1
|
Milburn GN, Bell J, Wellette-Hunsucker AG, Ruml H, Yackzan AT, Campbell KS. Myocardium From Patients With ATTR Amyloidosis Produces Less Force Secondary to Increased Fibrosis. JACC Basic Transl Sci 2025:S2452-302X(25)00124-X. [PMID: 40338773 DOI: 10.1016/j.jacbts.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/10/2025]
Abstract
Amyloid transthyretin cardiac amyloidosis is one of the most common infiltrative cardiomyopathies. Contractile, biochemical, and histological assays were performed on myocardium from patients with and without amyloid transthyretin amyloidosis. Force was reduced in amyloidosis, but calcium sensitivity was increased. The change in calcium sensitivity may reflect dephosphorylation of troponin I. The proportion of stiffness attributable to the extracellular matrix was larger in amyloidosis. Septal fibrosis and amyloid burden correlated with measurements from LV samples. Technetium pyrophosphate scans may detect increased microcalcifications in amyloidosis myocardium. Replacement of myocytes with extracellular matrix is the most important factor depressing contractile force in amyloidosis myocardium.
Collapse
Affiliation(s)
- Gregory N Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Jania Bell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Austin G Wellette-Hunsucker
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hollings Ruml
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew T Yackzan
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Hill C, Kalakoutis M, Arcidiacono A, Paradine Cullup F, Wang Y, Fukutani A, Narayanan T, Brunello E, Fusi L, Irving M. Dual-filament regulation of relaxation in mammalian fast skeletal muscle. Proc Natl Acad Sci U S A 2025; 122:e2416324122. [PMID: 40073060 PMCID: PMC11929500 DOI: 10.1073/pnas.2416324122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle contraction is driven by myosin motors from the thick filaments pulling on the actin-containing thin filaments of the sarcomere, and it is regulated by structural changes in both filaments. Thin filaments are activated by an increase in intracellular calcium concentration [Ca2+]i and by myosin binding to actin. Thick filaments are activated by direct sensing of the filament load. However, these mechanisms cannot explain muscle relaxation when [Ca2+]i decreases at high load and myosin motors are attached to actin. There is, therefore, a fundamental gap in our understanding of muscle relaxation, despite its importance for muscle function in vivo, for example, for rapid eye movements or, on slower timescales, for the efficient control of posture. Here, we used time-resolved small-angle X-ray diffraction (SAXD) to determine how muscle thin and thick filaments switch OFF in extensor digitorum longus (EDL) muscles of the mouse in response to decreases in either [Ca2+]i or muscle load and to describe the distribution of muscle sarcomere lengths (SLs) during relaxation. We show that reducing load at high [Ca2+]i is more effective in switching OFF both the thick and thin filaments than reducing [Ca2+]i at high load in normal relaxation. In the latter case, the thick filaments initially remain fully ON, although the number of myosin motors bound to actin decreases and the force per attached motor increases. That initial slow phase of relaxation is abruptly terminated by yielding of one population of sarcomeres, triggering a redistribution of SLs that leads to the rapid completion of mechanical relaxation.
Collapse
Affiliation(s)
- Cameron Hill
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Michaeljohn Kalakoutis
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Alice Arcidiacono
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Flair Paradine Cullup
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Yanhong Wang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Atsuki Fukutani
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | | | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
- Centre for Human and Applied Physiological Sciences, Shepherd’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, New Hunt’s House, Guy’s Campus, King’s College London, LondonSE1 1UL, United Kingdom
| |
Collapse
|
3
|
Phan TA, Fitzsimons DP. Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium. J Gen Physiol 2025; 157:e202413582. [PMID: 39869069 PMCID: PMC11771317 DOI: 10.1085/jgp.202413582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/09/2024] [Accepted: 12/25/2024] [Indexed: 01/28/2025] Open
Abstract
The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e., RU-induced, RU-activation (RU-RU), crossbridge-induced, crossbridge-binding (XB-XB), and XB-induced, RU-activation (XB-RU). We measured the Ca2+ and activation dependence of the rate constant of force redevelopment in murine- and porcine-permeabilized ventricular myocardium. Mathematical modeling of these three near-neighbor interactions yielded nonlinear expressions for the RU-RU and XB-RU rate coefficients (kon and koff) and XB-XB rate coefficients describing the attachment of force-generating crossbridges (f and f'). The derivation of single cooperative coefficient parameters (u = RU-RU, w = XB-RU, and v = XB-XB) permitted an initial assessment of the strength of each near-neighbor interaction. The parameter sets describing the effects of discrete XB-XB or XB-RU interactions failed to adequately fit the in vitro contractility data in either murine or porcine myocardium. However, the Ca2+ dependence of ktr in murine and porcine ventricular myocardium was well fit by parameter sets incorporating the RU-RU cooperative interaction. Our results indicate that a significantly stronger RU-RU interaction is present in porcine ventricular myocardium compared with murine ventricular myocardium and that the relative strength of the near-neighbor RU-RU interaction contributes to species-specific myocardial contractile dynamics in small and large mammals.
Collapse
Affiliation(s)
- Tuan A. Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Daniel P. Fitzsimons
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
4
|
Wood PT, Seffrood MM, Colson BA, Stelzer JE. cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations. Front Cardiovasc Med 2025; 12:1550649. [PMID: 40134985 PMCID: PMC11935118 DOI: 10.3389/fcvm.2025.1550649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder in the heart caused by variants in sarcomeric proteins that disrupt myocardial function, leading to hypercontractility, hypertrophy, and fibrosis. Optimal cardiac function relies on the precise coordination of thin and thick filament proteins that control the timing, magnitude of cellular force generation and relaxation, and in vivo systolic and diastolic function. Sarcomeric proteins, such as cardiac myosin binding protein C (cMyBP-C) play a crucial role in myocardial contractile function by modulating actomyosin interactions. Genetic variants in cMyBP-C are a frequent cause of HCM, highlighting its importance in cardiac health. This review explores the molecular mechanisms underpinning HCM and the rapidly advancing field of HCM translational research, including gene therapy and small-molecule interventions targeting sarcomere function. We will highlight novel approaches, including gene therapy using recombinant AAV vectors and small-molecule drugs targeting sarcomere function.
Collapse
Affiliation(s)
- Patrick T. Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Morgan M. Seffrood
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Brett A. Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Irving M. Functional control of myosin motors in the cardiac cycle. Nat Rev Cardiol 2025; 22:9-19. [PMID: 39030271 DOI: 10.1038/s41569-024-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/21/2024]
Abstract
Contraction of the heart is driven by cyclical interactions between myosin and actin filaments powered by ATP hydrolysis. The modular structure of heart muscle and the organ-level synchrony of the heartbeat ensure tight reciprocal coupling between this myosin ATPase cycle and the macroscopic cardiac cycle. The myosin motors respond to the cyclical activation of the actin and myosin filaments to drive the pressure changes that control the inflow and outflow valves of the heart chambers. Opening and closing of the valves in turn switches the myosin motors between roughly isometric and roughly isotonic contraction modes. Peak filament stress in the heart is much smaller than in fully activated skeletal muscle, although the myosin filaments in the two muscle types have the same number of myosin motors. Calculations indicate that only ~5% of the myosin motors in the heart are needed to generate peak systolic pressure, although many more motors are needed to drive ejection. Tight regulation of the number of active motors is essential for the efficient functioning of the healthy heart - this control is commonly disrupted by gene variants associated with inherited heart disease, and its restoration might be a useful end point in the development of novel therapies.
Collapse
Affiliation(s)
- Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and BHF Centre for Research Excellence, King's College London, London, UK.
| |
Collapse
|
7
|
Dominic KL, Schmidt AV, Granzier H, Campbell KS, Stelzer JE. Mechanism-based myofilament manipulation to treat diastolic dysfunction in HFpEF. Front Physiol 2024; 15:1512550. [PMID: 39726859 PMCID: PMC11669688 DOI: 10.3389/fphys.2024.1512550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major public health challenge, affecting millions worldwide and placing a significant burden on healthcare systems due to high hospitalization rates and limited treatment options. HFpEF is characterized by impaired cardiac relaxation, or diastolic dysfunction. However, there are no therapies that directly treat the primary feature of the disease. This is due in part to the complexity of normal diastolic function, and the challenge of isolating the mechanisms responsible for dysfunction in HFpEF. Without a clear understanding of the mechanisms driving diastolic dysfunction, progress in treatment development has been slow. In this review, we highlight three key areas of molecular dysregulation directly underlying impaired cardiac relaxation in HFpEF: altered calcium sensitivity in the troponin complex, impaired phosphorylation of myosin-binding protein C (cMyBP-C), and reduced titin compliance. We explore how targeting these pathways can restore normal relaxation, improve diastolic function, and potentially provide new therapeutic strategies for HFpEF treatment. Developing effective HFpEF therapies requires precision targeting to balance systolic and diastolic function, avoiding both upstream non-specificity and downstream rigidity. This review highlights three rational molecular targets with a strong mechanistic basis and potential for therapeutic success.
