1
|
Bian Y, Wu H, Jiang W, Kong X, Xiong Y, Zeng L, Zhang F, Song J, Wang C, Yang Y, Zhang X, Zhang Y, Pang P, Duo T, Wang Z, Pan T, Yang B. Anti-b diminishes hyperlipidaemia and hepatic steatosis in hamsters and mice by suppressing the mTOR/PPARγ and mTOR/SREBP1 signalling pathways. Br J Pharmacol 2025; 182:1254-1272. [PMID: 39614407 DOI: 10.1111/bph.17397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND AND PURPOSE As a chronic metabolic syndrome, hyperlipidaemia is manifested as aberrantly elevated cholesterol and triglyceride (TG) levels, primarily attributed to disorders in lipid metabolism. Despite the promising outlook for hyperlipidaemia treatment, the need persists for the development of lipid-lowering agents with heightened efficiency and minimal toxicity. This investigation aims to elucidate the lipid-lowering effects and potential pharmacodynamic mechanisms of Anti-b, a novel low MW compound. EXPERIMENTAL APPROACH We employed high-fat diet (HFD) in hamsters and mice or oleic acid (OA) in cultures of HepG2 cells and LO2 cells to induce hyperlipidaemia models. We administered Anti-b to assess its therapeutic effects on dyslipidaemia and hepatic steatosis. We used western blotting, RNA sequencing, GO and KEGG analysis, oil red O staining, along with molecular docking and molecular dynamics simulation to elucidate the mechanisms underlying the effects of Anti-b. KEY RESULTS Anti-b exhibited a substantial reduction in HFD-induced elevation of blood lipids, liver weight to body weight ratio, liver diameter and hepatic fat accumulation. Moreover, Anti-b demonstrated therapeutic effects in alleviating total cholesterol (TC), TG levels, and lipid accumulation derived from OA in HepG2 cells and LO2 cells. Mechanistically, Anti-b selectively bound to the mTOR kinase protein and increased mTOR thermal stability, resulting in downregulation of phosphorylation level. Notably, Anti-b exerted anti-hyperlipidaemia effects by modulating PPARγ and SREBP1 signalling pathways and reducing the expression level of mSREBP1 and PPARγ proteins. CONCLUSION AND IMPLICATIONS In conclusion, our study has provided initial data of a novel low MW compound, Anti-b, designed and synthesised to target mTOR protein directly. Our results indicate that Anti-b may represent a novel class of drugs for the treatment of hyperlipidemia and hepatic steatosis.
Collapse
Affiliation(s)
- Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Han Wu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weitao Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Kong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Linghua Zeng
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jinglun Song
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chunlei Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuning Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ping Pang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tianqi Duo
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tengfei Pan
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
2
|
Peteláková M, Neprašová B, Šmotková Z, Myšková A, Holá L, Petelák A, Áčová A, Cantel S, Fehrentz JA, Sýkora D, Kuneš J, Železná B, Maletínská L. Simultaneous treatment with palm-LEAP2(1-14) and feeding high-fat diet attenuates liver lipid metabolism but not obesity: Sign of selective resistance to palm-LEAP2(1-14). Mol Cell Endocrinol 2025; 597:112442. [PMID: 39689753 DOI: 10.1016/j.mce.2024.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Liver-enriched antimicrobial peptide 2 (LEAP2) is a natural antagonist/inverse agonist of ghrelin receptor GHSR. Its truncated palmitoylated analog palm-LEAP2(1-14) promised anti-obesity properties because it exhibited favourable stability and an acute anorexigenic effect in our previous studies. Here we demonstrate desirable palm-LEAP2(1-14) pharmacokinetics, with significant levels of the peptide persisting in mouse blood 3 h after its subcutaneous administration. Palm-LEAP2 (1-14) reduced ghrelin-induced c-Fos immunoreactivity in arcuate nucleus and area postrema, in line with previously described silencing of ghrelin orexigenic effect. In spite of this, anti-obesity effect was not reached by two-week palm-LEAP2(1-14) treatment in mice with diet-induced obesity. Similarly, palm-LEAP2(1-14) administered simultaneously with high-fat diet feeding for 8 weeks did not protect mice from development of obesity and related biochemical changes. However, palm-LEAP2(1-14) kept its ability to attenuate liver de novo lipogenesis, and prominently lowered liver gene expression of nuclear receptors PPARG, SREBF1 and PPARA, and also expression of lipogenic and lipolytic enzymes. In our recent study, we described a high-fat diet-induced ghrelin resistance, reversible by switch to standard diet, followed by resistance to the acute anorexigenic effects of palm-LEAP2(1-14). Here we conclude that this resistance to palm-LEAP2(1-14) in obesity is probably selective and does not concern its ability to inhibit liver lipid metabolism.
Collapse
Affiliation(s)
- Martina Peteláková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Czech Republic
| | - Lucie Holá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Petelák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Áčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Sonia Cantel
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - David Sýkora
- University of Chemistry and Technology, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Perelló M. Critical Insights Into LEAP2 Biology and Physiological Functions: Potential Roles Beyond Ghrelin Antagonism. Endocrinology 2025; 166:bqaf011. [PMID: 39823403 DOI: 10.1210/endocr/bqaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features. LEAP2 is released by hepatocytes and enterocytes, 2 cell types that lack classical regulatory secretory mechanisms and may respond differently to nutrient signals. LEAP2 is also found in higher concentrations in plasma than ghrelin, even under energy deficit conditions, and modulates GHSR by inhibiting both ghrelin-dependent and ghrelin-independent activities. Given these characteristics, LEAP2 appears to play a major role in regulating GHSR activity in vivo, extending beyond simple ghrelin antagonism and being crucial for the long-term regulation of energy balance. A deeper understanding of how LEAP2 functions may clarify the functional implications of GHSR in different physiological contexts and unlock new therapeutic strategies for treating obesity, diabetes, and other metabolic disorders.
Collapse
Affiliation(s)
- Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE) (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Buenos Aires 1900, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
4
|
Urai H, Azegami T, Komatsu M, Takahashi R, Kubota Y, Hasegawa K, Tokuyama H, Wakino S, Hayashi K, Kanda T, Itoh H. Ghrelin Promotes Lipid Uptake into White Adipose Tissue via Endothelial Growth Hormone Secretagogue-Receptor in Mice. Nutrients 2024; 17:146. [PMID: 39796581 PMCID: PMC11722803 DOI: 10.3390/nu17010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Endothelial peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipose tissue by facilitating lipid uptake into white adipocytes, but the role of endothelial lipid transport in systemic energy balance remains unclear. Ghrelin conveys nutritional information through the central nervous system and increases adiposity, while deficiency in its receptor, growth hormone secretagogue-receptor (GHSR), suppresses adiposity on a high-fat diet. This study aims to examine the effect of ghrelin/GHSR signaling in the endothelium on lipid metabolism. Methods: We compared the effects of ghrelin on adiposity and lipid uptake into adipocytes in wild-type and GHSR-null mice. Transgenic mice expressing GHSR selectively in endothelial cells were also generated and compared with global GHSR-null and wild-type mice. The impact of ghrelin on lipid uptake-related genes was assessed in cultured endothelial cells. Results: Ghrelin increased adiposity and triglyceride clearance in wild-type but not in GHSR-null mice. GHSR-null mice showed higher serum triglyceride after olive oil gavage and lower white adipose tissue (WAT) weight on a high-fat diet, suggesting impaired lipid uptake. Restoring GHSR expression in endothelial cells increased lipoprotein lipase activity, lipid uptake into WAT, and WAT weight. Ghrelin enhanced free fatty acid uptake and the expression of lipid uptake genes in cultured endothelial cells, whereas these effects were absent in GHSR-null mice-derived endothelial cells. Knockdown of PPARγ revealed that ghrelin/GHSR signaling in endothelial cells promoted lipid uptake via endothelial PPARγ. Conclusions: Endothelial GHSR is key for regulating lipid metabolism via PPARγ in response to ghrelin and for the role of endothelium in regulating white adipocyte metabolism. Targeting endothelial ghrelin signaling may be a promising therapeutic approach for managing excessive adiposity and associated metabolic disorders.
Collapse
Affiliation(s)
- Hidenori Urai
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Tatsuhiko Azegami
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Motoaki Komatsu
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Rina Takahashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Kazuhiro Hasegawa
- Division of Nephrology, Department of Internal Medicine, Tokushima University School of Medicine, Tokushima-shi 770-8503, Tokushima, Japan; (K.H.); (S.W.)
| | - Hirofumi Tokuyama
- Department of Internal Medicine, Tokyo Dental University Ichikawa General Hospital, Ichikawa-shi 272-8513, Chiba, Japan;
| | - Shu Wakino
- Division of Nephrology, Department of Internal Medicine, Tokushima University School of Medicine, Tokushima-shi 770-8503, Tokushima, Japan; (K.H.); (S.W.)
| | - Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| | - Takeshi Kanda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Matsue 693-8501, Shimane, Japan
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, Matsue 693-8501, Shimane, Japan
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (H.U.); (M.K.); (R.T.); (K.H.); (H.I.)
| |
Collapse
|
5
|
Zhang J, Zhao Y, Wu S, Han M, Gao L, Yang K, Chen H, Wang C, Xu G. Mechanosensing by Piezo1 in gastric ghrelin cells contributes to hepatic lipid homeostasis in mice. Sci Signal 2024; 17:eadq9463. [PMID: 39436995 DOI: 10.1126/scisignal.adq9463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Ghrelin is an orexigenic peptide released by gastric ghrelin cells that contributes to obesity and hepatic steatosis. The mechanosensitive ion channel Piezo1 in gastric ghrelin cells inhibits the synthesis and secretion of ghrelin in response to gastric mechanical stretch. We sought to modulate hepatic lipid metabolism by manipulating Piezo1 in gastric ghrelin cells. Mice with a ghrelin cell-specific deficiency of Piezo1 (Ghrl-Piezo1-/-) had hyperghrelinemia and hepatic steatosis when fed a low-fat or high-fat diet. In these mice, hepatic lipid accumulation was associated with changes in gene expression and in protein abundance and activity expected to increase hepatic fatty acid synthesis and decrease lipid β-oxidation. Pharmacological inhibition of the ghrelin receptor improved hepatic steatosis in Ghrl-Piezo1-/- mice, thus confirming that the phenotype of these mice was due to overproduction of ghrelin caused by inactivation of Piezo1. Gastric implantation of silicone beads to induce mechanical stretch of the stomach inhibited ghrelin synthesis and secretion, thereby helping to suppress fatty liver development induced by a high-fat diet in wild-type mice but not in Ghrl-Piezo1-/- mice. Our study elucidates the mechanism by which Piezo1 in gastric ghrelin cells regulate hepatic lipid accumulation, providing insights into potential treatments for fatty liver.
