1
|
Garelja M, Alexander T, Walker C, Hay D. Extracellular bimolecular fluorescence complementation for investigating membrane protein dimerization: a proof of concept using class B GPCRs. Biosci Rep 2024; 44:BSR20240449. [PMID: 39361899 PMCID: PMC11499381 DOI: 10.1042/bsr20240449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Bimolecular fluorescence complementation (BiFC) methodology uses split fluorescent proteins to detect interactions between proteins in living cells. To date, BiFC has been used to investigate receptor dimerization by splitting the fluorescent protein between the intracellular portions of different receptor components. We reasoned that attaching these split proteins to the extracellular N-terminus instead may improve the flexibility of this methodology and reduce the likelihood of impaired intracellular signal transduction. As a proof-of-concept, we used receptors for calcitonin gene-related peptide, which comprise heterodimers of either the calcitonin or calcitonin receptor-like receptor in complex with an accessory protein (receptor activity-modifying protein 1). We created fusion constructs in which split mVenus fragments were attached to either the C-termini or N-termini of receptor subunits. The resulting constructs were transfected into Cos7 and HEK293S cells, where we measured cAMP production in response to ligand stimulation, cell surface expression of receptor complexes, and BiFC fluorescence. Additionally, we investigated ligand-dependent internalization in HEK293S cells. We found N-terminal fusions were better tolerated with regards to cAMP signaling and receptor internalization. N-terminal fusions also allowed reconstitution of functional fluorescent mVenus proteins; however, fluorescence yields were lower than with C-terminal fusion. Our results suggest that BiFC methodologies can be applied to the receptor N-terminus, thereby increasing the flexibility of this approach, and enabling further insights into receptor dimerization.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Tyla I. Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Roy S, Sinha S, Silas AJ, Ghassemian M, Kufareva I, Ghosh P. Growth factor-dependent phosphorylation of Gα i shapes canonical signaling by G protein-coupled receptors. Sci Signal 2024; 17:eade8041. [PMID: 38833528 PMCID: PMC11328959 DOI: 10.1126/scisignal.ade8041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gβγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gβγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.
Collapse
Affiliation(s)
- Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Ananta James Silas
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, San Diego, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
- Department of Medicine, University of California San Diego, CA 92093, USA
- Moore’s Comprehensive Cancer Center, University of California San Diego, CA 92093, USA
| |
Collapse
|
3
|
Shewani K, Madhu MK, Murarka RK. Mechanistic insights into G-protein activation via phosphorylation mediated non-canonical pathway. Biophys Chem 2024; 309:107234. [PMID: 38603989 DOI: 10.1016/j.bpc.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Activation of heterotrimeric G-proteins (Gαβγ) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of Gα that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce Gα activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the Gαi3, a subtype of Gα-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix αF, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated Gαi3. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.
Collapse
Affiliation(s)
- Kunal Shewani
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Rajesh K Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
4
|
Qiao L, Sinha S, Abd El‐Hafeez AA, Lo I, Midde KK, Ngo T, Aznar N, Lopez‐Sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells. Mol Syst Biol 2023; 19:e11127. [PMID: 36856068 PMCID: PMC10090951 DOI: 10.15252/msb.202211127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Amer Ali Abd El‐Hafeez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Present address:
Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer InstituteCairo UniversityCairoEgypt
| | - I‐Chung Lo
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Krishna K Midde
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of California San DiegoLa JollaCAUSA
| | - Nicolas Aznar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Inmaculada Lopez‐Sanchez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Vijay Gupta
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Marilyn G Farquhar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Moores Comprehensive Cancer CenterUniversity of California San DiegoLa JollaCAUSA
- Department of Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Veterans Affairs Medical CenterLa JollaCAUSA
| |
Collapse
|
5
|
Abd El-Hafeez AA, Sun N, Chakraborty A, Ear J, Roy S, Chamarthi P, Rajapakse N, Das S, Luker KE, Hazra TK, Luker GD, Ghosh P. Regulation of DNA damage response by trimeric G-proteins. iScience 2023; 26:105973. [PMID: 36756378 PMCID: PMC9900518 DOI: 10.1016/j.isci.2023.105973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/14/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Upon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of the two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DSBs hinges on GIV/Girdin, a guanine nucleotide-exchange modulator of heterotrimeric Giα•βγ protein. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1's BRCT-modules via both phospho-dependent and -independent mechanisms. Using another non-overlapping C-terminal motif GIV binds and activates Gi and enhances the "free" Gβγ→PI-3-kinase→Akt pathway, which promotes survival and is known to suppress HR, favor NHEJ. Absence of GIV, or loss of either of its C-terminal motifs enhanced cell death upon genotoxic stress. Because GIV selectively binds other BRCT-containing proteins suggests that G-proteins may fine-tune sensing, repair, and survival after diverse types of DNA damage.
Collapse
Affiliation(s)
- Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nina Sun
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason Ear
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pranavi Chamarthi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Veterans Affairs Medical Center, La Jolla, CA, USA
| |
Collapse
|
6
|
Qiao L, Ghosh P, Rangamani P. Design principles of improving the dose-response alignment in coupled GTPase switches. NPJ Syst Biol Appl 2023; 9:3. [PMID: 36720885 PMCID: PMC9889403 DOI: 10.1038/s41540-023-00266-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
"Dose-response alignment" (DoRA), where the downstream response of cellular signaling pathways closely matches the fraction of activated receptor, can improve the fidelity of dose information transmission. The negative feedback has been experimentally identified as a key component for DoRA, but numerical simulations indicate that negative feedback is not sufficient to achieve perfect DoRA, i.e., perfect match of downstream response and receptor activation level. Thus a natural question is whether there exist design principles for signaling motifs within only negative feedback loops to improve DoRA to near-perfect DoRA. Here, we investigated several model formulations of an experimentally validated circuit that couples two molecular switches-mGTPase (monomeric GTPase) and tGTPase (heterotrimeric GTPases) - with negative feedback loops. In the absence of feedback, the low and intermediate mGTPase activation levels benefit DoRA in mass action and Hill-function models, respectively. Adding negative feedback has versatile roles on DoRA: it may impair DoRA in the mass action model with low mGTPase activation level and Hill-function model with intermediate mGTPase activation level; in other cases, i.e., the mass action model with a high mGTPase activation level or the Hill-function model with a non-intermediate mGTPase activation level, it improves DoRA. Furthermore, we found that DoRA in a longer cascade (i.e., tGTPase) can be obtained using Hill-function kinetics under certain conditions. In summary, we show how ranges of activity of mGTPase, reaction kinetics, the negative feedback, and the cascade length affect DoRA. This work provides a framework for improving the DoRA performance in signaling motifs with negative feedback.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Mechanical and Aerospace Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Reynoso S, Castillo V, Katkar GD, Lopez-Sanchez I, Taheri S, Espinoza C, Rohena C, Sahoo D, Gagneux P, Ghosh P. GIV/Girdin, a non-receptor modulator for Gαi/s, regulates spatiotemporal signaling during sperm capacitation and is required for male fertility. eLife 2021; 10:69160. [PMID: 34409938 PMCID: PMC8376251 DOI: 10.7554/elife.69160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.