Collapse
Affiliation(s)
- Katherine L. Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alexandra V. Schmidt
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Kenneth S. Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
8
|
Morotti I, Caremani M, Marcello M, Pertici I, Squarci C, Bianco P, Narayanan T, Piazzesi G, Reconditi M, Lombardi V, Linari M. An integrated picture of the structural pathways controlling the heart performance. Proc Natl Acad Sci U S A 2024; 121:e2410893121. [PMID: 39630866 DOI: 10.1073/pnas.2410893121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
The regulation of heart function is attributed to a dual filament mechanism: i) the Ca2+-dependent structural changes in the regulatory proteins of the thin, actin-containing filament making actin available for myosin motor attachment, and ii) the release of motors from their folded (OFF) state on the surface of the thick filament allowing them to attach and pull the actin filament. Thick filament mechanosensing is thought to control the number of motors switching ON in relation to the systolic performance, but its molecular basis is still controversial. Here, we use high spatial resolution X-ray diffraction data from electrically paced rat trabeculae and papillary muscles to provide a molecular explanation of the modulation of heart performance that calls for a revision of the mechanosensing hypothesis. We find that upon stimulation, titin-mediated structural changes in the thick filament switch motors ON throughout the filament within ~½ the maximum systolic force. These structural changes also drive Myosin Binding Protein-C (MyBP-C) to promote first motor attachments to actin from the central 1/3 of the half-thick filament. Progression of attachments toward the periphery of half-thick filament with increase in systolic force is carried on by near-neighbor cooperative thin filament activation by attached motors. The identification of the roles of MyBP-C, titin, thin and thick filaments in heart regulation enables their targeting for potential therapeutic interventions.
Collapse
Affiliation(s)
- Ilaria Morotti
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Marco Caremani
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Matteo Marcello
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Irene Pertici
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Caterina Squarci
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Pasquale Bianco
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | | | - Gabriella Piazzesi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Massimo Reconditi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Vincenzo Lombardi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Marco Linari
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| |
Collapse
|
9
|
Wang Y, Fusi L, Ovejero JG, Hill C, Juma S, Cullup FP, Ghisleni A, Park-Holohan SJ, Ma W, Irving T, Narayanan T, Irving M, Brunello E. Load-dependence of the activation of myosin filaments in heart muscle. J Physiol 2024; 602:6889-6907. [PMID: 39552044 DOI: 10.1113/jp287434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024] Open
Abstract
Contraction of heart muscle requires activation of both the actin and myosin filaments. The mechanism of myosin filament activation is unknown, but the leading candidate hypothesis is direct mechano-sensing by the filaments. Here, we tested this hypothesis by activating intact trabeculae from rat heart by electrical stimulation under different loads and measuring myosin filament activation by X-ray diffraction. Unexpectedly, we found that the distinct structural changes in the myosin filament associated with activation had different dependences on the load. In early activation, all the structural changes indicated faster activation at higher load, as expected from the mechano-sensing hypothesis, but, at later times, the helical order of the myosin motors characteristic of the inactivated state was lost even at very low load. We conclude that mechano-sensing does operate in heart muscle, but it is supplemented by a previously undescribed mechanism that links myosin filament activation to actin filament activation. KEY POINTS: Myosin filament activation controls the strength and speed of contraction in heart muscle. Early activation of the myosin filament is determined by the filament load. At later times, myosin filament activation is controlled by a load independent pathway. This load independent pathway provides new targets and assays for drug development.
Collapse
Affiliation(s)
- Yanhong Wang
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Jesus G Ovejero
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Cameron Hill
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Samina Juma
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Flair Paradine Cullup
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Andrea Ghisleni
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - So-Jin Park-Holohan
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Weikang Ma
- BioCAT, Dept of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Thomas Irving
- BioCAT, Dept of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|
10
|
Sevrieva IR, Kampourakis T, Irving M. Structural changes in troponin during activation of skeletal and heart muscle determined in situ by polarised fluorescence. Biophys Rev 2024; 16:753-772. [PMID: 39830118 PMCID: PMC11735716 DOI: 10.1007/s12551-024-01245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnCN) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy. We show that the orientations of the IT arm determined by the two approaches are essentially the same and that this region acts as an almost rigid scaffold for regulatory changes in the more mobile regions of troponin. However, the TnCN orientations determined by the two methods are clearly distinct in both low- and high-calcium conditions. We discuss the implications of these results for the role of TnCN in mediating the multiple signalling pathways acting through troponin in heart muscle cells and the general advantages and limitations of FISS and cryo-EM for determining protein domain orientations in cells and multiprotein complexes.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| | - Thomas Kampourakis
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY USA
| | - Malcolm Irving
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, UK
| |
Collapse
|
11
|
Spudich JA, Nandwani N, Robert-Paganin J, Houdusse A, Ruppel KM. Reassessing the unifying hypothesis for hypercontractility caused by myosin mutations in hypertrophic cardiomyopathy. EMBO J 2024; 43:4139-4155. [PMID: 39192034 PMCID: PMC11445530 DOI: 10.1038/s44318-024-00199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Significant advances in structural and biochemical research validate the 9-year-old hypothesis that cardiac hypercontractility seen in patients with hypertrophic cardiomyopathy is primarily caused by sarcomeric mutations that increase the number of myosin molecules available for actin interaction.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Kampourakis T, Ponnam S, Campbell KS, Wellette-Hunsucker A, Koch D. Cardiac myosin binding protein-C phosphorylation as a function of multiple protein kinase and phosphatase activities. Nat Commun 2024; 15:5111. [PMID: 38877002 PMCID: PMC11178824 DOI: 10.1038/s41467-024-49408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a determinant of cardiac myofilament function. Although cMyBP-C phosphorylation by various protein kinases has been extensively studied, the influence of protein phosphatases on cMyBP-C's multiple phosphorylation sites has remained largely obscure. Here we provide a detailed biochemical characterization of cMyBP-C dephosphorylation by protein phosphatases 1 and 2 A (PP1 and PP2A), and develop an integrated kinetic model for cMyBP-C phosphorylation using data for both PP1, PP2A and various protein kinases known to phosphorylate cMyBP-C. We find strong site-specificity and a hierarchical mechanism for both phosphatases, proceeding in the opposite direction of sequential phosphorylation by potein kinase A. The model is consistent with published data from human patients and predicts complex non-linear cMyBP-C phosphorylation patterns that are validated experimentally. Our results suggest non-redundant roles for PP1 and PP2A under both physiological and heart failure conditions, and emphasize the importance of phosphatases for cMyBP-C regulation.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Daniel Koch
- Max Planck Institute for Neurobiology of Behavior-caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
13
|
Parodi A, Puscas T, Réant P, Donal E, M'Barek Raboudi D, Billon C, Bacher A, El Hachmi M, Wahbi K, Jeunemaître X, Hagège A. Target population for a selective cardiac myosin inhibitor in hypertrophic obstructive cardiomyopathy: Real-life estimation from the French register of hypertrophic cardiomyopathy (REMY). Arch Cardiovasc Dis 2024; 117:427-432. [PMID: 38762345 DOI: 10.1016/j.acvd.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The efficacy of current pharmacological therapies in hypertrophic cardiomyopathy is limited. A cardiac myosin inhibitor, mavacamten, has recently been approved as a first-in-class treatment for symptomatic hypertrophic obstructive cardiomyopathy. AIMS To assess the profile and burden of cardiac myosin inhibitor candidates in the hypertrophic cardiomyopathy prospective Register of hypertrophic cardiomyopathy (REMY) held by the French Society of Cardiology. METHODS Data were collected at baseline and during follow-up from patients with hypertrophic cardiomyopathy enrolled in REMY by the three largest participating centres. RESULTS Among 1059 adults with hypertrophic cardiomyopathy, 461 (43.5%) had obstruction; 325 (30.7%) of these were also symptomatic, forming the "cardiac myosin inhibitor candidates" group. Baseline features of this group were: age 58±15years; male sex (n=196; 60.3%); diagnosis-to-inclusion delay 5 (1-12)years; maximum wall thickness 20±6mm; left ventricular ejection fraction 69±6%; family history of hypertrophic cardiomyopathy or sudden cardiac death (n=133; 40.9%); presence of a pathogenic sarcomere gene mutation (n=101; 31.1%); beta-blocker or verapamil treatment (n=304; 93.8%), combined with disopyramide (n=28; 8.7%); and eligibility for septal reduction therapy (n=96; 29%). At the end of a median follow-up of 66 (34-106) months, 319 (98.2%) were treated for obstruction (n=43 [13.2%] received disopyramide), 46 (14.2%) underwent septal reduction therapy and the all-cause mortality rate was 1.9/100 person-years (95% confidence interval 1.4-2.6) (46 deaths). Moreover, 41 (8.9%) patients from the initial hypertrophic obstructive cardiomyopathy group became eligible for a cardiac myosin inhibitor. CONCLUSIONS In this cohort of patients with hypertrophic cardiomyopathy selected from the REMY registry, one third were eligible for a cardiac myosin inhibitor.