Collapse
Affiliation(s)
- Jinshan Zhang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
- Department of Metabolic and Bariatric Surgery, First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Shaohong Wu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Mengxue Han
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Luyang Gao
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Ke Yang
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
| | - Hui Chen
- Biotherapy Center; Cell-gene Therapy Translational Medicine Research Center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510630, China
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, Guangdong 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, 510632 Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhao D, Han X, Mu Q, Wu Y, Shan L, Su L, Wang W, Wang P, Kang Y, Wang F. Association of cerebrospinal fluid NPY with peripheral ApoA: a moderation effect of BMI. Nutr Metab (Lond) 2024; 21:52. [PMID: 39054540 PMCID: PMC11270855 DOI: 10.1186/s12986-024-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Apoprotein A-I (ApoA-I) and Apoprotein B (ApoB) have emerged as novel cardiovascular risk biomarkers influenced by feeding behavior. Hypothalamic appetite peptides regulate feeding behavior and impact lipoprotein levels, which effects vary in different weight states. This study explores the intricate relationship between body mass index (BMI), hypothalamic appetite peptides, and apolipoproteins with emphasis on the moderating role of body weight in the association between neuropeptide Y (NPY), ghrelin, orexin A (OXA), oxytocin in cerebrospinal fluid (CSF) and peripheral ApoA-I and ApoB. METHODS In this cross-sectional study, we included participants with a mean age of 31.77 ± 10.25 years, categorized into a normal weight (NW) (n = 73) and an overweight/obese (OW/OB) (n = 117) group based on BMI. NPY, ghrelin, OXA, and oxytocin levels in CSF were measured. RESULTS In the NW group, peripheral ApoA-I levels were higher, while ApoB levels were lower than in the OW/OB group (all p < 0.05). CSF NPY exhibited a positive correlation with peripheral ApoA-I in the NW group (r = 0.39, p = 0.001). Notably, participants with higher CSF NPY levels had higher peripheral ApoA-I levels in the NW group and lower peripheral ApoA-I levels in the OW/OB group, showing the significant moderating effect of BMI on this association (R2 = 0.144, β=-0.54, p < 0.001). The correlation between ghrelin, OXA and oxytocin in CSF and peripheral ApoB in both groups exhibited opposing trends (Ghrelin: r = -0.03 and r = 0.04; OXA: r = 0.23 and r=-0.01; Oxytocin: r=-0.09 and r = 0.04). CONCLUSION This study provides hitherto undocumented evidence that BMI moderates the relationship between CSF NPY and peripheral ApoA-I levels. It also reveals the protective role of NPY in the NW population, contrasting with its risk factor role in the OW/OB population, which was associated with the at-risk for cardiovascular disease.
Collapse
Affiliation(s)
- Danyang Zhao
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship hospital of Urumqi in Xinjiang, Urumqi, 830049, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Ligang Shan
- Department of Anesthesiology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, China
| | - Lidong Su
- Department of Anesthesiology, the Third Affiliated Hospital of Inner Mongolia Medical University, BaoGang Hospital, Baotou, 014010, China
| | - Wenyan Wang
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Pengxiang Wang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, 010110, China.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China.
| |
Collapse
|
7
|
Dev R, Amano K, Naito T, Del Fabbro E. Anamorelin for the Treatment of Cancer Anorexia-Cachexia Syndrome. Curr Oncol Rep 2024; 26:762-772. [PMID: 38771469 DOI: 10.1007/s11912-024-01549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE OF REVIEW The following review will highlight the development of anamorelin to treat cancer anorexia-cachexia syndrome (CACS) including the potential benefits, limitations, and future directions. RECENT FINDINGS Ghrelin, a 28-amino acid peptide hormone, is secreted by the stomach mucosa and regulates appetite, promotes lipogenesis, increases body weight, improves gastric motility, reduces catabolic wasting and inflammation. Several randomized, double-blind, placebo-controlled clinical trials evaluating anamorelin, a ghrelin agonist, for the treatment of CACS have reported improvement in appetite and body composition including both lean body and fat mass; however, most studies noted no improvement in physical function as assessed by measuring non-dominant hand-grip strength. Common adverse effects of anamorelin include the development of diabetes mellitus, hyperglycemia, and less frequently, hepatic abnormalities and cardiovascular events including conduction abnormalities, hypertension, and ischemic cardiomyopathy. Anamorelin has the potential to stimulate appetite, improve gastric movement, and may have anti-inflammatory effects on patients with CACS. In patients with cancer, studies involving anamorelin combined with other multimodal treatments including nutrition counseling (branched chain amino acids, omega 3 fatty acids, and other nutrients), exercise, treatment of hormonal abnormalities including hypogonadism and hypovitaminosis D, and anti-inflammatory agents are needed. Compliance with multimodality treatment has been a barrier and future studies may need to incorporate motivational counseling to promote adherence.
Collapse
Affiliation(s)
- Rony Dev
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd Unit 1212, Houston, TX, 77030, USA.
| | - Koji Amano
- Department of Supportive and Palliative Care, Osaka International Cancer Institute, Chuo-Ku, Osaka, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology and Cancer Supportive Cancer Center, Shizuoka Cancer Center, Nagaizumi-Cho, Shizuoka, Japan
| | - Egidio Del Fabbro
- Department of Medicine, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
8
|
Shankar K, Metzger NP, Lawrence C, Gupta D, Osborne-Lawrence S, Varshney S, Singh O, Richard CP, Zaykov AN, Rolfts R, DuBois BN, Perez-Tilve D, Mani BK, Hammer STG, Zigman JM. A long-acting LEAP2 analog reduces hepatic steatosis and inflammation and causes marked weight loss in mice. Mol Metab 2024; 84:101950. [PMID: 38697291 PMCID: PMC11103953 DOI: 10.1016/j.molmet.2024.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/01/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024] Open
Abstract
OBJECTIVE The number of individuals affected by metabolic dysfunction associated fatty liver disease [1] is on the rise, yet hormonal contributors to the condition remain incompletely described and only a single FDA-approved treatment is available. Some studies suggest that the hormones ghrelin and LEAP2, which act as agonist and antagonist/inverse agonist, respectively, for the G protein coupled receptor GHSR, may influence the development of MAFLD. For instance, ghrelin increases hepatic fat whereas synthetic GHSR antagonists do the opposite. Also, hepatic steatosis is less prominent in standard chow-fed ghrelin-KO mice but more prominent in 42% high-fat diet-fed female LEAP2-KO mice. METHODS Here, we sought to determine the therapeutic potential of a long-acting LEAP2 analog (LA-LEAP2) to treat MAFLD in mice. LEAP2-KO and wild-type littermate mice were fed a Gubra-Amylin-NASH (GAN) diet for 10 or 40 wks, with some randomized to an additional 28 or 10 days of GAN diet, respectively, while treated with LA-LEAP2 vs Vehicle. Various metabolic parameters were followed and biochemical and histological assessments of MAFLD were made. RESULTS Among the most notable metabolic effects, daily LA-LEAP2 administration to both LEAP2-KO and wild-type littermates during the final 4 wks of a 14 wk-long GAN diet challenge markedly reduced liver weight, hepatic triglycerides, plasma ALT, hepatic microvesicular steatosis, hepatic lobular inflammation, NASH activity scores, and prevalence of higher-grade fibrosis. These changes were accompanied by prominent reductions in body weight, without effects on food intake, and reduced plasma total cholesterol. Daily LA-LEAP2 administration during the final 10 d of a 41.5 wk-long GAN diet challenge also reduced body weight, plasma ALT, and plasma total cholesterol in LEAP2-KO and wild-type littermates and prevalence of higher grade fibrosis in LEAP2-KO mice. CONCLUSIONS Administration of LA-LEAP2 to mice fed a MAFLD-prone diet markedly improves several facets of MAFLD, including hepatic steatosis, hepatic lobular inflammation, higher-grade hepatic fibrosis, and transaminitis. These changes are accompanied by prominent reductions in body weight and lowered plasma total cholesterol. Taken together, these data suggest that LEAP2 analogs such as LA-LEAP2 hold promise for the treatment of MAFLD and obesity.
Collapse
Affiliation(s)
- Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA
| | - Connor Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA
| | | | - Rebecca Rolfts
- Novo Nordisk Lexington, 33 Hayden Ave, Lexington, MA 02421, USA
| | - Barent N DuBois
- Novo Nordisk Lexington, 33 Hayden Ave, Lexington, MA 02421, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bharath K Mani
- Novo Nordisk Lexington, 33 Hayden Ave, Lexington, MA 02421, USA
| | - Suntrea T G Hammer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9077, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, USA; Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Lékó AH, Gregory-Flores A, Marchette RCN, Gomez JL, Vendruscolo JCM, Repunte-Canonigo V, Choung V, Deschaine SL, Whiting KE, Jackson SN, Cornejo MP, Perello M, You ZB, Eckhaus M, Rasineni K, Janda KD, Zorman B, Sumazin P, Koob GF, Michaelides M, Sanna PP, Vendruscolo LF, Leggio L. Genetic or pharmacological GHSR blockade has sexually dimorphic effects in rodents on a high-fat diet. Commun Biol 2024; 7:632. [PMID: 38796563 PMCID: PMC11127961 DOI: 10.1038/s42003-024-06303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.
Collapse
Affiliation(s)
- András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Gregory-Flores
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Renata C N Marchette
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vicky Choung
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Shelley N Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Maria Paula Cornejo
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Eckhaus
- Pathology Service, Division of Veterinary Resources, Office of Research Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
10
|
Mahalingam S, Bellamkonda R, Kharbanda KK, Arumugam MK, Kumar V, Casey CA, Leggio L, Rasineni K. Role of ghrelin hormone in the development of alcohol-associated liver disease. Biomed Pharmacother 2024; 174:116595. [PMID: 38640709 PMCID: PMC11161137 DOI: 10.1016/j.biopha.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.
Collapse
Affiliation(s)
- Sundararajan Mahalingam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Bellamkonda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vikas Kumar
- Mass Spectrometry and Proteomic Core Facility, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, Baltimore, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Elibol E, Akdevelioğlu Y, Yılmaz C, Narlı B, Şen S, Take Kaplanoğlu G, Seymen CM. Acyl ghrelin, desacyl ghrelin and their ratio affect hepatic steatosis via PPARγ signaling pathway. Arab J Gastroenterol 2024; 25:109-117. [PMID: 38383264 DOI: 10.1016/j.ajg.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/11/2023] [Accepted: 12/30/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND STUDY AIMS Ghrelin is an appetite hormone-containing 28-amino acid and has 4 different forms in the body. Ghrelin forms have different physiological functions in the body. This study aims to analyze the effect of acyl and desacyl ghrelin hormone on hepatic steatosis and biochemical findings in 36 male Wistar rats. MATERIALS AND METHODS Rats were split into 6 equal groups, consisting of control, acyl ghrelin, desacyl ghrelin, acyl/desacyl 3:1, acyl/desacyl 1:1, and acyl/desacyl 1:3 groups, and administered placebo or 200 ng/kg hormone subcutaneous twice a day for 14 days. Oral Glucose Tolerance Test (OGTT) was performed on Day 15, Insulin Tolerance Test (ITT) on Day 16, and scarification procedure on Day 17. Certain biochemical data and liver diacylglycerol (DAG), glycogen, protein kinase C and PPAR-γ levels were detected in the blood. Histological analyses were also conducted on the liver tissues. RESULTS The highest plasma total cholesterol and VLDL-K levels were found in the acyl/desacyl 1:3 group, and lower insulin, and HOMA-IR levels were found in groups where acyl and desacyl were administered together (p < 0.05). PPAR-γ gene expression level increased in acyl ghrelin and acyl/desacyl 1:3 groups compared to the control group. Protein kinase C gene expression was highest in the acyl/desacyl 1:3 group. The most severe degenerative findings compliant with steatosis in the liver were observed in the acyl ghrelin group (p < 0.05). CONCLUSION It was determined that administering rats acyl alone and acyl/desacyl by 1:3 caused the highest PPAR-γ gene expression, serum total cholesterol, HDL-K, and VLDL-K levels in the body. Besides, it is shown that desacyl ghrelin effectively regulates the blood glucose level when administered alone.
