1
|
Tengstedt ANB, Liu S, Jacobsen MW, Ulmo-Diaz G, Jónsson B, Pujolar JM, Hansen MM. Genomic Footprints of Hybridisation in North Atlantic Eels (Anguilla anguilla and A. rostrata). Mol Ecol 2025:e17664. [PMID: 39878237 DOI: 10.1111/mec.17664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Understanding interspecific introgressive hybridisation and the biological significance of introgressed variation remains an important goal in population genomics. European (Anguilla anguilla) and American eel (A. rostrata) represent a remarkable case of hybridisation. Both are panmictic and spawn in partial sympatry in the Sargasso Sea, occasionally producing viable, fertile hybrids, primarily found in Iceland. We studied introgressive hybridisation from American into European eel using whole-genome sequences of 78 individuals, including European, American and 21 putative hybrid eels. Previous studies using few genetic markers could not resolve whether hybridisation involved simple unidirectional backcrossing or a more complex hybrid swarm scenario. However, local ancestry inference along individual chromosomes revealed that Icelandic hybrids were primarily F1 or first-generation backcrosses towards European eel, with some showing more complex backcrossing. All European eels outside Iceland contained short chromosomal blocks from American eel, indicating a porous genome. We found no evidence for previously hypothesised geographical gradients of introgression in European eel outside Iceland. Several chromosomal regions showed high interspecific divergence, but haplotype blocks introgressed from American eel were identified both within and outside these regions. There was little correspondence between regions of high relative (FST) and absolute divergence (dXY), with the former reflecting selective sweeps within species or reduced recombination rather than barrier loci. A single genomic region showed evidence of repeated introgression from American into European eel under positive selection in both species. The study illustrates that species can maintain genetic integrity despite porous genomes and that standing variation in one species can potentially be available for future adaptive responses in the other species.
Collapse
Affiliation(s)
| | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Magnus W Jacobsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Gabriela Ulmo-Diaz
- IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Canada
| | | | - Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
2
|
Lim HC, Bennett KFP, Justyn NM, Powers MJ, Long KM, Kingston SE, Lindsay WR, Pease JB, Fuxjager MJ, Bolton PE, Balakrishnan CN, Day LB, Parsons TJ, Brawn JD, Hill GE, Braun MJ. Sequential introgression of a carotenoid processing gene underlies sexual ornament diversity in a genus of manakins. SCIENCE ADVANCES 2024; 10:eadn8339. [PMID: 39565864 PMCID: PMC11578183 DOI: 10.1126/sciadv.adn8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identify BCO2 as the major gene responsible for the color polymorphism. The BCO2 gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
- National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20013, USA
| | - Kevin F. P. Bennett
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Nicholas M. Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Kira M. Long
- Program in Ecology Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Willow R. Lindsay
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - James B. Pease
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew J. Fuxjager
- Department of Ecology Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Peri E. Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Christopher N. Balakrishnan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Division of Environmental Biology, National Science Foundation, Alexandria, VA 22314, USA
| | - Lainy B. Day
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - Thomas J. Parsons
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Michael J. Braun
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
3
|
Rakotoarivelo AR, Rambuda T, Taron UH, Stalder G, O'Donoghue P, Robovský J, Hartmann S, Hofreiter M, Moodley Y. Complex patterns of gene flow and convergence in the evolutionary history of the spiral-horned antelopes (Tragelaphini). Mol Phylogenet Evol 2024; 198:108131. [PMID: 38909875 DOI: 10.1016/j.ympev.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/19/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
The Tragelaphini, also known as spiral-horned antelope, is a phenotypically diverse mammalian tribe comprising a single genus, Tragelaphus. The evolutionary history of this tribe has attracted the attention of taxonomists and molecular geneticists for decades because its diversity is characterised by conflicts between morphological and molecular data as well as between mitochondrial, nuclear and chromosomal DNA. These inconsistencies point to a complex history of ecological diversification, coupled by either phenotypic convergence or introgression. Therefore, to unravel the phylogenetic relationships among spiral-horned antelopes, and to further investigate the role of divergence and gene flow in trait evolution, we sequenced genomes for all nine accepted species of the genus Tragelaphus, including a genome each for the highly divergent bushbuck lineages (T. s. scriptus and T. s. sylvaticus). We successfully reconstructed the Tragelaphus species tree, providing genome-level support for the early Pliocene divergence and monophyly of the nyala (T. angasii) and lesser kudu (T. imberbis), the monophyly of the two eland species (T. oryx and T. derbianus) and, importantly, the monophyly of kéwel (T. s. scriptus) and imbabala (T. s. sylvaticus) bushbuck. We found strong evidence for gene flow in at least four of eight nodes on the species tree. Among the six phenotypic traits assessed here, only habitat type mapped onto the species tree without homoplasy, showing that trait evolution was the result of complex patterns of divergence, introgression and convergent evolution.
Collapse
Affiliation(s)
- Andrinajoro R Rakotoarivelo
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa; Department of Zoology and Entomology, University of the Free State: QwaQwa Campus, Private Bag X13, Phuthaditjhaba 9866, Republic of South Africa
| | - Thabelo Rambuda
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa; Department of Genetics, University of Pretoria, Private Bag X20, Hatfield 0028, Republic of South Africa
| | - Ulrike H Taron
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, A-1160 Wien, Austria
| | | | - Jan Robovský
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Stefanie Hartmann
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa.
| |
Collapse
|
4
|
Glasenapp MR, Pogson GH. Selection Shapes the Genomic Landscape of Introgressed Ancestry in a Pair of Sympatric Sea Urchin Species. Genome Biol Evol 2024; 16:evae124. [PMID: 38874390 PMCID: PMC11212366 DOI: 10.1093/gbe/evae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
A growing number of recent studies have demonstrated that introgression is common across the tree of life. However, we still have a limited understanding of the fate and fitness consequence of introgressed variation at the whole-genome scale across diverse taxonomic groups. Here, we implemented a phylogenetic hidden Markov model to identify and characterize introgressed genomic regions in a pair of well-diverged, nonsister sea urchin species: Strongylocentrotus pallidus and Strongylocentrotus droebachiensis. Despite the old age of introgression, a sizable fraction of the genome (1% to 5%) exhibited introgressed ancestry, including numerous genes showing signals of historical positive selection that may represent cases of adaptive introgression. One striking result was the overrepresentation of hyalin genes in the identified introgressed regions despite observing considerable overall evidence of selection against introgression. There was a negative correlation between introgression and chromosome gene density, and two chromosomes were observed with considerably reduced introgression. Relative to the nonintrogressed genome-wide background, introgressed regions had significantly reduced nucleotide divergence (dXY) and overlapped fewer protein-coding genes, coding bases, and genes with a history of positive selection. Additionally, genes residing within introgressed regions showed slower rates of evolution (dN, dS, dN/dS) than random samples of genes without introgressed ancestry. Overall, our findings are consistent with widespread selection against introgressed ancestry across the genome and suggest that slowly evolving, low-divergence genomic regions are more likely to move between species and avoid negative selection following hybridization and introgression.
Collapse
Affiliation(s)
- Matthew R Glasenapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
5
|
Carromeu-Santos A, Mathias ML, Gabriel SI. Widespread distribution of rodenticide resistance-conferring mutations in the Vkorc1 gene among house mouse populations in Portuguese Macaronesian islands and Iberian Atlantic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166290. [PMID: 37586516 DOI: 10.1016/j.scitotenv.2023.166290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Growing evidence of widespread resistance to anticoagulant rodenticides (ARs) in house mice pose significant challenges to pest control efforts. First-generation ARs were introduced in the early 1950s but resistance to these emerged later that decade. Second-generation rodenticides were then developed, with resistance being reported in the late 1970s. Research has linked resistance to ARs with mutations in the Vkorc1 gene, leading to the use of more toxic and environmentally harmful compounds. In this study, 243 tail tips of house mice from mainland Portugal and Southern Spain, the Azores and Madeira archipelagos were analysed for all 3 exons of the Vkorc1 gene. Mutations L128S, Y139C, along with the so-called spretus genotype Vkorc1spr are considered responsible for reduced susceptibility of house mice to ARs. All these sequence variants were broadly detected throughout the sampling regions. Vkorc1spr was the most often recorded among mainland populations, whereas Y139C was nearly ubiquitous among the insular populations. In contrast, L128S was only detected in mainland Portugal and four islands of the Azores archipelago. All first generation ARs such as warfarin and coumatetralyl are deemed ineffective against all Vkorc1 variants identified in this study. Second-generation bromadiolone and difenacoum should also be discarded to control populations carrying Vkorc1spr, Y139C or L128S mutations. Inadequate use of ARs in regions where resistant animals have been found in large proportions will result in the spreading of rodenticide resistance among rodent populations through the positive selection of non-susceptible individuals. Consequently, ineffectiveness of rodent control will increase and potentiate environmental contamination, hazarding non-target wildlife through secondary poisoning. We highlight the need for Vkorc1 screening as a crucial tool in rodent management, aiding in the selection of the most appropriate control/eradication method in order to prevent misuse of these toxic biocides and the spread of rodenticide resistance among house mouse populations.