Collapse
Affiliation(s)
- Alessandro Parodi
- Département de cardiologie, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France; Università del Piemonte Orientale Amedeo Avogadro, 13100 Vercelli, Italy
| | - Tania Puscas
- Département de cardiologie, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | - Patricia Réant
- Département de cardiologie, hôpital Haut-Lévêque, CHU de Bordeaux, université de Bordeaux, Inserm 1045, IHU Lyric, CIC 1401, 33600 Pessac, France
| | - Erwan Donal
- Service de cardiologie, hôpital Pontchaillou, CHU de Rennes, université de Rennes, Inserm, LTSI-UMR 1099, 35000 Rennes, France
| | - Dorra M'Barek Raboudi
- Département de cardiologie, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | - Clarisse Billon
- Département de cardiologie, hôpital Haut-Lévêque, CHU de Bordeaux, université de Bordeaux, Inserm 1045, IHU Lyric, CIC 1401, 33600 Pessac, France
| | - Anne Bacher
- Département de cardiologie, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | - Mohamed El Hachmi
- Département de génétique, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France; Molecular Medicine, La Sapienza University, 00185 Rome, Italy
| | - Karim Wahbi
- Département de génétique, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France; Inserm U970, Paris Cardiovascular Research Centre, Université Paris Cité, 75015 Paris, France
| | - Xavier Jeunemaître
- Département de génétique, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France; Inserm U970, Paris Cardiovascular Research Centre, Université Paris Cité, 75015 Paris, France
| | - Albert Hagège
- Département de cardiologie, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France; Inserm U970, Paris Cardiovascular Research Centre, Université Paris Cité, 75015 Paris, France.
| |
Collapse
|
14
|
McNamara JW, Song T, Alam P, Binek A, Singh RR, Nieman ML, Koch SE, Ivey MJ, Lynch TL, Rubinstein J, Jin JP, Lorenz JN, Van Eyk JE, Kanisicak O, Sadayappan S. Fast skeletal myosin binding protein-C expression exacerbates dysfunction in heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591979. [PMID: 38746225 PMCID: PMC11092637 DOI: 10.1101/2024.04.30.591979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function. However, it is unknown if the expression of fMyBP-C expression in the heart is a pathological or compensatory response. We aim to elucidate the cardiac consequence of either increased or knockout of fMyBP-C expression. To determine the sufficiency of fMyBP-C to cause cardiac dysfunction, we generated cardiac-specific fMyBP-C over-expression mice. These mice were further crossed into a cMyBP-C null model to assess the effect of fMyBP-C in the heart in the complete absence of cMyBP-C. Finally, fMyBP-C null mice underwent transverse aortic constriction (TAC) to define the requirement of fMyBP-C during heart failure development. We confirmed the upregulation of fMyBP-C in several models of cardiac disease, including the use of lineage tracing. Low levels of fMyBP-C caused mild cardiac remodeling and sarcomere dysfunction. Exclusive expression of fMyBP-C in a heart failure model further exacerbated cardiac pathology. Following 8 weeks of TAC, fMyBP-C null mice demonstrated greater protection against heart failure development. Mechanistically, this may be due to the differential regulation of the myosin super-relaxed state. These findings suggest that the elevated expression of fMyBP-C in diseased hearts is a pathological response. Targeted therapies to prevent upregulation of fMyBP-C may prove beneficial in the treatment of heart failure. Significance Statement Recently, the sarcomere - the machinery that controls heart and muscle contraction - has emerged as a central target for development of cardiac therapeutics. However, there remains much to understand about how the sarcomere is modified in response to disease. We recently discovered that a protein normally expressed in skeletal muscle, is present in the heart in certain settings of heart disease. How this skeletal muscle protein affects the function of the heart remained unknown. Using genetically engineered mouse models to modulate expression of this skeletal muscle protein, we determined that expression of this skeletal muscle protein in the heart negatively affects cardiac performance. Importantly, deletion of this protein from the heart could improve heart function suggesting a possible therapeutic avenue.
Collapse
|
15
|
Arts T, Lyon A, Delhaas T, Kuster DWD, van der Velden J, Lumens J. Translating myosin-binding protein C and titin abnormalities to whole-heart function using a novel calcium-contraction coupling model. J Mol Cell Cardiol 2024; 190:13-23. [PMID: 38462126 DOI: 10.1016/j.yjmcc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.
Collapse
Affiliation(s)
- Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands.
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam University Medical Center, 1081HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center, 1081HZ Amsterdam, the Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Center Maastricht (CARIM), Maastricht University, 6200MD Maastricht, the Netherlands
| |
Collapse
|
16
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Burnham HV, Cizauskas HE, Barefield DY. Fine tuning contractility: atrial sarcomere function in health and disease. Am J Physiol Heart Circ Physiol 2024; 326:H568-H583. [PMID: 38156887 PMCID: PMC11221815 DOI: 10.1152/ajpheart.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.
Collapse
Affiliation(s)
- Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| |
Collapse
|
18
|
Chen L, Liu J, Rastegarpouyani H, Janssen PML, Pinto JR, Taylor KA. Structure of mavacamten-free human cardiac thick filaments within the sarcomere by cryoelectron tomography. Proc Natl Acad Sci U S A 2024; 121:e2311883121. [PMID: 38386705 PMCID: PMC10907299 DOI: 10.1073/pnas.2311883121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH43210
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State College of Medicine, Florida State University, Tallahassee, FL32306
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
19
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Pearce A, Ponnam S, Holt MR, Randall T, Beckingham R, Kho AL, Kampourakis T, Ehler E. Missense mutations in the central domains of cardiac myosin binding protein-C and their potential contribution to hypertrophic cardiomyopathy. J Biol Chem 2024; 300:105511. [PMID: 38042491 PMCID: PMC10772716 DOI: 10.1016/j.jbc.2023.105511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
Myosin binding protein-C (MyBP-C) is a multidomain protein that regulates muscle contraction. Mutations in MYBPC3, the gene encoding for the cardiac variant (henceforth called cMyBP-C), are amongst the most frequent causes of hypertrophic cardiomyopathy. Most mutations lead to a truncated version of cMyBP-C, which is most likely unstable. However, missense mutations have also been reported, which tend to cluster in the central domains of the cMyBP-C molecule. This suggests that these central domains are more than just a passive spacer between the better characterized N- and C-terminal domains. Here, we investigated the potential impact of four different missense mutations, E542Q, G596R, N755K, and R820Q, which are spread over the domains C3 to C6, on the function of MyBP-C on both the isolated protein level and in cardiomyocytes in vitro. Effect on domain stability, interaction with thin filaments, binding to myosin, and subcellular localization behavior were assessed. Our studies show that these missense mutations result in slightly different phenotypes at the molecular level, which are mutation specific. The expected functional readout of each mutation provides a valid explanation for why cMyBP-C fails to work as a brake in the regulation of muscle contraction, which eventually results in a hypertrophic cardiomyopathy phenotype. We conclude that missense mutations in cMyBP-C must be evaluated in context of their domain localization, their effect on interaction with thin filaments and myosin, and their effect on protein stability to explain how they lead to disease.
Collapse
Affiliation(s)
- Amy Pearce
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Saraswathi Ponnam
- British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), King's College London, London, United Kingdom
| | - Mark R Holt
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Randall
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Rylan Beckingham
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ay Lin Kho
- British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), King's College London, London, United Kingdom
| | - Thomas Kampourakis
- British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), King's College London, London, United Kingdom
| | - Elisabeth Ehler
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), King's College London, London, United Kingdom.
| |
Collapse
|
21
|
Ormrod B, Ehler E. Induced pluripotent stem cell-derived cardiomyocytes-more show than substance? Biophys Rev 2023; 15:1941-1950. [PMID: 38192353 PMCID: PMC10771368 DOI: 10.1007/s12551-023-01099-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 01/10/2024] Open
Abstract
Cardiomyocytes that are derived from human-induced pluripotent stem cells (iPSC-CM) are an exciting tool to investigate cardiomyopathy disease mechanisms at the cellular level as well as to screen for potential side effects of novel drugs. However, currently their benefit is limited due to their fairly immature differentiation status under conventional culture conditions. This review is mainly aimed at researchers outside of the iPSC-CM field and will describe potential pitfalls and which features at the level of the myofibrils would be desired to make them a more representative model system. We will also discuss different strategies that may help to achieve these.
