barrier in the field of FGFR inhibitors and requires further study.
Collapse
Affiliation(s)
| | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.,Department of Oncology, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
28
|
Abstract
Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
29
|
Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules 2022; 27:molecules27227728. [PMID: 36431829 PMCID: PMC9694382 DOI: 10.3390/molecules27227728] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cysteine is one of the least abundant amino acids in proteins of many organisms, which plays a crucial role in catalysis, signal transduction, and redox regulation of gene expression. The thiol group of cysteine possesses the ability to perform nucleophilic and redox-active functions that are not feasible for other natural amino acids. Cysteine is the most common covalent amino acid residue and has been shown to react with a variety of warheads, especially Michael receptors. These unique properties have led to widespread interest in this nucleophile, leading to the development of a variety of cysteine-targeting warheads with different chemical compositions. Herein, we summarized the various covalent warheads targeting cysteine residue and their application in drug development.
Collapse
|
30
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|
31
|
Lazo De La Vega L, Comeau H, Sallan S, Al-Ibraheemi A, Gupta H, Li YY, Tsai HK, Kang W, Ward A, Church AJ, Kim A, Pinto NR, Macy ME, Maese LD, Sabnis AJ, Cherniack AD, Lindeman NI, Anderson ME, Cooney TM, Yeo KK, Reaman GH, DuBois SG, Collins NB, Johnson BE, Janeway KA, Forrest SJ. Rare FGFR Oncogenic Alterations in Sequenced Pediatric Solid and Brain Tumors Suggest FGFR Is a Relevant Molecular Target in Childhood Cancer. JCO Precis Oncol 2022; 6:e2200390. [PMID: 36446043 PMCID: PMC9812632 DOI: 10.1200/po.22.00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Multiple FGFR inhibitors are currently in clinical trials enrolling adults with different solid tumors, while very few enroll pediatric patients. We determined the types and frequency of FGFR alterations (FGFR1-4) in pediatric cancers to inform future clinical trial design. METHODS Tumors with FGFR alterations were identified from two large cohorts of pediatric solid tumors subjected to targeted DNA sequencing: The Dana-Farber/Boston Children's Profile Study (n = 888) and the multi-institution GAIN/iCAT2 (Genomic Assessment Improves Novel Therapy) Study (n = 571). Data from the combined patient population of 1,395 cases (64 patients were enrolled in both studies) were reviewed and cases in which an FGFR alteration was identified by OncoPanel sequencing were further assessed. RESULTS We identified 41 patients with tumors harboring an oncogenic FGFR alteration. Median age at diagnosis was 8 years (range, 6 months-26 years). Diagnoses included 11 rhabdomyosarcomas, nine low-grade gliomas, and 17 other tumor types. Alterations included gain-of-function sequence variants (n = 19), amplifications (n = 10), oncogenic fusions (FGFR3::TACC3 [n = 3], FGFR1::TACC1 [n = 1], FGFR1::EBF2 [n = 1], FGFR1::CLIP2 [n = 1], and FGFR2::CTNNA3 [n = 1]), pathogenic-leaning variants of uncertain significance (n = 4), and amplification in combination with a pathogenic-leaning variant of uncertain significance (n = 1). Two novel FGFR1 fusions in two different patients were identified in this cohort, one of whom showed a response to an FGFR inhibitor. CONCLUSION In summary, activating FGFR alterations were found in approximately 3% (41/1,395) of pediatric solid tumors, identifying a population of children with cancer who may be eligible and good candidates for trials evaluating FGFR-targeted therapy. Importantly, the genomic and clinical data from this study can help inform drug development in accordance with the Research to Accelerate Cures and Equity for Children Act.
