1
|
Wei L, Du Y, Gao S, Li D, Zhang K, He W, Lu Y, Zhu X. TGF-β1-induced m6A modifications accelerate onset of nuclear cataract in high myopia by modulating the PCP pathway. Nat Commun 2025; 16:3859. [PMID: 40274784 PMCID: PMC12022316 DOI: 10.1038/s41467-025-58995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
High myopia is an important cause of visual impairment worldwide, characterized by early-onset nuclear cataracts, whose underlying mechanisms remain largely unexplained. Here, we identify conspicuously polarized and compacted lens fiber alignment, along with a simultaneous rise in N6-methyladenosine (m6A) modifications in patients with highly myopic cataracts (HMC), which is confirmed to be induced by elevated transforming growth factor-β1 (TGF-β1) in lens. Mechanistically, methyltransferase METTL3 and m6A reader insulin-like growth factor 2 mRNA binding protein 3 synergistically enhance planar cell polarity (PCP) signaling by affecting mRNA stability of dishevelled 2. This, in turn, alters proliferation, migration, and polarity formation of human lens epithelial cells. Moreover, Mettl3 conditional knockdown in mice leads to disrupted lens fiber arrangement and alleviates TGF-β1-induced increase in lens nuclear density. Collectively, these findings highlight the significance of m6A-modified PCP pathway in regulating postnatal lens fiber organization, which may hold great promise as a therapeutic target for HMC.
Collapse
Grants
- 82122017, 82271069, 81870642, 81970780, 81470613 and 81670835 National Natural Science Foundation of China (National Science Foundation of China)
- Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission (19441900700 and 21S31904900), Clinical Research Plan of Shanghai Shenkang Hospital Development Center (SHDC2020CR4078, SHDC12019X08, SHDC12020111), Double-E Plan of Eye & ENT Hospital (SYA202006), Shanghai Municipal Key Clinical Specialty Program (shslczdzk01901), and the Fudan University Outstanding 2025 Program.
Collapse
Affiliation(s)
- Ling Wei
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yu Du
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Shunxiang Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Keke Zhang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wenwen He
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiangjia Zhu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Myopia and Related Eye Diseases, NHC; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Su C, Zhong Y, Zhou Z, Li Y, Jia Y, Xie S, Zhao J, Miao H, Luo H, Li Z, Shi Z, Li L, Song X. Structural insights into the Caprin-2 HR1 domain in canonical Wnt signaling. J Biol Chem 2024; 300:107694. [PMID: 39159816 PMCID: PMC11480233 DOI: 10.1016/j.jbc.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
The canonical Wnt signaling pathway plays crucial roles in cell fate decisions as well as in pathogenesis of various diseases. Previously, we reported Caprin-2 as a new regulator of canonical Wnt signaling through a mechanism of facilitating LRP5/6 phosphorylation. Here, we resolved the crystal structure of the N-terminal homologous region 1 (HR1) domain of human Caprin-2. HR1 domain is so far only observed in Caprin-2 and its homologous protein Caprin-1, and the function of this domain remains largely mysterious. Here, the structure showed that HR1 domain of human Caprin-2 forms a homo-dimer and exhibits an overall structure roughly resembling the appearance of a pair of scissors. Moreover, we found that residues R200 and R201, which located at a basic cluster within the N-terminal "blades" region, are critical for Caprin-2's localization to the plasma membrane. In line with this, mutations targeting these two residues decrease Caprin-2's activity in the canonical Wnt signaling. Overall, we characterized a previously unknown "scissors"-like structure of the full-length HR1 domain and revealed its function in mediating Caprin-2's localization to the plasma membrane.
Collapse
Affiliation(s)
- Chun Su
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - YuCheng Zhong
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhilei Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongtao Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Jia
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Sichun Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jianfei Zhao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Haofei Miao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Huilian Luo
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyan Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhubin Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Lin Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Xiaomin Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Ma Z, Hao J, Yang Z, Zhang M, Xin J, Bi H, Guo D. Research Progress on the Role of Ubiquitination in Eye Diseases. Cell Biochem Biophys 2024; 82:1825-1836. [PMID: 38913283 DOI: 10.1007/s12013-024-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
The occurrence and development of ophthalmic diseases are related to the dysfunction of eye tissues. Ubiquitin is an important form of protein post-translational modification, which plays an essential role in the occurrence and development of diseases through specific modification of target proteins. Ubiquitination governs a variety of intracellular signal transduction processes, including proteasome degradation, DNA damage repair, and cell cycle progression. Studies have found that ubiquitin can play a role in eye diseases such as cataracts, glaucoma, keratopathy, retinopathy, and eye tumors. In this paper, the role of protein ubiquitination in eye diseases was reviewed.
Collapse
Affiliation(s)
- Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| |
Collapse
|
4
|
Jiang F, Yang Y, Ni Y, Qin Y, Yuan F, Ju R, Wu M. Smurf1 Modulates Smad Signaling Pathway in Fibrotic Cataract Formation. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 38324299 PMCID: PMC10854413 DOI: 10.1167/iovs.65.2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
Purpose TGF-β/BMP signaling pathway plays a significant role in fibrotic cataract. Smurf1, a ubiquitin protein ligase, regulates the TGF-β/BMP signaling pathway through the ubiquitin-proteasome system (UPS). This study aims to investigate the role of Smurf1 in the progression of fibrotic cataract and its underlying mechanism. Methods We used a mouse model of injury-induced anterior subcapsular cataract (ASC) and administered the Smurf1 inhibitor A01 for in vivo investigations. RNA sequencing was performed to examine global gene expression changes. Protein levels were assessed by Simple Western analysis. The volume of subcapsular opacity was determined using whole-mount immunofluorescence of lens anterior capsules. Lentivirus was utilized to establish cell lines with Smurf1 knockdown or overexpression in SRA01/04. Lens epithelial cell (LEC) proliferation was evaluated by CCK8 and EdU assays. Cell cycle profile was determined by flow cytometry. LEC migration was measured using Transwell and wound healing assays. Results The mRNA levels of genes associated with cell proliferation, migration, epithelial-mesenchymal transition (EMT), TGF-β/BMP pathway, and UPS were upregulated in mouse ASC model. Smurf1 mRNA and protein levels were upregulated in lens capsules of patients and mice with ASC. Anterior chamber injection of A01 inhibited ASC formation and EMT. In vitro, Smurf1 knockdown reduced proliferation, migration and TGF-β2-induced EMT of LECs, concomitant with the upregulation of Smad1, Smad5, and pSmad1/5. Conversely, overexpression of Smurf1 showed opposite phenotypes. Conclusions Smurf1 regulates fibrotic cataract progression by influencing LEC proliferation, migration, and EMT through the modulation of the Smad signaling pathway, offering a novel target for the fibrotic cataract treatment.
Collapse
Affiliation(s)
- Fanying Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuanfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingyan Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fa Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
5
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
6
|
Devi AM, Sankeshi V, Ravali A, Bandaru S, Theendra VK, Sagurthi SR. Inhibitory effect of Nifedipine on aldose reductase delays cataract progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:161-171. [PMID: 37395794 DOI: 10.1007/s00210-023-02588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Aldose reductase (ALR2) is a rate-limiting component of the polyol pathway, which is essential for the NADPH-mediated conversion from glucose to sorbitol. ALR2 dysregulation has been linked to α-crystallin aggregation, increased oxidative stress, and calcium inflow, all of which contribute to a diabetic cataract. Given its crucial role in occular pathologies, ALR2 has emerged as a promising target to treat oxidative stress and hyperglycaemic condition which form the underlying cause of diabetic cataracts. However, several of them had issues with sensitivity and specificity to ALR2, despite being screened as effective ALR2 inhibitors from a wide range of structurally varied molecules. The current study investigates the inhibitory potential of Nifedipine, an analog of the dihydro nicotinamide class of compounds against ALR2 activity. The enzyme inhibition studies were supported by in vitro biomolecular interactions, molecular modeling approaches, and in vivo validation in diabetic rat models. Nifedipine demonstrated appreciable inhibitory potential with the purified recombinant hAR (human aldose reductase; with an IC50 value of 2.5 µM), which was further supported by Nifedipine-hAR binding affinity (Kd = 2.91 ± 1.87 × 10-4 M) by ITC and fluorescence quenching assays. In the in vivo models of STZ-induced diabetic rats, Nifedipine delayed the onset progression of cataracts by preserving the antioxidant enzyme activity (SOD, CAT, and GPX GSH, TBARS, and protein carbonyls) and was shown to retain the α-crystallin chaperone activity by reducing the calcium levels in the diabetic rat lens. In conclusion, our results demonstrate effective inhibition of ALR2 by Nifedipine, resulting in amelioration of diabetic cataract conditions by lowering oxidative and osmotic stress while retaining the chaperone activity of α-crystallins. The present study could be envisaged to improve the eye condition in older adults upon Nifedipine treatment.
Collapse
Affiliation(s)
- Alaparthi Malini Devi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Venu Sankeshi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Arugonda Ravali
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Srinivas Bandaru
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Guntur, 522302, India
| | | | - Someswar Rao Sagurthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India.
| |
Collapse
|
7
|
Bejarano E, Whitcomb EA, Pfeiffer RL, Rose KL, Asensio MJ, Rodríguez-Navarro JA, Ponce-Mora A, Canto A, Almansa I, Schey KL, Jones BW, Taylor A, Rowan S. Unbalanced redox status network as an early pathological event in congenital cataracts. Redox Biol 2023; 66:102869. [PMID: 37677999 PMCID: PMC10495660 DOI: 10.1016/j.redox.2023.102869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.
Collapse
Affiliation(s)
- Eloy Bejarano
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Elizabeth A Whitcomb
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Rebecca L Pfeiffer
- Moran Eye Center, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria José Asensio
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - José Antonio Rodríguez-Navarro
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain; Department of Cell Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Ponce-Mora
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Antolín Canto
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Inma Almansa
- School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Moncada, Valencia, Spain
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bryan W Jones
- Moran Eye Center, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, USA.
