1
|
Rizo‐Roca D, Henderson JD, Zierath JR. Metabolomics in cardiometabolic diseases: Key biomarkers and therapeutic implications for insulin resistance and diabetes. J Intern Med 2025; 297:584-607. [PMID: 40289598 PMCID: PMC12087830 DOI: 10.1111/joim.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cardiometabolic diseases-including Type 2 diabetes and obesity-remain leading causes of global mortality. Recent advancements in metabolomics have facilitated the identification of metabolites that are integral to the development of insulin resistance, a characteristic feature of cardiometabolic disease. Key metabolites, such as branched-chain amino acids (BCAAs), ceramides, glycine, and glutamine, have emerged as valuable biomarkers for early diagnosis, risk stratification, and potential therapeutic targets. Elevated BCAAs and ceramides are strongly associated with insulin resistance and Type 2 diabetes, whereas glycine exhibits an inverse relationship with insulin resistance, making it a promising therapeutic target. Metabolites involved in energy stress, including ketone bodies, lactate, and nicotinamide adenine dinucleotide (NAD⁺), regulate insulin sensitivity and metabolic health, with ketogenic diets and NAD⁺ precursor supplementation showing potential benefits. Additionally, the novel biomarker N-lactoyl-phenylalanine further underscores the complexity of metabolic regulation and its therapeutic potential. This review underscores the potential of metabolite-based diagnostics and precision medicine, which could enhance efforts in the prevention, diagnosis, and treatment of cardiometabolic diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- David Rizo‐Roca
- Department of Physiology and Pharmacology, Integrative PhysiologyKarolinska InstitutetStockholmSweden
| | - John D. Henderson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Juleen R. Zierath
- Department of Physiology and Pharmacology, Integrative PhysiologyKarolinska InstitutetStockholmSweden
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Molecular Medicine and Surgery, Integrative PhysiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
2
|
Weber D, Ferrario PG, Bub A. Exercise intensity determines circulating levels of Lac-Phe and other exerkines: a randomized crossover trial. Metabolomics 2025; 21:63. [PMID: 40335829 PMCID: PMC12058925 DOI: 10.1007/s11306-025-02260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Exercise metabolomics research has revealed significant exercise-induced metabolic changes and identified several exerkines as mediators of physiological adaptations to exercise. However, the effect of exercise intensity on metabolic changes and circulating exerkine levels remains to be examined. OBJECTIVES This study compared the metabolic responses to moderate-intensity and vigorous-intensity aerobic exercise. METHODS A two-period crossover trial was conducted under controlled conditions at the Max Rubner-Institute in Karlsruhe, Germany. Seventeen young, healthy, and physically active men performed 30 min moderate-intensity (50% VO2peak) and vigorous-intensity (75% VO2peak) aerobic exercise using two bicycle ergometer protocols in a randomized sequence. Blood samples obtained immediately before exercise and at four time points after exercise were analyzed in an untargeted metabolomics approach, and separate linear mixed models were applied to over 1000 metabolites. RESULTS Vigorous-intensity exercise induced a greater metabolic response than moderate-intensity exercise. Several intensity-dependent metabolites were identified, primarily involved in amino acid metabolism and energy conversion pathways, including N-lactoyl-amino acids, TCA cycle intermediates, N-acetylated amino acids, and acylcholines. The exerkines N-lactoyl-phenylalanine, lactate, and succinate were among the most intensity-dependent metabolites. N-acetylated amino acids and acylcholines were systematically altered by exercise intensity, indicating potential physiological functions. CONCLUSION Exercise intensity significantly affects exercise-induced metabolic alterations and changes in exerkine levels. Our results expand the knowledge about exerkine dynamics and emphasize the role of exercise intensity in promoting physiological adaptations to exercise. The trial was registered on October 5, 2017, at the German Clinical Trials Register under the Registration Number DRKS00009743 (Universal Trial Number of WHO: U1111-1200-2530).
Collapse
Affiliation(s)
- Dirk Weber
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 15, 76131, Karlsruhe, Germany.