Collapse
Affiliation(s)
- Emine Elibol
- Departments of Nutrition and Dietetic, Ankara Yıldırım Beyazıt University, Dumlupınar Mahallesi, 06760 Çubuk, Ankara, Turkey.
| | - Yasemin Akdevelioğlu
- Departments of Nutrition and Dietetic, Gazi University, Emek mah. Bişkek Cad. 6. Cad. No:2 06490 Çankaya, Ankara, Turkey.
| | - Canan Yılmaz
- Departments of Medical Biochemistry, Gazi University, Faculty of Medicine, 06500 Beşevler, Ankara, Turkey.
| | - Belkıs Narlı
- Departments of Medical Biochemistry, Gazi University, Faculty of Medicine, 06500 Beşevler, Ankara, Turkey.
| | - Serkan Şen
- Departments of Medical Biochemistry, Afyonkarahisar Health Sciences University, Ali Çetinkaya Kampüsü Afyon- İzmir Karayolu 5.km, Afyonkarahisar, Turkey.
| | - Gülnur Take Kaplanoğlu
- Departments of Histology and Embryology, Gazi University Faculty of Medicine, 06500 Beşevler, Ankara, Turkey.
| | - Cemile Merve Seymen
- Departments of Histology and Embryology, Gazi University Faculty of Medicine, 06500 Beşevler, Ankara, Turkey.
| |
Collapse
|
12
|
Wang Y, Luo M, Che L, Wu Q, Li J, Ma Y, Wang J, Liu C. Enhanced detection of ligand-PPARγ binding based on surface plasmon resonance through complexation with SRC1- or NCOR2-related polypeptide. Int J Biol Macromol 2024; 268:131865. [PMID: 38670200 DOI: 10.1016/j.ijbiomac.2024.131865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
A previous study reported the use of a biosensing technique based on surface plasmon resonance (SPR) for the ligand binding detection of peroxisome proliferator activator receptor gamma (PPARγ). This detection was designed based on the structural properties of PPARγ. Because of cross-linked protein inactivation and the low molecular weight of conventional ligands, direct ligand binding detection based on SPR has low stability and repeatability. In this study, we report an indirect response methodology based on SPR technology in which anti-His CM5 chip binds fresh PPARγ every cycle, resulting in more stable detection. We developed a remarkable improvement in ligand-protein binding detectability in vitro by introducing two coregulator-related polypeptides into this system. In parallel, a systematic indirect response methodology can reflect the interaction relationship between ligands and proteins to some extent by detecting the changes in SA-SRC1 and GST-NCOR2 binding to PPARγ. Rosiglitazone, a PPARγ agonist with strong affinity, is a potent insulin-sensitizing agent. Some ligands may be competitively exerted at the same sites of PPARγ (binding rosiglitazone). We demonstrated using indirect response methodology that selective PPARγ modulator (SPPARM) candidates of PPARγ can be found by competing for the binding of the rosiglitazone site on PPARγ, although they may have no effect on polypeptides and PPARγ binding.
Collapse
Affiliation(s)
- Yiting Wang
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingzhu Luo
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China
| | - Luyang Che
- Department of Vascular and Endovascular Surgery, People's Liberation Army General Hospital Hainan Hospital, Sanya, Hainan Province, China
| | - Qixin Wu
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingzhe Li
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Ma
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Wang
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China
| | - Changzhen Liu
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Kulkarni SS, Singh O, Zigman JM. The intersection between ghrelin, metabolism and circadian rhythms. Nat Rev Endocrinol 2024; 20:228-238. [PMID: 38123819 PMCID: PMC11760189 DOI: 10.1038/s41574-023-00927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Despite the growing popular interest in sleep and diet, many gaps exist in our scientific understanding of the interaction between circadian rhythms and metabolism. In this Review, we explore a promising, bidirectional role for ghrelin in mediating this interaction. Ghrelin both influences and is influenced by central and peripheral circadian systems. Specifically, we focus on how ghrelin impacts outputs of circadian rhythm, including neuronal activity, circulating growth hormone levels, locomotor activity and eating behaviour. We also consider the effects of circadian rhythms on ghrelin expression and the consequences of disrupted circadian patterns, such as shift work and jet lag, on ghrelin secretion. Our Review is aimed at both the casual reader interested in gaining more insight into the scientific context surrounding the trending topics of sleep and metabolism, as well as experienced scientists in the fields of ghrelin and circadian biology seeking inspiration and a comprehensive overview of how these fields are related.
Collapse
Affiliation(s)
- Soumya S Kulkarni
- Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Chen K, Sun W, He L, Dong W, Zhang D, Zhang T, Zhang H. Exploring the bidirectional relationship between metabolic syndrome and thyroid autoimmunity: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1325417. [PMID: 38567309 PMCID: PMC10985172 DOI: 10.3389/fendo.2024.1325417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background Observational studies have reported a possible association between metabolic syndrome (MetS) and thyroid autoimmunity. Nevertheless, the relationship between thyroid autoimmunity and MetS remains unclear. The objective of this research was to assess the causal impact of MetS on thyroid autoimmunity through the utilization of Mendelian randomization (MR) methodology. Methods We performed bidirectional MR to elucidate the causal relationship between MetS and their components and thyroid autoimmunity (positivity of TPOAb). Single nucleotide polymorphisms (SNPs) of MetS and its components were obtained from the publicly available genetic variation summary database. The Thyroidomics Consortium conducted a genome-wide association analysis, which provided summary-level data pertaining to thyroid autoimmunity. The study included several statistical methods, including the inverse variance weighting method (IVW), weighted median, simple mode, weight mode, and MR-Egger methods, to assess the causal link. In addition, to ensure the stability of the results, a sensitivity analysis was conducted. Results IVW showed that MetS reduced the risk of developing thyroid autoimmunity (OR = 0.717, 95% CI = 0.584 - 0.88, P = 1.48E-03). The investigation into the causative association between components of MetS and thyroid autoimmune revealed a statistically significant link between triglycerides levels and the presence of thyroid autoimmunity (IVW analysis, OR = 0.603, 95%CI = 0.45 -0.807, P = 6.82E-04). The reverse analysis did not reveal any causal relationship between thyroid autoimmunity and MetS, including its five components. Conclusions We have presented new genetic evidence demonstrating that MetS and its triglyceride components may serve as potential protective factors against thyroid autoimmunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Chu Y, Zheng Y, Li Y, Gui S, Zhao J, Zhao Y, Chen X. Dietary supplementation of magnolol alleviates fatty liver hemorrhage syndrome in postpeak Xinhua laying hens via regulation of liver lipid metabolism. Poult Sci 2024; 103:103378. [PMID: 38228060 PMCID: PMC10823128 DOI: 10.1016/j.psj.2023.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
As a metabolic disease, fatty liver hemorrhagic syndrome (FLHS) has emerged as a major cause of noninfectious mortality in laying hens, resulting in substantial economic losses to the poultry industry. This study aimed to investigate the therapeutic effects of magnolol on FLHS in postpeak laying hen model, focusing on lipid metabolism, antioxidative capacity, and potential molecular mechanisms of action. We selected 150 Xinhua laying hens aged 50 wk and divided them into normal diet group (ND), high-fat diet group (HFD), 100 mg/kg magnolol group (MG100), 300 mg/kg magnolol group (MG300), 500 mg/kg magnolol group (MG500) on average. The experiment lasted for 6 wk, and liver samples were collected from the hens at the end of the experiment. The results demonstrated that the inclusion of magnolol in the diet had a significant impact on various factors. It led to a reduction in weight, an increase in egg production rate, a decrease in blood lipid levels, and an improvement in abnormal liver function, liver steatosis, and oxidative stress. These effects were particularly prominent in the MG500 group. The RNA-Seq analysis demonstrated that in the MG500 group, there was a down-regulation of genes associated with fatty acid synthesis (Acc, Fasn, Scd, Srebf1, Elovl6) compared to the HFD group. Moreover, genes related to fatty acid oxidation (CPT1A and PGC1α) were found to be up-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these differentially expressed genes indicated their enrichment in the PPAR signaling pathway. These findings demonstrate that magnolol can mitigate FLHS by inhibiting fatty acid synthesis and promoting fatty acid oxidation. This discovery offers a novel approach for treating FLHS in laying hens, reducing the economic losses associate with FLHS.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Yidanyuan Agricultural and Animal Husbandry Technology Co. LTD, Yingcheng, 432400, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Notaro NM, Dyck DJ. Regulation of peripheral tissue substrate metabolism by the gut-derived hormone ghrelin. Metabol Open 2024; 21:100279. [PMID: 38487670 PMCID: PMC10937159 DOI: 10.1016/j.metop.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Ghrelin increases in the circulation prior to entrained mealtimes, with the acylated (AG) form functioning to stimulate food intake and growth hormone release. Acutely, AG induces whole-body insulin resistance, potentially to maintain glycemia between meals. Alternatively, chronic administration of both AG and the unacylated isoform of ghrelin (unAG) is associated with improved skeletal muscle insulin sensitivity as well as reduced intramuscular lipids and inflammation. This may be due to effects on lipid metabolism, with ghrelin promoting storage of fat in adipose and liver while stimulating oxidation in skeletal muscle, preventing ectopic lipid accumulation. This is of specific relevance in the handling of meal-derived lipids, as ghrelin rises preprandially with effects persisting for 2-3 h following exposure in skeletal muscle, coinciding with elevated plasma FFAs. We hypothesize that ghrelin acts as a preparatory signal for incoming lipids, as well as a regulatory hormone for their use and storage. The effects of ghrelin on skeletal muscle are lost with high fat diet feeding and physical inactivity, potentially being implicated in the pathogenesis of metabolic disease. This review summarizes the metabolic effects of both ghrelin isoforms on peripheral tissues including the pancreas, adipose, liver, and skeletal muscle. Additionally, we speculate on the physiological relevance of these effects in vivo and suggest that ghrelin may be a key regulatory hormone for nutrient handling in the postprandial state.
Collapse
Affiliation(s)
- Nicole M. Notaro
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - David J. Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Zhang Y, Zheng L, Cheng D, Lei C, Li H, Zhou J, Zhang C, Song F, Zeng T, Zhao X. Chronic di(2-ethylhexyl) phthalate exposure at environmental-relevant doses induces osteoporosis by disturbing the differentiation of bone marrow mesenchymal stem cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169918. [PMID: 38190899 DOI: 10.1016/j.scitotenv.2024.169918] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive with persistent characteristics in the environment. This study was designed to investigate the detrimental effects of chronic DEHP exposure at environmental-relevant doses on bone metabolism and the underlying mechanisms. It was found that exposure to 25 μg/kg bw and 50 μg/kg bw DEHP for 29 weeks led to a reduction of whole-body bone mineral density (BMD), femur microstructure damage, decreased femur new bone formation, and increased femur bone marrow adipogenesis in C57BL/6 female mice, which was not observed in mice exposed to 5000 μg/kg bw DEHP. Further in vitro study showed that DEHP treatment robustly promoted adipogenic differentiation and suppressed osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs). Mechanistically, DEHP exposure resulted in elevated expressions of DYRK1B, CDK5, PPARγ, and p-PPARγSer273 in both bone tissue and BMSCs. Interestingly, co-IP analysis showed potential interactions among DYRK1B, PPARγ, and CDK5. Lastly, antagonists of DYRK1B and CDK5 effectively alleviated the BMSCs differentiation disturbance induced by DEHP. These results suggest that DEHP may disturb the BMSCs differentiation by upregulating the PPARγ signaling which may be associated with the activation of DYRK1B and CDK5.