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
8
|
Minogue PJ, Gao J, Mathias RT, Williams JC, Bledsoe SB, Sommer AJ, Beyer EC, Berthoud VM. A crystallin mutant cataract with mineral deposits. J Biol Chem 2023; 299:104935. [PMID: 37331601 PMCID: PMC10407958 DOI: 10.1016/j.jbc.2023.104935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
Connexin mutant mice develop cataracts containing calcium precipitates. To test whether pathologic mineralization is a general mechanism contributing to the disease, we characterized the lenses from a nonconnexin mutant mouse cataract model. By cosegregation of the phenotype with a satellite marker and genomic sequencing, we identified the mutant as a 5-bp duplication in the γC-crystallin gene (Crygcdup). Homozygous mice developed severe cataracts early, and heterozygous animals developed small cataracts later in life. Immunoblotting studies showed that the mutant lenses contained decreased levels of crystallins, connexin46, and connexin50 but increased levels of resident proteins of the nucleus, endoplasmic reticulum, and mitochondria. The reductions in fiber cell connexins were associated with a scarcity of gap junction punctae as detected by immunofluorescence and significant reductions in gap junction-mediated coupling between fiber cells in Crygcdup lenses. Particles that stained with the calcium deposit dye, Alizarin red, were abundant in the insoluble fraction from homozygous lenses but nearly absent in wild-type and heterozygous lens preparations. Whole-mount homozygous lenses were stained with Alizarin red in the cataract region. Mineralized material with a regional distribution similar to the cataract was detected in homozygous lenses (but not wild-type lenses) by micro-computed tomography. Attenuated total internal reflection Fourier-transform infrared microspectroscopy identified the mineral as apatite. These results are consistent with previous findings that loss of lens fiber cell gap junctional coupling leads to the formation of calcium precipitates. They also support the hypothesis that pathologic mineralization contributes to the formation of cataracts of different etiologies.
Collapse
Affiliation(s)
- Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - James C Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharon B Bledsoe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andre J Sommer
- Molecular Microspectroscopy Laboratory, Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
9
|
Uwineza A, Cummins I, Jarrin M, Kalligeraki AA, Barnard S, Mol M, Degani G, Altomare AA, Aldini G, Schreurs A, Balschun D, Ainsbury EA, Dias IHK, Quinlan RA. Identification and quantification of ionising radiation-induced oxysterol formation in membranes of lens fibre cells. ADVANCES IN REDOX RESEARCH 2023; 7:None. [PMID: 38798747 PMCID: PMC11112148 DOI: 10.1016/j.arres.2022.100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/29/2024]
Abstract
Ionising radiation (IR) is a cause of lipid peroxidation, and epidemiological data have revealed a correlation between exposure to IR and the development of eye lens cataracts. Cataracts remain the leading cause of blindness around the world. The plasma membranes of lens fibre cells are one of the most cholesterolrich membranes in the human body, forming lipid rafts and contributing to the biophysical properties of lens fibre plasma membrane. Liquid chromatography followed by mass spectrometry was used to analyse bovine eye lens lipid membrane fractions after exposure to 5 and 50 Gy and eye lenses taken from wholebody 2 Gy-irradiated mice. Although cholesterol levels do not change significantly, IR dose-dependant formation of the oxysterols 7β-hydroxycholesterol, 7-ketocholesterol and 5, 6-epoxycholesterol in bovine lens nucleus membrane extracts was observed. Whole-body X-ray exposure (2 Gy) of 12-week old mice resulted in an increase in 7β-hydroxycholesterol and 7-ketocholesterol in their eye lenses. Their increase regressed over 24 h in the living lens cortex after IR exposure. This study also demonstrated that the IR-induced fold increase in oxysterols was greater in the mouse lens cortex than the nucleus. Further work is required to elucidate the mechanistic link(s) between oxysterols and IR-induced cataract, but these data evidence for the first time that IR exposure of mice results in oxysterol formation in their eye lenses.
Collapse
Affiliation(s)
- Alice Uwineza
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
| | - Ian Cummins
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
| | - Miguel Jarrin
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
| | - Alexia A. Kalligeraki
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
| | - Stephen Barnard
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
- UK Health Security Agency, Cytogenetics and Pathology Group, Centre for Radiation, Chemical and Environmental Hazards Division, Chilton, Oxon OX11 0RQ, Didcot, United Kingdom
| | - Marco Mol
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Milano 20133, Italy
| | - Genny Degani
- Department of Biosciences, Via Celoria 26, Milano 20133, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, Milano 20133, Italy
| | - An Schreurs
- Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Elizabeth A. Ainsbury
- UK Health Security Agency, Cytogenetics and Pathology Group, Centre for Radiation, Chemical and Environmental Hazards Division, Chilton, Oxon OX11 0RQ, Didcot, United Kingdom
| | - Irundika HK Dias
- Aston Medical School, Aston University, B4 7ET, Birmingham, United Kingdom
| | - Roy A. Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, South Road, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, University of Durham, South Road, Durham D1 3LE, United Kingdom
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, United States
| |
Collapse
|
10
|
Wu A, Zhang W, Zhang G, Ding X, Kang L, Zhou T, Ji M, Guan H. Age-related cataract: GSTP1 ubiquitination and degradation by Parkin inhibits its anti-apoptosis in lens epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119450. [PMID: 36871745 DOI: 10.1016/j.bbamcr.2023.119450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE Oxidative stress-induced apoptosis of lens epithelial cells (LECs) contributes to the pathogenesis of age-related cataract (ARC). The purpose of this research is to underlie the potential mechanism of E3 ligase Parkin and its oxidative stress-associated substrate in cataractogenesis. METHODS The central anterior capsules were obtained from patients with ARC, Emory mice, and corresponding controls. SRA01/04 cells were exposed to H2O2 combined with cycloheximide (a translational inhibitor), MG-132 (a proteasome inhibitor), chloroquine (an autophagy inhibitor), Mdivi-1 (a mitochondrial division inhibitor), respectively. Co-immunoprecipitation was employed to detect protein-protein interactions and ubiquitin-tagged protein products. Levels of proteins and mRNA were evaluated by western blotting and quantitative RT-PCR assays. RESULTS Glutathione-S-transferase P1 (GSTP1) was identified as a novel Parkin substrate. Compared with corresponding controls, GSTP1 was significantly decreased in the anterior lens capsules obtained from human cataracts and Emory mice. Similarly, GSTP1 was declined in H2O2-stimulated SRA01/04 cells. Ectopic expression of GSTP1 mitigated H2O2-induced apoptosis, whereas silencing GSTP1 aggregated apoptosis. In addition, H2O2 stimulation and Parkin overexpression could promote the degradation of GSTP1 through the ubiquitin-proteasome system, autophagy-lysosome pathway, and mitophagy. After co-transfection with Parkin, the non-ubiquitinatable GSTP1 mutant maintained its anti-apoptotic function, while wildtype GSTP1 failed. Mechanistically, GSTP1 might promote mitochondrial fusion through upregulating Mitofusins 1/2 (MFN1/2). CONCLUSION Oxidative stress induces LECs apoptosis via Parkin-regulated degradation of GSTP1, which may provide potential targets for ARC therapy.
Collapse
Affiliation(s)
- Anran Wu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Wenyi Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Xuemeng Ding
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
11
|
Sharma J, Mulherkar S, Chen UI, Xiong Y, Bajaj L, Cho BK, Goo YA, Leung HCE, Tolias KF, Sardiello M. Calpain activity is negatively regulated by a KCTD7-Cullin-3 complex via non-degradative ubiquitination. Cell Discov 2023; 9:32. [PMID: 36964131 PMCID: PMC10038992 DOI: 10.1038/s41421-023-00533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Calpains are a class of non-lysosomal cysteine proteases that exert their regulatory functions via limited proteolysis of their substrates. Similar to the lysosomal and proteasomal systems, calpain dysregulation is implicated in the pathogenesis of neurodegenerative disease and cancer. Despite intensive efforts placed on the identification of mechanisms that regulate calpains, however, calpain protein modifications that regulate calpain activity are incompletely understood. Here we show that calpains are regulated by KCTD7, a cytosolic protein of previously uncharacterized function whose pathogenic mutations result in epilepsy, progressive ataxia, and severe neurocognitive deterioration. We show that KCTD7 works in complex with Cullin-3 and Rbx1 to execute atypical, non-degradative ubiquitination of calpains at specific sites (K398 of calpain 1, and K280 and K674 of calpain 2). Experiments based on single-lysine mutants of ubiquitin determined that KCTD7 mediates ubiquitination of calpain 1 via K6-, K27-, K29-, and K63-linked chains, whereas it uses K6-mediated ubiquitination to modify calpain 2. Loss of KCTD7-mediated ubiquitination of calpains led to calpain hyperactivation, aberrant cleavage of downstream targets, and caspase-3 activation. CRISPR/Cas9-mediated knockout of Kctd7 in mice phenotypically recapitulated human KCTD7 deficiency and resulted in calpain hyperactivation, behavioral impairments, and neurodegeneration. These phenotypes were largely prevented by pharmacological inhibition of calpains, thus demonstrating a major role of calpain dysregulation in KCTD7-associated disease. Finally, we determined that Cullin-3-KCTD7 mediates ubiquitination of all ubiquitous calpains. These results unveil a novel mechanism and potential target to restrain calpain activity in human disease and shed light on the molecular pathogenesis of KCTD7-associated disease.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| | - Shalaka Mulherkar
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Uan-I Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yan Xiong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hon-Chiu Eastwood Leung
- Departments of Medicine, Pediatrics, and Molecular and Cellular Biology, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| |
Collapse
|
12
|
Knaryan VH, Sarukhanyan FP. [Ca2+-regulated enzymes calpain and calcineurin in neurodegenerative processes and prospects for neuroprotective pharmacotherapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:32-40. [PMID: 37490663 DOI: 10.17116/jnevro202312307132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Calcium (Ca2+) and Ca2+-regulated enzymes calpain and calcineurin are the key molecules of signaling mechanisms in neurons and ensure the normal course of intracellular neurochemical and neurophysiological processes. The imbalance and increase in the intracellular level of Ca2+ correlates with the activation of calpain and calcineurin. Inactivation of endogenous inhibitors and/or absence of exogenous pharmacological inhibitors of these enzymes may induce a cascade of intracellular mechanisms that are detrimental to the structural integrity and functional activity of neurons. The interrelated processes of Ca2+ imbalance, dysregulation of calpain and calcineurin are directly related to the development of intracellular pathophysiological reactions leading to the degeneration and death of selective neuronal populations in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The review briefly presents the characteristics of calpain and calcineurin, their interrelated role in the neurodegeneration processes. Data on the efficiency of the exogenous inhibitors (in vivo, in vitro) point out the potential role of pharmacological regulation of calpain and calcineurin for neuroprotection.