Collapse
Affiliation(s)
- Beth Ormrod
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
| | - Elisabeth Ehler
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), Room 3.26A, New Hunt’s House, Guy’s Campus, London, SE1 1UL UK
- British Heart Foundation Centre of Research Excellence, King’s College London, London, SE1 1UL UK
| |
Collapse
|
22
|
Tamargo M, Martínez-Legazpi P, Espinosa MÁ, Lyon A, Méndez I, Gutiérrez-Ibañes E, Fernández AI, Prieto-Arévalo R, González-Mansilla A, Arts T, Delhaas T, Mombiela T, Sanz-Ruiz R, Elízaga J, Yotti R, Tschöpe C, Fernández-Avilés F, Lumens J, Bermejo J. Increased Chamber Resting Tone Is a Key Determinant of Left Ventricular Diastolic Dysfunction. Circ Heart Fail 2023; 16:e010673. [PMID: 38113298 PMCID: PMC10729900 DOI: 10.1161/circheartfailure.123.010673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/22/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Twitch-independent tension has been demonstrated in cardiomyocytes, but its role in heart failure (HF) is unclear. We aimed to address twitch-independent tension as a source of diastolic dysfunction by isolating the effects of chamber resting tone (RT) from impaired relaxation and stiffness. METHODS We invasively monitored pressure-volume data during cardiopulmonary exercise in 20 patients with hypertrophic cardiomyopathy, 17 control subjects, and 35 patients with HF with preserved ejection fraction. To measure RT, we developed a new method to fit continuous pressure-volume measurements, and first validated it in a computational model of loss of cMyBP-C (myosin binding protein-C). RESULTS In hypertrophic cardiomyopathy, RT (estimated marginal mean [95% CI]) was 3.4 (0.4-6.4) mm Hg, increasing to 18.5 (15.5-21.5) mm Hg with exercise (P<0.001). At peak exercise, RT was responsible for 64% (53%-76%) of end-diastolic pressure, whereas incomplete relaxation and stiffness accounted for the rest. RT correlated with the levels of NT-proBNP (N-terminal pro-B-type natriuretic peptide; R=0.57; P=0.02) and with pulmonary wedge pressure but following different slopes at rest and during exercise (R2=0.49; P<0.001). In controls, RT was 0.0 mm Hg and 1.2 (0.3-2.8) mm Hg in HF with preserved ejection fraction patients and was also exacerbated by exercise. In silico, RT increased in parallel to the loss of cMyBP-C function and correlated with twitch-independent myofilament tension (R=0.997). CONCLUSIONS Augmented RT is the major cause of LV diastolic chamber dysfunction in hypertrophic cardiomyopathy and HF with preserved ejection fraction. RT transients determine diastolic pressures, pulmonary pressures, and functional capacity to a greater extent than relaxation and stiffness abnormalities. These findings support antimyosin agents for treating HF.
Collapse
Affiliation(s)
- María Tamargo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Spain (P.M.-L.)
| | - M. Ángeles Espinosa
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Irene Méndez
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Enrique Gutiérrez-Ibañes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Raquel Prieto-Arévalo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ricardo Sanz-Ruiz
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Jaime Elízaga
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Carsten Tschöpe
- Berlin Institute of Health/Center for Regenerative Therapy (BCRT) at Charite, and Department of Cardiology, Campus Virchow (CVK), Charité Universitätsmedizin, and DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T.)
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| |
Collapse
|
23
|
Parijat P, Attili S, Hoare Z, Shattock M, Kenyon V, Kampourakis T. Discovery of a novel cardiac-specific myosin modulator using artificial intelligence-based virtual screening. Nat Commun 2023; 14:7692. [PMID: 38001148 PMCID: PMC10673995 DOI: 10.1038/s41467-023-43538-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Direct modulation of cardiac myosin function has emerged as a therapeutic target for both heart disease and heart failure. However, the development of myosin-based therapeutics has been hampered by the lack of targeted in vitro screening assays. In this study we use Artificial Intelligence-based virtual high throughput screening (vHTS) to identify novel small molecule effectors of human β-cardiac myosin. We test the top scoring compounds from vHTS in biochemical counter-screens and identify a novel chemical scaffold called 'F10' as a cardiac-specific low-micromolar myosin inhibitor. Biochemical and biophysical characterization in both isolated proteins and muscle fibers show that F10 stabilizes both the biochemical (i.e. super-relaxed state) and structural (i.e. interacting heads motif) OFF state of cardiac myosin, and reduces force and left ventricular pressure development in isolated myofilaments and Langendorff-perfused hearts, respectively. F10 is a tunable scaffold for the further development of a novel class of myosin modulators.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Seetharamaiah Attili
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom
| | - Zoe Hoare
- School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | - Michael Shattock
- School of Cardiovascular and Metabolic Medicine and Sciences; Rayne Institute and British Heart Foundation Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | | | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics; and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
24
|
Huang X, Torre I, Chiappi M, Yin Z, Vydyanath A, Cao S, Raschdorf O, Beeby M, Quigley B, de Tombe PP, Liu J, Morris EP, Luther PK. Cryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments. J Muscle Res Cell Motil 2023; 44:165-178. [PMID: 37115473 PMCID: PMC10542292 DOI: 10.1007/s10974-023-09647-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
Myosin binding protein C (MyBP-C) is an accessory protein of the thick filament in vertebrate cardiac muscle arranged over 9 stripes of intervals of 430 Å in each half of the A-band in the region called the C-zone. Mutations in cardiac MyBP-C are a leading cause of hypertrophic cardiomyopathy the mechanism of which is unknown. It is a rod-shaped protein composed of 10 or 11 immunoglobulin- or fibronectin-like domains labelled C0 to C10 which binds to the thick filament via its C-terminal region. MyBP-C regulates contraction in a phosphorylation dependent fashion that may be through binding of its N-terminal domains with myosin or actin. Understanding the 3D organisation of MyBP-C in the sarcomere environment may provide new light on its function. We report here the fine structure of MyBP-C in relaxed rat cardiac muscle by cryo-electron tomography and subtomogram averaging of refrozen Tokuyasu cryosections. We find that on average MyBP-C connects via its distal end to actin across a disc perpendicular to the thick filament. The path of MyBP-C suggests that the central domains may interact with myosin heads. Surprisingly MyBP-C at Stripe 4 is different; it has weaker density than the other stripes which could result from a mainly axial or wavy path. Given that the same feature at Stripe 4 can also be found in several mammalian cardiac muscles and in some skeletal muscles, our finding may have broader implication and significance. In the D-zone, we show the first demonstration of myosin crowns arranged on a uniform 143 Å repeat.
Collapse
Affiliation(s)
- Xinrui Huang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06516, USA
| | - Iratxe Torre
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Michele Chiappi
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Zhan Yin
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Anupama Vydyanath
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Shuangyi Cao
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | | | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Bonnie Quigley
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Pieter P de Tombe
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL, 60612, USA
- Phymedexp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06516, USA
| | - Edward P Morris
- Division of Structural Biology, Institute of Cancer Research, London, SW3 6JB, UK
- School of Molecular Biosciences, University of Glasgow, Garscube Campus, Jarrett Building, 351, Bearsden Road, Glasgow, G61 1QH, UK
| | - Pradeep K Luther
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
- Cardiac Function Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
25
|
Dominic KL, Choi J, Holmes JB, Singh M, Majcher MJ, Stelzer JE. The contribution of N-terminal truncated cMyBPC to in vivo cardiac function. J Gen Physiol 2023; 155:e202213318. [PMID: 37067542 PMCID: PMC10114924 DOI: 10.1085/jgp.202213318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
Cardiac myosin binding protein C (cMyBPC) is an 11-domain sarcomeric protein (C0-C10) integral to cardiac muscle regulation. In vitro studies have demonstrated potential functional roles for regions beyond the N-terminus. However, the in vivo contributions of these domains are mostly unknown. Therefore, we examined the in vivo consequences of expression of N-terminal truncated cMyBPC (C3C10). Neonatal cMyBPC-/- mice were injected with AAV9-full length (FL), C3C10 cMyBPC, or saline, and echocardiography was performed 6 wk after injection. We then isolated skinned myocardium from virus-treated hearts and performed mechanical experiments. Our results show that expression of C3C10 cMyBPC in cMyBPC-/- mice resulted in a 28% increase in systolic ejection fraction compared to saline-injected cMyBPC-/- mice and a 25% decrease in left ventricle mass-to-body weight ratio. However, unlike expression of FL cMyBPC, there was no prolongation of ejection time compared to saline-injected mice. In vitro mechanical experiments demonstrated that functional improvements in cMyBPC-/- mice expressing C3C10 were primarily due to a 35% reduction in the rate of cross-bridge recruitment at submaximal Ca2+ concentrations when compared to hearts from saline-injected cMyBPC-/- mice. However, unlike the expression of FL cMyBPC, there was no change in the rate of cross-bridge detachment when compared to saline-injected mice. Our data demonstrate that regions of cMyBPC beyond the N-terminus are important for in vivo cardiac function, and have divergent effects on cross-bridge behavior. Elucidating the molecular mechanisms of cMyBPC region-specific function could allow for development of targeted approaches to manipulate specific aspects of cardiac contractile function.