Collapse
Affiliation(s)
- A Carromeu-Santos
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M L Mathias
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - S I Gabriel
- CESAM-Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia da Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Folk RA, Gaynor ML, Engle-Wrye NJ, O’Meara BC, Soltis PS, Soltis DE, Guralnick RP, Smith SA, Grady CJ, Okuyama Y. Identifying Climatic Drivers of Hybridization with a New Ancestral Niche Reconstruction Method. Syst Biol 2023; 72:856-873. [PMID: 37073863 PMCID: PMC10405357 DOI: 10.1093/sysbio/syad018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
Applications of molecular phylogenetic approaches have uncovered evidence of hybridization across numerous clades of life, yet the environmental factors responsible for driving opportunities for hybridization remain obscure. Verbal models implicating geographic range shifts that brought species together during the Pleistocene have often been invoked, but quantitative tests using paleoclimatic data are needed to validate these models. Here, we produce a phylogeny for Heuchereae, a clade of 15 genera and 83 species in Saxifragaceae, with complete sampling of recognized species, using 277 nuclear loci and nearly complete chloroplast genomes. We then employ an improved framework with a coalescent simulation approach to test and confirm previous hybridization hypotheses and identify one new intergeneric hybridization event. Focusing on the North American distribution of Heuchereae, we introduce and implement a newly developed approach to reconstruct potential past distributions for ancestral lineages across all species in the clade and across a paleoclimatic record extending from the late Pliocene. Time calibration based on both nuclear and chloroplast trees recovers a mid- to late-Pleistocene date for most inferred hybridization events, a timeframe concomitant with repeated geographic range restriction into overlapping refugia. Our results indicate an important role for past episodes of climate change, and the contrasting responses of species with differing ecological strategies, in generating novel patterns of range contact among plant communities and therefore new opportunities for hybridization. The new ancestral niche method flexibly models the shape of niche while incorporating diverse sources of uncertainty and will be an important addition to the current comparative methods toolkit. [Ancestral niche reconstruction; hybridization; paleoclimate; pleistocene.].
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Michelle L Gaynor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Nicholas J Engle-Wrye
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brian C O’Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Charles J Grady
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Yudai Okuyama
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Japan
| |
Collapse
|
7
|
Krijger IM, Strating M, van Gent‐Pelzer M, van der Lee TA, Burt SA, Schroeten FH, de Vries R, de Cock M, Maas M, Meerburg BG. Large-scale identification of rodenticide resistance in Rattus norvegicus and Mus musculus in the Netherlands based on Vkorc1 codon 139 mutations. PEST MANAGEMENT SCIENCE 2023; 79:989-995. [PMID: 36309944 PMCID: PMC10107327 DOI: 10.1002/ps.7261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Resistance to rodenticides has been reported globally and poses a considerable problem for efficacy in pest control. The most-documented resistance to rodenticides in commensal rodents is associated with mutations in the Vkorc1 gene, in particular in codon 139. Resistance to anticoagulant rodenticides has been reported in the Netherlands since 1989. A study from 2013 showed that 25% of 169 Norway rats (Rattus norvegicus) had a mutation at codon 139 of the Vkorc1 gene. To gain insight in the current status of rodenticide resistance amongst R. norvegicus and house mice Mus musculus in the Netherlands, we tested these rodents for mutations in codon 139 of the Vkorc1 gene. In addition, we collected data from pest controllers on their use of rodenticides and experience with rodenticide resistance. RESULTS A total of 1801 rodent samples were collected throughout the country consisting of 1404 R. norvegicus and 397 M. musculus. In total, 15% of R. norvegicus [95% confidence interval (CI): 13-17%] and 38% of M. musculus (95% CI: 33-43%) carried a genetic mutation at codon 139 of the Vkorc1 gene. CONCLUSION This study demonstrates genetic mutations at codon 139 of the Vkorc1 gene in M. musculus in the Netherlands. Resistance to anticoagulant rodenticides is present in R. norvegicus and M. musculus in multiple regions in the Netherlands. The results of this comprehensive study provide a baseline and facilitate trend analyses of Vkorc1 codon 139 mutations and evaluation of integrated pest management (IPM) strategies as these are enrolled in the Netherlands. © 2022 The Dutch Pest and Wildlife. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Inge M. Krijger
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | - Max Strating
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | | | | | - Sara A. Burt
- Institute for Risk Assessment Sciences, Faculty of Veterinary MedicineUniversity of UtrechtUtrechtthe Netherlands
| | - Fleur H. Schroeten
- Institute for Risk Assessment Sciences, Faculty of Veterinary MedicineUniversity of UtrechtUtrechtthe Netherlands
| | - Robin de Vries
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
| | - Marieke de Cock
- Centre for Infectious Disease ControlNational institute for Public Health and the Environment (RIVM)Bilthoventhe Netherlands
| | - Miriam Maas
- Centre for Infectious Disease ControlNational institute for Public Health and the Environment (RIVM)Bilthoventhe Netherlands
| | - Bastiaan G. Meerburg
- Dutch Pest and Wildlife Expertise Centre (KAD)Wageningenthe Netherlands
- Wageningen University & ResearchLivestock ResearchWageningenthe Netherlands
| |
Collapse
|
8
|
Agwamba KD, Nachman MW. The demographic history of house mice (Mus musculus domesticus) in eastern North America. G3 (BETHESDA, MD.) 2023; 13:jkac332. [PMID: 36546306 PMCID: PMC9911051 DOI: 10.1093/g3journal/jkac332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
The Western European house mouse (Mus musculus domesticus) is a widespread human commensal that has recently been introduced to North America. Its introduction to the Americas is thought to have resulted from the transatlantic movements of Europeans that began in the early 16th century. To study the details of this colonization history, we examine population structure, explore relevant demographic models, and infer the timing of divergence among house mouse populations in the eastern United States using published exome sequences from five North American populations and two European populations. For North American populations of house mice, levels of nucleotide variation were lower, and low-frequency alleles were less common than for European populations. These patterns provide evidence of a mild bottleneck associated with the movement of house mice into North America. Several analyses revealed that one North American population is genetically admixed, which indicates at least two source populations from Europe were independently introduced to eastern North America. Estimated divergence times between North American and German populations ranged between ∼1,000 and 7,000 years ago and overlapped with the estimated divergence time between populations from Germany and France. Demographic models comparing different North American populations revealed that these populations diverged from each other mostly within the last 500 years, consistent with the timing of the arrival of Western European settlers to North America. Together, these results support a recent introduction of Western European house mice to eastern North America, highlighting the effects of human migration and colonization on the spread of an invasive human commensal.
Collapse
Affiliation(s)
- Kennedy D Agwamba
- Center for Computational Biology, Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Center for Computational Biology, Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Ge D, Wen Z, Feijó A, Lissovsky A, Zhang W, Cheng J, Yan C, She H, Zhang D, Cheng Y, Lu L, Wu X, Mu D, Zhang Y, Xia L, Qu Y, Vogler AP, Yang Q. Genomic Consequences of and Demographic Response to Pervasive Hybridization Over Time in Climate-Sensitive Pikas. Mol Biol Evol 2022; 40:6958644. [PMID: 36562771 PMCID: PMC9847633 DOI: 10.1093/molbev/msac274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rare and geographically restricted species may be vulnerable to genetic effects from inbreeding depression in small populations or from genetic swamping through hybridization with common species, but a third possibility is that selective gene flow can restore fitness (genetic rescue). Climate-sensitive pikas (Ochotona spp.) of the Qinghai-Tibetan Plateau (QHTP) and its vicinity have been reduced to residual populations through the movement of climatic zones during the Pleistocene and recent anthropogenic disturbance, whereas the plateau pika (O. curzoniae) remains common. Population-level whole-genome sequencing (n = 142) of six closely related species in the subgenus Ochotona revealed several phases of ancient introgression, lineage replacement, and bidirectional introgression. The strength of gene flow was the greatest from the dominant O. curzoniae to ecologically distinct species in areas peripheral to the QHTP. Genetic analyses were consistent with environmental reconstructions of past population movements. Recurrent periods of introgression throughout the Pleistocene revealed an increase in genetic variation at first but subsequent loss of genetic variation in later phases. Enhanced dispersion of introgressed genomic regions apparently contributed to demographic recovery in three peripheral species that underwent range shifts following climate oscillations on the QHTP, although it failed to drive recovery of northeastern O. dauurica and geographically isolated O. sikimaria. Our findings highlight differences in timescale and environmental background to determine the consequence of hybridization and the unique role of the QHTP in conserving key evolutionary processes of sky island species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Lu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinlai Wu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Danping Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yubo Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | |
Collapse
|
10
|
Ruiz-López MJ, Barahona L, Martínez-de la Puente J, Pepió M, Valsecchi A, Peracho V, Figuerola J, Montalvo T. Widespread resistance to anticoagulant rodenticides in Mus musculus domesticus in the city of Barcelona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157192. [PMID: 35810904 DOI: 10.1016/j.scitotenv.2022.157192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Control of rodent populations is a big challenge because of the rapid evolution of resistance to commonly used rodenticides and the collateral negative impacts that these products may have on biodiversity. Second-generation anticoagulants are very efficient but different single nucleotide polymorphisms (SNPs) in the Vkorc1 gene may confer resistance in rodents. We sequenced exons 1, 2 and 3 of the Vkorc1 gene from 111 mice (Mus musculus domesticus) captured across the city of Barcelona and found SNPs associated with resistance to first- and second-generation anticoagulants in all of them. Although most of the SNPs were associated with resistance to bromadiolone, we also found SNPs associated with resistance to brodifacoum. Out of all the individuals analyzed, 94.59 % carried mutations associated to introgression events with Mus spretus, a sympatric rodent species. Currently most of the chemical products for rodent control commercialized in the area are based on bromadiolone, although recent public control campaigns have already shifted to other products. Thus, the widespread occurrence of resistant mice to bromadiolone represents a challenge for rodent control in Barcelona and may increase the risk of secondary poisoning of animals preying on this species. Public health managers, pest control companies and citizens should be aware that the use of bromadiolone based products is ineffective and represents a risk for the environment, including human and animal health.