Collapse
Affiliation(s)
- V H Knaryan
- Buniatian Institute of Biochemistry NAS RA, Yerevan, Armenia
| | - F P Sarukhanyan
- Buniatian Institute of Biochemistry NAS RA, Yerevan, Armenia
| |
Collapse
|
13
|
Cantrell LS, Gletten RB, Schey KL. Proteome Remodeling of the Eye Lens at 50 Years Identified With Data-Independent Acquisition. Mol Cell Proteomics 2023; 22:100453. [PMID: 36470534 PMCID: PMC9800634 DOI: 10.1016/j.mcpro.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
The eye lens is responsible for focusing and transmitting light to the retina. The lens does this in the absence of organelles, yet maintains transparency for at least 5 decades before onset of age-related nuclear cataract (ARNC). It is hypothesized that oxidative stress contributes significantly to ARNC formation. It is in addition hypothesized that transparency is maintained by a microcirculation system that delivers antioxidants to the lens nucleus and exports small molecule waste. Common data-dependent acquisition methods are hindered by dynamic range of lens protein expression and provide limited context to age-related changes in the lens. In this study, we utilized data-independent acquisition mass spectrometry to analyze the urea-insoluble membrane protein fractions of 16 human lenses subdivided into three spatially distinct lens regions to characterize age-related changes, particularly concerning the lens microcirculation system and oxidative stress response. In this pilot cohort, we measured 4788 distinct protein groups, 46,681 peptides, and 7592 deamidated sequences, more than in any previous human lens data-dependent acquisition approach. Principally, we demonstrate that a significant proteome remodeling event occurs at approximately 50 years of age, resulting in metabolic preference for anaerobic glycolysis established with organelle degradation, decreased abundance of protein networks involved in calcium-dependent cell-cell contacts while retaining networks related to oxidative stress response. Furthermore, we identified multiple antioxidant transporter proteins not previously detected in the human lens and describe their spatiotemporal and age-related abundance changes. Finally, we demonstrate that aquaporin-5, among other proteins, is modified with age by post-translational modifications including deamidation and truncation. We suggest that the continued accumulation of each of these age-related outcomes in proteome remodeling contribute to decreased fiber cell permeability and result in ARNC formation.
Collapse
Affiliation(s)
- Lee S Cantrell
- Vanderbilt University Mass Spectrometry Research Center, Nashville, Tennessee, USA; Vanderbilt University Chemical and Physical Biology Program, Nashville, Tennessee, USA
| | - Romell B Gletten
- Vanderbilt University Mass Spectrometry Research Center, Nashville, Tennessee, USA; Vanderbilt University Department of Biochemistry, Nashville, Tennessee, USA
| | - Kevin L Schey
- Vanderbilt University Mass Spectrometry Research Center, Nashville, Tennessee, USA; Vanderbilt University Chemical and Physical Biology Program, Nashville, Tennessee, USA; Vanderbilt University Department of Biochemistry, Nashville, Tennessee, USA.
| |
Collapse
|
14
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Beyer EC, Mathias RT, Berthoud VM. Loss of fiber cell communication may contribute to the development of cataracts of many different etiologies. Front Physiol 2022; 13:989524. [PMID: 36171977 PMCID: PMC9511111 DOI: 10.3389/fphys.2022.989524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The lens is an avascular organ that is supported by an internal circulation of water and solutes. This circulation is driven by ion pumps, channels and transporters in epithelial cells and by ion channels in fiber cells and is maintained by fiber-fiber and fiber-epithelial cell communication. Gap junctional intercellular channels formed of connexin46 and connexin50 are critical components of this circulation as demonstrated by studies of connexin null mice and connexin mutant mice. Moreover, connexin mutants are one of the most common causes of autosomal dominant congenital cataracts. However, alterations of the lens circulation and coupling between lens fiber cells are much more prevalent, beyond the connexin mutant lenses. Intercellular coupling and levels of connexins are decreased with aging. Gap junction-mediated intercellular communication decreases in mice expressing mutant forms of several different lens proteins and in some mouse models of lens protein damage. These observations suggest that disruption of ionic homeostasis due to reduction of the lens circulation is a common component of the development of many different types of cataracts. The decrease in the lens circulation often reflects low levels of lens fiber cell connexins and/or functional gap junction channels.
Collapse
Affiliation(s)
- Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
- *Correspondence: Eric C. Beyer,
| | - Richard T. Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States
| | | |
Collapse
|
16
|
Khan SY, Ali M, Kabir F, Na CH, Delannoy M, Ma Y, Qiu C, Costello MJ, Hejtmancik JF, Riazuddin SA. The role of FYCO1-dependent autophagy in lens fiber cell differentiation. Autophagy 2022; 18:2198-2215. [PMID: 35343376 PMCID: PMC9397473 DOI: 10.1080/15548627.2022.2025570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 11/02/2022] Open
Abstract
FYCO1 (FYVE and coiled-coil domain containing 1) is an adaptor protein, expressed ubiquitously and required for microtubule-dependent, plus-end-directed transport of macroautophagic/autophagic vesicles. We have previously shown that loss-of-function mutations in FYCO1 cause cataracts with no other ocular and/or extra-ocular phenotype. Here, we show fyco1 homozygous knockout (fyco1-/-) mice recapitulate the cataract phenotype consistent with a critical role of FYCO1 and autophagy in lens morphogenesis. Transcriptome coupled with proteome and metabolome profiling identified many autophagy-associated genes, proteins, and lipids respectively perturbed in fyco1-/- mice lenses. Flow cytometry of FYCO1 (c.2206C>T) knock-in (KI) human lens epithelial cells revealed a decrease in autophagic flux and autophagic vesicles resulting from the loss of FYCO1. Transmission electron microscopy showed cellular organelles accumulated in FYCO1 (c.2206C>T) KI lens-like organoid structures and in fyco1-/- mice lenses. In summary, our data confirm the loss of FYCO1 function results in a diminished autophagic flux, impaired organelle removal, and cataractogenesis.Abbreviations: CC: congenital cataracts; DE: differentially expressed; ER: endoplasmic reticulum; FYCO1: FYVE and coiled-coil domain containing 1; hESC: human embryonic stem cell; KI: knock-in; OFZ: organelle-free zone; qRT-PCR: quantitative real-time PCR; PE: phosphatidylethanolamine; RNA-Seq: RNA sequencing; SD: standard deviation; sgRNA: single guide RNA; shRNA: shorthairpin RNA; TEM: transmission electron microscopy; WT: wild type.
Collapse
Affiliation(s)
- Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Delannoy
- Department of Cell Biology and Imaging Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yinghong Ma
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Caihong Qiu
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - M. Joseph Costello
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Minogue PJ, Sommer AJ, Williams JC, Bledsoe SB, Beyer EC, Berthoud VM. Connexin Mutants Cause Cataracts Through Deposition of Apatite. Front Cell Dev Biol 2022; 10:951231. [PMID: 35938173 PMCID: PMC9355134 DOI: 10.3389/fcell.2022.951231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cataracts are lens opacities that are among the most common causes of blindness. It is commonly believed that cataracts develop through the accumulation of damage to lens proteins. However, recent evidence suggests that cataracts can result from calcium ion accumulation and the precipitation of calcium-containing salts. To test for the presence of precipitates and to identify their components, we studied the lenses of mice that develop cataracts due to mutations of connexin46 and connexin50. Micro-computed tomography showed the presence of radio-dense mineral in the mutant lenses, but not in wild-type lenses. Three-dimensional reconstructions of the scans showed that the distribution of the radio-dense mineral closely paralleled the location and morphology of the cataracts. The mutant lens homogenates also contained insoluble particles that stained with Alizarin red (a dye that stains Ca2+ deposits). Using attenuated total internal reflection micro–Fourier transform infrared spectroscopy, we identified the mineral as calcium phosphate in the form of apatite. Taken together, these data support the novel paradigm that cataracts are formed through pathological mineralization within the lens.
Collapse
Affiliation(s)
- Peter J. Minogue
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Andre J. Sommer
- Molecular Microspectroscopy Laboratory, Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States
| | - James C. Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon B. Bledsoe
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Viviana M. Berthoud
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
- *Correspondence: Viviana M. Berthoud,
| |
Collapse
|
18
|
Shi X, Zhou Z, Li W, Qin M, Yang P, Hou J, Huang F, Lei Z, Wu Z, Wang J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:229. [PMID: 35508960 PMCID: PMC9066855 DOI: 10.1186/s12870-022-03602-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Hexaploid wheat (Triticum aestivum L.) is a leading cereal crop worldwide. Understanding the mechanism of calcium (Ca) accumulation in wheat is important to reduce the risk of human micronutrient deficiencies. However, the mechanisms of Ca accumulation in wheat grain are only partly understood. RESULTS Here, a genome-wide association study (GWAS) was performed to dissect the genetic basis of Ca accumulation in wheat grain using an association population consisting of 207 varieties, with phenotypic data from three locations. In total, 11 non-redundant genetic loci associated with Ca concentration were identified and they explained, on average, 9.61-26.93% of the phenotypic variation. Cultivars containing more superior alleles had increased grain Ca concentrations. Notably, four non-redundant loci were mutually verified by different statistical models in at least two environments, indicating their stability across different environments. Four putative candidate genes linked to Ca accumulation were revealed from the stable genetic loci. Among them, two genes, associated with the stable genetic loci on chromosomes 4A (AX-108912427) and 3B (AX-110922471), encode the subunits of V-type Proton ATPase (TraesCS4A02G428900 and TraesCS3B02G241000), which annotated as the typical generators of a proton gradient that might be involved in Ca homeostasis in wheat grain. CONCLUSION To identify genetic loci associated with Ca accumulation, we conducted GWAS on Ca concentrations and detected 11 genetic loci; whereas four genetic loci were stable across different environments. A genetic loci hot spot exists at the end of chromosome 4A and associated with the putative candidate gene TraesCS4A02G428900. The candidate gene TraesCS4A02G428900 encodes V-type proton ATPase subunit e and highly expressed in wheat grains, and it possibly involved in Ca accumulation. This study increases our understanding of the genetic architecture of Ca accumulation in wheat grains, which is potentially helpful for wheat Ca biofortification pyramid breeding.