Collapse
Affiliation(s)
- Katherine L. Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Joohee Choi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua B. Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mandeep Singh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Michael J. Majcher
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
26
|
Marcucci L. Muscle Mechanics and Thick Filament Activation: An Emerging Two-Way Interaction for the Vertebrate Striated Muscle Fine Regulation. Int J Mol Sci 2023; 24:ijms24076265. [PMID: 37047237 PMCID: PMC10094676 DOI: 10.3390/ijms24076265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new “dual-filament” activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Center for Biosystems Dynamics Research, RIKEN, Suita 565-0874, Japan
| |
Collapse
|
27
|
Song T, Landim-Vieira M, Ozdemir M, Gott C, Kanisicak O, Pinto JR, Sadayappan S. Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs. Exp Mol Med 2023; 55:502-509. [PMID: 36854776 PMCID: PMC10073172 DOI: 10.1038/s12276-023-00953-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mustafa Ozdemir
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Caroline Gott
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
28
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
29
|
Sevrieva IR, Ponnam S, Yan Z, Irving M, Kampourakis T, Sun YB. Phosphorylation-dependent interactions of myosin-binding protein C and troponin coordinate the myofilament response to protein kinase A. J Biol Chem 2023; 299:102767. [PMID: 36470422 PMCID: PMC9826837 DOI: 10.1016/j.jbc.2022.102767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to β-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.
Collapse
Affiliation(s)
- Ivanka R Sevrieva
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| | - Saraswathi Ponnam
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Ziqian Yan
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
30
|
Risi CM, Villanueva E, Belknap B, Sadler RL, Harris SP, White HD, Galkin VE. Cryo-Electron Microscopy Reveals Cardiac Myosin Binding Protein-C M-Domain Interactions with the Thin Filament. J Mol Biol 2022; 434:167879. [PMID: 36370805 PMCID: PMC9771592 DOI: 10.1016/j.jmb.2022.167879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) modulates cardiac contraction via direct interactions with cardiac thick (myosin) and thin (actin) filaments (cTFs). While its C-terminal domains (e.g. C8-C10) anchor cMyBP-C to the backbone of the thick filament, its N-terminal domains (NTDs) (e.g. C0, C1, M, and C2) bind to both myosin and actin to accomplish its dual roles of inhibiting thick filaments and activating cTFs. While the positions of C0, C1 and C2 on cTF have been reported, the binding site of the M-domain on the surface of the cTF is unknown. Here, we used cryo-EM to reveal that the M-domain interacts with actin via helix 3 of its ordered tri-helix bundle region, while the unstructured part of the M-domain does not maintain extensive interactions with actin. We combined the recently obtained structure of the cTF with the positions of all the four NTDs on its surface to propose a complete model of the NTD binding to the cTF. The model predicts that the interactions of the NTDs with the cTF depend on the activation state of the cTF. At the peak of systole, when bound to the extensively activated cTF, NTDs would inhibit actomyosin interactions. In contrast, at falling Ca2+ levels, NTDs would not compete with the myosin heads for binding to the cTF, but would rather promote formation of active cross-bridges at the adjacent regulatory units located at the opposite cTF strand. Our structural data provides a testable model of the cTF regulation by the cMyBP-C.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Edwin Villanueva
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachel L Sadler
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Samantha P Harris
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
31
|
Da’as SI, Hasan W, Salem R, Younes N, Abdelrahman D, Mohamed IA, Aldaalis A, Temanni R, Mathew LS, Lorenz S, Yacoub M, Nomikos M, Nasrallah GK, Fakhro KA. Transcriptome Profile Identifies Actin as an Essential Regulator of Cardiac Myosin Binding Protein C3 Hypertrophic Cardiomyopathy in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23168840. [PMID: 36012114 PMCID: PMC9408294 DOI: 10.3390/ijms23168840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/15/2023] Open
Abstract
Variants in cardiac myosin-binding protein C (cMyBP-C) are the leading cause of inherited hypertrophic cardiomyopathy (HCM), demonstrating the key role that cMyBP-C plays in the heart’s contractile machinery. To investigate the c-MYBPC3 HCM-related cardiac impairment, we generated a zebrafish mypbc3-knockout model. These knockout zebrafish displayed significant morphological heart alterations related to a significant decrease in ventricular and atrial diameters at systolic and diastolic states at the larval stages. Immunofluorescence staining revealed significant hyperplasia in the mutant’s total cardiac and ventricular cardiomyocytes. Although cardiac contractility was similar to the wild-type control, the ejection fraction was significantly increased in the mypbc3 mutants. At later stages of larval development, the mutants demonstrated an early cardiac phenotype of myocardium remodeling, concurrent cardiomyocyte hyperplasia, and increased ejection fraction as critical processes in HCM initiation to counteract the increased ventricular myocardial wall stress. The examination of zebrafish adults showed a thickened ventricular cardiac wall with reduced heart rate, swimming speed, and endurance ability in both the mypbc3 heterozygous and homozygous groups. Furthermore, heart transcriptome profiling showed a significant downregulation of the actin-filament-based process, indicating an impaired actin cytoskeleton organization as the main dysregulating factor associated with the early ventricular cardiac hypertrophy in the zebrafish mypbc3 HCM model.
Collapse
Affiliation(s)
- Sahar Isa Da’as
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
- Australian Regenerative Medicine Institute, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Correspondence:
| | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Rola Salem
- Health Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nadine Younes
- Department of Biomedical Sciences, College of Health Science, Member of QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Doua Abdelrahman
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Iman A. Mohamed
- Australian Regenerative Medicine Institute, Monash University, Melbourne 3168, Australia
| | - Arwa Aldaalis
- Australian Regenerative Medicine Institute, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Ramzi Temanni
- Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Lisa Sara Mathew
- Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | - Stephan Lorenz
- Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar
| | | | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Science, Member of QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khalid A. Fakhro
- Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar
- Australian Regenerative Medicine Institute, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Weill Cornell Medical College, Doha P.O. Box 24811, Qatar
| |
Collapse
|
32
|
Cai F, Kampourakis T, Cockburn KT, Sykes BD. Drugging the Sarcomere, a Delicate Balance: Position of N-Terminal Charge of the Inhibitor W7. ACS Chem Biol 2022; 17:1495-1504. [PMID: 35649123 DOI: 10.1021/acschembio.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
W7 is a sarcomere inhibitor that decreases the calcium sensitivity of force development in cardiac muscle. W7 binds to the interface of the regulatory domain of cardiac troponin C (cNTnC) and the switch region of troponin I (cTnI), decreasing the binding of cTnI to cNTnC, presumably by electrostatic repulsion between the -NH3+ group of W7 and basic amino acids in cTnI. W7 analogs with a -CO2- tail are inactive. To evaluate the importance of the location of the charged -NH3+, we used a series of compounds W4, W6, W8, and W9, which have three less, one less, one more, and two more methylene groups in the tail region than W7. W6, W8, and W9 all bind tighter to cNTnC-cTnI chimera (cChimera) than W7, while W4 binds weaker. W4 and, strikingly, W6 have no effect on calcium sensitivity of force generation, while W8 and W9 decrease calcium sensitivity, but less than W7. The structures of the cChimera-W6 and cChimera-W8 complexes reveal that W6 and W8 bind to the same hydrophobic cleft as W7, with the aliphatic tail taking a similar route to the surface. NMR relaxation data show that internal flexibility in the tail of W7 is very limited. Alignment of the cChimera-W7 structure with the recent cryoEM structures of the cardiac sarcomere in the diastolic and systolic states reveals the critical location of the amino group. Small molecule induced structural changes can therefore affect the tightly balanced equilibrium between tethered components required for rapid contraction.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | - Kieran T Cockburn
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
33
|
Methawasin M, Farman GP, Granzier-Nakajima S, Strom J, Kiss B, Smith JE, Granzier H. Shortening the thick filament by partial deletion of titin's C-zone alters cardiac function by reducing the operating sarcomere length range. J Mol Cell Cardiol 2022; 165:103-114. [PMID: 35031281 PMCID: PMC8940690 DOI: 10.1016/j.yjmcc.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Titin's C-zone is an inextensible segment in titin, comprised of 11 super-repeats and located in the cMyBP-C-containing region of the thick filament. Previously we showed that deletion of titin's super-repeats C1 and C2 (TtnΔC1-2 model) results in shorter thick filaments and contractile dysfunction of the left ventricular (LV) chamber but that unexpectedly LV diastolic stiffness is normal. Here we studied the contraction-relaxation kinetics from the time-varying elastance of the LV and intact cardiomyocyte, cellular work loops of intact cardiomyocytes, Ca2+ transients, cross-bridge kinetics, and myofilament Ca2+ sensitivity. Intact cardiomyocytes of TtnΔC1-2 mice exhibit systolic dysfunction and impaired relaxation. The time-varying elastance at both LV and single-cell levels showed that activation kinetics are normal in TtnΔC1-2 mice, but that relaxation is slower. The slowed relaxation is, in part, attributable to an increased myofilament Ca2+ sensitivity and slower early Ca2+ reuptake. Cross-bridge dynamics showed that cross-bridge kinetics are normal but that the number of force-generating cross-bridges is reduced. In vivo sarcomere length (SL) measurements revealed that in TtnΔC1-2 mice the operating SL range of the LV is shifted towards shorter lengths. This normalizes the apparent cell and LV diastolic stiffness but further reduces systolic force as systole occurs further down on the ascending limb of the force-SL relation. We propose that the reduced working SLs reflect titin's role in regulating diastolic stiffness by altering the number of sarcomeres in series. Overall, our study reveals that thick filament length regulation by titin's C-zone is critical for normal cardiac function.