Collapse
Affiliation(s)
- Sequoyah Reynoso
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Inmaculada Lopez-Sanchez
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States
| | - Celia Espinoza
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Cristina Rohena
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, United States
| | - Pascal Gagneux
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Department of Medicine, School of Medicine, University of California San Diego, San Diego, United States.,Moore's Comprehensive Cancer Center, University of California San Diego, San Diego, United States.,Veterans Affairs Medical Center, Washington DC, United States
| |
Collapse
|
8
|
Abd El-hafeez AA, Sun N, Chakraborty A, Ear J, Roy S, Chamarthi P, Rajapakse N, Das S, Luker KE, Hazra TK, Luker GD, Ghosh P. Regulation of DNA damage response by trimeric G-protein Signaling.. [DOI: 10.1101/2021.07.21.452842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractUpon sensing DNA double-strand breaks (DSBs), eukaryotic cells either die or repair DSBs via one of two competing pathways, i.e., non-homologous end-joining (NHEJ) or homologous recombination (HR). We show that cell fate after DNA damage hinges on the guanine nucleotide-exchange modulator of heterotrimeric G-protein, Giα•βγ, GIV/Girdin. GIV suppresses HR by binding and sequestering BRCA1, a key coordinator of multiple steps within the HR pathway, away from DSBs; it does so using a C-terminal motif that binds BRCA1’s BRCT-modules via both phospho-dependent and -independent mechanisms. GIV promotes NHEJ, and binds and activates Gi and enhances the ‘free’ Gβγ→PI-3-kinase→Akt pathway, thus revealing the enigmatic origin of prosurvival Akt signals during dsDNA repair. Absence of GIV, or the loss of either of its two functions impaired DNA repair, and induced cell death when challenged with numerous cytotoxic agents. That GIV selectively binds few other BRCT-containing proteins suggests convergent signaling such that heterotrimeric G-proteins may finetune sensing, repair, and outcome after DNA damage.GRAPHIC ABSTRACTHIGHLIGHTSNon-receptor G protein modulator, GIV/Girdin binds BRCA1Binding occurs in both canonical and non-canonical modesGIV sequesters BRCA1 away from dsDNA breaks, suppresses HRActivation of Gi by GIV enhances Akt signals, favors NHEJIN BRIEFIn this work, the authors show that heterotrimeric G protein signaling that is triggered by non-receptor GEF, GIV/Girdin, in response to double-stranded DNA breaks is critical for decisive signaling events which favor non-homologous end-joining (NHEJ) and inhibit homologous recombination (HR).
Collapse
|
9
|
Ghosh P, Mullick M. Building unconventional G protein-coupled receptors, one block at a time. Trends Pharmacol Sci 2021; 42:514-517. [PMID: 33985816 DOI: 10.1016/j.tips.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The structure, function, and dynamics of canonical activation of heterotrimeric G proteins by the seven-transmembrane G protein-coupled receptors (GPCRs) have been illustrated in detail. However, emerging studies during the past decade have started to shed light on how the same G proteins may also be accessed and modulated by a diverse family of receptors that are not conventional GPCRs. Can we learn about common themes and variations in how cells assemble these atypical GPCRs?
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Medicine, University of California, San Diego, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA.
| | - Madhubanti Mullick
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
| |
Collapse
|
10
|
Garcia-Marcos M. Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators. eLife 2021; 10:65620. [PMID: 33787494 PMCID: PMC8034979 DOI: 10.7554/elife.65620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
It has become evident that activation of heterotrimeric G-proteins by cytoplasmic proteins that are not G-protein-coupled receptors (GPCRs) plays a role in physiology and disease. Despite sharing the same biochemical guanine nucleotide exchange factor (GEF) activity as GPCRs in vitro, the mechanisms by which these cytoplasmic proteins trigger G-protein-dependent signaling in cells have not been elucidated. Heterotrimeric G-proteins can give rise to two active signaling species, Gα-GTP and dissociated Gβγ, with different downstream effectors, but how non-receptor GEFs affect the levels of these two species in cells is not known. Here, a systematic comparison of GPCRs and three unrelated non-receptor proteins with GEF activity in vitro (GIV/Girdin, AGS1/Dexras1, and Ric-8A) revealed high divergence in their contribution to generating Gα-GTP and free Gβγ in cells directly measured with live-cell biosensors. These findings demonstrate fundamental differences in how receptor and non-receptor G-protein activators promote signaling in cells despite sharing similar biochemical activities in vitro.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
11
|
Qiao L, Sinha S, El-hafeez AAA, Lo I, Midde KK, Ngo T, Aznar N, Lopez-sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A Circuit for Secretion-coupled Cellular Autonomy in Multicellular Eukaryotes.. [DOI: 10.1101/2021.03.18.436048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTCancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell’s ability to ‘secrete-and-sense’ growth factors: a poorly understood phenomenon. Using an integrated systems and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control (CLC), allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint growth factors (e.g., the epidermal growth factor; EGF) as a key stimuli for such self-sustenance. Findings highlight how enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.SYNOPSIS IMAGESTANDFIRST TEXTThis work defines the inner workings of a Golgi-localized molecular circuitry comprised of coupled GTPases, which empowers cells to achieve self-sufficiency in growth factor signaling by creating a secrete-and-sense autocrine loop.HIGHLIGHTS/MAIN FINDINGSModeling and experimental approaches were used to dissect a coupled GTPase circuit.Coupling enables closed loop feedback and mutual control of GTPases.Coupling generates dose response alignment behavior of sensing and secretion of growth factors.Coupling is critical for multiscale feedback control to achieve secretion-coupled autonomy.