Collapse
Affiliation(s)
- Yifan Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Liugen Zheng
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China
| | - Dong Cheng
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Changting Lei
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hui Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Jun Zhou
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fuyong Song
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
18
|
Zhu J, Zhou T, Menggen M, Aimulajiang K, Wen H. Ghrelin regulating liver activity and its potential effects on liver fibrosis and Echinococcosis. Front Cell Infect Microbiol 2024; 13:1324134. [PMID: 38259969 PMCID: PMC10800934 DOI: 10.3389/fcimb.2023.1324134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Ghrelin widely exists in the central nervous system and peripheral organs, and has biological activities such as maintaining energy homeostasis, regulating lipid metabolism, cell proliferation, immune response, gastrointestinal physiological activities, cognition, memory, circadian rhythm and reward effects. In many benign liver diseases, it may play a hepatoprotective role against steatosis, chronic inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress and apoptosis, and improve liver cell autophagy and immune response to improve disease progression. However, the role of Ghrelin in liver Echinococcosis is currently unclear. This review systematically summarizes the molecular mechanisms by which Ghrelin regulates liver growth metabolism, immune-inflammation, fibrogenesis, proliferation and apoptosis, as well as its protective effects in liver fibrosis diseases, and further proposes the role of Ghrelin in liver Echinococcosis infection. During the infectious process, it may promote the parasitism and survival of parasites on the host by improving the immune-inflammatory microenvironment and fibrosis state, thereby accelerating disease progression. However, there is currently a lack of targeted in vitro and in vivo experimental evidence for this viewpoint.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Meng Menggen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
19
|
Ma Z, Li Q, Xu H, Li Y, Wang S, Xiong Y, Lan D, Li J, Xiong X, Fu W. Zearalenone triggers programmed cell death and impairs milk fat synthesis via the AKT-mTOR-PPARγ-ACSL4 pathway in bovine mammary epithelial cells. J Anim Sci 2024; 102:skae276. [PMID: 39285681 PMCID: PMC11484802 DOI: 10.1093/jas/skae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/14/2024] [Indexed: 10/18/2024] Open
Abstract
Zearalenone (ZEN), a mycotoxin from Fusarium fungi, impairs fertility and milk production in female animals; however, the mechanisms remain poorly understood. Using the bovine mammary epithelial cells (MAC-T) as the model, this study investigated the impacts of ZEN on programmed cell death (PCD) and milk fat synthesis and explored the underlying mechanism. We found that 10 ng/mL prolactin (PRL) notably enhanced the differentiation of MAC-T cells, promoting the expression of genes related to the synthesis of milk fat, protein, and lactose. Next, the toxic effects of different doses of ZEN on the differentiated MAC-T with PRL treatment were determined. 10 and 20 μM ZEN significantly reduced cell viability, induced oxidative stress, and triggered PCD (e.g., apoptosis and necrosis). Notably, ZEN exposure downregulated the mRNA/protein levels of critical factors involved in milk fat synthesis by disrupting the AKT-mTOR-PPARγ-ACSL4 pathway. Interestingly, melatonin (MT), known for its antioxidant properties, protected against the above ZEN-induced effects by enhancing the binding of PPARγ to the promoter regions of ACSL4, which led to the upregulated expression of the ACSL4 gene. These results underscored the potential of MT to mitigate the adverse effects of ZEN on mammary cells, highlighting a way for potential therapeutic intervention.
Collapse
Affiliation(s)
- Zifeng Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Qiao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Hongmei Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Yueyue Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Ministry of Education, Southwest Minzu University, Chengdu 610041, Sichuan, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, Sichuan, China
| |
Collapse
|
20
|
Feng T, Liang Y, Sun L, Feng L, Min J, Mulholland MW, Yin Y, Zhang W. Regulation of hepatic lipid metabolism by intestine epithelium-derived exosomes. LIFE METABOLISM 2023; 2:load044. [PMID: 39872853 PMCID: PMC11749469 DOI: 10.1093/lifemeta/load044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2025]
Abstract
The "gut-liver axis" is critical for the control of hepatic lipid homeostasis, where the intestine affects the liver through multiple pathways, such as nutrient uptake, gastrointestinal hormone release, and gut microbiota homeostasis. Whether intestine-originated exosomes mediate the gut's influence on liver steatosis remains unknown. Here, we aimed to determine whether intestinal epithelium-derived exosomes (intExos) contribute to the regulation of hepatic lipid metabolism. We found that mouse intExos could be taken up by hepatic cells. Mice fed high-fat diet (HFD) received intExos showed strong resistance to liver steatosis. MicroRNA sequencing of intExos indicated the correlation between miR-21a-5p/miR-145a-5p and hepatic lipid metabolism. Both liver overexpression of miR-21a-5p and intExos containing miR-21a-5p alleviated hepatic steatosis in mice fed with HFD. Mechanistically, miR-21a-5p suppressed the expression of Ccl1 (C-C motif chemokine ligand 1) in macrophages, as well as lipid transport genes Cd36 (cluster of differentiation 36) and Fabp7 (fatty acid binding protein 7) in hepatocytes. Liver-specific inhibition of miR-145a-5p significantly reduced hepatic lipid accumulation in mice fed with HFD through negatively regulating the expression of Btg1 (BTG anti-proliferation factor 1), leading to an increase of stearoyl-CoA desaturase-1 and lipogenesis. Our study demonstrates that intExos regulate hepatic lipid metabolism and non-alcoholic fatty liver disease (NAFLD) progression via miR-21a-5p and miR-145a-5p pathways, providing novel mediators for the gut-liver crosstalk and potential targets for regulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Tiange Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Jiajie Min
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States
| |
Collapse
|
21
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
22
|
Saha M, Das S, Manna K, Saha K. Melatonin targets ferroptosis through bimodal alteration of redox environment and cellular pathways in NAFLD model. Biosci Rep 2023; 43:BSR20230128. [PMID: 37728565 PMCID: PMC10560965 DOI: 10.1042/bsr20230128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/27/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
Ferroptosis is a non-conventional cellular death caused by lipid peroxide induced iron deposition. Intracellular lipid accumulation followed by generation of lipid peroxides is an hallmark of non-alcoholic fatty liver disease (NAFLD). Melatonin (MLT) is an important pineal hormone with tremendous antioxidant and anti-inflammatory properties. Various studies targeted ferroptosis in different diseases using melatonin. However, none of them focused the intrinsic mechanism of MLT's action to counteract ferroptosis in NAFLD. Hence, the present study investigated the role of MLT in improvement of NAFLD-induced ferroptosis. HepG2 cells were treated with free fatty acids (FFAs) to induce in vitro NAFLD state and C57BL/6 mice were fed with high-fat diet (HFD) followed by MLT administration. The results indicated that MLT administration caused the recovery from both FFA- and HFD-induced ferroptotic state via increasing GSH and SOD level, decreasing lipid reactive oxygen species (ROS) and malondialdehyde (MDA) level, increasing Nrf2 and HO-1 level to defend cells against an oxidative environment. MLT also altered the expression of two key proteins GPX4 and SLC7A11 back to their normal levels, which would otherwise cause ferroptosis. MLT also protected against histopathological damage of both liver tissue and HepG2 cells as depicted by Oil Red O, HE staining and immunofluorescence microscopy. MLT also had control over pAMPKα as well as PPARγ and PPARα responsible for lipid homeostasis and lipogenesis. In brief, MLT exerted its multifaceted effect in FFA- and HFD-induced NAFLD by retrieving cellular oxidative environment, reducing lipogenesis and lipid peroxidation and modulating Nrf2/HO-1 and GPX4/SLC7A11 axis to combat ferroptosis.
Collapse
Affiliation(s)
- Moumita Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Sanjib Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Krishnendu Manna
- Department of Food and Nutrition, University of Kalyani, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| |
Collapse
|
23
|
Gajewska A, Strzelecki D, Gawlik-Kotelnicka O. Ghrelin as a Biomarker of "Immunometabolic Depression" and Its Connection with Dysbiosis. Nutrients 2023; 15:3960. [PMID: 37764744 PMCID: PMC10537261 DOI: 10.3390/nu15183960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin, a gastrointestinal peptide, is an endogenous ligand of growth hormone secretagogue receptor 1a (GHSR1a), which is mainly produced by X/A-like cells in the intestinal mucosa. Beyond its initial description as a growth hormone (GH) secretagogue stimulator of appetite, ghrelin has been revealed to have a wide range of physiological effects, for example, the modulation of inflammation; the improvement of cardiac performance; the modulation of stress, anxiety, taste sensation, and reward-seeking behavior; and the regulation of glucose metabolism and thermogenesis. Ghrelin secretion is altered in depressive disorders and metabolic syndrome, which frequently co-occur, but it is still unknown how these modifications relate to the physiopathology of these disorders. This review highlights the increasing amount of research establishing the close relationship between ghrelin, nutrition, microbiota, and disorders such as depression and metabolic syndrome, and it evaluates the ghrelinergic system as a potential target for the development of effective pharmacotherapies.
Collapse
Affiliation(s)
- Agata Gajewska
- Faculty of Medicine, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
24
|
Zhang H, Yan X, Lin A, Xia P, Su Y. Inhibition of ghrelin activity by the receptor antagonist [D-Lys3]-GHRP-6 enhances hepatic fatty acid oxidation and gluconeogenesis in a growing pig model. Peptides 2023; 166:171041. [PMID: 37301480 DOI: 10.1016/j.peptides.2023.171041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Despite its central role in regulating energy intake and metabolism, ghrelin is little understood when it comes to its effects on hepatic lipid and glucose metabolism. Growing pigs were intravenously injected with ghrelin receptor antagonist [D-Lys3]-GHRP-6 (DLys; 6 mg/kg body weight) for seven days to determine whether ghrelin plays a role in glucose and lipid metabolism. DLys treatment significantly reduced body weight gain and adipose histopathology found that DLys treatment dramatically reduced adipocyte size. DLys treatment significantly increased serum NEFA and insulin levels, hepatic glucose level and HOMA-IR, and significantly decreased serum TBA level of growing pigs after fasting. Moreover, DLys treatment changed the dynamics of serum metabolic parameters, including glucose, NEFA, TBA, insulin, GH, leptin, and cortisol. Liver transcriptome showed that DLys treatment affected the metabolism-related pathways. Compared with the control group, adipose tissue lipolysis (the adipose triglyceride lipase level was significantly increased), hepatic gluconeogenesis (the G6PC protein level was significantly increased) and fatty acid oxidation (the CPT1A protein level was significantly increased) were promoted in the DLys group. DLys treatment expanded degrees of oxidative phosphorylation in the liver, coming about in a higher NAD+ /NADH proportion and enactment of the SIRT1 signaling pathway. Additionally, the liver protein levels of the DLys group were significantly higher than those of the control group for GHSR, PPAR alpha, and PGC-1. To summarize, inhibition of ghrelin activity can significantly affect metabolism and alter energy levels by enhancing fat mobilization, hepatic fatty acid oxidation and gluconeogenesis without affecting fatty acid uptake and synthesis in the liver.
Collapse
Affiliation(s)
- He Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, 210095 Nanjing, China; College of Life Sciences, Xuzhou Medical University, 221004 Xuzhou, China
| | - Xiaoxi Yan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ailian Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, 210095 Nanjing, China
| | - Pengke Xia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
25
|
Zhang Y, Zhu Z, Sun L, Yin W, Liang Y, Chen H, Bi Y, Zhai W, Yin Y, Zhang W. Hepatic G Protein-Coupled Receptor 180 Deficiency Ameliorates High Fat Diet-Induced Lipid Accumulation via the Gi-PKA-SREBP Pathway. Nutrients 2023; 15:1838. [PMID: 37111058 PMCID: PMC10144310 DOI: 10.3390/nu15081838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Single-nucleotide polymorphisms in G protein-coupled receptor 180 (GPR180) are associated with hypertriglyceridemia. The aim of this study was to determine whether hepatic GPR180 impacts lipid metabolism. Hepatic GPR180 was knocked down using two approaches: Gpr180-specific short hairpin (sh)RNA carried by adeno-associated virus 9 (AAV9) and alb-Gpr180-/- transgene established by crossbreeding albumin-Cre mice with Gpr180flox/flox animals, in which Gpr180 was specifically knocked down in hepatocytes. Adiposity, hepatic lipid contents, and proteins related to lipid metabolism were analyzed. The effects of GPR180 on triglyceride and cholesterol synthesis were further verified by knocking down or overexpressing Gpr180 in Hepa1-6 cells. Gpr180 mRNA was upregulated in the liver of HFD-induced obese mice. Deficiency of Gpr180 decreased triglyceride and cholesterol contents in the liver and plasma, ameliorated hepatic lipid deposition in HFD-induced obese mice, increased energy metabolism, and reduced adiposity. These alterations were associated with downregulation of transcription factors SREBP1 and SREBP2, and their target acetyl-CoA carboxylase. In Hepa1-6 cells, Gpr180 knockdown decreased intracellular triglyceride and cholesterol contents, whereas its overexpression increased their levels. Overexpression of Gpr180 significantly reduced the PKA-mediated phosphorylation of substrates and consequent CREB activity. Hence, GPR180 might represent a novel drug target for intervention of adiposity and liver steatosis.