Collapse
Affiliation(s)
- Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Shawtaroh Granzier-Nakajima
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Balazs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| |
Collapse
|
34
|
Microscale thermophoresis suggests a new model of regulation of cardiac myosin function via interaction with cardiac myosin-binding protein C. J Biol Chem 2021; 298:101485. [PMID: 34915024 PMCID: PMC8733265 DOI: 10.1016/j.jbc.2021.101485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
The cardiac isoform of myosin-binding protein C (cMyBP-C) is a key regulatory protein found in cardiac myofilaments that can control the activation state of both the actin-containing thin and myosin-containing thick filaments. However, in contrast to thin filament–based mechanisms of regulation, the mechanism of myosin-based regulation by cMyBP-C has yet to be defined in detail. To clarify its function in this process, we used microscale thermophoresis to build an extensive interaction map between cMyBP-C and isolated fragments of β-cardiac myosin. We show here that the regulatory N-terminal domains (C0C2) of cMyBP-C interact with both the myosin head (myosin S1) and tail domains (myosin S2) with micromolar affinity via phosphorylation-independent and phosphorylation-dependent interactions of domain C1 and the cardiac-specific m-motif, respectively. Moreover, we show that the interaction sites with the highest affinity between cMyBP-C and myosin S1 are localized to its central domains, which bind myosin with submicromolar affinity. We identified two separate interaction regions in the central C2C4 and C5C7 segments that compete for the same binding site on myosin S1, suggesting that cMyBP-C can crosslink the two myosin heads of a single myosin molecule and thereby stabilize it in the folded OFF state. Phosphorylation of the cardiac-specific m-motif by protein kinase A had no effect on the binding of either the N-terminal or the central segments to the myosin head domain, suggesting this might therefore represent a constitutively bound state of myosin associated with cMyBP-C. Based on our results, we propose a new model of regulation of cardiac myosin function by cMyBP-C.
Collapse
|
35
|
Barrick SK, Greenberg MJ. Cardiac myosin contraction and mechanotransduction in health and disease. J Biol Chem 2021; 297:101297. [PMID: 34634306 PMCID: PMC8559575 DOI: 10.1016/j.jbc.2021.101297] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiac myosin is the molecular motor that powers heart contraction by converting chemical energy from ATP hydrolysis into mechanical force. The power output of the heart is tightly regulated to meet the physiological needs of the body. Recent multiscale studies spanning from molecules to tissues have revealed complex regulatory mechanisms that fine-tune cardiac contraction, in which myosin not only generates power output but also plays an active role in its regulation. Thus, myosin is both shaped by and actively involved in shaping its mechanical environment. Moreover, these studies have shown that cardiac myosin-generated tension affects physiological processes beyond muscle contraction. Here, we review these novel regulatory mechanisms, as well as the roles that myosin-based force generation and mechanotransduction play in development and disease. We describe how key intra- and intermolecular interactions contribute to the regulation of myosin-based contractility and the role of mechanical forces in tuning myosin function. We also discuss the emergence of cardiac myosin as a drug target for diseases including heart failure, leading to the discovery of therapeutics that directly tune myosin contractility. Finally, we highlight some of the outstanding questions that must be addressed to better understand myosin's functions and regulation, and we discuss prospects for translating these discoveries into precision medicine therapeutics targeting contractility and mechanotransduction.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
36
|
Kampourakis T, Irving M. The regulatory light chain mediates inactivation of myosin motors during active shortening of cardiac muscle. Nat Commun 2021; 12:5272. [PMID: 34489440 PMCID: PMC8421338 DOI: 10.1038/s41467-021-25601-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The normal function of heart muscle depends on its ability to contract more strongly at longer length. Increased venous filling stretches relaxed heart muscle cells, triggering a stronger contraction in the next beat- the Frank-Starling relation. Conversely, heart muscle cells are inactivated when they shorten during ejection, accelerating relaxation to facilitate refilling before the next beat. Although both effects are essential for the efficient function of the heart, the underlying mechanisms were unknown. Using bifunctional fluorescent probes on the regulatory light chain of the myosin motor we show that its N-terminal domain may be captured in the folded OFF state of the myosin dimer at the end of the working-stroke of the actin-attached motor, whilst its C-terminal domain joins the OFF state only after motor detachment from actin. We propose that sequential folding of myosin motors onto the filament backbone may be responsible for shortening-induced de-activation in the heart.
Collapse
Affiliation(s)
- Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK.
| | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| |
Collapse
|
37
|
Suay-Corredera C, Pricolo MR, Velázquez-Carreras D, Pathak D, Nandwani N, Pimenta-Lopes C, Sánchez-Ortiz D, Urrutia-Irazabal I, Vilches S, Dominguez F, Frisso G, Monserrat L, García-Pavía P, de Sancho D, Spudich JA, Ruppel KM, Herrero-Galán E, Alegre-Cebollada J. Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy. ACS NANO 2021; 15:10203-10216. [PMID: 34060810 PMCID: PMC8514129 DOI: 10.1021/acsnano.1c02242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
| | | | - Divya Pathak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - David Sánchez-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate, scarl, 80145, Naples, Italy
| | | | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018, Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | |
Collapse
|
38
|
Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing. Proc Natl Acad Sci U S A 2021; 118:2023706118. [PMID: 33850019 PMCID: PMC8072254 DOI: 10.1073/pnas.2023706118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The efficiency of the heart as a pump depends on an autoregulatory mechanism, the Frank–Starling law of the heart, that potentiates the strength of contraction in response to an increase in ventricular filling. Disruption of this mechanism compromises the ability of the heart to pump blood, potentially leading to heart failure. We used fluorescent probes on myosin in heart muscle cells to investigate the molecular basis of the Frank–Starling mechanism. Our results show that the stronger contraction of heart muscle at longer lengths is due to a calcium-dependent interfilament signaling pathway that links stress sensing in the myosin-containing filaments with calcium activation of the actin-containing filaments. This pathway can potentially be targeted for treating heart failure. Myosin-based regulation in the heart muscle modulates the number of myosin motors available for interaction with calcium-regulated thin filaments, but the signaling pathways mediating the stronger contraction triggered by stretch between heartbeats or by phosphorylation of the myosin regulatory light chain (RLC) remain unclear. Here, we used RLC probes in demembranated cardiac trabeculae to investigate the molecular structural basis of these regulatory pathways. We show that in relaxed trabeculae at near-physiological temperature and filament lattice spacing, the RLC-lobe orientations are consistent with a subset of myosin motors being folded onto the filament surface in the interacting-heads motif seen in isolated filaments. The folded conformation of myosin is disrupted by cooling relaxed trabeculae, similar to the effect induced by maximal calcium activation. Stretch or increased RLC phosphorylation in the physiological range have almost no effect on RLC conformation at a calcium concentration corresponding to that between beats. These results indicate that in near-physiological conditions, the folded myosin motors are not directly switched on by RLC phosphorylation or by the titin-based passive tension at longer sarcomere lengths in the absence of thin filament activation. However, at the higher calcium concentrations that activate the thin filaments, stretch produces a delayed activation of folded myosin motors and force increase that is potentiated by RLC phosphorylation. We conclude that the increased contractility of the heart induced by RLC phosphorylation and stretch can be explained by a calcium-dependent interfilament signaling pathway involving both thin filament sensitization and thick filament mechanosensing.
Collapse
|
39
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
40
|
Giles J, Fitzsimons DP, Patel JR, Knudtsen C, Neuville Z, Moss RL. cMyBP-C phosphorylation modulates the time-dependent slowing of unloaded shortening in murine skinned myocardium. J Gen Physiol 2021; 153:e202012782. [PMID: 33566084 PMCID: PMC7879488 DOI: 10.1085/jgp.202012782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
In myocardium, phosphorylation of cardiac myosin-binding protein-C (cMyBP-C) is thought to modulate the cooperative activation of the thin filament by binding to myosin and/or actin, thereby regulating the probability of cross-bridge binding to actin. At low levels of Ca2+ activation, unloaded shortening velocity (Vo) in permeabilized cardiac muscle is comprised of an initial high-velocity phase and a subsequent low-velocity phase. The velocities in these phases scale with the level of activation, culminating in a single high-velocity phase (Vmax) at saturating Ca2+. To test the idea that cMyBP-C phosphorylation contributes to the activation dependence of Vo, we measured Vo before and following treatment with protein kinase A (PKA) in skinned trabecula isolated from mice expressing either wild-type cMyBP-C (tWT), nonphosphorylatable cMyBP-C (t3SA), or phosphomimetic cMyBP-C (t3SD). During maximal Ca2+ activation, Vmax was monophasic and not significantly different between the three groups. Although biphasic shortening was observed in all three groups at half-maximal activation under control conditions, the high- and low-velocity phases were faster in the t3SD myocardium compared with values obtained in either tWT or t3SA myocardium. Treatment with PKA significantly accelerated both the high- and low-velocity phases in tWT myocardium but had no effect on Vo in either the t3SD or t3SA myocardium. These results can be explained in terms of a model in which the level of cMyBP-C phosphorylation modulates the extent and rate of cooperative spread of myosin binding to actin.