Collapse
|
12
|
Ear J, Abd El-Hafeez AA, Roy S, Ngo T, Rajapakse N, Choi J, Khandelwal S, Ghassemian M, McCaffrey L, Kufareva I, Sahoo D, Ghosh P. A long isoform of GIV/Girdin contains a PDZ-binding module that regulates localization and G-protein binding. J Biol Chem 2021; 296:100493. [PMID: 33675748 PMCID: PMC8042451 DOI: 10.1016/j.jbc.2021.100493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
PDZ domains are one of the most abundant protein domains in eukaryotes and are frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and fine-tune cellular signaling. However, how such interaction affects protein function is difficult to predict and must be solved empirically. Here we describe a long isoform of the guanine nucleotide exchange factor GIV/Girdin (CCDC88A) that we named GIV-L, which is conserved throughout evolution, from invertebrates to vertebrates, and contains a PBM. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes onto cell junctions and has a PDZ interactome (as shown through annotating Human Cell Map and BioID-proximity labeling studies), which impacts GIV-L's ability to bind and activate trimeric G-protein, Gαi, through its guanine-nucleotide exchange modulator (GEM) module. This GEM module is found exclusively in vertebrates. We propose that the two functional modules in GIV may have evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analysis in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how regulation in GIV/CCDC88A transcript helps to achieve protein modularity, which allows the protein to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).
Collapse
Affiliation(s)
- Jason Ear
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Biological Sciences Department, California State Polytechnic University, Pomona, California, USA.
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Julie Choi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Soni Khandelwal
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA; Department of Medicine, University of California San Diego, La Jolla, California, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, California, USA; Veterans Affairs Medical Center, La Jolla, California, USA.
| |
Collapse
|
13
|
Receptor tyrosine kinases activate heterotrimeric G proteins via phosphorylation within the interdomain cleft of Gαi. Proc Natl Acad Sci U S A 2020; 117:28763-28774. [PMID: 33139573 DOI: 10.1073/pnas.2004699117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαi•βγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes.
Collapse
|
14
|
Ear J, Ali Abd El-hafeez A, Roy S, Ngo T, Rajapakse N, Choi J, Khandelwal S, Ghassemian M, Mccaffrey L, Kufareva I, Sahoo D, Ghosh P. Evolution of Modularity, Interactome and Functions of GIV/Girdin (CCDC88A) from Invertebrates to Vertebrates.. [DOI: 10.1101/2020.09.28.317172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractPDZ domains are one of the most abundant protein domains in eukaryotes and frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and finetune cellular signaling. Here we describe the presence of a PBM on GIV/Girdin (CCDC88A) that is conserved throughout evolution, from invertebrates to vertebrates, and is generated as a long isoform-variant in humans, which we named GIV-L. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes to the cell junctions, and has a unique PDZ-interactome, which impacts GIV-L’s ability to bind and activate trimeric G-protein, Gi through its guanine-nucleotide exchange modulator (GEM) module; the GEM module is found exclusively in vertebrates. Thus, the two functional modules in GIV evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analyses in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how GIV/CCDC88A in humans displays evolutionary flexibility in modularity, which allows the resultant isoforms to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).
Collapse
|
15
|
Rohena C, Kalogriopoulos N, Rajapakse N, Roy S, Lopez-Sanchez I, Ablack J, Sahoo D, Ghosh P. GIV•Kindlin Interaction Is Required for Kindlin-Mediated Integrin Recognition and Activation. iScience 2020; 23:101209. [PMID: 32535026 PMCID: PMC7300163 DOI: 10.1016/j.isci.2020.101209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/15/2020] [Accepted: 05/24/2020] [Indexed: 11/16/2022] Open
Abstract
Cells perceive and respond to the extracellular matrix via integrin receptors; their dysregulation has been implicated in inflammation and cancer metastasis. Here we show that a guanine nucleotide-exchange modulator of trimeric-GTPase Gαi, GIV (a.k.a Girdin), directly binds the integrin adaptor Kindlin-2. A non-canonical short linear motif within the C terminus of GIV binds Kindlin-2-FERM3 domain at a site that is distinct from the binding site for the canonical NPxY motif on the -integrin tail. Binding of GIV to Kindlin-2 allosterically enhances Kindlin-2's affinity for β1-integrin. Consequently, integrin activation and clustering are maximized, which augments cell adhesion, spreading, and invasion. Findings elucidate how the GIV•Kindlin-2 complex has a 2-fold impact: it allosterically synergizes integrin activation and enables β1-integrins to indirectly access and modulate trimeric GTPases via the complex. Furthermore, Cox proportional-hazard models on tumor transcriptomics provide trans-scale evidence of synergistic interactions between GIV•Kindlin-2•β1-integrin on time to progression to metastasis. GIV and Kindlin (K2), two integrin adaptors that promote metastasis, bind each other Binding of GIV or integrin to K2 allosterically enhances GIV•K2•integrin complexes Binding is required for the maximal recruitment of GIV and K2 to active integrins Binding facilitates integrin clustering, activation, tumor cell adhesion, invasion
Collapse
Affiliation(s)
- Cristina Rohena
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA
| | - Nicholas Kalogriopoulos
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Inmaculada Lopez-Sanchez
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA
| | - Jailal Ablack
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, CA 92093, USA; Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 239, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, CA 92093, USA; Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
16
|
Getz M, Rangamani P, Ghosh P. Regulating cellular cyclic adenosine monophosphate: "Sources," "sinks," and now, "tunable valves". WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1490. [PMID: 32323924 DOI: 10.1002/wsbm.1490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
A number of hormones and growth factors stimulate target cells via the second messenger pathways, which in turn regulate cellular phenotypes. Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that facilitates numerous signal transduction pathways; its production in cells is tightly balanced by ligand-stimulated receptors that activate adenylate cyclases (ACs), that is, "source" and by phosphodiesterases (PDEs) that hydrolyze it, that is, "sinks." Because it regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression, the cAMP signaling pathway has been exploited for the treatment of numerous human diseases. Reduction in cAMP is achieved by blocking "sources"; however, elevation in cAMP is achieved by either stimulating "source" or blocking "sinks." Here we discuss an alternative paradigm for the regulation of cellular cAMP via GIV/Girdin, the prototypical member of a family of modulators of trimeric GTPases, Guanine nucleotide Exchange Modulators (GEMs). Cells upregulate or downregulate cellular levels of GIV-GEM, which modulates cellular cAMP via spatiotemporal mechanisms distinct from the two most often targeted classes of cAMP modulators, "sources" and "sinks." A network-based compartmental model for the paradigm of GEM-facilitated cAMP signaling has recently revealed that GEMs such as GIV serve much like a "tunable valve" that cells may employ to finetune cellular levels of cAMP. Because dysregulated signaling via GIV and other GEMs has been implicated in multiple disease states, GEMs constitute a hitherto untapped class of targets that could be exploited for modulating aberrant cAMP signaling in disease states. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling.