Collapse
Affiliation(s)
- Yunhua Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi 832002, China
| | - Ziming Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
| | - Wenzhen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
| | - Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
| | - Yanghui Bi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
| | - Wenbo Zhai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China; (Y.Z.); (Z.Z.)
| |
Collapse
|
26
|
Ju T, Bourrie BCT, Forgie AJ, Pepin DM, Tollenaar S, Sergi CM, Willing BP. The Gut Commensal Escherichia coli Aggravates High-Fat-Diet-Induced Obesity and Insulin Resistance in Mice. Appl Environ Microbiol 2023; 89:e0162822. [PMID: 36809030 PMCID: PMC10057047 DOI: 10.1128/aem.01628-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Changes in the gut microbiota have been linked to metabolic endotoxemia as a contributing mechanism in the development of obesity and type 2 diabetes. Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. The enrichment of the family Enterobacteriaceae, largely represented by Escherichia coli, induced by a high-fat diet (HFD) has been correlated with impaired glucose homeostasis; however, whether the enrichment of Enterobacteriaceae in a complex gut microbial community in response to an HFD contributes to metabolic disease has not been established. To investigate whether the expansion of Enterobacteriaceae amplifies HFD-induced metabolic disease, a tractable mouse model with the presence or absence of a commensal E. coli strain was established. With an HFD treatment, but not a standard-chow diet, the presence of E. coli significantly increased body weight and adiposity and induced impaired glucose tolerance. In addition, E. coli colonization led to increased inflammation in liver and adipose and intestinal tissue under an HFD regimen. With a modest effect on gut microbial composition, E. coli colonization resulted in significant changes in the predicted functional potential of microbial communities. The results demonstrated the role of commensal E. coli in glucose homeostasis and energy metabolism in response to an HFD, indicating contributions of commensal bacteria to the pathogenesis of obesity and type 2 diabetes. The findings of this research identified a targetable subset of the microbiota in the treatment of people with metabolic inflammation. IMPORTANCE Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. Here, we used a mouse model distinguishable by the presence or absence of a commensal Escherichia coli strain in combination with a high-fat diet challenge to investigate the impact of E. coli on host metabolic outcomes. This is the first study to show that the addition of a single bacterial species to an animal already colonized with a complex microbial community can increase severity of metabolic outcomes. This study is of interest to a wide group of researchers because it provides compelling evidence to target the gut microbiota for therapeutic purposes by which personalized medicines can be made for treating metabolic inflammation. The study also provides an explanation for variability in studies investigating host metabolic outcomes and immune response to diet interventions.
Collapse
Affiliation(s)
- Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Benjamin C. T. Bourrie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Andrew J. Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Deanna M. Pepin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Consolato M. Sergi
- Department of Laboratory Medicine and Pathology, Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
27
|
Exposure to Obesogenic Environments during Perinatal Development Modulates Offspring Energy Balance Pathways in Adipose Tissue and Liver of Rodent Models. Nutrients 2023; 15:nu15051281. [PMID: 36904281 PMCID: PMC10005203 DOI: 10.3390/nu15051281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Obesogenic environments such as Westernized diets, overnutrition, and exposure to glycation during gestation and lactation can alter peripheral neuroendocrine factors in offspring, predisposing for metabolic diseases in adulthood. Thus, we hypothesized that exposure to obesogenic environments during the perinatal period reprograms offspring energy balance mechanisms. Four rat obesogenic models were studied: maternal diet-induced obesity (DIO); early-life obesity induced by postnatal overfeeding; maternal glycation; and postnatal overfeeding combined with maternal glycation. Metabolic parameters, energy expenditure, and storage pathways in visceral adipose tissue (VAT) and the liver were analyzed. Maternal DIO increased VAT lipogenic [NPY receptor-1 (NPY1R), NPY receptor-2 (NPY2R), and ghrelin receptor], but also lipolytic/catabolic mechanisms [dopamine-1 receptor (D1R) and p-AMP-activated protein kinase (AMPK)] in male offspring, while reducing NPY1R in females. Postnatally overfed male animals only exhibited higher NPY2R levels in VAT, while females also presented NPY1R and NPY2R downregulation. Maternal glycation reduces VAT expandability by decreasing NPY2R in overfed animals. Regarding the liver, D1R was decreased in all obesogenic models, while overfeeding induced fat accumulation in both sexes and glycation the inflammatory infiltration. The VAT response to maternal DIO and overfeeding showed a sexual dysmorphism, and exposure to glycotoxins led to a thin-outside-fat-inside phenotype in overfeeding conditions and impaired energy balance, increasing the metabolic risk in adulthood.
Collapse
|
28
|
Fritsche K, Ziková-Kloas A, Marx-Stoelting P, Braeuning A. Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification. Int J Mol Sci 2023; 24:ijms24032686. [PMID: 36769005 PMCID: PMC9916672 DOI: 10.3390/ijms24032686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed.
Collapse
Affiliation(s)
- Kristin Fritsche
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Andrea Ziková-Kloas
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-18412-25100
| |
Collapse
|
29
|
Xu J, Yao X, Li X, Xie S, Chi S, Zhang S, Cao J, Tan B. Farnesoid X receptor regulates PI 3K/AKT/mTOR signaling pathway, lipid metabolism, and immune response in hybrid grouper. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1521-1538. [PMID: 36210393 DOI: 10.1007/s10695-022-01130-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/28/2022] [Indexed: 05/13/2023]
Abstract
Some diseases related to lipid metabolism increase yearly in cultured fish, and the farnesoid X receptor (FXR) is a nuclear protein that plays a key role in inflammatory responses and lipid metabolism. However, the roles of FXR in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) remain poorly understood. The main objective of this study was to explore the roles of hepatic FXR in triggering the immune response and the potential functions of FXR in regulating the lipid metabolism. In the present study, the full-length sequence of fxr from hybrid grouper was cloned and characterized for the first time. Upon the Vibrio parahaemolyticus stimulation, the transcriptional level of fxr was rapidly elevated in the head kidney tissue in the early stage of infection. In vivo and vitro, activation of FXR by obeticholic acid (OA) significantly increased the concentrations and mRNA levels of hepatic inflammatory cytokines. These effects were inversed when FXR was inhibited by guggulsterone (GU). Moreover, the activation of FXR to suppress the PI3K/AKT/mTOR signaling pathway improves hepatic lipid metabolism and reduces hepatic lipid accumulation in vivo and vitro. In addition, the inhibition of FXR activated the PI3K/AKT/mTOR pathway, decreased the lipolysis and increased the lipogenesis, and subsequently increased the lipid accumulation in fish. These results revealed the positive roles of FXR in triggering immune responses and improving lipid metabolism and accumulation in hybrid grouper.
Collapse
Affiliation(s)
- Jia Xu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xinzhou Yao
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoyue Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.
- Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Junming Cao
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.
| |
Collapse
|
30
|
Kharbanda KK, Farokhnia M, Deschaine SL, Bhargava R, Rodriguez-Flores M, Casey CA, Goldstone AP, Jerlhag E, Leggio L, Rasineni K. Role of the ghrelin system in alcohol use disorder and alcohol-associated liver disease: A narrative review. Alcohol Clin Exp Res 2022; 46:2149-2159. [PMID: 36316764 PMCID: PMC9772086 DOI: 10.1111/acer.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Unhealthy alcohol consumption is a global health problem. Adverse individual, public health, and socioeconomic consequences are attributable to harmful alcohol use. Epidemiological studies have shown that alcohol use disorder (AUD) and alcohol-associated liver disease (ALD) are the top two pathologies among alcohol-related diseases. Consistent with the major role that the liver plays in alcohol metabolism, uncontrolled drinking may cause significant damage to the liver. This damage is initiated by excessive fat accumulation in the liver, which can further progress to advanced liver disease. The only effective therapeutic strategies currently available for ALD are alcohol abstinence or liver transplantation. Any molecule with dual-pronged effects at the central and peripheral organs controlling addictive behaviors and associated metabolic pathways are a potentially important therapeutic target for treating AUD and ALD. Ghrelin, a hormone primarily derived from the stomach, has such properties, and regulates both behavioral and metabolic functions. In this review, we highlight recent advances in understanding the peripheral and central functions of the ghrelin system and its role in AUD and ALD pathogenesis. We first discuss the correlation between blood ghrelin concentrations and alcohol use or abstinence. Next, we discuss the role of ghrelin in alcohol-seeking behaviors and finally its role in the development of fatty liver by metabolic regulations and organ crosstalk. We propose that a better understanding of the ghrelin system could open an innovative avenue for improved treatments for AUD and associated medical consequences, including ALD.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Marcela Rodriguez-Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carol A. Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
31
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
32
|
Kasprzak A, Adamek A. Role of the Ghrelin System in Colitis and Hepatitis as Risk Factors for Inflammatory-Related Cancers. Int J Mol Sci 2022; 23:ijms231911188. [PMID: 36232490 PMCID: PMC9569806 DOI: 10.3390/ijms231911188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
It is not known exactly what leads to the development of colorectal cancer (CRC) and hepatocellular carcinoma (HCC), but there are specific risk factors that increase the probability of their occurrence. The unclear pathogenesis, too-late diagnosis, poor prognosis as a result of high recurrence and metastasis rates, and repeatedly ineffective therapy of both cancers continue to challenge both basic science and practical medicine. The ghrelin system, which is comprised of ghrelin and alternative peptides (e.g., obestatin), growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT), plays an important role in the physiology and pathology of the gastrointestinal (GI) tract. It promotes various physiological effects, including energy metabolism and amelioration of inflammation. The ghrelin system plays a role in the pathogenesis of inflammatory bowel diseases (IBDs), which are well known risk factors for the development of CRC, as well as inflammatory liver diseases which can trigger the development of HCC. Colitis-associated cancer serves as a prototype of inflammation-associated cancers. Little is known about the role of the ghrelin system in the mechanisms of transformation of chronic inflammation to low- and high-grade dysplasia, and, finally, to CRC. HCC is also associated with chronic inflammation and fibrosis arising from different etiologies, including alcoholic and nonalcoholic fatty liver diseases (NAFLD), and/or hepatitis B (HBV) and hepatitis C virus (HCV) infections. However, the exact role of ghrelin in the progression of the chronic inflammatory lesions into HCC is still unknown. The aim of this review is to summarize findings on the role of the ghrelin system in inflammatory bowel and liver diseases in order to better understand the impact of this system on the development of inflammatory-related cancers, namely CRC and HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8546441; Fax: +48-61-8546440
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznań, Poland
| |
Collapse
|
33
|
Li Y, Nie JJ, Yang Y, Li J, Li J, Wu X, Liu X, Chen DF, Yang Z, Xu FJ, Yang Y. Redox-Unlockable Nanoparticle-Based MST1 Delivery System to Attenuate Hepatic Steatosis via the AMPK/SREBP-1c Signaling Axis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34328-34341. [PMID: 35858286 PMCID: PMC9353777 DOI: 10.1021/acsami.2c05889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
To date, few effective treatments have been licensed for nonalcoholic fatty liver disease (NAFLD), which a kind of chronic liver disease. Mammalian sterile 20-like kinase 1 (MST1) is reported to be involved in the development of NAFLD. Thus, we evaluated the suitability of a redox-unlockable polymeric nanoparticle Hep@PGEA vector to deliver MST1 or siMST1 (HCP/MST1 or HCP/siMST1) for NAFLD therapy. The Hep@PGEA vector can efficiently deliver the condensed functional nucleic acids MST1 or siMST1 into NAFLD-affected mouse liver to upregulate or downregulate MST1 expression. The HCP/MST1 complexes significantly improved liver insulin resistance sensitivity and reduced liver damage and lipid accumulation by the AMPK/SREBP-1c pathway without significant adverse events. Instead, HCP/siMST1 delivery exacerbates the NAFLD. The analysis of NAFLD patient samples further clarified the role of MST1 in the development of hepatic steatosis in patients with NAFLD. The MST1-based gene intervention is of considerable potential for clinical NAFLD therapy, and the Hep@PGEA vector provides a promising option for NAFLD gene therapy.