Collapse
Affiliation(s)
- Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Pan Yang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Fangfang Huang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| |
Collapse
|
19
|
Qi T, Jing R, Ma B, Hu C, Wen C, Shao Y, Pei C. The E3 Ligase RNF157 Inhibits Lens Epithelial Cell Apoptosis by Negatively Regulating p53 in Age-Related Cataracts. Invest Ophthalmol Vis Sci 2022; 63:11. [PMID: 35435923 PMCID: PMC9034709 DOI: 10.1167/iovs.63.4.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose Age-related cataract (ARC) is a major cause of vision impairment worldwide. The E3 ubiquitin ligase RING finger protein 157 (RNF157) is involved in regulating cell survival and downregulated in human cataractous lens samples. However, the function of RNF157 in cataracts remains unclear. This study aimed to determine the role of RNF157 in ARC. Methods Real-time polymerase chain reaction (PCR) and Western blotting were used to analyze the expression of RNF157 in clinical lens capsules, rat cataract models, and oxidative stress cell models. Western blot analysis and flow cytometry were used to evaluate cell apoptosis. Co-IP assay, protein stability assay, and ubiquitination assay were used to detect the interaction between RNF157 and its substrate p53. Results The expression of RNF157 was downregulated in human cataract samples, UVB-induced rat cataract model, and H2O2-treated human lens epithelial cells (LECs). Ectopic expression of RNF157 protected LECs from H2O2-induced apoptosis. In contrast, knockdown of RNF157 enhanced oxidative stress-induced apoptotic cell death. Moreover, silence of RNF157 in the rat ex vivo lens model exacerbated lens opacity. Mechanistically, RNF157 causes ubiquitination and degradation of the tumor antigen p53. Overexpression of p53 eliminated the antiapoptotic effects of RNF157, whereas p53 knockdown rescued RNF157 silencing-induced cell death. Conclusions Our findings revealed that reduced RNF157 expression promoted LEC apoptosis by upregulating p53 in cataracts, suggesting that the regulation of RNF157 expression may serve as a potential therapeutic strategy for cataracts.
Collapse
Affiliation(s)
- Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Conghui Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongping Shao
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
XRCC5 downregulated by TRIM25 is susceptible for lens epithelial cell apoptosis. Cell Signal 2022; 94:110314. [PMID: 35331835 DOI: 10.1016/j.cellsig.2022.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Exposure of the lens to UVB can lead to oxidative stress, which would result in age-related cataract (ARC) formation. In this study, we investigate the regulatory mechanism of tripartite motif containing 25 (TRIM25) in ARC. The protein level of TRIM25 was elevated in ARC specimens and UVB-exposed SRA01/04 cells. Bioinformatic analysis indicated that X-ray repair cross complementing 5 (XRCC5) might interact with TRIM25, and the interaction was validated via immunoprecipitation. TRIM25 interacted with XRCC5 and ubiquitinated it for degradation. Further studies showed that XRCC5 overexpression notably repressed UVB-induced apoptosis, while XRCC5 knockdown promoted apoptosis. Of note, ubiquitination of XRCC5 mediated by TRIM25 overexpression facilitated apoptosis. Attenuation of XRCC5 ubiquitination by mutant with substitution of lysine residues with arginine residues rescued its anti-apoptosis effect. Moreover, we observed that TRIM25-mediated XRCC5 degradation was reversed by proteasome inhibitor MG-132 or lysosome inhibitor 3-MA. In conclusion, TRIM25 mediates ubiquitination of XRCC5 to regulate the function and degradation of XRCC5, suggesting that interventions targeting TRIM25 might be a promising therapeutic strategy for ARC.
Collapse
|
21
|
Shi Y, Li X, Yang J. Mutations of CX46/CX50 and Cataract Development. Front Mol Biosci 2022; 9:842399. [PMID: 35223995 PMCID: PMC8874012 DOI: 10.3389/fmolb.2022.842399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cataract is a common disease in the aging population. Gap junction has been considered a central component in maintaining homeostasis for preventing cataract formation. Gap junction channels consist of connexin proteins with more than 20 members. Three genes including GJA1, GJA3, and GJA8, that encode protein Cx43 (connexin43), Cx46 (connexin46), and Cx50 (connexin50), respectively, have been identified in human and rodent lens. Cx46 together with Cx50 have been detected in lens fiber cells with high expression, whereas Cx43 is mainly expressed in lens epithelial cells. Disrupted expression of the two connexin proteins Cx46 and Cx50 is directly related to the development of severe cataract in human and mice. In this review article, we describe the main role of Cx46 and Cx50 connexin proteins in the lens and the relationship between mutations of Cx46 or Cx50 and hereditary cataracts. Furthermore, the latest progress in the fundamental research of lens connexin and the mechanism of cataract formation caused by lens connexin dysfunction are summarized. Overall, targeting connexin could be a novel approach for the treatment of cataract.
Collapse
Affiliation(s)
- Yumeng Shi
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Department of Ophthalmology and Visual Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: Jin Yang, ; Xinbo Li,
| | - Jin Yang
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Department of Ophthalmology and Visual Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- *Correspondence: Jin Yang, ; Xinbo Li,
| |
Collapse
|
22
|
Lachke SA. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Exp Eye Res 2022; 214:108889. [PMID: 34906599 PMCID: PMC8792301 DOI: 10.1016/j.exer.2021.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Development of the ocular lens - a transparent tissue capable of sustaining frequent shape changes for optimal focusing power - pushes the boundaries of what cells can achieve using the molecular toolkit encoded by their genomes. The mammalian lens contains broadly two types of cells, the anteriorly located monolayer of epithelial cells which, at the equatorial region of the lens, initiate differentiation into fiber cells that contribute to the bulk of the tissue. This differentiation program involves massive upregulation of select fiber cell-expressed RNAs and their subsequent translation into high amounts of proteins, such as crystallins. But intriguingly, fiber cells achieve this while also simultaneously undergoing significant morphological changes such as elongation - involving about 1000-fold length-wise increase - and migration, which requires modulation of cytoskeletal and cell adhesion factors. Adding further to the challenges, these molecular and cellular events have to be coordinated as fiber cells progress toward loss of their nuclei and organelles, which irreversibly compromises their potential for harnessing genetically hardwired information. A long-standing question is how processes downstream of signaling and transcription, which may also participate in feedback regulation, contribute toward orchestrating these cellular differentiation events in the lens. It is now becoming clear from findings over the past decade that post-transcriptional gene expression regulatory mechanisms are critical in controlling cellular proteomes and coordinating key processes in lens development and fiber cell differentiation. Indeed, RNA-binding proteins (RBPs) such as Caprin2, Celf1, Rbm24 and Tdrd7 have now been described in mediating post-transcriptional control over key factors (e.g. Actn2, Cdkn1a (p21Cip1), Cdkn1b (p27Kip1), various crystallins, Dnase2b, Hspb1, Pax6, Prox1, Sox2) that are variously involved in cell cycle, transcription, cytoskeleton maintenance and differentiation in the lens. Furthermore, deficiencies of these RBPs have been shown to result in various eye and lens defects and/or cataract. Because fiber cell differentiation in the lens occurs throughout life, the underlying regulatory mechanisms operational in development are expected to also be recruited for the maintenance of transparency in aged lenses. Indeed, in support of this, TDRD7 and CAPRIN2 loci have been linked to age-related cataract in humans. Here, I will review the role of key RBPs in the lens and their importance in understanding the pathology of lens defects. I will discuss advances in RBP-based gene expression control, in general, and the important challenges that need to be addressed in the lens to define the mechanisms that determine the epithelial and fiber cell proteome. Finally, I will also discuss in detail several key future directions including the application of bioinformatics approaches such as iSyTE to study RBP-based post-transcriptional gene expression control in the aging lens and in the context of age-related cataract.
Collapse
Affiliation(s)
- Salil A Lachke
- Department of Biological Sciences, University of Delaware, 105 The Green, Delaware Avenue, 236 Wolf Hall, Newark, DE, USA; Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
23
|
Rowan S, Jiang S, Francisco SG, Pomatto LCD, Ma Z, Jiao X, Campos MM, Aryal S, Patel SD, Mahaling B, Riazuddin SA, Duh EJ, Lachke SA, Hejtmancik JF, de Cabo R, FitzGerald PG, Taylor A. Aged Nrf2-Null Mice Develop All Major Types of Age-Related Cataracts. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 34882206 PMCID: PMC8665303 DOI: 10.1167/iovs.62.15.10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Age-related cataracts affect the majority of older adults and are a leading cause of blindness worldwide. Treatments that delay cataract onset or severity have the potential to delay cataract surgery, but require relevant animal models that recapitulate the major types of cataracts for their development. Unfortunately, few such models are available. Here, we report the lens phenotypes of aged mice lacking the critical antioxidant transcription factor Nfe2l2 (designated as Nrf2 −/−). Methods Three independent cohorts of Nrf2 −/− and wild-type C57BL/6J mice were evaluated for cataracts using combinations of slit lamp imaging, photography of freshly dissected lenses, and histology. Mice were fed high glycemic diets, low glycemic diets, regular chow ad libitum, or regular chow with 30% caloric restriction. Results Nrf2 −/− mice developed significant opacities between 11 and 15 months and developed advanced cortical, posterior subcapsular, anterior subcapsular, and nuclear cataracts. Cataracts occurred similarly in male mice fed high or low glycemic diets, and were also observed in 21-month male and female Nrf2 −/− mice fed ad libitum or 30% caloric restriction. Histological observation of 18-month cataractous lenses revealed significant disruption to fiber cell architecture and the retention of nuclei throughout the cortical region of the lens. However, fiber cell denucleation and initiation of lens differentiation was normal at birth, with the first abnormalities observed at 3 months. Conclusions Nrf2 −/− mice offer a tool to understand how defective antioxidant signaling causes multiple forms of cataract and may be useful for screening drugs to prevent or delay cataractogenesis in susceptible adults.