Collapse
Affiliation(s)
- Michael Getz
- Chemical Engineering Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
17
|
Marivin A, Maziarz M, Zhao J, DiGiacomo V, Olmos Calvo I, Mann EA, Ear J, Blanco-Canosa JB, Ross EM, Ghosh P, Garcia-Marcos M. DAPLE protein inhibits nucleotide exchange on Gα s and Gα q via the same motif that activates Gαi. J Biol Chem 2020; 295:2270-2284. [PMID: 31949046 DOI: 10.1074/jbc.ra119.011648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Besides being regulated by G-protein-coupled receptors, the activity of heterotrimeric G proteins is modulated by many cytoplasmic proteins. GIV/Girdin and DAPLE (Dvl-associating protein with a high frequency of leucine) are the best-characterized members of a group of cytoplasmic regulators that contain a Gα-binding and -activating (GBA) motif and whose dysregulation underlies human diseases, including cancer and birth defects. GBA motif-containing proteins were originally reported to modulate G proteins by binding Gα subunits of the Gi/o family (Gαi) over other families (such as Gs, Gq/11, or G12/13), and promoting nucleotide exchange in vitro However, some evidence suggests that this is not always the case, as phosphorylation of the GBA motif of GIV promotes its binding to Gαs and inhibits nucleotide exchange. The G-protein specificity of DAPLE and how it might affect nucleotide exchange on G proteins besides Gαi remain to be investigated. Here, we show that DAPLE's GBA motif, in addition to Gαi, binds efficiently to members of the Gs and Gq/11 families (Gαs and Gαq, respectively), but not of the G12/13 family (Gα12) in the absence of post-translational phosphorylation. We pinpointed Met-1669 as the residue in the GBA motif of DAPLE that diverges from that in GIV and enables better binding to Gαs and Gαq Unlike the nucleotide-exchange acceleration observed for Gαi, DAPLE inhibited nucleotide exchange on Gαs and Gαq These findings indicate that GBA motifs have versatility in their G-protein-modulating effect, i.e. they can bind to Gα subunits of different classes and either stimulate or inhibit nucleotide exchange depending on the G-protein subtype.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jingyi Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Isabel Olmos Calvo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Emily A Mann
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jason Ear
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain 08034
| | - Elliott M Ross
- Department of Pharmacology, Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pradipta Ghosh
- Department of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118.
| |
Collapse
|
18
|
Structural basis for GPCR-independent activation of heterotrimeric Gi proteins. Proc Natl Acad Sci U S A 2019; 116:16394-16403. [PMID: 31363053 DOI: 10.1073/pnas.1906658116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterotrimeric G proteins are key molecular switches that control cell behavior. The canonical activation of G proteins by agonist-occupied G protein-coupled receptors (GPCRs) has recently been elucidated from the structural perspective. In contrast, the structural basis for GPCR-independent G protein activation by a novel family of guanine-nucleotide exchange modulators (GEMs) remains unknown. Here, we present a 2.0-Å crystal structure of Gαi in complex with the GEM motif of GIV/Girdin. Nucleotide exchange assays, molecular dynamics simulations, and hydrogen-deuterium exchange experiments demonstrate that GEM binding to the conformational switch II causes structural changes that allosterically propagate to the hydrophobic core of the Gαi GTPase domain. Rearrangement of the hydrophobic core appears to be a common mechanism by which GPCRs and GEMs activate G proteins, although with different efficiency. Atomic-level insights presented here will aid structure-based efforts to selectively target the noncanonical G protein activation.
Collapse
|
19
|
Getz M, Swanson L, Sahoo D, Ghosh P, Rangamani P. A predictive computational model reveals that GIV/girdin serves as a tunable valve for EGFR-stimulated cyclic AMP signals. Mol Biol Cell 2019; 30:1621-1633. [PMID: 31017840 PMCID: PMC6727633 DOI: 10.1091/mbc.e18-10-0630] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular levels of the versatile second messenger cyclic (c)AMP are regulated by the antagonistic actions of the canonical G protein → adenylyl cyclase pathway that is initiated by G-protein–coupled receptors (GPCRs) and attenuated by phosphodiesterases (PDEs). Dysregulated cAMP signaling drives many diseases; for example, its low levels facilitate numerous sinister properties of cancer cells. Recently, an alternative paradigm for cAMP signaling has emerged in which growth factor–receptor tyrosine kinases (RTKs; e.g., EGFR) access and modulate G proteins via a cytosolic guanine-nucleotide exchange modulator (GEM), GIV/girdin; dysregulation of this pathway is frequently encountered in cancers. In this study, we present a network-based compartmental model for the paradigm of GEM-facilitated cross-talk between RTKs and G proteins and how that impacts cellular cAMP. Our model predicts that cross-talk between GIV, Gαs, and Gαi proteins dampens ligand-stimulated cAMP dynamics. This prediction was experimentally verified by measuring cAMP levels in cells under different conditions. We further predict that the direct proportionality of cAMP concentration as a function of receptor number and the inverse proportionality of cAMP concentration as a function of PDE concentration are both altered by GIV levels. Taking these results together, our model reveals that GIV acts as a tunable control valve that regulates cAMP flux after growth factor stimulation. For a given stimulus, when GIV levels are high, cAMP levels are low, and vice versa. In doing so, GIV modulates cAMP via mechanisms distinct from the two most often targeted classes of cAMP modulators, GPCRs and PDEs.