Collapse
Affiliation(s)
- Yuhan Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Jing-Jun Nie
- Key
Lab of Biomedical Materials of Natural Macromolecules (Ministry of
Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yuhui Yang
- Capital
Medical University, Beijing 100035, China
| | - Jianning Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| | - Jiarui Li
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| | - Xianxian Wu
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xing Liu
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Da-Fu Chen
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Zhiwei Yang
- Beijing
Engineering Research Center for Experimental Animal Models of Human
Critical Diseases, Institute of Laboratory Animal Science, Chinese
Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Fu-Jian Xu
- Key
Lab of Biomedical Materials of Natural Macromolecules (Ministry of
Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yi Yang
- School
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| |
Collapse
|
34
|
Alharbi S. Exogenous administration of unacylated ghrelin attenuates hepatic steatosis in high-fat diet-fed rats by modulating glucose homeostasis, lipogenesis, oxidative stress, and endoplasmic reticulum stress. Biomed Pharmacother 2022; 151:113095. [PMID: 35594708 DOI: 10.1016/j.biopha.2022.113095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Low levels of unacylated ghrelin (UAG) and a higher ratio of acylated ghrelin (AG)/UAG in obesity are associated with non-alcoholic fatty liver disease (NAFLD). This study tested the potential protective effect of increased circulatory levels of UAG by exogenous UAG administration on hepatic steatosis in high-fat diet (HFD)-fed rats and investigated some possible mechanisms. Rats were divided (n = 6/group) as low fat diet (LFD), LFD + UAG (200 mg/kg), HFD, HFD + UAG (50, 100, or 200 mg/kg). Treatments were given for 8 weeks. Increasing the dose of UAG increased circulatory levels of UAG and normalized the ratio of AG/UAG at the dose of 200 mg/kg. With no change in insulin levels, and in a dose-dependent manner, treatment with UAG to HFD rats attenuated the gain in food intake, body weights, and liver weights, lowered fasting glucose levels, prevented hepatic cytoplasmic vacuolization, and reduced serum and hepatic levels of cholesterol, triglycerides, and free fatty acids. They also progressively reduced levels of reactive oxygen species, lipid peroxides, tumor necrosis factor-α, and interleukin-6, as well as mRNA levels of Bax and caspase-3 but increased levels of glutathione and superoxide dismutase and mRNA levels of Bcl2. In concomitant, UAG, in a dose-response manner, significantly reduced hepatic mRNA levels of SREBP1, SREBP2, ATF-6, IRE-1, and eIF-2α but increased those of PPARα. In conclusion, reducing the circulatory ratio of AG/UAG ratio by exogenous administration of UAG attenuates HFD-induced hepatic steatosis by suppressing lipogenesis, stimulating FAs oxidation, preventing oxidative stress, inflammation, ER stress, and apoptosis.
Collapse
Affiliation(s)
- Samah Alharbi
- Physiology Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
35
|
TCDD-inducible Poly (ADP-ribose) Polymerase Promotes Adipogenesis of Both Brown and White Preadipocytes. J Transl Int Med 2022; 10:246-254. [PMID: 36776241 PMCID: PMC9901556 DOI: 10.2478/jtim-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background TCDD-inducible poly (ADP-ribose) polymerase (TiPARP) is a DNA repair enzyme with functions in energy metabolism, signal transduction, cell differentiation, and other biological processes, which may closely related to lipid metabolism and is highly expressed in adipose tissue. Adipose tissue can be divided into white adipose tissue (WAT) that stores energy and brown adipose tissue (BAT) that releases energy and generates heat. In the present study, we investigated whether TiPARP can affect adipogenesis in adipose tissue and thus participate in the development of obesity. Methods BAT primary cells or 3T3-L1 cells infected with adenovirus expressing TiPARP or TiPARP-targeted short hairpin RNA (shTiPARP) were cultured to induce adipogenic differentiation. The expression of TiPARP was detected by real-time PCR and Western blotting. The expression of specific BAT- and WAT-related markers was detected by real-time PCR. The accumulation of lipid droplets in differentiated cells was detected by Oil Red O staining. Results TiPARP was highly expressed in both subcutaneous WAT and BAT, and TiPARP mRNA level increased significantly along with adipogenic differentiation. Activation of TiPARP or overexpression of TiPARP upregulated BAT-related markers in primary BAT cells and WAT-related markers in 3T3-L1 cells, together with increased lipid accumulation. On the contrary, knockdown of TiPARP downregulated expression of specific markers in both BAT primary cells and 3T3-L1 cells, together with decreased lipid accumulation. Conclusion TiPARP regulates adipogenesis in both BAT primary cells and 3T3-L1 cells and therefore plays an important role in modulating maturity and lipid accumulation in brown and white adipocytes. These findings provide us with a new strategy for combating obesity.
Collapse
|
36
|
Wang W, Wang Z, Zhao Y, Wang X, Li H, Zhang Y. Analysis of serum lipid parameters predicting lipid metabolic disorders in TSC-AML patients with treatment of mTOR inhibitors. J Clin Pharm Ther 2022; 47:979-985. [PMID: 35229896 DOI: 10.1111/jcpt.13631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Patients with tuberous sclerosis complex (TSC) demonstrate disrupted lipid homeostasis before and during treatment with mammalian target of rapamycin (mTOR) inhibitor. However, few previous reports focused on if the serum lipid status at baseline would influence lipid metabolic side-effects of mTOR inhibitors for TSC associated renal angiomyolipomas (TSC-AML). The present study was designed to evaluate the predictive function of serum lipid status at baseline for hyperlipidaemia by mTOR inhibitor treatment in TSC-AML patients. METHODS The clinical data of TSC-AML patients who took mTOR inhibitors in Department of Urology of Peking Union Medical College Hospital (PUMCH) from 1 January 2014 to 1 January 2021, were retrospectively analysed. The record of lipid parameters at baseline and the highest levels of total cholesterol (TC) and triglyceride (TG) after treatment at least ≥3 months were collected. The correlation of serum lipid parameters at baseline with incidence of hyperlipidaemia during mTOR inhibitor treatment was analysed. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the ability of the serum lipid parameters in predicting hyperlipidaemia. RESULTS AND DISCUSSION 19 patients experienced hyperlipidaemia and 13 patients still had normal TC and TG levels during mTOR inhibitor treatment. The levels of high-density lipoprotein cholesterol (HDL-C) (0.98 ± 0.30 mmol/L vs. 1.23 ± 0.31 mmol/L, p = 0.030), low-density lipoprotein cholesterol (LDL-C) (2.47 ± 0.69 mmol/L vs. 1.95 ± 0.53 mmol/L, p = 0.029) and apolipoprotein B (ApoB) (0.82 ± 0.21 g/L vs. 0.65 ± 0.16 g/L, p = 0.019) are higher in the patients who experienced hyperlipidaemia during mTOR inhibition therapy. TC, TG, LDL-C, ApoB and high-sensitivity C-reactive protein (hsCRP) at baseline had positive correlation with TC after treatment; ApoB at baseline had positive correlation, while HDL-C and free fat acid (FFA) at baseline had negative correlation with TG after treatment. Therefore, ApoB concentration at baseline has statistically significant correlation with both TC (p < 0.001) and TG (p = 0.012) levels after mTOR inhibitor treatment. ROC curve and AUC revealed that ApoB with a cut-off value of 0.640g/L may be the best parameter for predicting hyperlipidaemia during mTOR inhibitor treatment in TSC-AML patients. The incidence rates of hyperlipidaemia were 27.3% and 76.2% among the patients with ApoB level ≤0.640 g/L and >0.640 g/L respectively. WHAT IS NEW AND CONCLUSION Some baseline serum lipid parameters could be used for predicting incidence of hyperlipidaemia during mTOR inhibition therapy in TSC-AML patients, and ApoB with 0.640 g/L as a cut-off value may be a potentially optimal indicator, which could help for diagnosis and treatment decision-making.
Collapse
Affiliation(s)
- Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
The role of SHMT2 in modulating lipid metabolism in hepatocytes via glycine-mediated mTOR activation. Amino Acids 2022; 54:823-834. [PMID: 35212811 DOI: 10.1007/s00726-022-03141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/09/2022] [Indexed: 11/01/2022]
Abstract
Serine hydroxymethyltransferase 2 (SHMT2) converts serine into glycine in the mitochondrial matrix, transferring a methyl group to tetrahydrofolate. SHMT2 plays an important role in the maintenance of one-carbon metabolism. Previously, we found a negative correlation between the serine concentration and the progression of fatty liver disease (FLD). However, little is known about the role of SHMT2 in hepatic lipid metabolism. We established SHMT2 knockdown (KD) mouse primary hepatocytes using RNA interference to investigate the role of SHMT2 in lipid metabolism. SHMT2 KD hepatocytes showed decreased lipid accumulation with reduced glycine levels compared to the scramble cells, which was restored upon reintroducing SHMT2. SHMT2 KD hepatocytes showed downregulation of the mTOR/PPARɣ pathway with decreased gene expression related to lipogenesis and fatty acid uptake. Pharmacological activation of mTOR or PPARɣ overexpression blocked the inhibitory effect of SHMT2 KD on lipid accumulation. We also showed that glycine activated mTOR/PPARɣ signaling and identified glycine as a mediator of SHMT2-responsive lipid accumulation in hepatocytes. In conclusion, silencing SHMT2 in hepatocytes ameliorates lipid accumulation via the glycine-mediated mTOR/PPARɣ pathway. Our findings underscore the possibility of SHMT2 as a therapeutic target of FLD.
Collapse
|
38
|
Ni M, Zhang Q, Zhao J, Yao D, Wang T, Shen Q, Li W, Li B, Ding X, Liu Z. Prenatal inflammation causes obesity and abnormal lipid metabolism via impaired energy expenditure in male offspring. Nutr Metab (Lond) 2022; 19:8. [PMID: 35135573 PMCID: PMC8822840 DOI: 10.1186/s12986-022-00642-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/08/2022] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Obesity has becoming a global health issue. Fetus exposed to adversity in the uterine are susceptible to unhealth stimulus in adulthood. Prenatal inflammation is related to poor neonatal outcomes like neurodevelopmental impairments and respiratory complications. Recent studies suggested prenatal lipopolysaccharide (LPS) exposure could result in metabolic disorders. Thus, we hypothesized that offspring exposed to prenatal inflammation could develop into metabolic disorder. METHODS The pregnant C57BL/6J mice were intraperitoneally injected with 50 μg/kg LPS or saline only once at GD15. The male offspring were weighted weekly until sacrificed. Indirect calorimetry and body composition were both performed at 9 and 18 weeks old. At 20 weeks old, mice were fasted overnight before collecting blood samples and liver for metabolomics analysis and RNA sequencing, respectively. Differentially expressed genes were further verified by RT-qPCR and western blotting. RESULTS Prenatal inflammation resulted in obesity with increased fat percentage and decreased energy expenditure in middle-age male offspring. Abnormal lipid accumulation, changes of gene expression profile and upregulation of multi-component mechanistic target of rapamycin complex 1 (mTOR)/Peroxisome proliferator-activated receptor-γ pathway was observed in liver, accompanied with decreased bile acids level, unsaturated fatty acids androgens and prostaglandins in serum. Indirect calorimetry showed increased respiratory exchange rate and deceased spontaneous activity at 9 weeks in LPS group. Impaired energy expenditure was also observed at 18 weeks in LPS group. CONCLUSION Prenatal LPS exposure led to obesity and abnormal lipid metabolism through impaired energy expenditure.
Collapse
Affiliation(s)
- Meng Ni
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qianqian Zhang
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jiuru Zhao
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Dongting Yao
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Tao Wang
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qianwen Shen
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Wei Li
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Baihe Li
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiya Ding
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Zhiwei Liu
- Departments of Neonatology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, 20030, China.