Collapse
Affiliation(s)
- María José Ruiz-López
- Estación Biológica de Doñana - CSIC, Calle Américo Vespucio 26, E-41092 Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Laura Barahona
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain
| | - Josué Martínez-de la Puente
- Departamento de Parasitología, Universidad de Granada, Granada, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marta Pepió
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain
| | - Andrea Valsecchi
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain
| | - Victor Peracho
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana - CSIC, Calle Américo Vespucio 26, E-41092 Sevilla, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Tomas Montalvo
- Agencia de Salud Pública de Barcelona, Consorci Sanitari de Barcelona, Pl. Lesseps, 1, E-08023 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
11
|
Fujiwara K, Kawai Y, Takada T, Shiroishi T, Saitou N, Suzuki H, Osada N. Insights into Mus musculus Population Structure across Eurasia Revealed by Whole-Genome Analysis. Genome Biol Evol 2022; 14:evac068. [PMID: 35524942 PMCID: PMC9122283 DOI: 10.1093/gbe/evac068] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
For more than 100 years, house mice (Mus musculus) have been used as a key animal model in biomedical research. House mice are genetically diverse, yet their genetic background at the global level has not been fully understood. Previous studies have suggested that they originated in South Asia and diverged into three major subspecies, almost simultaneously, approximately 110,000-500,000 years ago; however, they have spread across the world with the migration of modern humans in prehistoric and historic times (∼10,000 years ago to the present day) and have undergone secondary contact, which has complicated the genetic landscape of wild house mice. In this study, we sequenced the whole-genome sequences of 98 wild house mice collected from Eurasia, particularly East Asia, Southeast Asia, and South Asia. Although wild house mice were found to consist of three major genetic groups corresponding to the three major subspecies, individuals representing admixtures between subspecies were more prevalent in East Asia than has been previously recognized. Furthermore, several samples exhibited an incongruent pattern of genealogies between mitochondrial and autosomal genomes. Using samples that likely retained the original genetic components of subspecies with the least admixture, we estimated the pattern and timing of divergence among the subspecies. The estimated divergence time of the three subspecies was 187,000-226,000 years ago. These results will help us to understand the genetic diversity of wild mice on a global scale, and the findings will be particularly useful in future biomedical and evolutionary studies involving laboratory mice established from such wild mice.
Collapse
Affiliation(s)
- Kazumichi Fujiwara
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- Global Station for Big Data and Cybersecurity, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Yosuke Kawai
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Toyoyuki Takada
- Integrated BioResource Information Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | | | | | - Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- Global Station for Big Data and Cybersecurity, GI-CoRE, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Banker SE, Bonhomme F, Nachman MW. Bidirectional introgression between Mus musculus domesticus and Mus spretus. Genome Biol Evol 2022; 14:6509516. [PMID: 35038727 PMCID: PMC8784167 DOI: 10.1093/gbe/evab288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles—including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Collapse
Affiliation(s)
- Sarah E Banker
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - François Bonhomme
- Institut des Sciences de l'Evolution, Université de Montpellier, Montpellier, France
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Fraïsse C, Sachdeva H. The rates of introgression and barriers to genetic exchange between hybridizing species: sex chromosomes vs autosomes. Genetics 2021; 217:6042694. [PMID: 33724409 DOI: 10.1093/genetics/iyaa025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Interspecific crossing experiments have shown that sex chromosomes play a major role in reproductive isolation between many pairs of species. However, their ability to act as reproductive barriers, which hamper interspecific genetic exchange, has rarely been evaluated quantitatively compared to Autosomes. This genome-wide limitation of gene flow is essential for understanding the complete separation of species, and thus speciation. Here, we develop a mainland-island model of secondary contact between hybridizing species of an XY (or ZW) sexual system. We obtain theoretical predictions for the frequency of introgressed alleles, and the strength of the barrier to neutral gene flow for the two types of chromosomes carrying multiple interspecific barrier loci. Theoretical predictions are obtained for scenarios where introgressed alleles are rare. We show that the same analytical expressions apply for sex chromosomes and autosomes, but with different sex-averaged effective parameters. The specific features of sex chromosomes (hemizygosity and absence of recombination in the heterogametic sex) lead to reduced levels of introgression on the X (or Z) compared to autosomes. This effect can be enhanced by certain types of sex-biased forces, but it remains overall small (except when alleles causing incompatibilities are recessive). We discuss these predictions in the light of empirical data comprising model-based tests of introgression and cline surveys in various biological systems.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.,CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Himani Sachdeva
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.,Mathematics and BioSciences Group, Faculty of Mathematics, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Colonization and Authentication of the Pyrethroid-Resistant Anopheles gambiae s.s. Muleba-Kis Strain; an Important Test System for Laboratory Screening of New Insecticides. INSECTS 2021; 12:insects12080710. [PMID: 34442276 PMCID: PMC8396659 DOI: 10.3390/insects12080710] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Malaria control and prevention have traditionally relied on the use of insecticides in the form of treated bed nets or residual spraying in households. However, scaling up of these interventions—based on few available insecticide classes—resulted in the development and spread of insecticide resistance in malaria-transmitting mosquitoes. There is therefore an urgent need for introducing and applying new insecticides that are effective against these mosquitoes. Laboratories tasked with evaluating the efficacy of novel insecticides need to establish a large colony of resistant mosquitoes. In this study, we report the procedures used and challenges faced during the establishment and maintenance of a resistant mosquito strain in the laboratory which reflects the characteristics of the wild-resistant mosquito populations found in East Africa. Abstract Background: The emergence and spread of insecticide resistance in malaria vectors to major classes of insecticides call for urgent innovation and application of insecticides with novel modes of action. When evaluating new insecticides for public health, potential candidates need to be screened against both susceptible and resistant mosquitoes to determine efficacy and to identify potential cross-resistance to insecticides currently used for mosquito control. The challenges and lessons learned from establishing, maintaining, and authenticating the pyrethroid-resistant An. gambiae s.s. Muleba-Kis strain at the KCMUCo-PAMVERC Test Facility are described in this paper. Methods: Male mosquitoes from the F1 generation of wild-pyrethroid resistant mosquitoes were cross-bred with susceptible female An. gambiae s.s. Kisumu laboratory strain followed by larval selection using a pyrethroid insecticide solution. Periodic screening for phenotypic and genotypic resistance was done. WHO susceptibility tests and bottle bioassays were used to assess the phenotypic resistance, while Taqman™ assays were used to screen for known target-site resistance alleles (kdr and ace-1). Additionally, the strains were periodically assessed for quality control by monitoring adult weight and wing length. Results: By out-crossing the wild mosquitoes with an established lab strain, a successful resistant insectary colony was established. Intermittent selection pressure using alphacypermethrin has maintained high kdr mutation (leucine-serine) frequencies in the selected colony. There was consistency in the wing length and weight measurements from the year 2016 to 2020, with the exception that one out of four years was significantly different. Mean annual wing length varied between 0.0142–0.0028 mm compared to values obtained in 2016, except in 2019 where it varied by 0.0901 mm. Weight only varied by approximately 0.001 g across four years, except in 2017 where it differed by 0.005 g. Routine phenotypic characterization on Muleba-Kis against pyrethroids using the WHO susceptibility test indicated high susceptibility when type I pyrethroids were used compared to type II pyrethroids. Dynamics on susceptibility status also depended on the lapse time when the selection was last done. Conclusions: This study described the procedure for introducing, colonizing, and maintaining a resistant An. gambiae s.s. strain in the laboratory with leucine to serine substitution kdr allele which reflects the features of the wild-resistant population in East Africa. Challenges in colonizing a wild-resistant mosquito strain were overcome by out-crossing between mosquito strains of desired traits followed by intermittent insecticide selection at the larval stage to select for the resistant phenotype.
Collapse
|
15
|
Pazhenkova EA, Lukhtanov VA. Genomic introgression from a distant congener in the Levant fritillary butterfly, Melitaea acentria. Mol Ecol 2021; 30:4819-4832. [PMID: 34288183 DOI: 10.1111/mec.16085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Introgressive hybridization is more common in nature than previously thought, and its role and creative power in evolution is hotly discussed but not completely understood. Introgression occurs more frequently in sympatry between recently diverged taxa, or when the speciation process has not yet been completed. However, there are relatively few documented cases of hybridization that erodes reproductive barriers between distantly related species. Here, we use whole genome and mitochondrial data to examine how introgression from a distant congener affects pattern of genetic differentiation in the Levant fritillary butterfly Melitaea acentria. We show that this local taxon has evolved as a peripatric geographic isolate of the widespread Melitaea persea, and that there has been significant unidirectional gene flow from the sympatric, nonclosely related Melitaea didyma to M. acentria. We found direct evidence of ongoing sporadic hybridization between M. didyma and M. acentria, which are separated by at least 5 million years of independent evolution. Elevated differentiation and lower level of introgression on the sex Z chromosome compared to autosomes suggest that the Z chromosome has accumulated loci acting as intrinsic postzygotic barriers. Our results show that introgression from M. didyma has been an additional source of nucleotide diversity in the M. acentria population, providing material for drift and selection.