Collapse
Affiliation(s)
- Lorena Lazo De La Vega
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Hannah Comeau
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Sarah Sallan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Alyaa Al-Ibraheemi
- Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Hersh Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yvonne Y. Li
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Harrison K. Tsai
- Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Abigail Ward
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Alanna J. Church
- Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - AeRang Kim
- Children's National Hospital, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Navin R. Pinto
- Seattle Children's Hospital, Seattle, WA
- University of Washington, Seattle, WA
| | - Margaret E. Macy
- Children's Hospital of Colorado, Aurora, CO
- University of Colorado School of Medicine, Aurora, CO
| | - Luke D. Maese
- Primary Children's Hospital, Salt Lake City, UT
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | - Amit J. Sabnis
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Andrew D. Cherniack
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Neal I. Lindeman
- Harvard Medical School, Boston, MA
- Brigham & Women's Hospital, Boston, MA
| | - Megan E. Anderson
- Harvard Medical School, Boston, MA
- Orthopedic Center, Boston Children's Hospital, Boston, MA
| | - Tabitha M. Cooney
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kee Kiat Yeo
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Gregory H. Reaman
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, MD
| | - Steven G. DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Natalie B. Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bruce E. Johnson
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Brigham & Women's Hospital, Boston, MA
| | - Katherine A. Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Suzanne J. Forrest
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Zhang X, Kong W, Gao M, Huang W, Peng C, Huang Z, Xie Z, Guo H. Robust prognostic model based on immune infiltration-related genes and clinical information in ovarian cancer. J Cell Mol Med 2022; 26:3659-3674. [PMID: 35735060 PMCID: PMC9258710 DOI: 10.1111/jcmm.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/25/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
Immune infiltration of ovarian cancer (OV) is a critical factor in determining patient's prognosis. Using data from TCGA and GTEx database combined with WGCNA and ESTIMATE methods, 46 genes related to OV occurrence and immune infiltration were identified. Lasso and multivariate Cox regression were applied to define a prognostic score (IGCI score) based on 3 immune genes and 3 types of clinical information. The IGCI score has been verified by K‐M curves, ROC curves and C‐index on test set. In test set, IGCI score (C‐index = 0.630) is significantly better than AJCC stage (C‐index = 0.541, p < 0.05) and CIN25 (C‐index = 0.571, p < 0.05). In addition, we identified key mutations to analyse prognosis of patients and the process related to immunity. Chi‐squared tests revealed that 6 mutations are significantly (p < 0.05) related to immune infiltration: BRCA1, ZNF462, VWF, RBAK, RB1 and ADGRV1. According to mutation survival analysis, we found 5 key mutations significantly related to patient prognosis (p < 0.05): CSMD3, FLG2, HMCN1, TOP2A and TRRAP. RB1 and CSMD3 mutations had small p‐value (p < 0.1) in both chi‐squared tests and survival analysis. The drug sensitivity analysis of key mutation showed when RB1 mutation occurs, the efficacy of six anti‐tumour drugs has changed significantly (p < 0.05).
Collapse
Affiliation(s)
- Xi Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Weikaixin Kong
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Institute Sanqu Technology (Hangzhou) Co., Ltd., Hangzhou, China
| | - Miaomiao Gao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiran Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Chao Peng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhengwei Xie
- Peking University International Cancer Institute and Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
33
|
Liu Y, Zhang L, Chen X, Chen D, Shi X, Song J, Wu J, Huang F, Xia Q, Xiang Y, Zheng X, Cai Y. The novel FGFR inhibitor F1-7 induces DNA damage and cell death in colon cells. Br J Cancer 2022; 127:1014-1025. [PMID: 35715638 DOI: 10.1038/s41416-022-01878-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR) signaling influenced tumour occurrence and development. Overexpression of FGFR had been observed in many types of cancers, including colon cancer. FGFR inhibitor is considered to be effective in treating colon cancer patients. METHODS First, the kinase inhibition rate was determined. MTT, western blotting, colony formation, EdU and comet assays were performed to evaluate the anti-tumour effects of F1-7 in vitro. RNA-seq and bioinformatics analysis were used for further verification. Additionally, a xenograft model was generated to investigate the anti-tumour effect of F1-7. RESULTS F1-7 can inhibit the proliferation of colon cancer cells in vitro. It could significantly inhibit FGFR phosphorylation and its downstream signaling pathway. Whole-genome RNA-seq analysis found that the changed genes were not only functionally focused on MAPK signaling pathway but also related to cell apoptosis and ferroptosis. Experimental evidence demonstrated that F1-7 can directly increase the level of cellular DNA damage. The occurrence of DNA damage led to cell cycle arrest and inhibition of cell metastasis and cell apoptosis. Mouse model experiments also confirmed that F1-7 could inhibit tumour growth by inhibiting the FGFR pathway. CONCLUSIONS F1-7 exhibits anti-tumour activity by inhibiting the FGFR pathway. It could be a novel therapeutic agent for targeting colon cancer cells.