- International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
39
|
Wang XW, Sun YJ, Chen X, Zhang WZ. Interleukin-4-induced FABP4 promotes lipogenesis in human skeletal muscle cells by activating the PPAR γ signaling pathway. Cell Biochem Biophys 2022; 80:355-366. [PMID: 35122221 DOI: 10.1007/s12013-022-01063-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022]
Abstract
Chronic low back pain (CLBP) is a common symptom of lumbar degenerative disease. Degeneration of the lumbar paravertebral muscles causes a loss of muscle mass and strength, which is a vital factor causing CLBP and often accompanied by lipid infiltration. Tandem mass spectrometry (TMT) was used to identify differentially expressed proteins in lipid-infiltrated and normal muscles. The results show that fatty acid binding protein 4 (FABP4) participated in the peroxisome proliferator-activated receptor-γ (PPAR γ) signaling pathway as an up-regulated protein, which is related to lipogenesis in diverse cells. In addition, chronic inflammation is believed to be involved in lumbar muscle degeneration and lipogenesis, with interleukin-4 (IL-4) considered as the predominant contributor. In present study, we investigate the effect of FABP4 on lipogenesis in human skeletal muscle cells (HSMCs) stimulated by Interleukin-4 (IL-4) and explore the mechanistic basis. We found expression level of FABP4 in lipid-infiltrated muscles was significantly higher than that in normal muscles. Lipogenesis in HSMCs could be increased by IL-4 treatment, as well as by FABP4 overexpression. FABP4 inhibition suppressed IL-4-mediated lipogenesis in HSMCs, whereas the PPAR γ inhibitor alleviated lipogenesis in both IL-4-treated and FABP4-overexpressed HSMCs. Collectively, the results indicate that FABP4 induces lipogenesis in HSMCs stimulated with IL-4 via activating the PPAR γ signaling pathway. Our study offers a detailed perspective on the pathogenesis of muscle lipid infiltration and provides a potential target for the clinical treatment strategy of muscle lipid infiltration and CLBP.
Collapse
Affiliation(s)
- Xin-Wen Wang
- Spine Center, Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Yong-Jin Sun
- Spine Center, Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Xiao Chen
- Spine Center, Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Wen-Zhi Zhang
- Spine Center, Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China.
| |
Collapse
|
40
|
Song X, Wang M, Jiao H, Zhao J, Wang X, Lin H. Ghrelin is a signal to facilitate the utilization of fatty acids and save glucose by the liver, skeletal muscle, and adipose tissues in chicks. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159081. [PMID: 34856413 DOI: 10.1016/j.bbalip.2021.159081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Ghrelin, classically known as a central appetite-stimulating hormone, has recently been recognized to play an important role in peripheral tissue energy metabolism. In chicken, contrary to mammal, ghrelin acts as an anorexia signal, increased by fasting and further elevated after refed. In the present study, the effect of ghrelin on glucose/lipid utilization by peripheral tissues was investigated. Injection of exogenous acyl ghrelin reduced plasma triglyceride and glucose levels of chickens at both fasting and fed status. In the in vitro cultured chicken primary hepatocytes, adipocytes, and myoblasts, ghrelin suppressed glucose uptake, stimulated fatty acids uptake and oxidation, and decreased TG content. In hepatocyte, ghrelin increased the activities of LPL and HL, and upregulated the expression levels of gene ACC, CPT1, and PPARα. Ghrelin treatment markedly increased the protein level of p-ACC, PPARγ, PGC1α, and CPT1 in hepatocytes, adipocytes and myoblasts. Inhibition of AMPK activity by Compound C had no influence on glucose uptake by hepatocyte, adipocyte, and myoblast, but further amplified the stimulated fatty acid uptake of adipocyte by ghrelin. The present result demonstrates that ghrelin facilitates the uptake and oxidation of fatty acid and cut down the utilization of glucose by the liver, muscle, and adipose tissues. The result suggests that ghrelin functions as a signal of fatty acid oxidation. The study provides a vital framework for understanding the intrinsic role of ghrelin as a crucial factor in the concerted regulation of metabolic substrate of hepatocytes, adipocytes, and myoblasts.
Collapse
Affiliation(s)
- Xixi Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China; School of Sport Social Science, Shandong Sport University, No. 10600 Shiji Street, Jinan 250100, China
| | - Minghui Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Hongchao Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai'an 271018, China.
| |
Collapse
|
41
|
Iacob SA, Iacob DG. Non-Alcoholic Fatty Liver Disease in HIV/HBV Patients - a Metabolic Imbalance Aggravated by Antiretroviral Therapy and Perpetuated by the Hepatokine/Adipokine Axis Breakdown. Front Endocrinol (Lausanne) 2022; 13:814209. [PMID: 35355551 PMCID: PMC8959898 DOI: 10.3389/fendo.2022.814209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with the metabolic syndrome and is one of the most prevalent comorbidities in HIV and HBV infected patients. HIV plays an early and direct role in the development of metabolic syndrome by disrupting the mechanism of adipogenesis and synthesis of adipokines. Adipokines, molecules that regulate the lipid metabolism, also contribute to the progression of NAFLD either directly or via hepatic organokines (hepatokines). Most hepatokines play a direct role in lipid homeostasis and liver inflammation but their role in the evolution of NAFLD is not well defined. The role of HBV in the pathogenesis of NAFLD is controversial. HBV has been previously associated with a decreased level of triglycerides and with a protective role against the development of steatosis and metabolic syndrome. At the same time HBV displays a high fibrogenetic and oncogenetic potential. In the HIV/HBV co-infection, the metabolic changes are initiated by mitochondrial dysfunction as well as by the fatty overload of the liver, two interconnected mechanisms. The evolution of NAFLD is further perpetuated by the inflammatory response to these viral agents and by the variable toxicity of the antiretroviral therapy. The current article discusses the pathogenic changes and the contribution of the hepatokine/adipokine axis in the development of NAFLD as well as the implications of HIV and HBV infection in the breakdown of the hepatokine/adipokine axis and NAFLD progression.
Collapse
Affiliation(s)
- Simona Alexandra Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, Bucharest, Romania
| | - Diana Gabriela Iacob
- Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Infectious Diseases, Emergency University Hospital, Bucharest, Romania
- *Correspondence: Diana Gabriela Iacob,
| |
Collapse
|
42
|
Liang Y, Yu R, He R, Sun L, Luo C, Feng L, Chen H, Yin Y, Zhang W. Lower ghrelin levels does not impact the metabolic benefit induced by Roux-en-Y gastric bypass. Front Endocrinol (Lausanne) 2022; 13:891379. [PMID: 36082078 PMCID: PMC9445200 DOI: 10.3389/fendo.2022.891379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Roux-en-Y gastric bypass is an effective intervention for metabolic disorder. We aim to elucidate whether ghrelin contributes to weight reduction, and glycemic and lipid control after Roux-en-Y gastric bypass (RYGB). DESIGN Four-week-old WT and Ghrl-TSC1-/- mice were fed high fat diet for 12 weeks before surgery, and continued to be on the same diet for 3 weeks after surgery. Body weight, food intake, glycemic and lipid metabolism were analyzed before and after surgery. RESULTS Gastric and circulating ghrelin was significantly increased in mice with RYGB surgery. Hypoghrelinemia elicited by deletion of TSC1 to activate mTOR signaling in gastric X/A like cells demonstrated no effect on weight reduction, glycemic and lipid control induced by Roux-en-Y gastric bypass surgery. CONCLUSION Lower ghrelin levels does not impact the metabolic benefit induced by Roux-en-Y gastric bypass.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Ruili Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Pathology, Henan Provincial People’s Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Chao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- *Correspondence: Yue Yin,
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
43
|
Jing Y, Chen Y, Wang S, Ouyang J, Hu L, Yang Q, Wang M, Zhang B, Loor JJ. Circadian Gene PER2 Silencing Downregulates PPARG and SREBF1 and Suppresses Lipid Synthesis in Bovine Mammary Epithelial Cells. BIOLOGY 2021; 10:biology10121226. [PMID: 34943141 PMCID: PMC8698707 DOI: 10.3390/biology10121226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary The present study was constructed to determine the effects of the core circadian clock gene, Period 2 (PER2), on lipid synthesis in bovine mammary epithelial cells (BMECs). Data revealed that PER2-regulated genes were involved in fatty acid de novo synthesis, desaturation, TAG accumulation, and lipid droplet secretion in primary BMECs, partly by inhibiting PPARG and SREBF1. Our overall data suggests that PER2 in bovine mammary cells plays a role in regulating milk fat synthesis directly, or via the activation of the transcription regulators PPARG and SREBF1. This study provides molecular evidence underscoring a link between the circadian clock and lipid metabolism in bovines. Abstract PER2, a circadian clock gene, is associated with mammary gland development and lipid synthesis in rodents, partly via regulating peroxisome proliferator-activated receptor gamma (PPARG). Whether such a type of molecular link existed in bovines was unclear. We hypothesized that PER2 was associated with lipid metabolism and regulated cell cycles and apoptosis in bovine mammary epithelial cells (BMECs). To test this hypothesis, BMECs isolated from three mid-lactation (average 110 d postpartum) cows were used. The transient transfection of small interfering RNA (siRNA) was used to inhibit PER2 transcription in primary BMECs. The silencing of PER2 led to lower concentrations of cellular lipid droplets and triacylglycerol along with the downregulation of lipogenic-related genes such as ACACA, FASN, LPIN1, and SCD, suggesting an overall inhibition of lipogenesis and desaturation. The downregulation of PPARG and SREBF1 in response to PER2 silencing underscored the importance of circadian clock signaling and the transcriptional regulation of lipogenesis. Although the proliferation of BMECs was not influenced by PER2 silencing, the number of cells in the G2/GM phase was upregulated. PER2 silencing did not affect cell apoptosis. Overall, the data provided evidence that PER2 participated in the coordination of mammary lipid metabolism and was potentially a component of the control of lipid droplets and TAG synthesis in ruminant mammary cells. The present data suggested that such an effect could occur through direct effects on transcriptional regulators.
Collapse
Affiliation(s)
- Yujia Jing
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; (Y.J.); (Q.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.W.); (J.O.); (L.H.)
| | - Yifei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.W.); (J.O.); (L.H.)
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.W.); (J.O.); (L.H.)
| | - Jialiang Ouyang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.W.); (J.O.); (L.H.)
| | - Liangyu Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.W.); (J.O.); (L.H.)
| | - Qingyong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; (Y.J.); (Q.Y.)
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.W.); (J.O.); (L.H.)
- Correspondence: (M.W.); (B.Z.); (J.J.L.)
| | - Bin Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China; (Y.J.); (Q.Y.)
- Correspondence: (M.W.); (B.Z.); (J.J.L.)