Collapse
Affiliation(s)
- Jasmine Giles
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| | - Daniel P. Fitzsimons
- Department of Animal, Veterinary and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID
| | - Jitandrakumar R. Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| | - Chloe Knudtsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| | - Zander Neuville
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| |
Collapse
|
41
|
Rahmanseresht S, Lee KH, O’Leary TS, McNamara JW, Sadayappan S, Robbins J, Warshaw DM, Craig R, Previs MJ. The N terminus of myosin-binding protein C extends toward actin filaments in intact cardiac muscle. J Gen Physiol 2021; 153:e202012726. [PMID: 33528507 PMCID: PMC7852460 DOI: 10.1085/jgp.202012726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Myosin and actin filaments are highly organized within muscle sarcomeres. Myosin-binding protein C (MyBP-C) is a flexible, rod-like protein located within the C-zone of the sarcomere. The C-terminal domain of MyBP-C is tethered to the myosin filament backbone, and the N-terminal domains are postulated to interact with actin and/or the myosin head to modulate filament sliding. To define where the N-terminal domains of MyBP-C are localized in the sarcomere of active and relaxed mouse myocardium, the relative positions of the N terminus of MyBP-C and actin were imaged in fixed muscle samples using super-resolution fluorescence microscopy. The resolution of the imaging was enhanced by particle averaging. The images demonstrate that the position of the N terminus of MyBP-C is biased toward the actin filaments in both active and relaxed muscle preparations. Comparison of the experimental images with images generated in silico, accounting for known binding partner interactions, suggests that the N-terminal domains of MyBP-C may bind to actin and possibly the myosin head but only when the myosin head is in the proximity of an actin filament. These physiologically relevant images help define the molecular mechanism by which the N-terminal domains of MyBP-C may search for, and capture, molecular binding partners to tune cardiac contractility.
Collapse
Affiliation(s)
- Sheema Rahmanseresht
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| | - Kyoung H. Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Thomas S. O’Leary
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| | - James W. McNamara
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH
| | - Jeffrey Robbins
- Department of Pediatrics and the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| |
Collapse
|
42
|
Caremani M, Fusi L, Linari M, Reconditi M, Piazzesi G, Irving TC, Narayanan T, Irving M, Lombardi V, Brunello E. Dependence of thick filament structure in relaxed mammalian skeletal muscle on temperature and interfilament spacing. J Gen Physiol 2021; 153:211664. [PMID: 33416833 PMCID: PMC7802359 DOI: 10.1085/jgp.202012713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022] Open
Abstract
Contraction of skeletal muscle is regulated by structural changes in both actin-containing thin filaments and myosin-containing thick filaments, but myosin-based regulation is unlikely to be preserved after thick filament isolation, and its structural basis remains poorly characterized. Here, we describe the periodic features of the thick filament structure in situ by high-resolution small-angle x-ray diffraction and interference. We used both relaxed demembranated fibers and resting intact muscle preparations to assess whether thick filament regulation is preserved in demembranated fibers, which have been widely used for previous studies. We show that the thick filaments in both preparations exhibit two closely spaced axial periodicities, 43.1 nm and 45.5 nm, at near-physiological temperature. The shorter periodicity matches that of the myosin helix, and x-ray interference between the two arrays of myosin in the bipolar filament shows that all zones of the filament follow this periodicity. The 45.5-nm repeat has no helical component and originates from myosin layers closer to the filament midpoint associated with the titin super-repeat in that region. Cooling relaxed or resting muscle, which partially mimics the effects of calcium activation on thick filament structure, disrupts the helical order of the myosin motors, and they move out from the filament backbone. Compression of the filament lattice of demembranated fibers by 5% Dextran, which restores interfilament spacing to that in intact muscle, stabilizes the higher-temperature structure. The axial periodicity of the filament backbone increases on cooling, but in lattice-compressed fibers the periodicity of the myosin heads does not follow the extension of the backbone. Thick filament structure in lattice-compressed demembranated fibers at near-physiological temperature is similar to that in intact resting muscle, suggesting that the native structure of the thick filament is largely preserved after demembranation in these conditions, although not in the conditions used for most previous studies with this preparation.
Collapse
Affiliation(s)
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| | - Massimo Reconditi
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| | | | - Thomas C Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Elisabetta Brunello
- PhysioLab, University of Florence, Florence, Italy.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
43
|
Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction. Int J Mol Sci 2020; 21:ijms21218399. [PMID: 33182367 PMCID: PMC7664901 DOI: 10.3390/ijms21218399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
Muscle contraction results from cyclic interactions between myosin II motors and actin with two sets of proteins organized in overlapping thick and thin filaments, respectively, in a nearly crystalline lattice in a muscle sarcomere. However, a sarcomere contains a huge number of other proteins, some with important roles in muscle contraction. In particular, these include thin filament proteins, troponin and tropomyosin; thick filament proteins, myosin binding protein C; and the elastic protein, titin, that connects the thin and thick filaments. Furthermore, the order and 3D organization of the myofilament lattice may be important per se for contractile function. It is possible to model muscle contraction based on actin and myosin alone with properties derived in studies using single molecules and biochemical solution kinetics. It is also possible to reproduce several features of muscle contraction in experiments using only isolated actin and myosin, arguing against the importance of order and accessory proteins. Therefore, in this paper, it is hypothesized that “single molecule actomyosin properties account for the contractile properties of a half sarcomere during shortening and isometric contraction at almost saturating Ca concentrations”. In this paper, existing evidence for and against this hypothesis is reviewed and new modeling results to support the arguments are presented. Finally, further experimental tests are proposed, which if they corroborate, at least approximately, the hypothesis, should significantly benefit future effective analysis of a range of experimental studies, as well as drug discovery efforts.
Collapse
|
44
|
Li J, Mamidi R, Doh CY, Holmes JB, Bharambe N, Ramachandran R, Stelzer JE. AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC-deficient mice. JCI Insight 2020; 5:130182. [PMID: 32750038 PMCID: PMC7526450 DOI: 10.1172/jci.insight.130182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/29/2020] [Indexed: 01/05/2023] Open
Abstract
Decreased cardiac myosin-binding protein C (cMyBPC) expression due to inheritable mutations is thought to contribute to the hypertrophic cardiomyopathy (HCM) phenotype, suggesting that increasing cMyBPC content is of therapeutic benefit. In vitro assays show that cMyBPC N-terminal domains (NTDs) contain structural elements necessary and sufficient to modulate actomyosin interactions, but it is unknown if they can regulate in vivo myocardial function. To test whether NTDs can recapitulate the effects of full-length (FL) cMyBPC in rescuing cardiac function in a cMyBPC-null mouse model of HCM, we assessed the efficacy of AAV9 gene transfer of a cMyBPC NTD that contained domains C0C2 and compared its therapeutic potential with AAV9-FL gene replacement. AAV9 vectors were administered systemically at neonatal day 1, when early-onset disease phenotypes begin to manifest. A comprehensive analysis of in vivo and in vitro function was performed following cMyBPC gene transfer. Our results show that a systemic injection of AAV9-C0C2 significantly improved cardiac function (e.g., 52.24 ± 1.69 ejection fraction in the C0C2-treated group compared with 40.07 ± 1.97 in the control cMyBPC–/– group, P < 0.05) and reduced the histopathologic signs of cardiomyopathy. Furthermore, C0C2 significantly slowed and normalized the accelerated cross-bridge kinetics found in cMyBPC–/– control myocardium, as evidenced by a 32.41% decrease in the rate of cross-bridge detachment (krel). Results indicate that C0C2 can rescue biomechanical defects of cMyBPC deficiency and that the NTD may be a target region for therapeutic myofilament kinetic manipulation. Cardiac function improves following AAV9-mediated delivery of the C0C2 domains of cardiac myosin-binding protein C in a mouse model of hypertrophic cardiomyopathy.