Collapse
Affiliation(s)
- Elena A Pazhenkova
- Department of Entomology, St. Petersburg State University, St. Petersburg, Russia.,Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
16
|
Graham AM, Peters JL, Wilson RE, Muñoz-Fuentes V, Green AJ, Dorfsman DA, Valqui TH, Winker K, McCracken KG. Adaptive introgression of the beta-globin cluster in two Andean waterfowl. Heredity (Edinb) 2021; 127:107-123. [PMID: 33903741 PMCID: PMC8249413 DOI: 10.1038/s41437-021-00437-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Introgression of beneficial alleles has emerged as an important avenue for genetic adaptation in both plant and animal populations. In vertebrates, adaptation to hypoxic high-altitude environments involves the coordination of multiple molecular and cellular mechanisms, including selection on the hypoxia-inducible factor (HIF) pathway and the blood-O2 transport protein hemoglobin (Hb). In two Andean duck species, a striking DNA sequence similarity reflecting identity by descent is present across the ~20 kb β-globin cluster including both embryonic (HBE) and adult (HBB) paralogs, though it was yet untested whether this is due to independent parallel evolution or adaptive introgression. In this study, we find that identical amino acid substitutions in the β-globin cluster that increase Hb-O2 affinity have likely resulted from historical interbreeding between high-altitude populations of two different distantly-related species. We examined the direction of introgression and discovered that the species with a deeper mtDNA divergence that colonized high altitude earlier in history (Anas flavirostris) transferred adaptive genetic variation to the species with a shallower divergence (A. georgica) that likely colonized high altitude more recently possibly following a range shift into a novel environment. As a consequence, the species that received these β-globin variants through hybridization might have adapted to hypoxic conditions in the high-altitude environment more quickly through acquiring beneficial alleles from the standing, hybrid-origin variation, leading to faster evolution.
Collapse
Affiliation(s)
- Allie M Graham
- Eccles Institute for Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Jeffrey L Peters
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Robert E Wilson
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Daniel A Dorfsman
- Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas H Valqui
- Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima, Perú
- Universidad Nacional Agraria, La Molina, Perú
| | - Kevin Winker
- University of Alaska Museum and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kevin G McCracken
- Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima, Perú.
- University of Alaska Museum and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Department of Biology, University of Miami, Coral Gables, FL, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA.
| |
Collapse
|
17
|
Bennett KFP, Lim HC, Braun MJ. Sexual selection and introgression in avian hybrid zones: Spotlight on Manacus. Integr Comp Biol 2021; 61:1291-1309. [PMID: 34128981 DOI: 10.1093/icb/icab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid zones offer a window into the processes and outcomes of evolution, from species formation or fusion to genomic underpinnings of specific traits and isolating mechanisms. Sexual selection is believed to be an important factor in speciation processes, and hybrid zones present special opportunities to probe its impact. The manakins (Aves, Pipridae) are a promising group in which to study the interplay of sexual selection and natural hybridization: they show substantial variation across the family in the strength of sexual selection they experience, they readily hybridize within and between genera, and they appear to have formed hybrid species, a rare event in birds. A hybrid zone between two manakins in the genus Manacus is unusual in that plumage and behavioral traits of one species have introgressed asymmetrically into populations of the second species through positive sexual selection, then apparently stalled at a river barrier. This is one of a handful of documented examples of asymmetric sexual trait introgression with a known selective mechanism. It offers opportunities to examine reproductive isolation, introgression, plumage color evolution, and natural factors enhancing or constraining the effects of sexual selection in real time. Here, we review previous work in this system, propose new hypotheses for observed patterns, and recommend approaches to test them.
Collapse
Affiliation(s)
- Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Manassas, VA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
18
|
Seaborn T, Andrews KR, Applestein CV, Breech TM, Garrett MJ, Zaiats A, Caughlin TT. Integrating genomics in population models to forecast translocation success. Restor Ecol 2021. [DOI: 10.1111/rec.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Travis Seaborn
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID U.S.A
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary Studies (IBEST) University of Idaho Moscow ID U.S.A
| | | | - Tyler M. Breech
- Department of Biological Sciences Idaho State University Pocatello ID U.S.A
| | - Molly J. Garrett
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID U.S.A
| | - Andrii Zaiats
- Biological Sciences Boise State University Boise ID U.S.A
| | | |
Collapse
|
19
|
Ferreira MS, Jones MR, Callahan CM, Farelo L, Tolesa Z, Suchentrunk F, Boursot P, Mills LS, Alves PC, Good JM, Melo-Ferreira J. The Legacy of Recurrent Introgression during the Radiation of Hares. Syst Biol 2021; 70:593-607. [PMID: 33263746 PMCID: PMC8048390 DOI: 10.1093/sysbio/syaa088] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
Hybridization may often be an important source of adaptive variation, but the extent and long-term impacts of introgression have seldom been evaluated in the phylogenetic context of a radiation. Hares (Lepus) represent a widespread mammalian radiation of 32 extant species characterized by striking ecological adaptations and recurrent admixture. To understand the relevance of introgressive hybridization during the diversification of Lepus, we analyzed whole exome sequences (61.7 Mb) from 15 species of hares (1-4 individuals per species), spanning the global distribution of the genus, and two outgroups. We used a coalescent framework to infer species relationships and divergence times, despite extensive genealogical discordance. We found high levels of allele sharing among species and show that this reflects extensive incomplete lineage sorting and temporally layered hybridization. Our results revealed recurrent introgression at all stages along the Lepus radiation, including recent gene flow between extant species since the last glacial maximum but also pervasive ancient introgression occurring since near the origin of the hare lineages. We show that ancient hybridization between northern hemisphere species has resulted in shared variation of potential adaptive relevance to highly seasonal environments, including genes involved in circadian rhythm regulation, pigmentation, and thermoregulation. Our results illustrate how the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-lasting signature of shared genetic variation that may contribute to adaptation. [Adaptation; ancient introgression; hybridization; Lepus; phylogenomics.].
Collapse
Affiliation(s)
- Mafalda S Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Zelalem Tolesa
- Department of Biology, Hawassa University, Hawassa, Ethiopia
| | - Franz Suchentrunk
- Department for Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pierre Boursot
- Institut des Sciences de l’Évolution Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, France
| | - L Scott Mills
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
- Office of Research and Creative Scholarship, University of Montana, Missoula, Montana, United States of America; Jeffrey M. Good and José Melo-Ferreira shared the senior authorship
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Wildlife Biology Program, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Mullen SP, VanKuren NW, Zhang W, Nallu S, Kristiansen EB, Wuyun Q, Liu K, Hill RI, Briscoe AD, Kronforst MR. Disentangling Population History and Character Evolution among Hybridizing Lineages. Mol Biol Evol 2021; 37:1295-1305. [PMID: 31930401 DOI: 10.1093/molbev/msaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Understanding the origin and maintenance of adaptive phenotypic novelty is a central goal of evolutionary biology. However, both hybridization and incomplete lineage sorting can lead to genealogical discordance between the regions of the genome underlying adaptive traits and the remainder of the genome, decoupling inferences about character evolution from population history. Here, to disentangle these effects, we investigated the evolutionary origins and maintenance of Batesian mimicry between North American admiral butterflies (Limenitis arthemis) and their chemically defended model (Battus philenor) using a combination of de novo genome sequencing, whole-genome resequencing, and statistical introgression mapping. Our results suggest that balancing selection, arising from geographic variation in the presence or absence of the unpalatable model, has maintained two deeply divergent color patterning haplotypes that have been repeatedly sieved among distinct mimetic and nonmimetic lineages of Limenitis via introgressive hybridization.
Collapse
Affiliation(s)
- Sean P Mullen
- Department of Biology, Boston University, Boston, MA
| | | | - Wei Zhang
- School of Life Sciences, Peking University, Beijing, P.R. China
| | - Sumitha Nallu
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | | | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Kevin Liu
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA
| | | |
Collapse
|
21
|
Mus musculus populations in Western Australia lack VKORC1 mutations conferring resistance to first generation anticoagulant rodenticides: Implications for conservation and biosecurity. PLoS One 2020; 15:e0236234. [PMID: 32970676 PMCID: PMC7513997 DOI: 10.1371/journal.pone.0236234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022] Open
Abstract
Background Humans routinely attempt to manage pest rodent populations with anticoagulant rodenticides (ARs). We require information on resistance to ARs within rodent populations to have effective eradication programs that minimise exposure in non-target species. Mutations to the VKORC1 gene have been shown to confer resistance in rodents with high proportions of resistance in mice found in all European populations tested. We screened mutations in Mus musculus within Western Australia, by sampling populations from the capital city (Perth) and a remote island (Browse Island). These are the first Australian mouse populations screened for resistance using this method. Additionally, the mitochondrial D-loop of house mice was sequenced to explore population genetic structure, identify the origin of Western Australian mice, and to elucidate whether resistance was linked to certain haplotypes. Results No resistance-related VKORC1 mutations were detected in either house mouse population. A genetic introgression in the intronic sequence of the VKORC1 gene of Browse Island house mouse was detected which is thought to have originated through hybridisation with the Algerian mouse (Mus spretus). Analysis of the mitochondrial D-loop reported two haplotypes in the house mouse population of Perth, and two haplotypes in the population of Browse Island. Conclusions Both house mouse populations exhibited no genetic resistance to ARs, in spite of free use of ARs in Western Australia. Therefore weaker anticoagulant rodenticides can be employed in pest control and eradication attempts, which will result in reduced negative impacts on non-target species. Biosecurity measures must be in place to avoid introduction of resistant house mice, and new house mouse subspecies to Western Australia.