Collapse
Affiliation(s)
- Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| | - Shuhong Jiang
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Sarah G Francisco
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States
| | - Laura C D Pomatto
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Maria M Campos
- NEI Histology Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Shaili D Patel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Binapani Mahaling
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elia J Duh
- Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, Baltimore, Maryland, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, United States.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, United States
| |
Collapse
|
24
|
Lin B, Liu J, Zhang Y, Wu Y, Chen S, Bai Y, Liu Q, Qin X. Urinary peptidomics reveals proteases involved in idiopathic membranous nephropathy. BMC Genomics 2021; 22:852. [PMID: 34819020 PMCID: PMC8613922 DOI: 10.1186/s12864-021-08155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic membranous nephropathy (IMN) is a cause of nephrotic syndrome that is increasing in incidence but has unclear pathogenesis. Urinary peptidomics is a promising technology for elucidating molecular mechanisms underlying diseases. Dysregulation of the proteolytic system is implicated in various diseases. Here, we aimed to conduct urinary peptidomics to identify IMN-related proteases. RESULTS Peptide fingerprints indicated differences in naturally produced urinary peptide components among 20 healthy individuals, 22 patients with IMN, and 15 patients with other kidney diseases. In total, 1,080 peptide-matched proteins were identified, 279 proteins differentially expressed in the urine of IMN patients were screened, and 32 proteases were predicted; 55 of the matched proteins were also differentially expressed in the kidney tissues of IMN patients, and these were mainly involved in the regulation of proteasome-, lysosome-, and actin cytoskeleton-related signaling pathways. The 32 predicted proteases showed abnormal expression in the glomeruli of IMN patients based on Gene Expression Omnibus databases. Western blot revealed abnormal expression of calpain, matrix metalloproteinase 14, and cathepsin S in kidney tissues of patients with IMN. CONCLUSIONS This work shown the calpain/matrix metalloproteinase/cathepsin axis might be dysregulated in IMN. Our study is the first to systematically explore the role of proteases in IMN by urinary peptidomics, which are expected to facilitate discovery of better biomarkers for IMN.
Collapse
Affiliation(s)
- Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yabin Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Shixiao Chen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Qiuying Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China.
| |
Collapse
|
25
|
Tong JJ, Khan U, Haddad BG, Minogue PJ, Beyer EC, Berthoud VM, Reichow SL, Ebihara L. Molecular mechanisms underlying enhanced hemichannel function of a cataract-associated Cx50 mutant. Biophys J 2021; 120:5644-5656. [PMID: 34762867 DOI: 10.1016/j.bpj.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/26/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
Connexin-50 (Cx50) is among the most frequently mutated genes associated with congenital cataracts. Although most of these disease-linked variants cause loss of function because of misfolding or aberrant trafficking, others directly alter channel properties. The mechanistic bases for such functional defects are mostly unknown. We investigated the functional and structural properties of a cataract-linked mutant, Cx50T39R (T39R), in the Xenopus oocyte system. T39R exhibited greatly enhanced hemichannel currents with altered voltage-gating properties compared to Cx50 and induced cell death. Coexpression of mutant T39R with wild-type Cx50 (to mimic the heterozygous state) resulted in hemichannel currents whose properties were indistinguishable from those induced by T39R alone, suggesting that the mutant had a dominant effect. Furthermore, when T39R was coexpressed with Cx46, it produced hemichannels with increased activity, particularly at negative potentials, which could potentially contribute to its pathogenicity in the lens. In contrast, coexpression of wild-type Cx50 with Cx46 was associated with a marked reduction in hemichannel activity, indicating that it may have a protective effect. All-atom molecular dynamics simulations indicate that the R39 substitution can form multiple electrostatic salt-bridge interactions between neighboring subunits that could stabilize the open-state conformation of the N-terminal (NT) domain while also neutralizing the voltage-sensing residue D3 as well as residue E42, which participates in loop gating. Together, these results suggest T39R acts as a dominant gain-of-function mutation that produces leaky hemichannels that may cause cytotoxicity in the lens and lead to development of cataracts.
Collapse
Affiliation(s)
- Jun-Jie Tong
- Center of Proteomics and Molecular Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Umair Khan
- Department of Chemistry, Portland State University, Portland, Oregon
| | - Bassam G Haddad
- Department of Chemistry, Portland State University, Portland, Oregon
| | - Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | | | - Steve L Reichow
- Department of Chemistry, Portland State University, Portland, Oregon.
| | - Lisa Ebihara
- Center of Proteomics and Molecular Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; Discipline of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois.
| |
Collapse
|
26
|
Li Y, Parkinson DY, Feng J, Xia CH, Gong X. Quantitative X-ray tomographic analysis reveals calcium precipitation in cataractogenesis. Sci Rep 2021; 11:17401. [PMID: 34465795 PMCID: PMC8408149 DOI: 10.1038/s41598-021-96867-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Cataracts, named for pathological light scattering in the lens, are known to be associated with increased large protein aggregates, disrupted protein phase separation, and/or osmotic imbalances in lens cells. We have applied synchrotron phase contrast X-ray micro-computed tomography to directly examine an age-related nuclear cataract model in Cx46 knockout (Cx46KO) mice. High-resolution 3D X-ray tomographic images reveal amorphous spots and strip-like dense matter precipitates in lens cores of all examined Cx46KO mice at different ages. The precipitates are predominantly accumulated in the anterior suture regions of lens cores, and they become longer and dense as mice age. Alizarin red staining data confirms the presence of calcium precipitates in lens cores of all Cx46KO mice. This study indicates that the spatial and temporal calcium precipitation is an age-related event associated with age-related nuclear cataract formation in Cx46KO mice, and further suggests that the loss of Cx46 promotes calcium precipitates in the lens core, which is a new mechanism that likely contributes to the pathological light scattering in this age-related cataract model.
Collapse
Affiliation(s)
- Yuxing Li
- Vision Science Program and School of Optometry, University of California, Berkeley, 693 Minor Hall, Berkeley, CA, 94720-2020, USA
- Tsinghua-Berkeley Shenzhen Institute (TBSI), UC Berkeley, Berkeley, CA, USA
| | - Dilworth Y Parkinson
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jun Feng
- Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chun-Hong Xia
- Vision Science Program and School of Optometry, University of California, Berkeley, 693 Minor Hall, Berkeley, CA, 94720-2020, USA
| | - Xiaohua Gong
- Vision Science Program and School of Optometry, University of California, Berkeley, 693 Minor Hall, Berkeley, CA, 94720-2020, USA.
| |
Collapse
|
27
|
Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, Zeng A, Wang S, Zhou X, Li H, Zhang Q, Mo Q, Long J, Lan F, Chen Y, Hu J. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun 2021; 12:3005. [PMID: 34021134 PMCID: PMC8139980 DOI: 10.1038/s41467-021-22782-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Defective cholesterol biosynthesis in eye lens cells is often associated with cataracts; however, how genes involved in cholesterol biosynthesis are regulated in lens cells remains unclear. Here, we show that Quaking (Qki) is required for the transcriptional activation of genes involved in cholesterol biosynthesis in the eye lens. At the transcriptome level, lens-specific Qki-deficient mice present downregulation of genes associated with the cholesterol biosynthesis pathway, resulting in a significant reduction of total cholesterol level in the eye lens. Mice with Qki depletion in lens epithelium display progressive accumulation of protein aggregates, eventually leading to cataracts. Notably, these defects are attenuated by topical sterol administration. Mechanistically, we demonstrate that Qki enhances cholesterol biosynthesis by recruiting Srebp2 and Pol II in the promoter regions of cholesterol biosynthesis genes. Supporting its function as a transcription co-activator, we show that Qki directly interacts with single-stranded DNA. In conclusion, we propose that Qki-Srebp2-mediated cholesterol biosynthesis is essential for maintaining the cholesterol level that protects lens from cataract development.
Collapse
Affiliation(s)
- Seula Shin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunfei Wang
- Clinical Science Division, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Takashi Shingu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailiang Zeng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Jilin, China
| | - Hongtao Li
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qinling Mo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
28
|
Wu J, Cai M, Yang J, Li Y, Ding J, Kandil OM, Kutyrev I, Ayaz M, Zheng Y. Comparative analysis of different extracellular vesicles secreted by Echinococcus granulosus protoscoleces. Acta Trop 2021; 213:105756. [PMID: 33189712 DOI: 10.1016/j.actatropica.2020.105756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/12/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous populations of different membrane-wrapped vesicles in size and encapsulated cargo and have recently emerged as a crucial carrier with the functions in intercellular communication, being involved in host-parasite interactions. However, Echinococcus granulosus EVs are not fully described. To separate EVs with a different size, the culture supernatant of E. granulosus protoscoleces (PSCs) was sequentially centrifuged at 2,000g, 10,000g and 110,000g, and the resulting precipitates were accordingly named as 2K, 10K and 110K EVs, respectively. The size and morphology of three different EVs were identified using ZETASIZER NANO and transmission electron microscopy (TEM), respectively. Then mass spectrometry was applied to define protein cargo of EVs and EV internalization was assessed using fluorescent microscopy and flow cytometry. The results showed that 2K EVs mainly ranged from 450 to 950 nm in diameter, 10K EVs ranged from 220 to 390 nm and 110K EVs from 60 to 150 nm. A total of 901 EV proteins were identified, 328 of which were commonly found in the three types of EVs. GO analysis revealed that these proteins were mainly involved in binding (44%) and catalytic activity (44%). Three types of EVs were different in biomarkers (Enolase and 14-3-3) and in reactivity with anti-echinococcosis positive serum. Moreover, 110K EVs were more easily internalized by hepatic cells than 10K EVs as well as 2K EVs (p < 0.0001). These results reveal the physical and biological discrepancy among 2K, 10K and 110K EVs, suggesting a distinct role in host-parasite interactions.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Mengting Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Yating Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Omnia M Kandil
- Depterment of Parasitology and Animal Disease, Veterinary Research Division, National Research Centre, Giza12622, Egypt
| | - Ivan Kutyrev
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, Sakhyanovoi st. 6, 670047 Ulan-Ude, Russia
| | - Mazhar Ayaz
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur 73000, Pakistan
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
29
|
Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract. Commun Biol 2020; 3:755. [PMID: 33311586 PMCID: PMC7733496 DOI: 10.1038/s42003-020-01421-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/01/2020] [Indexed: 11/10/2022] Open
Abstract
Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 10−19), TMPRSS5 (rs4936279, P = 2.5 × 10−10), LINC01412 (rs16823886, P = 1.3 × 10−9), GLTSCR1 (rs1005911, P = 9.8 × 10−9), and COMMD1 (rs62149908, P = 1.2 × 10−8). The results suggest a strong link of age-related nuclear cataract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye. Here, the authors report a multi-ethnic genome wide association meta-analysis of 12 studies from the International Cataract Genetics Consortium. They find six new loci associated with age-related nuclear cataract, in addition to replicating the association at CRYAA, and suggest a strong genetic link between age-related nuclear and congenital cataracts.