Collapse
Affiliation(s)
- Yanan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Liting Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Xiaolu Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Daoxing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Xueqin Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jiali Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Fengyu Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Qinqin Xia
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Youqun Xiang
- Department of Colon and Rectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
34
|
Ryu S, Nam Y, Kim N, Shin I, Jeon E, Kim Y, Kim ND, Sim T. Identification of Pyridinyltriazine Derivatives as Potent panFGFR Inhibitors against Gatekeeper Mutants for Overcoming Drug Resistance. J Med Chem 2022; 65:6017-6038. [PMID: 35436119 DOI: 10.1021/acs.jmedchem.1c01776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although FGFR inhibitors hold promise in treating various cancers, resistance to the FGFR inhibitors caused by acquired secondary mutations has emerged. To discover novel FGFR inhibitors capable of inhibiting FGFR mutations, including gatekeeper mutations, we designed and synthesized several new pyridinyltriazine derivatives. A structure-activity relationship (SAR) study led to the identification of 17a as a highly potent panFGFR inhibitor against wild-type and mutant FGFRs. Notably, 17a is superior to infigratinib in terms of kinase-inhibitory and cellular activities, especially against V555M-FGFR3. Molecular dynamics simulations provide a clear understanding of why pyridinyltraizine derivative 17a possesses activity against V555M-FGFR3. Moreover, 17a significantly suppresses proliferation of cancer cells harboring FGFR mutations via FGFR signaling blockade, cell cycle arrest, and apoptosis. Furthermore, 17a and 17b exhibited remarkable efficacies in TEL-V555M-FGFR3 Ba/F3 xenograft mouse model and 17a is more efficacious than infigratinib. This study provides new insight into the design of novel FGFR inhibitors that are active against FGFR mutants.
Collapse
Affiliation(s)
- SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Injae Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Zheng J, Zhang W, Li L, He Y, Wei Y, Dang Y, Nie S, Guo Z. Signaling Pathway and Small-Molecule Drug Discovery of FGFR: A Comprehensive Review. Front Chem 2022; 10:860985. [PMID: 35494629 PMCID: PMC9046545 DOI: 10.3389/fchem.2022.860985] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapy is a groundbreaking innovation for cancer treatment. Among the receptor tyrosine kinases, the fibroblast growth factor receptors (FGFRs) garnered substantial attention as promising therapeutic targets due to their fundamental biological functions and frequently observed abnormality in tumors. In the past 2 decades, several generations of FGFR kinase inhibitors have been developed. This review starts by introducing the biological basis of FGF/FGFR signaling. It then gives a detailed description of different types of small-molecule FGFR inhibitors according to modes of action, followed by a systematic overview of small-molecule-based therapies of different modalities. It ends with our perspectives for the development of novel FGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Ferng TT, Terada D, Ando M, Tarver TC, Chaudhary F, Lin KC, Logan AC, Smith CC. The Irreversible FLT3 Inhibitor FF-10101 Is Active Against a Diversity of FLT3 Inhibitor Resistance Mechanisms. Mol Cancer Ther 2022; 21:844-854. [PMID: 35395091 DOI: 10.1158/1535-7163.mct-21-0317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/02/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
Abstract
Small-molecule FLT3 inhibitors have recently improved clinical outcomes for patients with FLT3-mutant acute myeloid leukemia (AML) after many years of development, but resistance remains an important clinical problem. FF-10101 is the first irreversible, covalent inhibitor of FLT3 which has previously shown activity against FLT3 tyrosine kinase inhibitor resistance-causing FLT3 F691L and D835 mutations. We report that FF-10101 is also active against an expanded panel of clinically identified FLT3 mutations associated with resistance to other FLT3 inhibitors. We also demonstrate that FF-10101 can potentially address resistance mechanisms associated with growth factors present in the bone marrow microenvironment but is vulnerable to mutation at C695, the amino acid required for covalent FLT3 binding. These data suggest that FF-10101 possesses a favorable resistance profile that may contribute to improved single-agent efficacy when used in patients with FLT3-mutant AML.