| | - Paola G Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institute, Karlsruhe, Germany
| | - Achim Bub
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 15, 76131, Karlsruhe, Germany
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institute, Karlsruhe, Germany
| |
Collapse
|
3
|
Gonciarz W, Kozlowska L, Róg J, Chmiela M. Untargeted metabolomic profiling for identifying systemic signatures of helicobacter pylori infection in a guinea pig model. Sci Rep 2025; 15:12889. [PMID: 40234702 PMCID: PMC12000522 DOI: 10.1038/s41598-025-98016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Infections caused by the Gram-negative bacterium Helicobacter pylori (H. pylori) can lead to gastritis, gastric or duodenal ulcers, and even gastric cancer in humans. Investigating quantitative changes in soluble biomarkers associated with H. pylori infection offers a promising method for monitoring the progression of the infection, inflammatory response and potentially systemic consequences. This study aimed to identify, using an experimental model of H. pylori infection in guinea pigs, the specific metabolomic biomarkers in the serum of H. pylori-infected (32) versus uninfected (32) animals. The H. pylori status was confirmed through histological, molecular, and serological examinations. Metabolomic profiling was conducted using UPLC-QTOF/MS methods. The metabolomic biomarkers significantly associated with H. pylori infection were selected based on volcano plots and traditional univariate receiver operating characteristics (ROC). This study identified 12 unique metabolites significantly differentiating H. pylori-infected guinea pigs from uninfected ones. In summary, the metabolomic profiling of serum samples, in combination with ROC characteristics of the data, enhances the monitoring of H. pylori infection and related inflammatory responses in guinea pigs experimentally infected with these bacteria, with potential applications in humans for prediction the infection course and its systemic effects.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90‑237, Lodz, Poland.
| | - Lucyna Kozlowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Joanna Róg
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90‑237, Lodz, Poland
| |
Collapse
|
4
|
Secilmis D, Begzati A, Grankvist N, Roci I, Watrous J, Majithia AR, Smith GI, Klein S, Jain M, Nilsson R. Isotope tracing-based metabolite identification for mass spectrometry metabolomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647691. [PMID: 40291727 PMCID: PMC12027066 DOI: 10.1101/2025.04.07.647691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Modern mass spectrometry-based metabolomics is a key technology for biomedicine, enabling discovery and quantification of a wide array of biomolecules critical for human physiology. Yet, only a fraction of human metabolites have been structurally determined, and the majority of features in typical metabolomics data remain unknown. To date, metabolite identification relies largely on comparing MS 2 fragmentation patterns against known standards, related compounds or predicted spectra. Here, we propose an orthogonal approach to identification of endogenous metabolites, based on mass isotopomer distributions (MIDs) measured in an isotope-labeled reference material. We introduce a computational measure of pairwise distance between metabolite MIDs that allows identifying novel metabolites by their similarity to previously known peaks. Using cell material labeled with 20 individual 13 C tracers, this method identified 62% of all unknown peaks, including previously never seen metabolites. Importantly, MID-based identification is highly complementary to MS 2 -based methods in that MIDs reflect the biochemical origin of metabolites, and therefore also yields insight into their synthesis pathways, while MS 2 spectra mainly reflect structural features. Accordingly, our method performed best for small molecules, while MS 2 -based identification was stronger on lipids and complex natural products. Among the metabolites discovered was trimethylglycyl-lysine, a novel amino acid derivative that is altered in human muscle tissue after intensive lifestyle treatment. MID-based annotation using isotope-labeled reference materials enables identification of novel endogenous metabolites, extending the reach of mass spectrometry-based metabolomics.
Collapse
|
5
|
Sellami M, Naja K, Almuraikhy S, Anwardeen N, Sultanov RI, Generozov EV, Ahmetov II, Elrayess MA. N-Lactoyl amino acids as metabolic biomarkers differentiating low and high exercise response. Biol Sport 2025; 42:331-344. [PMID: 40182705 PMCID: PMC11963115 DOI: 10.5114/biolsport.2025.145912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 10/27/2024] [Indexed: 04/05/2025] Open
Abstract
Aerobic physical exercise has significant benefits for cardiovascular health; however, some individuals experience no benefit or even adverse effects. One reason for poor tolerance to aerobic exercise may be a low percentage of slow-twitch (oxidative) muscle fibers. This study aims to identify the metabolic signatures associated with low and high response to exercise by comparing the metabolic profiles of participants categorized according to their improvement of the 6-minute walking distance. In this study, pre- and postexercise intervention measurements of the 6-minute walking distance were conducted in forty-three lean and overweight young women, followed by non-targeted metabolomics analysis of 1039 known metabolites. An independent validation cohort comprising 791 individuals from the GTEx project was used to assess the gene expression of selected targets. The results indicated that a low improvement in the 6-minute walking distance (Δ 6-MWD = 27 meters) was associated with higher serum levels of N-lactoyl amino acid metabolites, particularly the exercise-inducible metabolite N-lactoyl phenylalanine (Lac-Phe) (FDR = 0.016), compared to high responders. Our results were corroborated in an independent validation cohort, which showed that the gene expression of cytosolic nonspecific dipeptidase (CNDP2), the enzyme responsible for Lac-Phe synthesis, is negatively associated with the percentage of slow-twitch muscle fibers (p < 0.0001). N-lactoyl amino acids may serve as biomarkers for rapid muscle fatigue and low response to exercise, and could be used as metabolic indicators to differentiate exercise response efficacy.