Collapse
|
30
|
Berthoud VM, Gao J, Minogue PJ, Jara O, Mathias RT, Beyer EC. Connexin Mutants Compromise the Lens Circulation and Cause Cataracts through Biomineralization. Int J Mol Sci 2020; 21:E5822. [PMID: 32823750 PMCID: PMC7461132 DOI: 10.3390/ijms21165822] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Gap junction-mediated intercellular communication facilitates the circulation of ions, small molecules, and metabolites in the avascular eye lens. Mutants of the lens fiber cell gap junction proteins, connexin46 (Cx46) and connexin50 (Cx50), cause cataracts in people and in mice. Studies in mouse models have begun to elucidate the mechanisms by which these mutants lead to cataracts. The expression of the dominant mutants causes severe decreases in connexin levels, reducing the gap junctional communication between lens fiber cells and compromising the lens circulation. The impairment of the lens circulation results in several changes, including the accumulation of Ca2+ in central lens regions, leading to the formation of precipitates that stain with Alizarin red. The cataract morphology and the distribution of Alizarin red-stained material are similar, suggesting that the cataracts result from biomineralization within the organ. In this review, we suggest that this may be a general process for the formation of cataracts of different etiologies.
Collapse
Affiliation(s)
- Viviana M. Berthoud
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; (P.J.M.); (O.J.); (E.C.B.)
| | - Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA; (J.G.); (R.T.M.)
| | - Peter J. Minogue
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; (P.J.M.); (O.J.); (E.C.B.)
| | - Oscar Jara
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; (P.J.M.); (O.J.); (E.C.B.)
| | - Richard T. Mathias
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA; (J.G.); (R.T.M.)
| | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA; (P.J.M.); (O.J.); (E.C.B.)
| |
Collapse
|
31
|
Jia W, Hu Q, Wu Y, Wang J, Liu Z, Zhang X. A novel UBE2A mutation in a Chinese family with X-linked intellectual disability. J Gene Med 2020; 22:e3191. [PMID: 32222108 DOI: 10.1002/jgm.3191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND X-linked intellectual disability type Nascimento, also known as UBE2A deficiency syndrome, is an intellectual disability syndrome characterized by moderate to severe intellectual disability, dysmorphic facial features, speech impairment, genital anomalies and skin abnormalities. The syndrome is caused by mutations of the UBE2A gene, or larger deletions of Xq24 encompassing UBE2A. METHODS We report the case of a 19-year-old male with UBE2A deficiency syndrome, who showed severe intellectual disability and seizures. Whole exome sequencing and Sanger sequencing were used to identify the disease-causing mutations in this patient. RESULTS A novel hemizygous missense UBE2A mutation (c.TAT245TGT, p.Tyr82Cys) was identified in our patient. The heterozygous missense UBE2A mutation was identified in his mother, although not in his father or sister. CONCLUSIONS The present study identified a novel UBE2A mutation in a patient with severe intellectual disability and seizures. Our findings expand the mutational spectrum of the UBE2A gene.
Collapse
Affiliation(s)
- Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanling Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
32
|
Song JY, Wang XG, Zhang ZY, Che L, Fan B, Li GY. Endoplasmic reticulum stress and the protein degradation system in ophthalmic diseases. PeerJ 2020; 8:e8638. [PMID: 32117642 PMCID: PMC7036270 DOI: 10.7717/peerj.8638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/26/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Endoplasmic reticulum (ER) stress is involved in the pathogenesis of various ophthalmic diseases, and ER stress-mediated degradation systems play an important role in maintaining ER homeostasis during ER stress. The purpose of this review is to explore the potential relationship between them and to find their equilibrium sites. Design This review illustrates the important role of reasonable regulation of the protein degradation system in ER stress-mediated ophthalmic diseases. There were 128 articles chosen for review in this study, and the keywords used for article research are ER stress, autophagy, UPS, ophthalmic disease, and ocular. Data sources The data are from Web of Science, PubMed, with no language restrictions from inception until 2019 Jul. Results The ubiquitin proteasome system (UPS) and autophagy are important degradation systems in ER stress. They can restore ER homeostasis, but if ER stress cannot be relieved in time, cell death may occur. However, they are not independent of each other, and the relationship between them is complementary. Therefore, we propose that ER stability can be achieved by adjusting the balance between them. Conclusion The degradation system of ER stress, UPS and autophagy are interrelated. Because an imbalance between the UPS and autophagy can cause cell death, regulating that balance may suppress ER stress and protect cells against pathological stress damage.
Collapse
Affiliation(s)
- Jing-Yao Song
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Xue-Guang Wang
- Department of Traumatic Orthopedics, Third People's Hospital of Jinan, Jinan, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| |
Collapse
|
33
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
34
|
Pan L, Zhang P, Hu F, Yan R, He M, Li W, Xu J, Xu K. Hypotonic Stress Induces Fast, Reversible Degradation of the Vimentin Cytoskeleton via Intracellular Calcium Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900865. [PMID: 31559132 PMCID: PMC6755523 DOI: 10.1002/advs.201900865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/16/2019] [Indexed: 06/01/2023]
Abstract
The dynamic response of the cell to osmotic changes is critical to its physiology and is widely exploited for cell manipulation. Here, using three-dimensional stochastic optical reconstruction microscopy (3D-STORM), a super-resolution technique, the hypotonic stress-induced ultrastructural changes of the cytoskeleton of a common fibroblast cell type are examined. Unexpectedly, these efforts lead to the discovery of a fast, yet reversible dissolution of the vimentin intermediate filament system that precedes ultrastructural changes of the supposedly more dynamic actin and tubulin cytoskeletal systems as well as changes in cell morphology. In combination with calcium imaging and biochemical analysis, it is shown that the vimentin-specific fast cytoskeletal degradation under hypotonic stress is due to proteolysis by the calcium-dependent protease calpain. The process is found to be activated by the hypotonic stress-induced calcium release from intracellular stores, and is therefore efficiently suppressed by inhibiting any part of the IP3-Ca2+-calpain pathway established in this study. Together, these findings highlight an unexpected, fast degradation mechanism for the vimentin cytoskeleton in response to external stimuli, and point to the significant, yet previously overlooked physiological impacts of hypotonic stress-induced intracellular calcium release on cell ultrastructure and function.
Collapse
Affiliation(s)
- Leiting Pan
- The Key Laboratory of Weak‐Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Ping Zhang
- The Key Laboratory of Weak‐Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Fen Hu
- The Key Laboratory of Weak‐Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Rui Yan
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Manni He
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Wan Li
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Jingjun Xu
- The Key Laboratory of Weak‐Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Ke Xu
- Department of ChemistryUniversity of CaliforniaBerkeleyCA94720USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
| |
Collapse
|
35
|
Peng H, Hulleman JD. Prospective Application of Activity-Based Proteomic Profiling in Vision Research-Potential Unique Insights into Ocular Protease Biology and Pathology. Int J Mol Sci 2019; 20:ijms20163855. [PMID: 31398819 PMCID: PMC6720450 DOI: 10.3390/ijms20163855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Activity-based proteomic profiling (ABPP) is a powerful tool to specifically target and measure the activity of a family of enzymes with the same function and reactivity, which provides a significant advantage over conventional proteomic strategies that simply provide abundance information. A number of inherited and age-related eye diseases are caused by polymorphisms/mutations or abnormal expression of proteases including serine proteases, cysteine proteases, and matrix metalloproteinases, amongst others. However, neither conventional genomic, transcriptomic, nor traditional proteomic profiling directly interrogate protease activities. Thus, leveraging ABPP to probe the activity of these enzyme classes as they relate to normal function and pathophysiology of the eye represents a unique potential opportunity for disease interrogation and possibly intervention.
Collapse
Affiliation(s)
- Hui Peng
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9057, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Amyloid found in human cataracts with two-dimensional infrared spectroscopy. Proc Natl Acad Sci U S A 2019; 116:6602-6607. [PMID: 30894486 DOI: 10.1073/pnas.1821534116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UV light and other factors damage crystallin proteins in the eye lens, resulting in cataracts that scatter light and affect vision. Little information exists about protein structures within these disease-causing aggregates. We examined postmortem lens tissue from individuals with and without cataracts using 2D infrared (2DIR) spectroscopy. Amyloid β-sheet secondary structure was detected in cataract lenses along with denatured structures. No amyloid structures were found in lenses from juveniles, but mature lenses with no cataract diagnosis also contained amyloid, indicating that amyloid structures begin forming before diagnosis. Light scatters more strongly in regions with amyloid structure, and UV light induces amyloid β-sheet structures, linking the presence of amyloid structures to disease pathology. Establishing that age-related cataracts involve amyloid structures gives molecular insight into a common human affliction and provides a possible structural target for pharmaceuticals as an alternative to surgery.