Collapse
Affiliation(s)
- Michael Getz
- Chemical Engineering Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Lee Swanson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Debashish Sahoo
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093.,Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
20
|
Marivin A, Morozova V, Walawalkar I, Leyme A, Kretov DA, Cifuentes D, Dominguez I, Garcia-Marcos M. GPCR-independent activation of G proteins promotes apical cell constriction in vivo. J Cell Biol 2019; 218:1743-1763. [PMID: 30948426 PMCID: PMC6504902 DOI: 10.1083/jcb.201811174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023] Open
Abstract
Heterotrimeric G proteins are signaling switches that control organismal morphogenesis across metazoans. In invertebrates, specific GPCRs instruct G proteins to promote collective apical cell constriction in the context of epithelial tissue morphogenesis. In contrast, tissue-specific factors that instruct G proteins during analogous processes in vertebrates are largely unknown. Here, we show that DAPLE, a non-GPCR protein linked to human neurodevelopmental disorders, is expressed specifically in the neural plate of Xenopus laevis embryos to trigger a G protein signaling pathway that promotes apical cell constriction during neurulation. DAPLE localizes to apical cell-cell junctions in the neuroepithelium, where it activates G protein signaling to drive actomyosin-dependent apical constriction and subsequent bending of the neural plate. This function is mediated by a Gα-binding-and-activating (GBA) motif that was acquired by DAPLE in vertebrates during evolution. These findings reveal that regulation of tissue remodeling during vertebrate development can be driven by an unconventional mechanism of heterotrimeric G protein activation that operates in lieu of GPCRs.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Veronika Morozova
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Isha Walawalkar
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
21
|
Wang X, Pei G. Visualization of Alzheimer's Disease Related α-/β-/γ-Secretase Ternary Complex by Bimolecular Fluorescence Complementation Based Fluorescence Resonance Energy Transfer. Front Mol Neurosci 2018; 11:431. [PMID: 30538620 PMCID: PMC6277482 DOI: 10.3389/fnmol.2018.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
The competitive ectodomain shedding of amyloid-β precursor protein (APP) by α-secretase and β-secretase, and the subsequent regulated intramembrane proteolysis by γ-secretase are the key processes in amyloid-β peptides (Aβ) generation. Previous studies indicate that secretases form binary complex and the interactions between secretases take part in substrates processing. However, whether α-, β- and γ-secretase could form ternary complex remains to be explored. Here, we adopted bimolecular fluorescence complementation in combination with fluorescence resonance energy transfer (BiFC-FRET) to visualize the formation of triple secretase complex. We show that the interaction between α-secretase ADAM10 and β-secretase BACE1 could be monitored by BiFC assay and the binding of APP to α-/β-secretase binary complex was revealed by BiFC-FRET. Further, we observed that γ-secretase interacts with α-/β-secretase binary complex, providing evidence that α-, β- and γ-secretase might form a ternary complex. Thus our study extends the interplay among Alzheimer's disease (AD) related α-/β-/γ-secretase.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, and The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Single-Cell Imaging of Metastatic Potential of Cancer Cells. iScience 2018; 10:53-65. [PMID: 30500482 PMCID: PMC6263091 DOI: 10.1016/j.isci.2018.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022] Open
Abstract
Molecular imaging of metastatic “potential” is an unvanquished challenge. To engineer biosensors that can detect and measure the metastatic “potential” of single living cancer cells, we carried out a comprehensive analysis of the pan-cancer phosphoproteome to search for actin remodelers required for cell migration, which are enriched in cancers but excluded in normal cells. Only one phosphoprotein emerged, tyr-phosphorylated CCDC88A (GIV/Girdin), a bona fide metastasis-related protein across a variety of solid tumors. We designed multi-modular biosensors that are partly derived from GIV, and because GIV integrates prometastatic signaling by multiple oncogenic receptors, we named them “‘integrators of metastatic potential (IMP).” IMPs captured the heterogeneity of metastatic potential within primary lung and breast tumors at steady state, detected those few cells that have acquired the highest metastatic potential, and tracked their enrichment during metastasis. These findings provide proof of concept that IMPs can measure the diversity and plasticity of metastatic potential of tumor cells in a sensitive and unbiased way. Phosphoproteomes of cancers predicted a putative metastasis-specific phosphoevent FRET-based biosensor designed to assess this phosphoevent in living cells Biosensor tracks the diversity and plasticity of metastatic potential of cancer cells These sensors could direct drug efficacy testing against the most sinister cancer cells
Collapse
|
23
|
Maziarz M, Broselid S, DiGiacomo V, Park JC, Luebbers A, Garcia-Navarrete L, Blanco-Canosa JB, Baillie GS, Garcia-Marcos M. A biochemical and genetic discovery pipeline identifies PLCδ4b as a nonreceptor activator of heterotrimeric G-proteins. J Biol Chem 2018; 293:16964-16983. [PMID: 30194280 DOI: 10.1074/jbc.ra118.003580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gαi3 binding. Then, cDNAs encoding proteins with Gαi3-binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro, and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins.
Collapse
Affiliation(s)
- Marcin Maziarz
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Stefan Broselid
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Vincent DiGiacomo
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Jong-Chan Park
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Alex Luebbers
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Lucia Garcia-Navarrete
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Juan B Blanco-Canosa
- the Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain, and
| | - George S Baillie
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| |
Collapse
|
24
|
GIV/Girdin promotes cell survival during endoplasmic reticulum stress. Mol Cell Biochem 2018; 453:79-88. [PMID: 30145643 DOI: 10.1007/s11010-018-3433-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/21/2018] [Indexed: 12/30/2022]
Abstract
Endoplasmic reticulum (ER) stress is a form of cellular stress that is experienced by cells both under normal physiological conditions such as in professional secretory cells and disease states such as cancer, diabetes, and neurodegeneration. Upon facing ER stress, cells activate a conserved signaling pathway called the unfolded protein response (UPR) to restore normal function by halting general protein translation, upregulating expression of chaperones, and promoting ER-associated degradation. However, if the stress is overwhelming and cells are not able to recover within a reasonable time frame, the UPR ultimately commits cells to programmed cell death. How cells make this life-or-death decision remains an exciting yet poorly understood phenomenon. Here, we show that Gα-interacting vesicle-associated protein (GIV) aka Girdin plays an important role in promoting cell survival during ER stress. Cells lacking GIV are impaired in activating the pro-survival Akt pathway upon induction of ER stress. These cells also show enhanced levels of the pro-apoptotic transcription factor, CCAAT/enhancer binding protein homologous protein (CHOP) as compared to control cells. Due to decreased pro-survival signals and a concomitant increase in pro-apoptotic signals, GIV-depleted cells show a significant reduction in cell survival upon prolonged ER stress which can be rescued by re-expression of GIV or by directly activating Akt in these cells. Together, this study shows a novel, cytoprotective role for GIV in ER-stressed cells and furthers our understanding of the mechanisms that contribute to cell survival during ER stress.