Collapse
Affiliation(s)
- Maha Sellami
- Physical Education Department (PE), College of Education, Qatar University, Doha, Qatar
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O Box 2713, Qatar
| | - Shamma Almuraikhy
- Biomedical Research Center, Qatar University, Doha P.O Box 2713, Qatar
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O Box 2713, Qatar
| | - Rinat I. Sultanov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O Box 2713, Qatar
- College of Medicine, QU Health, Qatar University, Doha P.O Box 2713, Qatar
| |
Collapse
|
6
|
Li J, Zhang M, Zhang C, Zhang Y, Chen W, Qu H, Liu J, Wang L. Rapid indirect detection of N-lactoyl-phenylalanine using dual DNA biosensors based on solution-gated graphene field-effect transistor. Biosens Bioelectron 2025; 273:117149. [PMID: 39818180 DOI: 10.1016/j.bios.2025.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
As obesity rates continue to rise, there is an increasing focus on reducing obesity through exercise. People are becoming more aware of the importance of weight loss through physical activity. However, the effectiveness of exercise can vary significantly among individuals, making it challenging to evaluate its impact. Therefore, establishing a reliable method for assessing exercise effectiveness is crucial for enhancing exercise quality and reducing obesity risk. It is noteworthy that the relationship between N-lactoyl-phenylalanine (N-Lac-Phe) and energy metabolism has garnered considerable attention. In this study, we developed a N-Lac-Phe biosensor by detecting L-lactic acid (L-Lac) and L-phenylalanine (L-Phe) based on Solution-Gated Graphene Field-Effect Transistors (SGGT). Our findings showed that the L-Lac and L-Phe biosensors exhibited excellent linearity within concentration ranges of 300 pM to 300 nM for L-Lac and 3 nM-1000 nM for L-Phe, with R2 values of 0.9934 and 0.9897, respectively. The detection accuracies for these two types of SGGT biosensors were 91.63 ± 6.97% and 99.39 ± 8.53%, respectively. Using the established N-Lac-Phe, L-Lac, and L-Phe relationship model (NLL model), we could calculate the concentration of N-Lac-Phe in the RAW264.7 culture medium based on the concentrations of L-Lac and L-Phe. The biosensors demonstrated excellent accuracy and selectivity, indicating their potential for rapidly evaluating the effectiveness of exercise.
Collapse
Affiliation(s)
- Jiacheng Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Ming Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Cailing Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wenbin Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
7
|
Guzelsoy G, Elorza SD, Ros M, Schachtner LT, Hayashi M, Hobson-Gutierrez S, Rundstrom P, Brunner JS, Pillai R, Walkowicz WE, Finley LWS, Deforet M, Papagiannakopoulos T, Carmona-Fontaine C. Cooperative nutrient scavenging is an evolutionary advantage in cancer. Nature 2025; 640:534-542. [PMID: 39972131 PMCID: PMC11981941 DOI: 10.1038/s41586-025-08588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
The survival of malignant cells within tumours is often seen as depending on ruthless competition for nutrients and other resources1,2. Although competition is certainly critical for tumour evolution and cancer progression, cooperative interactions within tumours are also important, albeit poorly understood3,4. Cooperative populations at all levels of biological organization risk extinction if their population size falls below a critical tipping point5,6. Here we examined whether cooperation among tumour cells may be a potential therapeutic target. We identified a cooperative mechanism that enables tumour cells to proliferate under the amino acid-deprived conditions found in the tumour microenvironment. Disruption of this mechanism drove cultured tumour populations to the critical extinction point and resulted in a marked reduction in tumour growth in vivo. Mechanistically, we show that tumour cells collectively digest extracellular oligopeptides through the secretion of aminopeptidases. The resulting free amino acids benefit both aminopeptidase-secreting cells and neighbouring cells. We identified CNDP2 as the key enzyme that hydrolyses these peptides extracellularly, and loss of this aminopeptidase prevents tumour growth in vitro and in vivo. These data show that cooperative scavenging of nutrients is key to survival in the tumour microenvironment and reveal a targetable cancer vulnerability.