Collapse
|
37
|
Zhao Y, Wilmarth PA, Cheng C, Limi S, Fowler VM, Zheng D, David LL, Cvekl A. Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers. Exp Eye Res 2019; 179:32-46. [PMID: 30359574 PMCID: PMC6360118 DOI: 10.1016/j.exer.2018.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/31/2018] [Accepted: 10/20/2018] [Indexed: 12/21/2022]
Abstract
Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. While previous studies have revealed proteins that are preferentially expressed in epithelial vs. fiber cells, a comprehensive proteomics library comparing the molecular compositions of epithelial vs. fiber cells is essential for understanding lens formation, function, disease and regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of lens development and pathology in vitro. To compare protein compositions between the lens epithelium and fibers, we employed tandem mass spectrometry (2D-LC/MS) analysis of microdissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into gene ontology categories by molecular processes and subcellular localizations, were adapted for the lens. Expression levels of both epithelial and fiber proteomes were compared with whole lens proteome and mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this developmental time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. As expected, crystallins showed a high correlation between their mRNA and protein levels. Comprehensive data analysis confirmed and/or predicted roles for transcription factors (TFs), RNA-binding proteins (e.g. Carhsp1), translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, cytoskeletal [e.g. non-muscle myosin IIA heavy chain (Myh9) and βB2-spectrin (Sptbn2)] and membrane proteins in lens formation and maturation. Our data highlighted many proteins with unknown functions in the lens that were preferentially enriched in epithelium or fibers, setting the stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. epithelial cell maintenance. In conclusion, the present proteomic datasets represent the first mouse lens epithelium and fiber cell proteomes, establish comparative analyses of protein and RNA-Seq data, and characterize the major proteome remodeling required to form the mature lens fiber cells.
Collapse
Affiliation(s)
- Yilin Zhao
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Phillip A Wilmarth
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saima Limi
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deyou Zheng
- Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neurology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Larry L David
- Department of Biochemistry & Molecular Biology, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Ales Cvekl
- Departments Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
38
|
Cataractogenic load – A concept to study the contribution of ionizing radiation to accelerated aging in the eye lens. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:68-81. [DOI: 10.1016/j.mrrev.2019.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
39
|
Whitcomb EA, Tsai YC, Basappa J, Liu K, Le Feuvre AK, Weissman AM, Taylor A. Stabilization of p27 Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control. FASEB J 2018; 33:1235-1247. [PMID: 30113882 DOI: 10.1096/fj.201800960r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ubiquitinylation drives many cellular processes by targeting proteins for proteasomal degradation. Ubiquitin conjugation enzymes promote ubiquitinylation and, thus, degradation of protein substrates. Ubiquitinylation is a well-known posttranslational modification controlling cell-cycle transitions and levels or/and activation levels of ubiquitin-conjugating enzymes change during development and cell cycle. Progression through the cell cycle is tightly controlled by CDK inhibitors such as p27Kip1. Here we show that, in contrast to promoting its degradation, the ubiquitin-conjugating enzyme UBCH7/UBE2L3 specifically protects p27Kip1 from degradation. Overexpression of UBCH7/UBE2L3 stabilizes p27Kip1 and delays the G1-to-S transition, while depletion of UBCH7/UBE2L3 increases turnover of p27Kip1. Levels of p21Cip1/Waf1, p57Kip2, cyclin A and cyclin E, all of which are also involved in regulating the G1/S transition are not affected by UBCH7/UBE2L3 depletion. The effect of UBCH7/UBE2L3 on p27Kip1 is not due to alteration of the levels of any of the ubiquitin ligases known to ubiquitinylate p27Kip1. Rather, UBCH7/UBE2L3 catalyzes the conjugation of heterotypic ubiquitin chains on p27Kip1 that are proteolytically incompetent. These data reveal new controls and concepts about the ubiquitin proteasome system in which a ubiquitin-conjugating enzyme selectively inhibits and may even protect, rather than promote degradation of a crucial cell-cycle regulatory molecule.-Whitcomb, E. A., Tsai, Y. C., Basappa, J., Liu, K., Le Feuvre, A. K., Weissman, A. M., Taylor, A. Stabilization of p27Kip1/CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cell-cycle control.
Collapse
Affiliation(s)
- Elizabeth A Whitcomb
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Johnvesly Basappa
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Ke Liu
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Aurélie K Le Feuvre
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research Jean Mayer-U.S. Department of Agriculture (JM-USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Elmasry K, Ibrahim AS, Saleh H, Elsherbiny N, Elshafey S, Hussein KA, Al-Shabrawey M. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy. Diabetologia 2018; 61:1220-1232. [PMID: 29468369 PMCID: PMC5878142 DOI: 10.1007/s00125-018-4560-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Our earlier studies have established the role of 12/15-lipoxygenase (LO) in mediating the inflammatory reaction in diabetic retinopathy. However, the exact mechanism is still unclear. The goal of the current study was to identify the potential role of endoplasmic reticulum (ER) stress as a major cellular stress response in the 12/15-LO-induced retinal changes in diabetic retinopathy. METHODS We used in vivo and in vitro approaches. For in vivo studies, experimental diabetes was induced in wild-type (WT) mice and 12/15-Lo (also known as Alox15) knockout mice (12/15-Lo-/-); ER stress was then evaluated after 12-14 weeks of diabetes. We also tested the effect of intravitreal injection of 12-hydroxyeicosatetraenoic acid (HETE) on retinal ER stress in WT mice and in mice lacking the catalytic subunit of NADPH oxidase, encoded by Nox2 (also known as Cybb) (Nox2-/- mice). In vitro studies were performed using human retinal endothelial cells (HRECs) treated with 15-HETE (0.1 μmol/l) or vehicle, with or without ER stress or NADPH oxidase inhibitors. This was followed by evaluation of ER stress response, NADPH oxidase expression/activity and the levels of phosphorylated vascular endothelial growth factor receptor-2 (p-VEGFR2) by western blotting and immunoprecipitation assays. Moreover, real-time imaging of intracellular calcium (Ca2+) release in HRECs treated with or without 15-HETE was performed using confocal microscopy. RESULTS Deletion of 12/15-Lo significantly attenuated diabetes-induced ER stress in mouse retina. In vitro, 15-HETE upregulated ER stress markers such as phosphorylated RNA-dependent protein kinase-like ER-regulated kinase (p-PERK), activating transcription factor 6 (ATF6) and protein disulfide isomerase (PDI) in HRECs. Inhibition of ER stress reduced 15-HETE-induced-leucocyte adhesion, VEGFR2 phosphorylation and NADPH oxidase expression/activity. However, inhibition of NADPH oxidase or deletion of Nox2 had no effect on ER stress induced by the 12/15-LO-derived metabolites both in vitro and in vivo. We also found that 15-HETE increases the intracellular calcium in HRECs. CONCLUSIONS/INTERPRETATION ER stress contributes to 12/15-LO-induced retinal inflammation in diabetic retinopathy via activation of NADPH oxidase and VEGFR2. Perturbation of calcium homeostasis in the retina might also play a role in linking 12/15-LO to retinal ER stress and subsequent microvascular dysfunction in diabetic retinopathy.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB 2602, Augusta, GA, 30912, USA
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed S Ibrahim
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heba Saleh
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Nehal Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sally Elshafey
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Khaled A Hussein
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB 2602, Augusta, GA, 30912, USA
- Oral Medicine and Surgery Research Division, National Research Centre, Dokki, Egypt
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB 2602, Augusta, GA, 30912, USA.
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
41
|
Gao J, Minogue PJ, Beyer EC, Mathias RT, Berthoud VM. Disruption of the lens circulation causes calcium accumulation and precipitates in connexin mutant mice. Am J Physiol Cell Physiol 2018; 314:C492-C503. [PMID: 29351411 PMCID: PMC5966789 DOI: 10.1152/ajpcell.00277.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Abstract
The lens is an avascular organ whose function and survival depend on an internal circulation system. Cx46fs380 mice model a human autosomal dominant cataract caused by a mutant lens connexin. In these mice, fiber cell connexin levels and gap junction coupling are severely decreased. The present studies were conducted to examine components of the lens circulation system that might be altered and contribute to the pathogenesis of cataracts. Lenses from wild-type mice and Cx46fs380 heterozygotes and homozygotes were studied at 2 months of age. Cx46fs380-expressing lens fiber cells were depolarized. Cx46fs380 lenses had increased intracellular hydrostatic pressure and concentrations of Na+ and Ca2+. The activity of epithelial Na+-K+-ATPase was decreased in Cx46fs380 lenses. All of these changes were more severe in homozygous than in heterozygous Cx46fs380 lenses. Cx46fs380 cataracts were stained by Alizarin red, a dye used to detect insoluble Ca2+. These data suggest that the lens internal circulation was disrupted by expression of Cx46fs380, leading to several consequences including accumulation of Ca2+ to levels so high that precipitates formed. Similar Ca2+-containing precipitates may contribute to cataract formation due to other genetic or acquired etiologies.
Collapse
Affiliation(s)
- Junyuan Gao
- Department of Physiology and Biophysics, Stony Brook University , Stony Brook, New York
| | - Peter J Minogue
- Department of Pediatrics, University of Chicago , Chicago, Illinois
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago , Chicago, Illinois
| | - Richard T Mathias
- Department of Physiology and Biophysics, Stony Brook University , Stony Brook, New York
| | | |
Collapse
|
42
|
Sreelakshmi V, Abraham A. Protective effects of Cassia tora leaves in experimental cataract by modulating intracellular communication, membrane co-transporters, energy metabolism and the ubiquitin-proteasome pathway. PHARMACEUTICAL BIOLOGY 2017; 55:1274-1282. [PMID: 28274170 PMCID: PMC6130452 DOI: 10.1080/13880209.2017.1299769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/18/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT Cataract is the clouding of eye lens which causes impairment in vision and accounts for the leading factor of global blindness. Functional food-based prevention of cataract finds application in vision research because of its availability and easy access to all classes of the society. Cassia tora Linn. (Caesalpinaceae) is an edible plant mentioned in the traditional systems of medicine for whole body health, especially to the eyes. OBJECTIVE The present study evaluates the potential of ethyl acetate fraction of Cassia tora leaves (ECT) on experimental cataract. MATERIALS AND METHODS Cataract was induced by a single subcutaneous injection of sodium selenite (4 μg/g body weight) on 10th day. ECT was supplemented orally from 8th day up to 12th day at a concentration of 5 μg/g body weight and marker parameters were evaluated after 30 days. RESULTS The production of MPO and the activation of calpain were reduced 52.17% and 36.67% by ECT in lens tissue, respectively. It modulated the energy status by significantly increasing the activity of CCO 1 (55.56%) and ATP production (41.88%). ECT maintained the ionic balance in the lens by reducing the level of sodium (50%) and increasing the level of potassium (42.5%). It also reduced cell junction modifications and preserved a functional ubiquitin-proteasome pathway. DISCUSSION AND CONCLUSION The results reinforce the growing attention on wild plant food resources for preventive protection against cataract. The data suggest the value of Cassia tora leaves as a functional food for ameliorating cataract pathology.