Collapse
|
22
|
Genome Resequencing, Improvement of Variant Calling, and Population Genomic Analyses Provide Insights into the Seedlessness in the Genus Vitis. G3-GENES GENOMES GENETICS 2020; 10:3365-3377. [PMID: 32699042 PMCID: PMC7467000 DOI: 10.1534/g3.120.401521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The seedlessness of grape derived from stenospermocarpy is one of the most prized traits of table or raisin grapes. It is controlled by a complex genetic system containing one dominant gene and multiple recessive genes. Here, we collected dense variation data from high-depth resequencing data of seeded, seedless, and wild relative grape genomes sequenced to > 37x mean depth. Variant calls were made using a modified variant calling pipeline that was suitable for highly diverse interspecific grape accessions. The modified pipeline enabled us to call several million more variants than the commonly recommended pipeline. The quality was validated by Sanger sequencing data and subsequently supported by the genetic population structure and the phylogenetic tree constructed using the obtained variation data, results of which were generally consistent with known pedigree and taxonomic classifications. Variation data enabled us to confirm a dominant gene and identify recessive loci for seedlessness. Incidentally, we found that grape cultivar Rizamat contains an ancestral chromosomal region of the dominant gene in Sultanina, a predominant seedlessness donor cultivar. Furthermore, we predicted new candidate causal genes including Vitvi01g00455, Vitvi08g01528, and Vitvi18g01237 associated with the recessive seedless-regulating loci, which showed high homology with genes that regulate seed development in Arabidopsis. This study provides fundamental insights relevant to variant calling from genome resequencing data of diverse interspecific hybrid germplasms such as grape and will accelerate future efforts aimed at crop improvement.
Collapse
|
23
|
Linnenbrink M, Ullrich KK, McConnell E, Tautz D. The amylase gene cluster in house mice (Mus musculus) was subject to repeated introgression including the rescue of a pseudogene. BMC Evol Biol 2020; 20:56. [PMID: 32414322 PMCID: PMC7227347 DOI: 10.1186/s12862-020-01624-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Background Amylase gene clusters have been implicated in adaptive copy number changes in response to the amount of starch in the diet of humans and mammals. However, this interpretation has been questioned for humans and for mammals there is a paucity of information from natural populations. Results Using optical mapping and genome read information, we show here that the amylase cluster in natural house mouse populations is indeed copy-number variable for Amy2b paralogous gene copies (called Amy2a1 - Amy2a5), but a direct connection to starch diet is not evident. However, we find that the amylase cluster was subject to introgression of haplotypes between Mus musculus sub-species. A very recent introgression can be traced in the Western European populations and this leads also to the rescue of an Amy2b pseudogene. Some populations and inbred lines derived from the Western house mouse (Mus musculus domesticus) harbor a copy of the pancreatic amylase (Amy2b) with a stop codon in the first exon, making it non-functional. But populations in France harbor a haplotype introgressed from the Eastern house mouse (M. m. musculus) with an intact reading frame. Detailed analysis of phylogenetic patterns along the amylase cluster suggest an additional history of previous introgressions. Conclusions Our results show that the amylase gene cluster is a hotspot of introgression in the mouse genome, making it an evolutionary active region beyond the previously observed copy number changes.
Collapse
Affiliation(s)
| | | | - Ellen McConnell
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| |
Collapse
|
24
|
Lamichhaney S, Han F, Webster MT, Grant BR, Grant PR, Andersson L. Female-biased gene flow between two species of Darwin’s finches. Nat Ecol Evol 2020; 4:979-986. [DOI: 10.1038/s41559-020-1183-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
|
25
|
Abstract
Mice (Mus musculus) and rats (Rattus norvegicus) have long served as model systems for biomedical research. However, they are also excellent models for studying the evolution of populations, subspecies, and species. Within the past million years, they have spread in various waves across large parts of the globe, with the most recent spread in the wake of human civilization. They have developed into commensal species, but have also been able to colonize extreme environments on islands free of human civilization. Given that ample genomic and genetic resources are available for these species, they have thus also become ideal mammalian systems for evolutionary studies on adaptation and speciation, particularly in the combination with the rapid developments in population genomics. The chapter provides an overview of the systems and their history, as well as of available resources.
Collapse
Affiliation(s)
- Kristian K Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
26
|
Admixture in Mammals and How to Understand Its Functional Implications. Bioessays 2019; 41:e1900123. [DOI: 10.1002/bies.201900123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Indexed: 12/13/2022]
|
27
|
Gardner S, Grindstaff JL, Campbell P. Placental genotype affects early postpartum maternal behaviour. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190732. [PMID: 31598302 PMCID: PMC6774950 DOI: 10.1098/rsos.190732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/20/2019] [Indexed: 05/06/2023]
Abstract
The mammalian placenta is a source of endocrine signals that prime the onset of maternal care at parturition. While consequences of placental dysfunction for offspring growth are well defined, how altered placental signalling might affect maternal behaviour is unstudied in a natural system. In the cross between sympatric mouse species, Mus musculus domesticus and Mus spretus, hybrid placentas are undersized and show misexpression of genes critical to placental endocrine function. Using this cross, we quantified the effects of placental dysregulation on maternal and anxiety-like behaviours in mice that differed only in pregnancy type. Relative to mothers of conspecific litters, females exposed to hybrid placentas did not differ in anxiety-like behaviours but were slower to retrieve 1-day-old pups and spent less time in the nest on the night following parturition. Early deficits in maternal responsiveness were not explained by reduced ultrasonic vocalization production in hybrid pups and there was no effect of pup genotype on measures of maternal behaviour and physiology collected after the first 24 h postpartum. These results suggest that placental dysregulation leads to poor maternal priming, the effect of which is alleviated by continued exposure to pups. This study provides new insight into the placental mediation of mother-offspring interactions.
Collapse
Affiliation(s)
- Sarah Gardner
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
- Author for correspondence: Sarah Gardner e-mail:
| | | | - Polly Campbell
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
28
|
Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc 2019; 94:135-155. [PMID: 29971903 PMCID: PMC6378405 DOI: 10.1111/brv.12440] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre-existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target-site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non-chemical pest-control methods.
Collapse
Affiliation(s)
- Nichola J. Hawkins
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| | - Chris Bass
- Department of BiosciencesUniversity of Exeter, Penryn CampusCornwallTR10 9FEU.K.
| | - Andrea Dixon
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
- Department of Plant BiologyUniversity of GeorgiaAthensGA 30602U.S.A.
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| |
Collapse
|
29
|
Taylor SA, Larson EL. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat Ecol Evol 2019; 3:170-177. [DOI: 10.1038/s41559-018-0777-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 01/27/2023]
|
30
|
Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization. BIOINFORMATICS AND PHYLOGENETICS 2019. [DOI: 10.1007/978-3-030-10837-3_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, Vigouroux Y, Berthouly-Salazar C. Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation. FRONTIERS IN PLANT SCIENCE 2019; 10:4. [PMID: 30774638 PMCID: PMC6367218 DOI: 10.3389/fpls.2019.00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/04/2019] [Indexed: 05/18/2023]
Abstract
Global environmental changes strongly impact wild and domesticated species biology and their associated ecosystem services. For crops, global warming has led to significant changes in terms of phenology and/or yield. To respond to the agricultural challenges of this century, there is a strong need for harnessing the genetic variability of crops and adapting them to new conditions. Gene flow, from either the same species or a different species, may be an immediate primary source to widen genetic diversity and adaptions to various environments. When the incorporation of a foreign variant leads to an increase of the fitness of the recipient pool, it is referred to as "adaptive introgression". Crop species are excellent case studies of this phenomenon since their genetic variability has been considerably reduced over space and time but most of them continue exchanging genetic material with their wild relatives. In this paper, we review studies of adaptive introgression, presenting methodological approaches and challenges to detecting it. We pay particular attention to the potential of this evolutionary mechanism for the adaptation of crops. Furthermore, we discuss the importance of farmers' knowledge and practices in shaping wild-to-crop gene flow. Finally, we argue that screening the wild introgression already existing in the cultivated gene pool may be an effective strategy for uncovering wild diversity relevant for crop adaptation to current environmental changes and for informing new breeding directions.
Collapse
Affiliation(s)
- Concetta Burgarella
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
- *Correspondence: Concetta Burgarella, Cécile Berthouly-Salazar,
| | - Adeline Barnaud
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Ndjido Ardo Kane
- Laboratoire National de Recherches sur les Productions Végétales, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Dakar, Senegal
| | - Frédérique Jankowski
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UPR GREEN, Montpellier, France
- GREEN, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Université de Montpellier, Montpellier, France
- Bureau d’Analyses Macro-Economiques, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
| | - Nora Scarcelli
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Claire Billot
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Yves Vigouroux
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
| | - Cécile Berthouly-Salazar
- Institut de Recherche pour le Développement, UMR DIADE, Montpellier, France
- DIADE, Université de Montpellier, Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux, Dakar, Senegal
- *Correspondence: Concetta Burgarella, Cécile Berthouly-Salazar,
| |
Collapse
|
32
|
Goüy de Bellocq J, Wasimuddin, Ribas A, Bryja J, Piálek J, Baird SJE. Holobiont suture zones: Parasite evidence across the European house mouse hybrid zone. Mol Ecol 2018; 27:5214-5227. [PMID: 30427096 DOI: 10.1111/mec.14938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
Parasite hybrid zones resulting from host secondary contact have never been described in nature although parasite hybridization is well known and secondary contact should affect them similarly to free-living organisms. When host populations are isolated, diverge and recontact, intimate parasites (host specific, direct life cycle) carried during isolation will also meet and so may form parasite hybrid zones. If so, we hypothesize these should be narrower than the host's hybrid zone as shorter parasite generation time allows potentially higher divergence. We investigate multilocus genetics of two parasites across the European house mouse hybrid zone. We find each host taxon harbours its own parasite taxa. These also hybridize: Parasite hybrid zones are significantly narrower than the host's. Here, we show a host hybrid zone is a suture zone for a subset of its parasite community and highlight the potential of such systems as windows on the evolutionary processes of host-parasite interactions and recombinant pathogen emergence.