Collapse
|
25
|
The ER membrane adaptor ERAdP senses the bacterial second messenger c-di-AMP and initiates anti-bacterial immunity. Nat Immunol 2018; 19:141-150. [PMID: 29292386 DOI: 10.1038/s41590-017-0014-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022]
Abstract
Cyclic diadenylate monophosphate (c-di-AMP) is secreted by bacteria as a secondary messenger. How immune cells detect c-di-AMP and initiate anti-bacterial immunity remains unknown. We found that the endoplasmic reticulum (ER) membrane adaptor ERAdP acts as a direct sensor for c-di-AMP. ERAdP-deficient mice were highly susceptible to Listeria monocytogenes infection and exhibited reduced pro-inflammatory cytokines. Mechanistically, c-di-AMP bound to the C-terminal domain of ERAdP, which in turn led to dimerization of ERAdP, resulting in association with and activation of the kinase TAK1. TAK1 activation consequently initiated activation of the transcription factor NF-κB to induce the production of pro-inflammatory cytokines in innate immune cells. Moreover, double-knockout of ERAdP and TAK1 resulted in heightened susceptibility to L. monocytogenes infection. Thus, ERAdP-mediated production of pro-inflammatory cytokines is critical for controlling bacterial infection.
Collapse
|
26
|
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc Natl Acad Sci U S A 2017; 114:E10319-E10328. [PMID: 29133411 DOI: 10.1073/pnas.1707992114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.
Collapse
|
27
|
DiGiacomo V, de Opakua AI, Papakonstantinou MP, Nguyen LT, Merino N, Blanco-Canosa JB, Blanco FJ, Garcia-Marcos M. The Gαi-GIV binding interface is a druggable protein-protein interaction. Sci Rep 2017; 7:8575. [PMID: 28819150 PMCID: PMC5561080 DOI: 10.1038/s41598-017-08829-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023] Open
Abstract
Heterotrimeric G proteins are usually activated by the guanine-nucleotide exchange factor (GEF) activity of GPCRs. However, some non-receptor proteins are also GEFs. GIV (a.k.a Girdin) was the first non-receptor protein for which the GEF activity was ascribed to a well-defined protein sequence that directly binds Gαi. GIV expression promotes metastasis and disruption of its binding to Gαi blunts the pro-metastatic behavior of cancer cells. Although this suggests that inhibition of the Gαi-GIV interaction is a promising therapeutic strategy, protein-protein interactions (PPIs) are considered poorly "druggable" targets requiring case-by-case validation. Here, we set out to investigate whether Gαi-GIV is a druggable PPI. We tested a collection of >1,000 compounds on the Gαi-GIV PPI by in silico ligand screening and separately by a chemical high-throughput screening (HTS) assay. Two hits, ATA and NF023, obtained in both screens were confirmed in secondary HTS and low-throughput assays. The binding site of NF023, identified by NMR spectroscopy and biochemical assays, overlaps with the Gαi-GIV interface. Importantly, NF023 did not disrupt Gαi-Gβγ binding, indicating its specificity toward Gαi-GIV. This work establishes the Gαi-GIV PPI as a druggable target and sets the conceptual and technical framework for the discovery of novel inhibitors of this PPI.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | | | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | - Juan B Blanco-Canosa
- Department of Chemistry and Molecular Pharmacology, IRB Barcelona, Barcelona, Spain
| | - Francisco J Blanco
- CIC-BioGune, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
28
|
de Opakua AI, Parag-Sharma K, DiGiacomo V, Merino N, Leyme A, Marivin A, Villate M, Nguyen LT, de la Cruz-Morcillo MA, Blanco-Canosa JB, Ramachandran S, Baillie GS, Cerione RA, Blanco FJ, Garcia-Marcos M. Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif. Nat Commun 2017; 8:15163. [PMID: 28516903 PMCID: PMC5454376 DOI: 10.1038/ncomms15163] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/06/2017] [Indexed: 01/03/2023] Open
Abstract
Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif. We combine NMR spectroscopy, computational modelling and biochemistry to map changes in Gα caused by binding of GBA proteins with residue-level resolution. We find that the GBA motif binds to the SwitchII/α3 cleft of Gα and induces changes in the G-1/P-loop and G-2 boxes (involved in phosphate binding), but not in the G-4/G-5 boxes (guanine binding). Our findings reveal that G-protein-binding and activation mechanisms are fundamentally different between GBA proteins and GPCRs, and that GEF-mediated perturbation of nucleotide phosphate binding is sufficient for Gα activation. Nonreceptor guanine-nucleotide exchange factors (GEFs) are emerging as important regulators of heterotrimeric G proteins. Here, the authors present structural and mechanistic insights into how a class of nonreceptor GEFs containing the Ga-Binding and Activating motif interact and modulate G proteins.
Collapse
Affiliation(s)
| | - Kshitij Parag-Sharma
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Juan B Blanco-Canosa
- Department of Chemistry and Molecular Pharmacology, IRB Barcelona, 08028 Barcelona, Spain
| | - Sekar Ramachandran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, Department of Molecular Pharmacology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Francisco J Blanco
- CIC bioGUNE, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48160 Bilbao, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
29
|
Devost D, Sleno R, Pétrin D, Zhang A, Shinjo Y, Okde R, Aoki J, Inoue A, Hébert TE. Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context. J Biol Chem 2017; 292:5443-5456. [PMID: 28213525 DOI: 10.1074/jbc.m116.763854] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/03/2017] [Indexed: 12/16/2022] Open
Abstract
Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gαq, Gα11, Gα12, and Gα13 or β-arrestins, we showed that Gαq and Gα11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or β-arrestin.