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence: (M.W.); (B.Z.); (J.J.L.)
| |
Collapse
|
44
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Wang X, Wei Z, Jiang Y, Meng Z, Lu M. mTOR Signaling: The Interface Linking Cellular Metabolism and Hepatitis B Virus Replication. Virol Sin 2021; 36:1303-1314. [PMID: 34580816 PMCID: PMC8692646 DOI: 10.1007/s12250-021-00450-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that includes mTOR complex (mTORC) 1 and mTORC2. The mTOR pathway is activated in viral hepatitis, including hepatitis B virus (HBV) infection-induced hepatitis. Currently, chronic HBV infection remains one of the most serious public health issues worldwide. The unavailability of effective therapeutic strategies for HBV suggests that clarification of the pathogenesis of HBV infection is urgently required. Increasing evidence has shown that HBV infection can activate the mTOR pathway, indicating that HBV utilizes or hijacks the mTOR pathway to benefit its own replication. Therefore, the mTOR signaling pathway might be a crucial target for controlling HBV infection. Here, we summarize and discuss the latest findings from model biology research regarding the interaction between the mTOR signaling pathway and HBV replication.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
46
|
Shankar K, Metzger NP, Singh O, Mani BK, Osborne-Lawrence S, Varshney S, Gupta D, Ogden SB, Takemi S, Richard CP, Nandy K, Liu C, Zigman JM. LEAP2 deletion in mice enhances ghrelin's actions as an orexigen and growth hormone secretagogue. Mol Metab 2021; 53:101327. [PMID: 34428557 PMCID: PMC8452786 DOI: 10.1016/j.molmet.2021.101327] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023] Open
Abstract
Objective The hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a recently identified antagonist and an inverse agonist of the growth hormone secretagogue receptor (GHSR). GHSR's other well-known endogenous ligand, acyl-ghrelin, increases food intake, body weight, and GH secretion and is lowered in obesity but elevated upon fasting. In contrast, LEAP2 reduces acyl-ghrelin-induced food intake and GH secretion and is found elevated in obesity but lowered upon fasting. Thus, the plasma LEAP2/acyl-ghrelin molar ratio could be a key determinant modulating GHSR signaling in response to changes in body mass and feeding status. In particular, LEAP2 may serve to dampen acyl-ghrelin action in the setting of obesity, which is associated with ghrelin resistance. Here, we sought to determine the metabolic effects of genetic LEAP2 deletion. Methods We generated the first known LEAP2-KO mouse line. Food intake, GH secretion, and cellular activation (c-fos induction) in different brain regions following s.c. acyl-ghrelin administration in LEAP2-KO mice and wild-type littermates were determined. LEAP2-KO mice and wild-type littermates were submitted to a battery of tests (such as measurements of body weight, food intake, and body composition; indirect calorimetry, determination of locomotor activity, and meal patterning while housed in metabolic cages) over the course of 16 weeks of high-fat diet and/or standard chow feeding. Fat accumulation was assessed in hematoxylin & eosin-stained and oil red O-stained liver sections from these mice. Results LEAP2-KO mice were more sensitive to s.c. ghrelin. In particular, acyl-ghrelin acutely stimulated food intake at a dose of 0.5 mg/kg BW in standard chow-fed LEAP2-KO mice while a 2× higher dose was required by wild-type littermates. Also, acyl-ghrelin stimulated food intake at a dose of 1 mg/kg BW in high-fat diet-fed LEAP2-KO mice while not even a 10× higher dose was effective in wild-type littermates. Acyl-ghrelin induced a 90.9% higher plasma GH level and 77.2–119.7% higher numbers of c-fos-immunoreactive cells in the arcuate nucleus and olfactory bulb, respectively, in LEAP2-KO mice than in wild-type littermates. LEAP2 deletion raised body weight (by 15.0%), food intake (by 18.4%), lean mass (by 6.1%), hepatic fat (by 42.1%), and body length (by 1.7%) in females on long-term high-fat diet as compared to wild-type littermates. After only 4 weeks on the high-fat diet, female LEAP2-KO mice exhibited lower O2 consumption (by 13%), heat production (by 9.5%), and locomotor activity (by 49%) than by wild-type littermates during the first part of the dark period. These genotype-dependent differences were not observed in high-fat diet-exposed males or female and male mice exposed for long term to standard chow diet. Conclusions LEAP2 deletion sensitizes lean and obese mice to the acute effects of administered acyl-ghrelin on food intake and GH secretion. LEAP2 deletion increases body weight in females chronically fed a high-fat diet as a result of lowered energy expenditure, reduced locomotor activity, and increased food intake. Furthermore, in female mice, LEAP2 deletion increases body length and exaggerates the hepatic fat accumulation normally associated with chronic high-fat diet feeding. A novel line of LEAP2-knockout mice was generated. LEAP2 deletion sensitizes mice to the GH secretory effects of administered ghrelin. LEAP2 deletion reduces ghrelin resistance in diet-induced obese mice. HFD-fed female LEAP2-KO mice eat more and gain more body weight and hepatic fat. HFD-fed female LEAP2-KO mice exhibit lowered energy expenditure and activity.
Collapse
Affiliation(s)
- Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sean B Ogden
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shota Takemi
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karabi Nandy
- Division of Biostatistics, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chen Liu
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
47
|
Wang M, Qian L, Li J, Ming H, Fang L, Li Y, Zhang M, Xu Y, Ban Y, Zhang W, Zhang Y, Liu Y, Wang N. GHSR deficiency exacerbates cardiac fibrosis: role in macrophage inflammasome activation and myofibroblast differentiation. Cardiovasc Res 2021; 116:2091-2102. [PMID: 31790138 DOI: 10.1093/cvr/cvz318] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/06/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS Sustained activation of β-adrenergic signalling induces cardiac fibrosis, which marks progression to heart failure. GHSR (growth hormone secretagogue receptor) is the receptor for ghrelin, which is an orexigenic gastric hormone with newly defined cardiovascular effects. The present study determined the effects of GHSR deficiency in a mouse model of isoproterenol (ISO)-induced cardiac fibrosis and examined the underlying mechanism. METHODS AND RESULTS Histochemical studies showed that GHSR deficiency exacerbated cardiac fibrosis. Quantitative RT-PCR, western blotting, and immunofluorescence staining demonstrated that cardiac fibroblasts isolated from GHSR-/- mice exhibited increased expression of marker genes for myofibroblast trans-differentiation (α-SMA, SM22, and calponin) upon transforming growth factor-β treatment compared to wild-type mice. RNA-sequencing of heart transcriptomes revealed that differentially expressed genes in GHSR-/- hearts were enriched in such biological processes as extracellular matrix organization, inflammatory response, lipid metabolism, cell cycle, migration, and adhesion. Particularly, GHSR deficiency increased Wnt/β-catenin pathway activation in ISO-induced myocardial fibrosis. In addition, loss of GHSR in macrophages instigated inflammasome activation with increased cleavage and release of interleukin-18. CONCLUSION These results for the first time demonstrated that GHSR deficiency aggravated ISO-induced cardiac fibrosis, suggesting that GHSR was a potential target for the intervention of cardiac fibrosis.
Collapse
Affiliation(s)
- Mo Wang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Lei Qian
- The Advanced Institute of Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hao Ming
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Li Fang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yingjia Li
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Man Zhang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yaohua Xu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yiqian Ban
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Weizhen Zhang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Youyi Zhang
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.,Institute of Vascular Medicine, The Third Hospital, Peking University, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Nanping Wang
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.,The Advanced Institute of Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
48
|
Wei D, Wu S, Liu J, Zhang X, Guan X, Gao L, Xu Z. Theobromine ameliorates nonalcoholic fatty liver disease by regulating hepatic lipid metabolism via mTOR signaling pathway in vivo and in vitro. Can J Physiol Pharmacol 2021; 99:775-785. [PMID: 33290156 DOI: 10.1139/cjpp-2020-0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Theobromine, a methylxanthine present in cocoa, has been shown to possess many beneficial pharmacological properties such as anti-oxidative stress, anti-inflammatory property, and anti-microbial activity. In this study, we investigated the effects of theobromine on nonalcoholic fatty liver disease (NAFLD) and the possible underlying mechanisms in vivo and in vitro. The results showed that theobromine reduced body weight and fat mass and improved dyslipidemia. Theobromine mitigated liver injury and significantly reduced hepatic triglyceride level in mice with obesity. Histological examinations also showed hepatic steatosis was alleviated after theobromine treatment. Furthermore, theobromine reversed the elevated mRNA and protein expression of SREBP-1c, FASN, CD36, FABP4, and the suppressed expression of PPARα and CPT1a in the liver of mice with obesity, which were responsible for lipogenesis, fatty acid uptake, and fatty acid oxidation respectively. In vitro, theobromine also downregulated SREBP-1c, FASN, CD36, FABP4 and upregulated PPARα and CPT1a mRNA and protein levels in hepatocytes in a dose-dependent manner, while these changes were reversed by L-leucine, a mammalian target of rapamycin (mTOR) agonist. The present study demonstrated that theobromine improved NAFLD by inhibiting lipogenesis and fatty acid uptake and promoting fatty acid oxidation in the liver and hepatocytes, which might be associated with its suppression of mTOR signaling pathway. Novelty: Theobromine protects against high-fat diet - induced NAFLD. Theobromine inhibits lipogenesis and fatty acid uptake and promotes fatty acid oxidation in the liver and hepatocytes via inhibiting mTOR signaling pathway.
Collapse
Affiliation(s)
- Dan Wei
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Shaofei Wu
- Department of Hepatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jie Liu
- Department of Public Health, Tengzhou Central People's Hospital, Zaozhuang, Shandong, China
| | - Xiaoqian Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Li Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Zhipeng Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
49
|
Huang Z, Lu X, Huang L, Zhang C, Veldhuis JD, Cowley MA, Chen C. Stimulation of endogenous pulsatile growth hormone secretion by activation of growth hormone secretagogue receptor reduces the fat accumulation and improves the insulin sensitivity in obese mice. FASEB J 2021; 35:e21269. [PMID: 33368660 DOI: 10.1096/fj.202001924rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Obese individuals often show low growth hormone (GH) secretion, which leads to reduced lipid mobilization and further fat accumulation. Pharmacological approaches to increase GH levels in obese individuals by GH injection or GH-releasing hormone receptor agonist showed promising effects on fat reduction. However, side effects on glucose metabolism and the heavy costs on making large peptides hindered their clinical application. Here, we tested whether stimulation of endogenous GH secretion by a synthetic GH secretagogue receptor (GHSR) agonist, hexarelin, improved the metabolism in a hyperphagic obese mouse model. Male melanocortin 4 receptor knockout mice (MC4RKO) were pair-fed and received continuous hexarelin (10.56 μg/day) or vehicle infusion by an osmotic pump for 3-4 weeks. Hexarelin treatment significantly increased the pulsatile GH secretion without detectable alteration on basal GH secretion in MC4RKO mice. The treated mice showed increased lipolysis and lipid oxidation in the adipose tissue, and reduced de novo lipogenesis in the liver, leading to reduced visceral fat mass, reduced triglyceride content in liver, and unchanged circulating free fatty acid levels. Importantly, hexarelin treatment improved the whole-body insulin sensitivity but did not alter glucose tolerance, insulin levels, or insulin-like growth factor 1 (IGF-1) levels. The metabolic effects of hexarelin were likely through the direct action of GH, as indicated by the increased expression level of genes involved in GH signaling pathways in visceral adipose tissues and liver. In conclusion, hexarelin treatment stimulated the pulsatile GH secretion and reduced the fat accumulation in visceral depots and liver in obese MC4RKO mice with improved insulin sensitivity without altered levels of insulin or IGF-1. It provides evidence for managing obesity by enhancing pulsatile GH secretion through activation of GHSR in the pituitary gland.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Xuehan Lu
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Chunhong Zhang
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Johannes D Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN, USA
| | - Michael A Cowley
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
50
|
Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary Polyphenols to Combat Nonalcoholic Fatty Liver Disease via the Gut-Brain-Liver Axis: A Review of Possible Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3585-3600. [PMID: 33729777 DOI: 10.1021/acs.jafc.1c00751] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyphenols are a group of micronutrients widely existing in plant foods including fruits, vegetables, and teas that can improve nonalcoholic fatty liver disease (NAFLD). In this review, the existing knowledge of dietary polyphenols for the development of NAFLD regulated by intestinal microecology is discussed. Polyphenols can influence the vagal afferent pathway in the central and enteric nervous system to control NAFLD via gut-brain-liver cross-talk. The possible mechanisms involve in the alteration of microbial community structure, effects of gut metabolites (short-chain fatty acids (SCFAs), bile acids (BAs), endogenous ethanol (EnEth)), and stimulation of gut-derived hormones (ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and leptin) based on the targets excavated from the gut-brain-liver axis. Consequently, the communication among the intestine, brain, and liver paves the way for new approaches to understand the underlying roles and mechanisms of dietary polyphenols in NAFLD pathology.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|