Collapse
Affiliation(s)
| | - Wasimuddin
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Alexis Ribas
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Section of Parasitology, Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Josef Bryja
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jaroslav Piálek
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Stuart J E Baird
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
33
|
Fijarczyk A, Dudek K, Niedzicka M, Babik W. Balancing selection and introgression of newt immune-response genes. Proc Biol Sci 2018; 285:20180819. [PMID: 30111606 PMCID: PMC6111169 DOI: 10.1098/rspb.2018.0819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The importance of interspecific introgression as a source of adaptive variation is increasingly recognized. Theory predicts that beneficial genetic variants cross species boundaries easily even when interspecific hybridization is rare and gene flow is strongly constrained throughout the genome. However, it remains unclear whether certain classes of genes are particularly prone to adaptive introgression. Genes affected by balancing selection (BS) may constitute such a class, because forms of BS that favour novel, initially rare alleles, should facilitate introgression. We tested this hypothesis in hybridizing newts by comparing 13 genes with signatures of BS, in particular an excess of common non-synonymous polymorphisms, to the genomic background (154 genes). Parapatric hybridizing taxa were less differentiated in BS candidate genes than more closely related allopatric lineages, while the opposite was observed in the control genes. Coalescent and forward simulations that explored neutral and BS scenarios under isolation and migration showed that processes other than differential gene flow are unlikely to account for this pattern. We conclude that BS, probably involving a form of novel allele advantage, promotes introgression. This mechanism may be a source of adaptively relevant variation in hybridizing species over prolonged periods.
Collapse
Affiliation(s)
- Anna Fijarczyk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, Université Laval, 1030, Avenue de la Médecine, Québec, Canada G1V 0A6
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marta Niedzicka
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
34
|
Seixas FA, Boursot P, Melo-Ferreira J. The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biol 2018; 19:91. [PMID: 30056805 PMCID: PMC6065068 DOI: 10.1186/s13059-018-1471-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The extent to which selection determines interspecific patterns of genetic exchange enlightens the role of adaptation in evolution and speciation. Often reported extensive interspecific introgression could be selection-driven, but also result from demographic processes, especially in cases of invasive species replacements, which can promote introgression at their invasion front. Because invasion and selective sweeps similarly mold variation, population genetics evidence for selection can only be gathered in an explicit demographic framework. The Iberian hare, Lepus granatensis, displays in its northern range extensive mitochondrial DNA introgression from L. timidus, an arctic/boreal species that it replaced locally after the last glacial maximum. We use whole-genome sequencing to infer geographic and genomic patterns of nuclear introgression and fit a neutral model of species replacement with hybridization, allowing us to evaluate how selection influenced introgression genome-wide, including for mtDNA. RESULTS Although the average nuclear and mtDNA introgression patterns contrast strongly, they fit a single demographic model of post-glacial invasive replacement of timidus by granatensis. Outliers of elevated introgression include several genes related to immunity, spermatogenesis, and mitochondrial metabolism. Introgression is reduced on the X chromosome and in low recombining regions. CONCLUSIONS General nuclear and mtDNA patterns of introgression can be explained by purely demographic processes. Hybrid incompatibilities and interplay between selection and recombination locally modulate levels of nuclear introgression. Selection promoted introgression of some genes involved in conflicts, either interspecific (parasites) or possibly cytonuclear. In the latter case, nuclear introgression could mitigate the potential negative effects of alien mtDNA on mitochondrial metabolism and male-specific traits.
Collapse
Affiliation(s)
- Fernando A Seixas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095, Montpellier, France
| | - Pierre Boursot
- Institut des Sciences de l'Évolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095, Montpellier, France.
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
35
|
Vickrey AI, Bruders R, Kronenberg Z, Mackey E, Bohlender RJ, Maclary ET, Maynez R, Osborne EJ, Johnson KP, Huff CD, Yandell M, Shapiro MD. Introgression of regulatory alleles and a missense coding mutation drive plumage pattern diversity in the rock pigeon. eLife 2018; 7:e34803. [PMID: 30014848 PMCID: PMC6050045 DOI: 10.7554/elife.34803] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Birds and other vertebrates display stunning variation in pigmentation patterning, yet the genes controlling this diversity remain largely unknown. Rock pigeons (Columba livia) are fundamentally one of four color pattern phenotypes, in decreasing order of melanism: T-check, checker, bar (ancestral), or barless. Using whole-genome scans, we identified NDP as a candidate gene for this variation. Allele-specific expression differences in NDP indicate cis-regulatory divergence between ancestral and melanistic alleles. Sequence comparisons suggest that derived alleles originated in the speckled pigeon (Columba guinea), providing a striking example of introgression. In contrast, barless rock pigeons have an increased incidence of vision defects and, like human families with hereditary blindness, carry start-codon mutations in NDP. In summary, we find that both coding and regulatory variation in the same gene drives wing pattern diversity, and post-domestication introgression supplied potentially advantageous melanistic alleles to feral populations of this ubiquitous urban bird.
Collapse
Affiliation(s)
- Anna I Vickrey
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Rebecca Bruders
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Zev Kronenberg
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Emma Mackey
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Ryan J Bohlender
- Department of Epidemiology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Emily T Maclary
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Raquel Maynez
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Edward J Osborne
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana-ChampaignChampaignUnited States
| | - Chad D Huff
- Department of Epidemiology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Mark Yandell
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Michael D Shapiro
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| |
Collapse
|
36
|
Couger MB, Arévalo L, Campbell P. A High Quality Genome for Mus spicilegus, a Close Relative of House Mice with Unique Social and Ecological Adaptations. G3 (BETHESDA, MD.) 2018; 8:2145-2152. [PMID: 29794166 PMCID: PMC6027863 DOI: 10.1534/g3.118.200318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genomic data for the closest relatives of house mice (Mus musculus species complex) are surprisingly limited. Here, we present the first complete genome for a behaviorally and ecologically unique member of the sister clade to house mice, the mound-building mouse, Mus spicilegus Using read cloud sequencing and de novo assembly we produced a 2.50 Gbp genome with a scaffold N50 of 2.27 Mbp. We constructed >25 000 gene models, of which the majority had high homology to other Mus species. To evaluate the utility of the M. spicilegus genome for behavioral and ecological genomics, we extracted 196 vomeronasal receptor (VR) sequences from our genome and analyzed phylogenetic relationships between M. spicilegus VRs and orthologs from M. musculus and the Algerian mouse, M. spretus While most M. spicilegus VRs clustered with orthologs in M. musculus and M. spretus, 10 VRs with evidence of rapid divergence in M. spicilegus are strong candidate modulators of species-specific chemical communication. A high quality assembly and genome for M. spicilegus will help to resolve discordant ancestry patterns in house mouse genomes, and will provide an essential foundation for genetic dissection of phenotypes that distinguish commensal from non-commensal species, and the social and ecological characteristics that make M. spicilegus unique.
Collapse
Affiliation(s)
| | - Lena Arévalo
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078
| | - Polly Campbell
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
37
|
Balasanyan V, Yavruyan E, Somerová B, Abramjan A, Landová E, Munclinger P, Frynta D. High Diversity of mtDNA Haplotypes Confirms Syntopic Occurrence of Two Field Mouse Species Apodemus uralensis and A. witherbyi (Muridae: Apodemus) in Armenia. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418060030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Ortego J, Gugger PF, Sork VL. Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section Protobalanus). THE NEW PHYTOLOGIST 2018; 218:804-818. [PMID: 29274282 DOI: 10.1111/nph.14951] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 05/15/2023]
Abstract
Here we study hybridization, introgression and lineage diversification in the widely distributed canyon live oak (Quercus chrysolepis) and the relict island oak (Q. tomentella), two Californian golden cup oaks with an intriguing biogeographical history. We employed restriction-site-associated DNA sequencing and integrated phylogenomic and population genomic analyses to study hybridization and reconstruct the evolutionary past of these taxa. Our analyses revealed the presence of two cryptic lineages within Q. chrysolepis. One of these lineages shares its most recent common ancestor with Q. tomentella, supporting the paraphyly of Q. chrysolepis. The split of these lineages was estimated to take place during the late Pliocene or the early Pleistocene, a time corresponding well with the common presence of Q. tomentella in the fossil records of continental California. Analyses also revealed historical hybridization among lineages, high introgression from Q. tomentella into Q. chrysolepis in their current area of sympatry, and widespread admixture between the two lineages of Q. chrysolepis in contact zones. Our results support that the two lineages of Q. chrysolepis behave as a single functional species phenotypically and ecologically well differentiated from Q. tomentella, a situation that can be only accommodated considering hybridization and speciation as a continuum with diffuse limits.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, Seville, E-41092, Spain
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD, 21532, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA
- Institute of the Environment and Sustainability, University of California, Box 951496, Los Angeles, CA, 90095-1496, USA
| |
Collapse
|
39
|
Besnard G, Terral JF, Cornille A. On the origins and domestication of the olive: a review and perspectives. ANNALS OF BOTANY 2018; 121:385-403. [PMID: 29293871 PMCID: PMC5838823 DOI: 10.1093/aob/mcx145] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Background Unravelling domestication processes is crucial for understanding how species respond to anthropogenic pressures, forecasting crop responses to future global changes and improving breeding programmes. Domestication processes for clonally propagated perennials differ markedly from those for seed-propagated annual crops, mostly due to long generation times, clonal propagation and recurrent admixture with local forms, leading to a limited number of generations of selection from wild ancestors. However, additional case studies are required to document this process more fully. Scope The olive is an iconic species in Mediterranean cultural history. Its multiple uses and omnipresence in traditional agrosystems have made this species an economic pillar and cornerstone of Mediterranean agriculture. However, major questions about the domestication history of the olive remain unanswered. New paleobotanical, archeological, historical and molecular data have recently accumulated for olive, making it timely to carry out a critical re-evaluation of the biogeography of wild olives and the history of their cultivation. We review here the chronological history of wild olives and discuss the questions that remain unanswered, or even unasked, about their domestication history in the Mediterranean Basin. We argue that more detailed ecological genomics studies of wild and cultivated olives are crucial to improve our understanding of olive domestication. Multidisciplinary research integrating genomics, metagenomics and community ecology will make it possible to decipher the evolutionary ecology of one of the most iconic domesticated fruit trees worldwide. Conclusion The olive is a relevant model for improving our knowledge of domestication processes in clonally propagated perennial crops, particularly those of the Mediterranean Basin. Future studies on the ecological and genomic shifts linked to domestication in olive and its associated community will provide insight into the phenotypic and molecular bases of crop adaptation to human uses.