Collapse
Affiliation(s)
- Dominic Devost
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Rory Sleno
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Darlaine Pétrin
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alice Zhang
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Yuji Shinjo
- the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Rakan Okde
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Junken Aoki
- the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,the Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-0004, Japan, and
| | - Asuka Inoue
- the Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,the Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Terence E Hébert
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada,
| |
Collapse
|
30
|
Ghosh P, Aznar N, Swanson L, Lo IC, Lopez-Sanchez I, Ear J, Rohena C, Kalogriopoulos N, Joosen L, Dunkel Y, Sun N, Nguyen P, Bhandari D. Biochemical, Biophysical and Cellular Techniques to Study the Guanine Nucleotide Exchange Factor, GIV/Girdin. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2016; 8:265-298. [PMID: 27925669 PMCID: PMC5154557 DOI: 10.1002/cpch.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical signal transduction via heterotrimeric G proteins is spatiotemporally restricted, i.e., triggered exclusively at the plasma membrane, only by agonist activation of G protein-coupled receptors via a finite process that is terminated within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a noncanonical pathway for activation of heterotrimeric G proteins via the nonreceptor guanidine-nucleotide exchange factor, GIV/Girdin. Biochemical, biophysical, and functional studies evaluating this pathway have unraveled its unique properties and distinctive spatiotemporal features. As in the case of any new pathway/paradigm, these studies first required an in-depth optimization of tools/techniques and protocols, governed by rationale and fundamentals unique to the pathway, and more specifically to the large multimodular GIV protein. Here we provide the most up-to-date overview of protocols that have generated most of what we know today about noncanonical G protein activation by GIV and its relevance in health and disease. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Nicolas Aznar
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Lee Swanson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - I-Chung Lo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | | | - Jason Ear
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Cristina Rohena
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | | | - Linda Joosen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Ying Dunkel
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Nina Sun
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0651
| | - Peter Nguyen
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507
| | - Deepali Bhandari
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840-9507
| |
Collapse
|
31
|
Parag-Sharma K, Leyme A, DiGiacomo V, Marivin A, Broselid S, Garcia-Marcos M. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling. J Biol Chem 2016; 291:27098-27111. [PMID: 27864364 DOI: 10.1074/jbc.m116.764431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gαi3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function.
Collapse
Affiliation(s)
- Kshitij Parag-Sharma
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Anthony Leyme
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Vincent DiGiacomo
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Arthur Marivin
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Stefan Broselid
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
32
|
GIV/Girdin activates Gαi and inhibits Gαs via the same motif. Proc Natl Acad Sci U S A 2016; 113:E5721-30. [PMID: 27621449 DOI: 10.1073/pnas.1609502113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously showed that guanine nucleotide-binding (G) protein α subunit (Gα)-interacting vesicle-associated protein (GIV), a guanine-nucleotide exchange factor (GEF), transactivates Gα activity-inhibiting polypeptide 1 (Gαi) proteins in response to growth factors, such as EGF, using a short C-terminal motif. Subsequent work demonstrated that GIV also binds Gαs and that inactive Gαs promotes maturation of endosomes and shuts down mitogenic MAPK-ERK1/2 signals from endosomes. However, the mechanism and consequences of dual coupling of GIV to two G proteins, Gαi and Gαs, remained unknown. Here we report that GIV is a bifunctional modulator of G proteins; it serves as a guanine nucleotide dissociation inhibitor (GDI) for Gαs using the same motif that allows it to serve as a GEF for Gαi. Upon EGF stimulation, GIV modulates Gαi and Gαs sequentially: first, a key phosphomodification favors the assembly of GIV-Gαi complexes and activates GIV's GEF function; then a second phosphomodification terminates GIV's GEF function, triggers the assembly of GIV-Gαs complexes, and activates GIV's GDI function. By comparing WT and GIV mutants, we demonstrate that GIV inhibits Gαs activity in cells responding to EGF. Consequently, the cAMP→PKA→cAMP response element-binding protein signaling axis is inhibited, the transit time of EGF receptor through early endosomes are accelerated, mitogenic MAPK-ERK1/2 signals are rapidly terminated, and proliferation is suppressed. These insights define a paradigm in G-protein signaling in which a pleiotropically acting modulator uses the same motif both to activate and to inhibit G proteins. Our findings also illuminate how such modulation of two opposing Gα proteins integrates downstream signals and cellular responses.
Collapse
|
33
|
Aznar N, Kalogriopoulos N, Midde KK, Ghosh P. Heterotrimeric G protein signaling via GIV/Girdin: Breaking the rules of engagement, space, and time. Bioessays 2016; 38:379-93. [PMID: 26879989 DOI: 10.1002/bies.201500133] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Canonical signal transduction via heterotrimeric G proteins is spatially and temporally restricted, that is, triggered exclusively at the plasma membrane (PM), only by agonist activation of G protein-coupled receptors (GPCRs) via a process that completes within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a non-canonical pathway for activation of heterotrimeric G proteins by the non-receptor guanidine-nucleotide exchange factor (GEF), GIV/Girdin. This pathway has distinctive temporal and spatial features and an unusual profile of receptor engagement: diverse classes of receptors, not just GPCRs can engage with GIV to trigger such activation. Such activation is spatially and temporally unrestricted, that is, can occur both at the PM and on internal membranes discontinuous with the PM, and can continue for prolonged periods of time. Here, we provide the most complete up-to-date review of the molecular mechanisms that govern the unique spatiotemporal aspects of non-canonical G protein activation by GIV and the relevance of this new paradigm in health and disease.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Krishna K Midde
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA.,Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Ghosh P. The untapped potential of tyrosine-based G protein signaling. Pharmacol Res 2016; 105:99-107. [PMID: 26808081 DOI: 10.1016/j.phrs.2016.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
Abstract
Tyrosine-based and trimeric G protein-based signaling are the two most widely studied and distinct mechanisms for signal transduction in eukaryotes. How each of them relay signals across the plasma membrane independently of each other has been extensively characterized; however, an understanding of how they work together remained obscure. Recently, a rapidly emerging paradigm has revealed that tyrosine based signals are relayed via G proteins, and that the cross-talk between the two hubs are more robustly and sophisticatedly integrated than was previously imagined. More importantly, by straddling the two signaling hubs that are most frequently targeted for their therapeutic significance, the tyrosine-based G-protein signaling pathway has its own growing list of pathophysiologic importance, both as therapeutic target in a variety of disease states, and by paving the way for personalized medicine. The fundamental principles of this emerging paradigm and its pharmacologic potential are discussed.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Medicine and Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651, United States.
| |
Collapse
|
35
|
Lopez-Sanchez I, Kalogriopoulos N, Lo IC, Kabir F, Midde KK, Wang H, Ghosh P. Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins. Mol Biol Cell 2015; 26:4313-24. [PMID: 26446841 PMCID: PMC4666128 DOI: 10.1091/mbc.e15-07-0496] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
GIV is a guanine-nucleotide exchange factor and a bona fide metastasis-related protein. It is found, unexpectedly, that focal adhesions are the major foci for GIV-dependent signaling and that GIV modulates integrin-FAK signaling via activation of G proteins. It is also shown how this phenomenon is altered during cancer progression. GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via β1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated β1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell–ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression.