Collapse
Affiliation(s)
- Timothy T Ferng
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Daisuke Terada
- Analysis Technology Center, FUJIFILM Corporation, Kanagawa, Japan
| | - Makoto Ando
- Pharmaceutical Products Division, FUJIFILM Corporation, Tokyo, Japan
| | - Theodore C Tarver
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Fihr Chaudhary
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Kimberly C Lin
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Aaron C Logan
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Catherine C Smith
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
37
|
Péczka N, Orgován Z, Ábrányi-Balogh P, Keserű GM. Electrophilic warheads in covalent drug discovery: an overview. Expert Opin Drug Discov 2022; 17:413-422. [PMID: 35129005 DOI: 10.1080/17460441.2022.2034783] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Covalent drugs have been used for more than hundred years, but gathered larger interest in the last two decades. There are currently over a 100 different electrophilic warheads used in covalent ligands, and there are several considerations tailoring their reactivity against the target of interest, which is still a challenging task. AREAS COVERED This review aims to give an overview of electrophilic warheads used for protein labeling in chemical biology and medicinal chemistry. The warheads are discussed by targeted residues, mechanism and selectivity, and analyzed through three different datasets including our collection of warheads, the CovPDB database, and the FDA approved covalent drugs. Moreover, the authors summarize general practices that facilitate the selection of the appropriate warhead for the target of interest. EXPERT OPINION In spite of the numerous electrophilic warheads, only a fraction of them is used in current drug discovery projects. Recent studies identified new tractable residues by applying a wider array of warhead chemistries. However, versatile, selective warheads are not available for all targetable amino acids, hence discovery of new warheads for these residues is needed. Broadening the toolbox of the warheads could result in novel inhibitors even for challenging targets developing with significant therapeutic potential.
Collapse
Affiliation(s)
- Nikolett Péczka
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György Miklós Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
38
|
Pérez Piñero C, Giulianelli S, Lamb CA, Lanari C. New Insights in the Interaction of FGF/FGFR and Steroid Receptor Signaling in Breast Cancer. Endocrinology 2022; 163:6491899. [PMID: 34977930 DOI: 10.1210/endocr/bqab265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/19/2022]
Abstract
Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.
Collapse
Affiliation(s)
- Cecilia Pérez Piñero
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
- Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, U9120ACD Puerto Madryn, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental, IBYME CONICET, C1428ADN Ciudad de Buenos Aires, Argentina
| |
Collapse
|
39
|
Beri N. Unmet needs in the treatment of intrahepatic cholangiocarcinoma harboring FGFR2 gene rearrangements. Future Oncol 2022; 18:1391-1402. [PMID: 35081733 DOI: 10.2217/fon-2021-1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrahepatic cholangiocarcinoma, a malignancy of the intrahepatic bile ducts, is the second most common primary liver malignancy and has been rising in incidence over the past several decades. Given its poor prognosis and diagnosis at a late stage, novel therapies are urgently needed to improve outcomes. Intrahepatic cholangiocarcinoma harbors a high rate of targetable mutations, spurring an increased interest in drug development in this disease. FGFR2 gene rearrangements occur in approximately 10-16% of these tumors and this underscores the importance of next generation sequencing in this population. There are now several FGFR inhibitors in development, and these agents may help improve outcomes for these patients. However, both primary and secondary resistance remain a challenge.
Collapse
Affiliation(s)
- Nina Beri
- Perlmutter Cancer Center, New York University Medical Center, NY 10016, USA
| |
Collapse
|
40
|
Structural insights into the potency and selectivity of covalent pan-FGFR inhibitors. Commun Chem 2022; 5:5. [PMID: 36697561 PMCID: PMC9814232 DOI: 10.1038/s42004-021-00623-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/22/2021] [Indexed: 01/28/2023] Open
Abstract
FIIN-2, TAS-120 (Futibatinib) and PRN1371 are highly potent pan-FGFR covalent inhibitors targeting the p-loop cysteine of FGFR proteins, of which TAS-120 and PRN1371 are currently in clinical trials. It is critical to analyze their target selectivity and their abilities to overcome gatekeeper mutations. In this study, we demonstrate that FIIN-2 and TAS-120 form covalent adducts with SRC, while PRN1371 does not. FIIN-2 and TAS-120 inhibit SRC and YES activities, while PRN1371 does not. Moreover, FIIN-2, TAS-120 and PRN1371 exhibit different potencies against different FGFR gatekeeper mutants. In addition, the co-crystal structures of SRC/FIIN-2, SRC/TAS-120 and FGFR4/PRN1371 complexes reveal structural basis for kinase targeting and gatekeeper mutations. Taken together, our study not only provides insight into the potency and selectivity of covalent pan-FGFR inhibitors, but also sheds light on the development of next-generation FGFR covalent inhibitors with high potency, high selectivity, and stronger ability to overcome gatekeeper mutations.