Collapse
|
45
|
Cai F, Robertson IM, Kampourakis T, Klein BA, Sykes BD. The Role of Electrostatics in the Mechanism of Cardiac Thin Filament Based Sensitizers. ACS Chem Biol 2020; 15:2289-2298. [PMID: 32633482 DOI: 10.1021/acschembio.0c00519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heart muscle contraction is regulated by calcium binding to cardiac troponin C. This induces troponin I (cTnI) switch region binding to the regulatory domain of troponin C (cNTnC), pulling the cTnI inhibitory region off actin and triggering muscle contraction. Small molecules targeting this cNTnC-cTnI interface have potential in the treatment of heart disease. Most of these have an aromatic core which binds to the hydrophobic core of cNTnC, and a polar and often charged 'tail'. The calmodulin antagonist W7 is unique in that it acts as calcium desensitizer. W7 binds to the interface of cNTnC and cTnI switch region and weakens cTnI binding, possibly by electrostatic repulsion between the positively charged terminal amino group of W7 and the positively charged RRVR144-147 region of cTnI. To evaluate the role of electrostatics, we synthesized A7, where the amino group of W7 was replaced with a carboxyl group. We determined the high-resolution solution NMR structure of A7 bound to a cNTnC-cTnI chimera. The structure shows that A7 does not change the overall conformation of the cNTnC-cTnI interface, and the naphthalene ring of A7 sits in the same hydrophobic pocket as that of W7, but the charged tail takes a different route to the surface of the complex, especially with respect to the position of the switch region of cTnI. We measured the affinities of A7 for cNTnC and the cNTnC-cTnI complex and that of the cTnI switch peptide for the cNTnC-A7 complex. We also compared the binding of W7 and A7 for two cNTnC-cTnI chimeras, differing in the presence or absence of the RRVR region of cTnI. A7 decreased the binding affinity of cTnI to cNTnC substantially less than W7 and bound more tightly to the more positively charged chimera. We tested the effects of W7 and A7 on the force-calcium relation of demembranated rat right ventricular trabeculae and demonstrated that A7 has a much weaker desensitization effect than W7. We also synthesized A6, which has one less methylene group on the hydrocarbon chain than A7. A6 did not affect binding of cTnI switch peptide nor change the calcium sensitivity of ventricular trabeculae. These results suggest that the negative inotropic effect of W7 may result from a combination of electrostatic repulsion and steric hindrance with cTnI.
Collapse
Affiliation(s)
- Fangze Cai
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ian M. Robertson
- Ministry of Health, Government of Alberta, Edmonton, AB T5J 1S6, Canada
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Brittney A. Klein
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
46
|
Bennett P, Rees M, Gautel M. The Axial Alignment of Titin on the Muscle Thick Filament Supports Its Role as a Molecular Ruler. J Mol Biol 2020; 432:4815-4829. [PMID: 32619437 PMCID: PMC7427331 DOI: 10.1016/j.jmb.2020.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023]
Abstract
The giant protein titin is expressed in vertebrate striated muscle where it spans half a sarcomere from the Z-disc to the M-band and is essential for muscle organisation, activity and health. The C-terminal portion of titin is closely associated with the thick, myosin-containing filament and exhibits a complex pattern of immunoglobulin and fibronectin domains. This pattern reflects features of the filament organisation suggesting that it acts as a molecular ruler and template, but the exact axial disposition of the molecule has not been determined. Here, we present data that allow us to precisely locate titin domains axially along the thick filament from its tip to the edge of the bare zone. We find that the domains are regularly distributed along the filament at 4-nm intervals and we can determine the domains that associate with features of the filament, such as the 11 stripes of accessory proteins. We confirm that the nine stripes ascribed to myosin binding protein-C are not related to the titin sequence previously assumed; rather, they relate to positions approximately 18 domains further towards the C terminus along titin. This disposition also allows a subgroup of titin domains comprising two or three fibronectin domains to associate with each of the 49 levels of myosin heads in each half filament. The results strongly support the role of titin as a blueprint for the thick filament and the arrangement of the myosin motor domains.
Collapse
Affiliation(s)
- Pauline Bennett
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | - Martin Rees
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| | - Mathias Gautel
- The Randall Centre for Cell & Molecular Biophysics, School of Basic and Medical Biosciences, New Hunt's House, Guy's Campus, King's College London, London, UK.
| |
Collapse
|
47
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
48
|
Abstract
Cardiovascular disease continues to be the leading cause of death worldwide, and is frequently associated with heart failure. Efforts to develop better therapeutics for heart failure have been held back by limited understanding of the normal control of contraction on the timescale of the heartbeat. We used synchrotron X-ray diffraction to determine the dynamic structural changes in the myosin motors that drive contraction in the heart muscle, and show that myosin filament-based control mechanisms determine the time course and strength of contraction, allowing those mechanisms to be targeted for developing new therapies for heart disease. Myosin-based mechanisms are increasingly recognized as supplementing their better-known actin-based counterparts to control the strength and time course of contraction in both skeletal and heart muscle. Here we use synchrotron small-angle X-ray diffraction to determine the structural dynamics of local domains of the myosin filament during contraction of heart muscle. We show that, although myosin motors throughout the filament contribute to force development, only about 10% of the motors in each filament bear the peak force, and these are confined to the filament domain containing myosin binding protein-C, the “C-zone.” Myosin motors in domains further from the filament midpoint are likely to be activated and inactivated first in each contraction. Inactivated myosin motors are folded against the filament core, and a subset of folded motors lie on the helical tracks described previously. These helically ordered motors are also likely to be confined to the C-zone, and the associated motor conformation reforms only slowly during relaxation. Myosin filament stress-sensing determines the strength and time course of contraction in conjunction with actin-based regulation. These results establish the fundamental roles of myosin filament domains and the associated motor conformations in controlling the strength and dynamics of contraction in heart muscle, enabling those structures to be targeted to develop new therapies for heart disease.
Collapse
|
49
|
Heling LWHJ, Geeves MA, Kad NM. MyBP-C: one protein to govern them all. J Muscle Res Cell Motil 2020; 41:91-101. [PMID: 31960266 PMCID: PMC7109175 DOI: 10.1007/s10974-019-09567-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
The heart is an extraordinarily versatile pump, finely tuned to respond to a multitude of demands. Given the heart pumps without rest for decades its efficiency is particularly relevant. Although many proteins in the heart are essential for viability, the non-essential components can attract numerous mutations which can cause disease, possibly through alterations in pumping efficiency. Of these, myosin binding protein C is strongly over-represented with ~ 40% of all known mutations in hypertrophic cardiomyopathy. Therefore, a complete understanding of its molecular function in the cardiac sarcomere is warranted. In this review, we revisit contemporary and classical literature to clarify both the current standing of this fast-moving field and frame future unresolved questions. To date, much effort has been directed at understanding MyBP-C function on either thick or thin filaments. Here we aim to focus questions on how MyBP-C functions at a molecular level in the context of both the thick and thin filaments together. A concept that emerges is MyBP-C acts to govern interactions on two levels; controlling myosin access to the thin filament by sequestration on the thick filament, and controlling the activation state and access of myosin to its binding sites on the thin filament. Such affects are achieved through directed interactions mediated by phosphorylation (of MyBP-C and other sarcomeric components) and calcium.
Collapse
Affiliation(s)
- L W H J Heling
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - M A Geeves
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - N M Kad
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
50
|
Bunch TA, Kanassatega RS, Lepak VC, Colson BA. Human cardiac myosin-binding protein C restricts actin structural dynamics in a cooperative and phosphorylation-sensitive manner. J Biol Chem 2019; 294:16228-16240. [PMID: 31519753 PMCID: PMC6827302 DOI: 10.1074/jbc.ra119.009543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein that influences actin-myosin interactions. cMyBP-C alters myofilament structure and contractile properties in a protein kinase A (PKA) phosphorylation-dependent manner. To determine the effects of cMyBP-C and its phosphorylation on the microsecond rotational dynamics of actin filaments, we attached a phosphorescent probe to F-actin at Cys-374 and performed transient phosphorescence anisotropy (TPA) experiments. Binding of cMyBP-C N-terminal domains (C0-C2) to labeled F-actin reduced rotational flexibility by 20-25°, indicated by increased final anisotropy of the TPA decay. The effects of C0-C2 on actin TPA were highly cooperative (n = ∼8), suggesting that the cMyBP-C N terminus impacts the rotational dynamics of actin spanning seven monomers (i.e. the length of tropomyosin). PKA-mediated phosphorylation of C0-C2 eliminated the cooperative effects on actin flexibility and modestly increased actin rotational rates. Effects of Ser to Asp phosphomimetic substitutions in the M-domain of C0-C2 on actin dynamics only partially recapitulated the phosphorylation effects. C0-C1 (lacking M-domain/C2) similarly exhibited reduced cooperativity, but not as reduced as by phosphorylated C0-C2. These results suggest an important regulatory role of the M-domain in cMyBP-C effects on actin structural dynamics. In contrast, phosphomimetic substitution of the glycogen synthase kinase (GSK3β) site in the Pro/Ala-rich linker of C0-C2 did not significantly affect the TPA results. We conclude that cMyBP-C binding and PKA-mediated phosphorylation can modulate actin dynamics. We propose that these N-terminal cMyBP-C-induced changes in actin dynamics help explain the functional effects of cMyBP-C phosphorylation on actin-myosin interactions.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| | | | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| |
Collapse
|