Collapse
Affiliation(s)
- Inmaculada Lopez-Sanchez
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Nicholas Kalogriopoulos
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - I-Chung Lo
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Firooz Kabir
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Krishna K Midde
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Honghui Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093 Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| |
Collapse
|
36
|
Ma GS, Lopez-Sanchez I, Aznar N, Kalogriopoulos N, Pedram S, Midde K, Ciaraldi TP, Henry RR, Ghosh P. Activation of G proteins by GIV-GEF is a pivot point for insulin resistance and sensitivity. Mol Biol Cell 2015; 26:4209-23. [PMID: 26378251 PMCID: PMC4642855 DOI: 10.1091/mbc.e15-08-0553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/11/2015] [Indexed: 11/11/2022] Open
Abstract
A long-held tenet in the field of diabetes is that the tipping point between insulin sensitivity and resistance resides at the level of insulin receptor/insulin receptor substrate–adaptor complexes. Here it is shown that activation of Gαi by GIV/Girdin is a decisive event within the metabolic insulin signaling cascade that reversibly orchestrates insulin sensitivity or resistance. Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles.
Collapse
Affiliation(s)
- Gary S Ma
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Inmaculada Lopez-Sanchez
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Nicolas Aznar
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Nicholas Kalogriopoulos
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Shabnam Pedram
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Krishna Midde
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| | - Theodore P Ciaraldi
- Department of Veterans Affairs, VA San Diego Healthcare System, San Diego, CA 92161
| | - Robert R Henry
- Department of Veterans Affairs, VA San Diego Healthcare System, San Diego, CA 92161
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093 Department of Veterans Affairs, VA San Diego Healthcare System, San Diego, CA 92161 Department of Cell and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093
| |
Collapse
|
37
|
Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy. Proc Natl Acad Sci U S A 2015; 112:E4874-83. [PMID: 26286990 DOI: 10.1073/pnas.1514157112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development.
Collapse
|
38
|
Ghosh P. Heterotrimeric G proteins as emerging targets for network based therapy in cancer: End of a long futile campaign striking heads of a Hydra. Aging (Albany NY) 2015; 7:469-74. [PMID: 26224586 PMCID: PMC4543036 DOI: 10.18632/aging.100781] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 07/15/2015] [Indexed: 01/17/2023]
Abstract
Most common diseases, e.g., cancer are driven by not one, but multiple cell surface receptors that trigger and sustain a pathologic signaling network. The largest fraction of therapeutic agents that target individual receptors/pathways eventually fail due to the emergence of compensatory mechanisms that reestablish the pathologic network. Recently, a rapidly emerging paradigm has revealed GIV/Girdin as a central platform for receptor cross-talk which integrates signals downstream of a myriad of cell surface receptors, and modulates several key pathways within downstream signaling network, all via non-canonical activation of trimeric G proteins. Unlike canonical signal transduction via G proteins, which is spatially and temporally restricted, the temporal and spatial features of non-canonical activation of G protein via GIV is unusually unrestricted. Consequently, the GIV●G protein interface serves as a central hub allowing for control over several pathways within the pathologic signaling network, all at once. The relevance of this new paradigm in cancer and other disease states and the pros and cons of targeting the GIV●G protein interface are discussed.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
39
|
Aznar N, Midde KK, Dunkel Y, Lopez-Sanchez I, Pavlova Y, Marivin A, Barbazán J, Murray F, Nitsche U, Janssen KP, Willert K, Goel A, Abal M, Garcia-Marcos M, Ghosh P. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling. eLife 2015; 4:e07091. [PMID: 26126266 PMCID: PMC4484057 DOI: 10.7554/elife.07091] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Krishna K Midde
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | | | - Yelena Pavlova
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Jorge Barbazán
- Translational Medical Oncology Laboratory, Health Research Institute of Santiago, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Fiona Murray
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Karl Willert
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, United States
| | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, United States
| | - Miguel Abal
- Translational Medical Oncology Laboratory, Health Research Institute of Santiago, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
40
|
Abstract
Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are 2 such major signaling hubs in eukaryotes. Canonical signal transduction via trimeric G proteins is spatially and temporally restricted, i.e., triggered exclusively at the plasma membrane (PM) by agonist activation of G-protein-coupled receptors (GPCRs) via a process that completes within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a non-canonical pathway for activation of trimeric G proteins by the non-receptor GEF, GIV/Girdin, that has distinctive temporal and spatial features. Such activation can be triggered by multiple growth factor RTKs, can occur at the PM and on internal membranes discontinuous with the PM, and can continue for prolonged periods of time. The molecular mechanisms that govern such non-canonical G protein activation and the relevance of this new paradigm in health and disease is discussed.
Collapse
Affiliation(s)
- Pradipta Ghosh
- a Department of Medicine ; University of California at San Diego ; La Jolla , CA USA
| |
Collapse
|
41
|
Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors. Proc Natl Acad Sci U S A 2015; 112:E2602-10. [PMID: 25926659 DOI: 10.1073/pnas.1505543112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, receptor tyrosine kinases (RTKs) and trimeric G proteins are two major signaling hubs. Signal transduction via trimeric G proteins has long been believed to be triggered exclusively by G protein-coupled receptors (GPCRs). This paradigm has recently been challenged by several studies on a multimodular signal transducer, Gα-Interacting Vesicle associated protein (GIV/Girdin). We recently demonstrated that GIV's C terminus (CT) serves as a platform for dynamic association of ligand-activated RTKs with Gαi, and for noncanonical transactivation of G proteins. However, exogenous manipulation of this platform has remained beyond reach. Here we developed cell-permeable GIV-CT peptides by fusing a TAT-peptide transduction domain (TAT-PTD) to the minimal modular elements of GIV that are necessary and sufficient for activation of Gi downstream of RTKs, and used them to engineer signaling networks and alter cell behavior. In the presence of an intact GEF motif, TAT-GIV-CT peptides enhanced diverse processes in which GIV's GEF function has previously been implicated, e.g., 2D cell migration after scratch-wounding, invasion of cancer cells, and finally, myofibroblast activation and collagen production. Furthermore, topical application of TAT-GIV-CT peptides enhanced the complex, multireceptor-driven process of wound repair in mice in a GEF-dependent manner. Thus, TAT-GIV peptides provide a novel and versatile tool to manipulate Gαi activation downstream of growth factors in a diverse array of pathophysiologic conditions.
Collapse
|