Collapse
|
41
|
Lu X, Smaill JB, Patterson AV, Ding K. Discovery of Cysteine-targeting Covalent Protein Kinase Inhibitors. J Med Chem 2021; 65:58-83. [PMID: 34962782 DOI: 10.1021/acs.jmedchem.1c01719] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small molecule covalent kinase inhibitors (CKIs) have entered a new era in drug discovery, which have the advantage for sustained target inhibition and high selectivity. An increased understanding of binding kinetics of CKIs and discovery of additional irreversible and reversible-covalent cysteine-targeted warheads has inspired the development of this area. Herein, we summarize the major medicinal chemistry strategies employed in the discovery of these representative CKIs, which are categorized by the location of the target cysteine within seven main regions of the kinase: the front region, the glycine rich loop (P-loop), the hinge region, the DFG region, the activation loop (A-loop), the catalytic loop (C-loop), and the remote loop. The emphasis is placed on the design and optimization strategies of CKIs that are generated by addition of a warhead to a reversible lead/inhibitor scaffold. In addition, we address the challenges facing this area of drug discovery.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
42
|
Zhang Z, Wang Y, Chen X, Song X, Tu Z, Chen Y, Zhang Z, Ding K. Characterization of an aromatic trifluoromethyl ketone as a new warhead for covalently reversible kinase inhibitor design. Bioorg Med Chem 2021; 50:116457. [PMID: 34670167 DOI: 10.1016/j.bmc.2021.116457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022]
Abstract
An aromatic trifluoromethyl ketone moiety was characterized as a new warhead for covalently reversible kinase inhibitor design to target the non-catalytic cysteine residue. Potent and selective covalently reversible inhibitors of FGFR4 kinase were successfully designed and synthesized by utilizing this new warhead. The binding mode of a representative inhibitor was fully characterized by using multiple technologies including MALDI-TOF mass spectrometry, dialysis assay and X-ray crystallographic studies etc. This functional group was also successfully applied to discovery of a new JAK3 inhibitor, suggesting its potential application in designing other kinase inhibitors.
Collapse
Affiliation(s)
- Zhen Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Song
- Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhimin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; The First Affiliated Hospital, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
43
|
Ishida N, Murata K, Morita T, Semba S, Nezu A, Tanimura A. Spontaneous calcium responses of SF2 rat dental epithelial cells stably expressing the calcium sensor G-GECO. Biomed Res 2021; 42:193-201. [PMID: 34544995 DOI: 10.2220/biomedres.42.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genetically-encoded calcium indicators such as G-GECO are useful for studying Ca2+ responses during long-term processes. In this study, we employed a lentiviral vector and established a rat dental epithelial cell line that stably expressed G-GECO (SF2-G-GECO). Ca2+ imaging analysis under cell culture conditions revealed that SF2-G-GECO cells exhibited spontaneous Ca2+ responses, which could be classified into the following three major patterns depending on the cell density: localized Ca2+ responses at cell protrusions at a low density, a cell-wide spread of Ca2+ responses at a medium density, and Ca2+ responses in clusters of 3-20 cells at a high density. The P2Y receptor inhibitor suramin (10 μM), the ATP-degrading enzyme apyrase (5 units/mL), and the fibroblast growth factor (FGF) receptor inhibitor FIIN-2 (1 μM) decreased the frequency of spontaneous Ca2+ responses. These results indicate that ATP and FGF are involved in the spontaneous Ca2+ responses. SF2 cells differentiate into ameloblasts via interactions with mesenchymal cells. Therefore, SF2-G-GECO cells are expected to be a useful tool for studying the functions of Ca2+ responses in regulating gene expression during tooth development.