Collapse
Affiliation(s)
- V. Sreelakshmi
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
43
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
44
|
A novel UBE2A mutation causes X-linked intellectual disability type Nascimento. Hum Genome Var 2017; 4:17019. [PMID: 28611923 PMCID: PMC5462939 DOI: 10.1038/hgv.2017.19] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/01/2023] Open
Abstract
X-linked intellectual disability (ID) type Nascimento (MIM #300860), also known as ubiquitin-conjugating enzyme E2 A (UBE2A) deficiency syndrome, is a congenital malformation syndrome characterized by moderate to severe ID, speech impairment, dysmorphic facial features, genital anomalies and skin abnormalities. Here, we report a Japanese patient with severe ID and congenital cataract. We identified a novel hemizygous mutation (c.76G>A, p.Gly26Arg) in UBE2A by whole-exome sequencing.
Collapse
|
45
|
Abstract
The lens is an avascular organ composed of an anterior epithelial cell layer and fiber cells that form the bulk of the organ. The lens expresses connexin43 (Cx43), connexin46 (Cx46) and connexin50 (Cx50). Epithelial Cx50 has critical roles in cell proliferation and differentiation, likely involving growth factor-dependent signaling pathways. Both Cx46 and Cx50 are crucial for lens transparency; mutations in their genes have been linked to congenital and age-related cataracts. Congenital cataract-associated connexin mutants can affect protein trafficking, stability and/or function, and the functional effects may differ between gap junction channels and hemichannels. Dominantly inherited cataracts may result from effects of the connexin mutant on its wild type isotype, the other co-expressed wild type connexin and/or its interaction with other cellular components.
Collapse
Affiliation(s)
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany.
| |
Collapse
|
46
|
Gakamsky A, Duncan RR, Howarth NM, Dhillon B, Buttenschön KK, Daly DJ, Gakamsky D. Tryptophan and Non-Tryptophan Fluorescence of the Eye Lens Proteins Provides Diagnostics of Cataract at the Molecular Level. Sci Rep 2017; 7:40375. [PMID: 28071717 PMCID: PMC5223181 DOI: 10.1038/srep40375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
The chemical nature of the non-tryptophan (non-Trp) fluorescence of porcine and human eye lens proteins was identified by Mass Spectrometry (MS) and Fluorescence Steady-State and Lifetime spectroscopy as post-translational modifications (PTM) of Trp and Arg amino acid residues. Fluorescence intensity profiles measured along the optical axis of human eye lenses with age-related nuclear cataract showed increasing concentration of fluorescent PTM towards the lens centre in accord with the increased optical density in the lens nucleolus. Significant differences between fluorescence lifetimes of "free" Trp derivatives hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), kynurenine (Kyn), hydroxykynurenine (OH-Kyn) and their residues were observed. Notably, the lifetime constants of these residues in a model peptide were considerably greater than those of their "free" counterparts. Fluorescence of Trp, its derivatives and argpyrimidine (ArgP) can be excited at the red edge of the Trp absorption band which allows normalisation of the emission spectra of these PTMs to the fluorescence intensity of Trp, to determine semi-quantitatively their concentration. We show that the cumulative fraction of OH-Trp, NFK and ArgP emission dominates the total fluorescence spectrum in both emulsified post-surgical human cataract protein samples, as well as in whole lenses and that this correlates strongly with cataract grade and age.
Collapse
Affiliation(s)
- Anna Gakamsky
- Edinburgh Instruments, 2 Bain Square, Livingston, EH54 7DQ, UK
| | - Rory R. Duncan
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 6, UK
| | - Nicola M. Howarth
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 6, UK
| | - Baljean Dhillon
- Princess Alexandra Eye Pavilion, Edinburgh and Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, UK
| | - Kim K. Buttenschön
- Lein Applied Diagnostics, Reading Enterprise Centre, Whiteknights Rd, Reading RG6 6BU, UK
| | - Daniel J. Daly
- Lein Applied Diagnostics, Reading Enterprise Centre, Whiteknights Rd, Reading RG6 6BU, UK
| | - Dmitry Gakamsky
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 6, UK
| |
Collapse
|
47
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
48
|
Rowan S, Chang ML, Reznikov N, Taylor A. Disassembly of the lens fiber cell nucleus to create a clear lens: The p27 descent. Exp Eye Res 2016; 156:72-78. [PMID: 26946072 DOI: 10.1016/j.exer.2016.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 01/04/2023]
Abstract
The eye lens is unique among tissues: it is transparent, does not form tumors, and the majority of its cells degrade their organelles, including their cell nuclei. A mystery for over a century, there has been considerable recent progress in elucidating mechanisms of lens fiber cell denucleation (LFCD). In contrast to the disassembly and reassembly of the cell nucleus during mitosis, LFCD is a unidirectional process that culminates in destruction of the fiber cell nucleus. Whereas p27Kip1, the cyclin-dependent kinase inhibitor, is upregulated during formation of LFC in the outermost cortex, in the inner cortex, in the nascent organelle free zone, p27Kip1 is degraded, markedly activating cyclin-dependent kinase 1 (Cdk1). This process results in phosphorylation of nuclear Lamins, dissociation of the nuclear membrane, and entry of lysosomes that liberate DNaseIIβ (DLAD) to cleave chromatin. Multiple cellular pathways, including the ubiquitin proteasome system and the unfolded protein response, converge on post-translational regulation of p27Kip1. Mutations that impair these pathways are associated with congenital cataracts and loss of LFCD. These findings highlight new regulatory nodes in the lens and suggest that we are close to understanding this fascinating terminal differentiation process. Such knowledge may offer a new means to confront proliferative diseases including cancer.
Collapse
Affiliation(s)
- Sheldon Rowan
- Tufts University JM-USDA Human Nutrition Research Center on Aging, Laboratory of Nutrition and Vision Research, 711 Washington Street Boston, MA, 02111, USA.
| | - Min-Lee Chang
- Tufts University JM-USDA Human Nutrition Research Center on Aging, Laboratory of Nutrition and Vision Research, 711 Washington Street Boston, MA, 02111, USA.
| | - Natalie Reznikov
- Imperial College London, Depart of Materials, Prince Consort Road, South Kensington, London, SW7 2AZ, UK.
| | - Allen Taylor
- Tufts University JM-USDA Human Nutrition Research Center on Aging, Laboratory of Nutrition and Vision Research, 711 Washington Street Boston, MA, 02111, USA.
| |
Collapse
|
49
|
Chauss D, Brennan LA, Bakina O, Kantorow M. Integrin αVβ5-mediated Removal of Apoptotic Cell Debris by the Eye Lens and Its Inhibition by UV Light Exposure. J Biol Chem 2015; 290:30253-66. [PMID: 26527683 DOI: 10.1074/jbc.m115.688390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/31/2022] Open
Abstract
Accumulation of apoptotic material is toxic and associated with cataract and other disease states. Identification of mechanisms that prevent accumulation of apoptotic debris is important for establishing the etiology of these diseases. The ocular lens is routinely assaulted by UV light that causes lens cell apoptosis and is associated with cataract formation. To date, no molecular mechanism for removal of toxic apoptotic debris has been identified in the lens. Vesicular debris within lens cells exposed to UV light has been observed raising speculation that lens cells themselves could act as phagocytes to remove toxic apoptotic debris. However, phagocytosis has not been confirmed as a function of the intact eye lens, and no mechanism for lens phagocytosis has been established. Here, we demonstrate that the eye lens is capable of phagocytizing extracellular lens cell debris. Using high throughput RNA sequencing and bioinformatics analysis, we establish that lens epithelial cells express members of the integrin αVβ5-mediated phagocytosis pathway and that internalized cell debris co-localizes with αVβ5 and with RAB7 and Rab-interacting lysosomal protein that are required for phagosome maturation and fusion with lysosomes. We demonstrate that the αVβ5 receptor is required for lens epithelial cell phagocytosis and that UV light treatment of lens epithelial cells results in damage to the αVβ5 receptor with concomitant loss of phagocytosis. These data suggest that loss of αVβ5-mediated phagocytosis by the eye lens could result in accumulation of toxic cell debris that could contribute to UV light-induced cataract formation.
Collapse
Affiliation(s)
- Daniel Chauss
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Lisa A Brennan
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Olga Bakina
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| | - Marc Kantorow
- From the Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431
| |
Collapse
|
50
|
Mishra A, Krishnan B, Raman R, Sharma Y. Ca2+ and βγ-crystallins: An affair that did not last? Biochim Biophys Acta Gen Subj 2015; 1860:299-303. [PMID: 26145580 DOI: 10.1016/j.bbagen.2015.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND During the last three decades, lens β- and γ-crystallins have found a huge number of kin from numerous taxonomical sources. Most of these proteins from invertebrates and microbes have been demonstrated or predicted to bind Ca2+ involving a distinct double-clamp motif, which is largely degenerated in lens homologues. SCOPE OF REVIEW The various aspects of transformation of βγ-crystallins from a quintessential Ca2+-binding protein into a primarily structural molecule have been reviewed. MAJOR CONCLUSIONS In lens members of βγ-crystallins, the residues involved in Ca2+ binding have diverged considerably from the classical consensus with consequent reduction in their Ca2+-binding properties. This evolutionary change is congenial to their new role as robust constituents of lens. The exact functions of the residual affinity for Ca2+ are yet to be established. GENERAL SIGNIFICANCE This review highlights the significance of reduction in Ca2+-binding ability of the βγ-crystallins for lens physiology and why this residual affinity may be functionally important. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Amita Mishra
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Bal Krishnan
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Rajeev Raman
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|