Collapse
Affiliation(s)
- Guillaume Besnard
- CNRS-UPS-ENSFEA-IRD, EDB, UMR 5174, Université Paul Sabatier, Toulouse Cedex , France
| | - Jean-Frédéric Terral
- ISEM, UMR 5554, CNRS-Université de Montpellier-IRD-EPHE, Equipe Dynamique de la Biodiversité, Anthropo-écologie, Montpellier Cedex, France
- International Associated Laboratory (LIA, CNRS) EVOLea, Zürich, Switzerland
| | - Amandine Cornille
- Center for Adaptation to a Changing Environment, ETH Zürich, Zürich, Switzerland
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
40
|
Folk RA, Soltis PS, Soltis DE, Guralnick R. New prospects in the detection and comparative analysis of hybridization in the tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:364-375. [PMID: 29683488 DOI: 10.1002/ajb2.1018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 05/03/2023]
Abstract
Assessing the relative importance of the various pathways to diversification is a central goal of biodiversity researchers. For plant biologists, and increasingly across the spectrum of biological sciences, among these pathways of interest is hybridization. New methodological developments are moving the field away from questions of whether natural hybridization occurs or hybrids can persist and toward more direct assessments of the long-term impact of hybridization on diversification and genome organization. Advances in theory and new data, especially phylogenomic data, have changed the face of this field, revealing extensive occurrences of hybridization at both shallow and deep levels, but lacking is a synthesis of these advancements. Here we provide an overview of methods that have been proposed for detecting hybridization with molecular data and advocate a time-extended, comparative view of reticulate evolution. In particular, we pose three overarching questions, newly placed within reach, that are critical for advancing our understanding of hybridization pattern and process: (1) How often is introgression biased toward certain genomes and loci, and is this bias selectively neutral? (2) What are the relative rates of formation of hybrid species and introgressants, and how does this compare to their subsequent fates? (3) Has the frequency of hybridization increased under historical periods of greater dynamism in climate and geographic range, such as the Pleistocene?
Collapse
Affiliation(s)
- Ryan A Folk
- Florida Museum of Natural History, 1659 Museum Road, Gainesville, Florida, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, 1659 Museum Road, Gainesville, Florida, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, Florida, 32611, USA
- Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, Florida, 32611, USA
| | - Robert Guralnick
- Florida Museum of Natural History, 1659 Museum Road, Gainesville, Florida, 32611, USA
| |
Collapse
|
41
|
Folk RA, Mandel JR, Freudenstein JV. Ancestral Gene Flow and Parallel Organellar Genome Capture Result in Extreme Phylogenomic Discord in a Lineage of Angiosperms. Syst Biol 2018; 66:320-337. [PMID: 27637567 DOI: 10.1093/sysbio/syw083] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/04/2016] [Indexed: 11/12/2022] Open
Abstract
While hybridization has recently received a resurgence of attention from systematists and evolutionary biologists, there remains a dearth of case studies on ancient, diversified hybrid lineages-clades of organisms that originated through reticulation. Studies on these groups are valuable in that they would speak to the long-term phylogenetic success of lineages following gene flow between species. We present a phylogenomic view of Heuchera, long known for frequent hybridization, incorporating all three independent genomes: targeted nuclear (~400,000 bp), plastid (~160,000 bp), and mitochondrial (~470,000 bp) data. We analyze these data using multiple concatenation and coalescence strategies. The nuclear phylogeny is consistent with previous work and with morphology, confidently suggesting a monophyletic Heuchera. By contrast, analyses of both organellar genomes recover a grossly polyphyletic Heuchera,consisting of three primary clades with relationships extensively rearranged within these as well. A minority of nuclear loci also exhibit phylogenetic discord; yet these topologies remarkably never resemble the pattern of organellar loci and largely present low levels of discord inter alia. Two independent estimates of the coalescent branch length of the ancestor of Heuchera using nuclear data suggest rare or nonexistent incomplete lineage sorting with related clades, inconsistent with the observed gross polyphyly of organellar genomes (confirmed by simulation of gene trees under the coalescent). These observations, in combination with previous work, strongly suggest hybridization as the cause of this phylogenetic discord. [Ancient hybridization; chloroplast capture; incongruence; phylogenomics; reticulation.].
Collapse
Affiliation(s)
- Ryan A Folk
- Herbarium, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43212, USA and
| | - Jennifer R Mandel
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - John V Freudenstein
- Herbarium, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43212, USA and
| |
Collapse
|
42
|
Zhu J, Wen D, Yu Y, Meudt HM, Nakhleh L. Bayesian inference of phylogenetic networks from bi-allelic genetic markers. PLoS Comput Biol 2018; 14:e1005932. [PMID: 29320496 PMCID: PMC5779709 DOI: 10.1371/journal.pcbi.1005932] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/23/2018] [Accepted: 12/14/2017] [Indexed: 12/04/2022] Open
Abstract
Phylogenetic networks are rooted, directed, acyclic graphs that model reticulate evolutionary histories. Recently, statistical methods were devised for inferring such networks from either gene tree estimates or the sequence alignments of multiple unlinked loci. Bi-allelic markers, most notably single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs), provide a powerful source of genome-wide data. In a recent paper, a method called SNAPP was introduced for statistical inference of species trees from unlinked bi-allelic markers. The generative process assumed by the method combined both a model of evolution for the bi-allelic markers, as well as the multispecies coalescent. A novel component of the method was a polynomial-time algorithm for exact computation of the likelihood of a fixed species tree via integration over all possible gene trees for a given marker. Here we report on a method for Bayesian inference of phylogenetic networks from bi-allelic markers. Our method significantly extends the algorithm for exact computation of phylogenetic network likelihood via integration over all possible gene trees. Unlike the case of species trees, the algorithm is no longer polynomial-time on all instances of phylogenetic networks. Furthermore, the method utilizes a reversible-jump MCMC technique to sample the posterior of phylogenetic networks given bi-allelic marker data. Our method has a very good performance in terms of accuracy and robustness as we demonstrate on simulated data, as well as a data set of multiple New Zealand species of the plant genus Ourisia (Plantaginaceae). We implemented the method in the publicly available, open-source PhyloNet software package. The availability of genomic data has revolutionized the study of evolutionary histories and phylogeny inference. Inferring evolutionary histories from genomic data requires, in most cases, accounting for the fact that different genomic regions could have evolutionary histories that differ from each other as well as from that of the species from which the genomes were sampled. In this paper, we introduce a method for inferring evolutionary histories while accounting for two processes that could give rise to such differences across the genomes, namely incomplete lineage sorting and hybridization. We introduce a novel algorithm for computing the likelihood of phylogenetic networks from bi-allelic genetic markers and use it in a Bayesian inference method. Analyses of synthetic and empirical data sets show a very good performance of the method in terms of the estimates it obtains.
Collapse
Affiliation(s)
- Jiafan Zhu
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Dingqiao Wen
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Yun Yu
- Computer Science, Rice University, Houston, Texas, United States of America
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Luay Nakhleh
- Computer Science, Rice University, Houston, Texas, United States of America
- BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
Over the 180 My since their origin, the sex chromosomes of mammals have evolved a gene repertoire highly specialized for function in the male germline. The mouse Y chromosome is unique among mammalian Y chromosomes characterized to date in that it is large, gene-rich and euchromatic. Yet, little is known about its diversity in natural populations. Here, we take advantage of published whole-genome sequencing data to survey the diversity of sequence and copy number of sex-linked genes in three subspecies of house mice. Copy number of genes on the repetitive long arm of both sex chromosomes is highly variable, but sequence diversity in nonrepetitive regions is decreased relative to expectations based on autosomes. We use simulations and theory to show that this reduction in sex-linked diversity is incompatible with neutral demographic processes alone, but is consistent with recent positive selection on genes active during spermatogenesis. Our results support the hypothesis that the mouse sex chromosomes are engaged in ongoing intragenomic conflict.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
44
|
Teng H, Zhang Y, Shi C, Mao F, Cai W, Lu L, Zhao F, Sun Z, Zhang J. Population Genomics Reveals Speciation and Introgression between Brown Norway Rats and Their Sibling Species. Mol Biol Evol 2017; 34:2214-2228. [PMID: 28482038 PMCID: PMC5850741 DOI: 10.1093/molbev/msx157] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Murine rodents are excellent models for study of adaptive radiations and speciation. Brown Norway rats (Rattus norvegicus) are successful global colonizers and the contributions of their domesticated laboratory strains to biomedical research are well established. To identify nucleotide-based speciation timing of the rat and genomic information contributing to its colonization capabilities, we analyzed 51 whole-genome sequences of wild-derived Brown Norway rats and their sibling species, R. nitidus, and identified over 20 million genetic variants in the wild Brown Norway rats that were absent in the laboratory strains, which substantially expand the reservoir of rat genetic diversity. We showed that divergence of the rat and its siblings coincided with drastic climatic changes that occurred during the Middle Pleistocene. Further, we revealed that there was a geographically widespread influx of genes between Brown Norway rats and the sibling species following the divergence, resulting in numerous introgressed regions in the genomes of admixed Brown Norway rats. Intriguing, genes related to chemical communications among these introgressed regions appeared to contribute to the population-specific adaptations of the admixed Brown Norway rats. Our data reveals evolutionary history of the Brown Norway rat, and offers new insights into the role of climatic changes in speciation of animals and the effect of interspecies introgression on animal adaptation.