Collapse
Affiliation(s)
- Narumi Ishida
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido
| | - Kaori Murata
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido
| | - Takao Morita
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Niigata
| | - Shingo Semba
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido
| | - Akihiro Nezu
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido
| | - Akihiko Tanimura
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido
| |
Collapse
|
44
|
DW14383 is an irreversible pan-FGFR inhibitor that suppresses FGFR-dependent tumor growth in vitro and in vivo. Acta Pharmacol Sin 2021; 42:1498-1506. [PMID: 33288861 PMCID: PMC8379184 DOI: 10.1038/s41401-020-00567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Fibroblast growth factor receptor (FGFR) is a promising anticancer target. Currently, most FGFR inhibitors lack sufficient selectivity and have nonnegligible activity against kinase insert domain receptor (KDR), limiting their feasibility due to the serious side effects. Notably, compensatory activation occurs among FGFR1-4, suggesting the urgent need to develop selective pan-FGFR1-4 inhibitors. Here, we explored the antitumor activity of DW14383, a novel irreversible FGFR1-4 inhibitor. DW14383 exhibited equivalently high potent inhibition against FGFR1, 2, 3 and 4, with IC50 values of less than 0.3, 1.1, less than 0.3, and 0.5 nmol/L, respectively. It is a selective FGFR inhibitor, exhibiting more than 1100-fold selectivity for FGFR1 over recombinant KDR, making it one of the most selective FGFR inhibitors over KDR described to date. Furthermore, DW14383 significantly inhibited cellular FGFR1-4 signaling, inducing G1/S cell cycle arrest, which in turn antagonized FGFR-dependent tumor cell proliferation. In contrast, DW14383 had no obvious antiproliferative effect against cancer cell lines without FGFR aberration, further confirming its selectivity against FGFR. In representative FGFR-dependent xenograft models, DW14383 oral administration substantially suppressed tumor growth by simultaneously inhibiting tumor proliferation and angiogenesis via inhibiting FGFR signaling. In summary, DW14383 is a promising selective irreversible pan-FGFR inhibitor with pan-tumor spectrum potential in FGFR1-4 aberrant cancers, which has the potential to overcome compensatory activation among FGFR1-4.
Collapse
|
45
|
Ren Z, Li Q, Shen Y, Meng L. Intrinsic relative preference profile of pan-kinase inhibitor drug staurosporine towards the clinically occurring gatekeeper mutations in Protein Tyrosine Kinases. Comput Biol Chem 2021; 94:107562. [PMID: 34428735 DOI: 10.1016/j.compbiolchem.2021.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
Protein tyrosine kinases (PTKs) have been recognized as the attractive druggable targets of various diseases including cancer. However, many PTKs are clinically observed to establish a gatekeeper mutation in the peripheral hinge section of active site, which plays a primary role in development of acquired drug resistance to kinase inhibitors. The natural product Staurosporine, an ATP-competitive reversible pan-kinase inhibitor, has been found to exhibit wild type-sparing selectivity for some PTK gatekeeper mutants. In this study, totally 23 acquired drug-resistant gatekeeper mutations harbored on 17 PTKs involved in diverse cancers were curated, from which only five amino acid types, namely Thr, Met, Val, Leu and Ile, were observed at both wild-type and mutant residues of these clinically occurring gatekeeper sites. Here, an integrative strategy that combined molecular modeling and kinase assay was described to systematically investigate the relative preference of Staurosporine towards the five gatekeeper amino acid types in real kinase context and in a psendokinase model. A kinase-free, intrinsic relative preference profile of Staurosporine to gatekeeper amino acids was created: (dispreferred) Thr⊳Val⊳Ile⊳Leu⊳Met (preferred). It is found that kinase context has no essential effect on the profile; different kinases and even psendokinase can obtain a consistent conclusion for the preference order. Theoretically, we can use the profile to predict Staurosporine response to any gatekeeper mutation between the five amino acid types in any PTK. Structural and energetic analyses revealed that the multiple-aromatic ring system of Staurosporine can form multiple noncovalent interactions with the weakly polar side chain of Met and can pack tightly or moderately against the nonpolar side chains of Val, Ile and Leu, thus stabilizing the kinase-inhibitor system (ΔU < 0), whereas the polar side chain of Thr may cause unfavorable electronegative and solvent effects with the aromatic electrons of Staurosporine, thus destabilizing the system (ΔU > 0).
Collapse
Affiliation(s)
- Zheng Ren
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Li
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiwen Shen
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ling Meng
- Department of Pharmacy, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
46
|
Du G, Jiang J, Wu Q, Henning NJ, Donovan KA, Yue H, Che J, Lu W, Fischer ES, Bardeesy N, Zhang T, Gray NS. Discovery of a Potent Degrader for Fibroblast Growth Factor Receptor 1/2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guangyan Du
- Department of Cancer Biology Dana Farber Cancer Institute 360 Longwood Ave Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Jie Jiang
- Department of Cancer Biology Dana Farber Cancer Institute 360 Longwood Ave Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Qibiao Wu
- Cancer Center Massachusetts General Hospital Harvard Medical School Boston MA USA
- Broad Institute of Harvard and MIT Cambridge MA USA
| | - Nathaniel J. Henning
- Department of Cancer Biology Dana Farber Cancer Institute 360 Longwood Ave Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Katherine A. Donovan
- Department of Cancer Biology Dana Farber Cancer Institute 360 Longwood Ave Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Hong Yue
- Department of Cancer Biology Dana Farber Cancer Institute 360 Longwood Ave Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Jianwei Che
- Department of Cancer Biology Dana Farber Cancer Institute 360 Longwood Ave Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Wenchao Lu
- Department of Cancer Biology Dana Farber Cancer Institute 360 Longwood Ave Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Eric S. Fischer
- Department of Cancer Biology Dana Farber Cancer Institute 360 Longwood Ave Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA USA
| | - Nabeel Bardeesy
- Cancer Center Massachusetts General Hospital Harvard Medical School Boston MA USA
- Broad Institute of Harvard and MIT Cambridge MA USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine Stanford University Stanford CA USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine Stanford University Stanford CA USA
| |
Collapse
|
47
|
Du G, Jiang J, Wu Q, Henning NJ, Donovan KA, Yue H, Che J, Lu W, Fischer ES, Bardeesy N, Zhang T, Gray NS. Discovery of a Potent Degrader for Fibroblast Growth Factor Receptor 1/2. Angew Chem Int Ed Engl 2021; 60:15905-15911. [PMID: 33915015 PMCID: PMC8324087 DOI: 10.1002/anie.202101328] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Indexed: 11/06/2022]
Abstract
Aberrant activation of FGFR signaling occurs in many cancers, and ATP-competitive FGFR inhibitors have received regulatory approval. Despite demonstrating clinical efficacy, these inhibitors exhibit dose-limiting toxicity, potentially due to a lack of selectivity amongst the FGFR family and are poorly tolerated. Here, we report the discovery and characterization of DGY-09-192, a bivalent degrader that couples the pan-FGFR inhibitor BGJ398 to a CRL2VHL E3 ligase recruiting ligand, which preferentially induces FGFR1&2 degradation while largely sparing FGFR3&4. DGY-09-192 exhibited two-digit nanomolar DC50 s for both wildtype FGFR2 and several FGFR2-fusions, resulting in degradation-dependent antiproliferative activity in representative gastric cancer and cholangiocarcinoma cells. Importantly, DGY-09-192 induced degradation of a clinically relevant FGFR2 fusion protein in a xenograft model. Taken together, we demonstrate that DGY-09-192 has potential as a prototype FGFR degrader.
Collapse
Affiliation(s)
- Guangyan Du
- Department of Cancer Biology, Dana Farber Cancer Institute, 360 Longwood Ave, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana Farber Cancer Institute, 360 Longwood Ave, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Qibiao Wu
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Nathaniel J Henning
- Department of Cancer Biology, Dana Farber Cancer Institute, 360 Longwood Ave, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana Farber Cancer Institute, 360 Longwood Ave, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hong Yue
- Department of Cancer Biology, Dana Farber Cancer Institute, 360 Longwood Ave, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana Farber Cancer Institute, 360 Longwood Ave, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wenchao Lu
- Department of Cancer Biology, Dana Farber Cancer Institute, 360 Longwood Ave, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana Farber Cancer Institute, 360 Longwood Ave, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
48
|
Wei Y, Tang Y, Zhou Y, Yang Y, Cui Y, Wang X, Wang Y, Liu Y, Liu N, Wang Q, Li C, Ruan H, Zhou H, Wei M, Yang G, Yang C. Discovery and Optimization of a Novel 2 H-Pyrazolo[3,4-d]pyrimidine Derivative as a Potent Irreversible Pan-Fibroblast Growth Factor Receptor Inhibitor. J Med Chem 2021; 64:9078-9099. [PMID: 34129329 DOI: 10.1021/acs.jmedchem.1c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) have become promising therapeutic targets in various types of cancers. In fact, several selective irreversible inhibitors capable of covalently reacting with the conserved cysteine of FGFRs are currently being evaluated in clinical trials. In this article, we optimized and discovered a novel lead compound 36 with remarkable inhibitory effects against FGFR (1-3), which is a derivative of 2H-pyrazolo[3,4-d]pyrimidine. The irreversible binding to FGFRs was characterized by LC-MS. This compound has been shown to exhibit significant anti-proliferation effects against NCI-H1581 and SNU-16 cancer cell lines both in vitro and in vivo. Compound 36 has also demonstrated a low toxicity profile and adequate pharmacokinetic properties and is currently under validation as a potential drug candidate.