Collapse
Affiliation(s)
- Huajing Teng
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chengmin Shi
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Liang Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jianxu Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Enciso-Romero J, Pardo-Díaz C, Martin SH, Arias CF, Linares M, McMillan WO, Jiggins CD, Salazar C. Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Mol Ecol 2017; 26:5160-5172. [PMID: 28777894 DOI: 10.1111/mec.14277] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
Understanding the genetic basis of phenotypic variation and the mechanisms involved in the evolution of adaptive novelty, especially in adaptive radiations, is a major goal in evolutionary biology. Here, we used whole-genome sequence data to investigate the origin of the yellow hindwing bar in the Heliconius cydno radiation. We found modular variation associated with hindwing phenotype in two narrow noncoding regions upstream and downstream of the cortex gene, which was recently identified as a pigmentation pattern controller in multiple species of Heliconius. Genetic variation at each of these modules suggests an independent control of the dorsal and ventral hindwing patterning, with the upstream module associated with the ventral phenotype and the downstream module with the dorsal one. Furthermore, we detected introgression between H. cydno and its closely related species Heliconius melpomene in these modules, likely allowing both species to participate in novel mimicry rings. In sum, our findings support the role of regulatory modularity coupled with adaptive introgression as an elegant mechanism by which novel phenotypic combinations can evolve and fuel an adaptive radiation.
Collapse
Affiliation(s)
- Juan Enciso-Romero
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia
| | - Carolina Pardo-Díaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia
| | - Simon H Martin
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Carlos F Arias
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia.,Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | - Mauricio Linares
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá D.C, Colombia
| |
Collapse
|
46
|
Mao X, Tsagkogeorga G, Bailey SE, Rossiter SJ. Genomics of introgression in the Chinese horseshoe bat (Rhinolophus sinicus) revealed by transcriptome sequencing. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiuguang Mao
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Sebastian E. Bailey
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
47
|
Höllinger I, Hermisson J. Bounds to parapatric speciation: A Dobzhansky-Muller incompatibility model involving autosomes, X chromosomes, and mitochondria. Evolution 2017; 71:1366-1380. [PMID: 28272742 DOI: 10.1111/evo.13223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
We investigate the conditions for the origin and maintenance of postzygotic isolation barriers, so called (Bateson-)Dobzhansky-Muller incompatibilities or DMIs, among populations that are connected by gene flow. Specifically, we compare the relative stability of pairwise DMIs among autosomes, X chromosomes, and mitochondrial genes. In an analytical approach based on a continent-island framework, we determine how the maximum permissible migration rates depend on the genomic architecture of the DMI, on sex bias in migration rates, and on sex-dependence of allelic and epistatic effects, such as dosage compensation. Our results show that X-linkage of DMIs can enlarge the migration bounds relative to autosomal DMIs or autosome-mitochondrial DMIs, in particular in the presence of dosage compensation. The effect is further strengthened with male-biased migration. This mechanism might contribute to a higher density of DMIs on the X chromosome (large X-effect) that has been observed in several species clades. Furthermore, our results agree with empirical findings of higher introgression rates of autosomal compared to X-linked loci.
Collapse
Affiliation(s)
- Ilse Höllinger
- Mathematics and BioSciences Group, Faculty of Mathematics and Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Joachim Hermisson
- Mathematics and BioSciences Group, Faculty of Mathematics and Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Sarver BA, Keeble S, Cosart T, Tucker PK, Dean MD, Good JM. Phylogenomic Insights into Mouse Evolution Using a Pseudoreference Approach. Genome Biol Evol 2017; 9:726-739. [PMID: 28338821 PMCID: PMC5381554 DOI: 10.1093/gbe/evx034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/15/2022] Open
Abstract
Comparative genomic studies are now possible across a broad range of evolutionary timescales, but the generation and analysis of genomic data across many different species still present a number of challenges. The most sophisticated genotyping and down-stream analytical frameworks are still predominantly based on comparisons to high-quality reference genomes. However, established genomic resources are often limited within a given group of species, necessitating comparisons to divergent reference genomes that could restrict or bias comparisons across a phylogenetic sample. Here, we develop a scalable pseudoreference approach to iteratively incorporate sample-specific variation into a genome reference and reduce the effects of systematic mapping bias in downstream analyses. To characterize this framework, we used targeted capture to sequence whole exomes (∼54 Mbp) in 12 lineages (ten species) of mice spanning the Mus radiation. We generated whole exome pseudoreferences for all species and show that this iterative reference-based approach improved basic genomic analyses that depend on mapping accuracy while preserving the associated annotations of the mouse reference genome. We then use these pseudoreferences to resolve evolutionary relationships among these lineages while accounting for phylogenetic discordance across the genome, contributing an important resource for comparative studies in the mouse system. We also describe patterns of genomic introgression among lineages and compare our results to previous studies. Our general approach can be applied to whole or partitioned genomic data and is easily portable to any system with sufficient genomic resources, providing a useful framework for phylogenomic studies in mice and other taxa.
Collapse
Affiliation(s)
- Brice A.J. Sarver
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Ted Cosart
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Priscilla K. Tucker
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI
| | - Matthew D. Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, MT
| |
Collapse
|
49
|
Goulois J, Hascoët C, Dorani K, Besse S, Legros L, Benoit E, Lattard V. Study of the efficiency of anticoagulant rodenticides to control Mus musculus domesticus introgressed with Mus spretus Vkorc1. PEST MANAGEMENT SCIENCE 2017; 73:325-331. [PMID: 27196872 DOI: 10.1002/ps.4319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Antivitamin K anticoagulant (AVK) rodenticides are commonly used to control rodent pests worldwide. They specifically inhibit the VKORC1 enzyme essential for the recycling of vitamin K, and thus prevent blood clotting and cause death by haemorrhage. Numerous mutations or polymorphisms of the Vkorc1 gene were reported in rodents, and some led to resistance to rodenticides. In house mice (Mus musculus domesticus), adaptive introgression of the Vkorc1 gene from the Algerian mouse (Mus spretus) was reported. This adaptive introgression causes the substitution of four amino acids in M. musculus domesticus. RESULTS The consequences of introgression were assessed by (i) the characterisation of the in vivo resistant phenotype of adaptive Vkorc1spr -introgressed mice, (ii) the characterisation of the ex vivo resistance phenotype of the liver VKOR activity and (iii) the comparison of these results with the properties of recombinant VKORC1spr protein expressed in yeast. The resistance factor (from 1 to 120) induced by the four introgressed polymorphisms obtained using these three approaches was dependent on the AVKs used but were highly correlated among the three approaches. CONCLUSION The four introgressed polymorphisms were clearly the cause of the strong resistant phenotype observed in the field. In the context of strong selection pressure due to the extensive use of AVKs, this resistant phenotype may explain the widespread distribution of this genotype from Spain to Germany. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joffrey Goulois
- USC 1233 INRA-VetAgro Sup, Veterinary School of Lyon, Marcy l'Etoile, France
- Liphatech, Bonnel, Pont du Casse, France
| | | | - Khedidja Dorani
- USC 1233 INRA-VetAgro Sup, Veterinary School of Lyon, Marcy l'Etoile, France
| | - Stéphane Besse
- USC 1233 INRA-VetAgro Sup, Veterinary School of Lyon, Marcy l'Etoile, France
| | | | - Etienne Benoit
- USC 1233 INRA-VetAgro Sup, Veterinary School of Lyon, Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233 INRA-VetAgro Sup, Veterinary School of Lyon, Marcy l'Etoile, France
| |
Collapse
|
50
|
Abstract
Background The most widely used state-of-the-art methods for reconstructing species phylogenies from genomic sequence data assume that sampled loci are identically and independently distributed. In principle, free recombination between loci and a lack of intra-locus recombination are necessary to satisfy this assumption. Few studies have quantified the practical impact of recombination on species tree inference methods, and even fewer have used genomic sequence data for this purpose. One prominent exception is the 2012 study of Lanier and Knowles. A main finding from the study was that species tree inference methods are relatively robust to intra-locus recombination, assuming free recombination between loci. The latter assumption means that the open question regarding the impact of recombination on species tree analysis is not fully resolved. Results The goal of this study is to further investigate this open question. Using simulations based upon the multi-species coalescent-with-recombination model as well as empirical datasets, we compared common pipeline-based techniques for inferring species phylogenies. The simulation conditions included a range of dataset sizes and several choices for recombination rate which was either uniform across loci or incorporated recombination hotspots. We found that pipelines which explicitly utilize inferred recombination breakpoints to delineate recombination-free intervals result in greater accuracy compared to widely used alternatives that preprocess sequences based upon linkage disequilibrium decay. Furthermore, the use of a relatively simple approach for recombination breakpoint inference does not degrade the accuracy of downstream species tree inference compared to more accurate alternatives. Conclusions Our findings clarify the impact of recombination upon current phylogenomic pipelines for species tree inference. Pipeline-based approaches which utilize inferred recombination breakpoints to densely sample loci across genomic sequences can tolerate intra-locus recombination and violations of the assumption of free recombination between loci. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3104-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Computer Science and Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, 48824, USA
| | - Kevin J Liu
- Department of Computer Science and Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, 48824, USA.
| |
Collapse
|