Collapse
Affiliation(s)
- Yujiao Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yanting Tang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yunyun Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yuyu Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yetong Cui
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Xuan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yubo Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yulin Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ning Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Qianqian Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Chong Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Hao Ruan
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Mingming Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
49
|
Jiang K, Tang X, Guo J, He R, Chan S, Song X, Tu Z, Wang Y, Ren X, Ding K, Zhang Z. GZD824 overcomes FGFR1-V561F/M mutant resistance in vitro and in vivo. Cancer Med 2021; 10:4874-4884. [PMID: 34114373 PMCID: PMC8290231 DOI: 10.1002/cam4.4041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormallyactivated FGFR1 has been validated as a therapeutic target for differentcancers. Although a variety of FGFR inhibitors have shown benefit in manyclinical patients with FGFR1 aberration, FGFR1 mutant resistance such as V561Mmutation, has been reported. To date however, no FGFR inhibitors have beenapproved to treat patients with FGFR mutant resistance. Herein, we report that GZD824, athird generation ABL inhibitor (Phase II, China), overcomes FGFR1‐V561F/M mutant resistance in vitro and in vivo. GZD824potently suppresses FGFR1/2/3 with an IC50 value of 4.14 ± 0.96, 2.77 ± 0.082, and 8.10 ± 0.15 nmol/L. It effectively overcomes FGFR1‐V561F/M and other mutantresistance in Ba/F3 stable cells (IC50:8.1–55.0 nM), and effectively inhibits the growth of Ba/F3‐FGFR1‐V561F/M mutantxenograft tumors in vivo (TGI=73.4%, 49.8% at20mg/kg, p.o, q2d). GZD824may be considered to be an effective drug to treat patients with FGFR1 abnormalactivation or mutant resistance in clinical trials.
Collapse
Affiliation(s)
- Kaili Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xia Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Shingpan Chan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojuan Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuting Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Pacini L, Jenks AD, Lima NC, Huang PH. Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells 2021; 10:1154. [PMID: 34068816 PMCID: PMC8151052 DOI: 10.3390/cells10051154] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Genetic alterations, such as amplifications, mutations and translocations in the fibroblast growth factor receptor (FGFR) family have been found in non-small cell lung cancer (NSCLC) where they have a role in cancer initiation and progression. FGFR aberrations have also been identified as key compensatory bypass mechanisms of resistance to targeted therapy against mutant epidermal growth factor receptor (EGFR) and mutant Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) in lung cancer. Targeting FGFR is, therefore, of clinical relevance for this cancer type, and several selective and nonselective FGFR inhibitors have been developed in recent years. Despite promising preclinical data, clinical trials have largely shown low efficacy of these agents in lung cancer patients with FGFR alterations. Preclinical studies have highlighted the emergence of multiple intrinsic and acquired resistance mechanisms to FGFR tyrosine kinase inhibitors, which include on-target FGFR gatekeeper mutations and activation of bypass signalling pathways and alternative receptor tyrosine kinases. Here, we review the landscape of FGFR aberrations in lung cancer and the array of targeted therapies under clinical evaluation. We also discuss the current understanding of the mechanisms of resistance to FGFR-targeting compounds and therapeutic strategies to circumvent resistance. Finally, we highlight our perspectives on the development of new biomarkers for stratification and prediction of FGFR inhibitor response to enable personalisation of treatment in patients with lung cancer.
Collapse
Affiliation(s)
| | | | | | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (L.P.); (A.D.J.); (N.C.L.)
| |
Collapse
|