Collapse
Affiliation(s)
- Gizem Guzelsoy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Setiembre D Elorza
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Manon Ros
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Logan T Schachtner
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Makiko Hayashi
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Spencer Hobson-Gutierrez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Parker Rundstrom
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Julia S Brunner
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ray Pillai
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | | | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maxime Deforet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Thales Papagiannakopoulos
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
8
|
Feng J, Huang Z, Huang M, Cui C, Zhao M, Feng Y. Revealing the Microbial Origins of N-Lactoyl Amino Acids in Soy Sauce: Synthesis Conditions, Potential Enzymes, and Utilization Preference. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3008-3015. [PMID: 39614824 DOI: 10.1021/acs.jafc.4c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The flavor contribution of N-lactoyl amino acids (Lac-AAs) to soy sauce is gradually gaining attention. However, research on their formation mechanism is limited. In this study, the production of Lac-AAs of 12 species of yeasts commonly detected in soy sauce was investigated, and Candida orthopsilosis, Candida parapsilosis, and Millerozyma farinosa were identified as key yeasts because of their productivity and high correlation coefficients with peak areas of Lac-AAs (r > 0.8). According to synthesis experiments, the formation of Lac-AAs was catalyzed by endoenzymes, with an optimal pH of 5-7 and a temperature of 50-60 °C. After BLAST comparison, cytosolic nonspecific dipeptidase 2 (CNDP2) or other similar metallodipeptidases may be potential enzymes for Lac-AAs synthesis. According to preference experiments, 13 amino acids were exploitable to form the corresponding Lac-AAs by selected yeasts, except Gly, Ala, Ser, Pro, and Asp, presumably related to the structure of side chains. Among them, nonpolar amino acids were preferred by yeasts. These findings enrich knowledge on taste substances and microorganisms and can help to regulate the microbial community for flavor improvement of soy sauce.
Collapse
Affiliation(s)
- Junwei Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
9
|
Ocariza MGC, Paton LN, Templeton EM, Pemberton CJ, Pilbrow AP, Appleby S. CNDP2: An Enzyme Linking Metabolism and Cardiovascular Diseases? J Cardiovasc Transl Res 2025; 18:48-57. [PMID: 39349903 PMCID: PMC11885389 DOI: 10.1007/s12265-024-10560-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 03/09/2025]
Abstract
The heart requires a substantial amount of energy to function, utilising various substrates including lipids, glucose and lactate as energy sources. In times of increased stress, lactate becomes the primary energy source of the heart, but persistently elevated lactate levels are linked to poor patient outcomes and increased mortality. Recently, carnosine dipeptidase II (CNDP2) was discovered to catalyse the formation of Lac-Phe, an exercise-induced metabolite derived from lactate, which has been shown to suppress appetite in mice and reduce adipose tissue in humans. This review discusses CNDP2, including its role in lactate clearance, carnosine hydrolysis, oxidative stress regulation, and involvement in metabolite regulation. The association between CNDP2 and cardiometabolic and renal diseases is also explored, and knowledge gaps are highlighted. CNDP2 appears to be a complex participant in human physiological processes and disease, necessitating additional research to unveil its functions and potential therapeutic applications.
Collapse
Affiliation(s)
- Moizle Grace Castro Ocariza
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand.
| | - Louise Nancy Paton
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| | - Evelyn Mary Templeton
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| | - Christopher Joseph Pemberton
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| | - Anna Pauline Pilbrow
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| | - Sarah Appleby
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| |
Collapse
|
10
|
Moya-Garzon MD, Wang M, Li VL, Lyu X, Wei W, Tung ASH, Raun SH, Zhao M, Coassolo L, Islam H, Oliveira B, Dai Y, Spaas J, Delgado-Gonzalez A, Donoso K, Alvarez-Buylla A, Franco-Montalban F, Letian A, Ward CP, Liu L, Svensson KJ, Goldberg EL, Gardner CD, Little JP, Banik SM, Xu Y, Long JZ. A β-hydroxybutyrate shunt pathway generates anti-obesity ketone metabolites. Cell 2025; 188:175-186.e20. [PMID: 39536746 PMCID: PMC11724754 DOI: 10.1016/j.cell.2024.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
β-Hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve the interconversion of BHB and primary energy intermediates. Here, we identify a previously undescribed BHB secondary metabolic pathway via CNDP2-dependent enzymatic conjugation of BHB and free amino acids. This BHB shunt pathway generates a family of anti-obesity ketone metabolites, the BHB-amino acids. Genetic ablation of CNDP2 in mice eliminates tissue amino acid BHB-ylation activity and reduces BHB-amino acid levels. The most abundant BHB-amino acid, BHB-Phe, is a ketosis-inducible congener of Lac-Phe that activates hypothalamic and brainstem neurons and suppresses feeding. Conversely, CNDP2-KO mice exhibit increased food intake and body weight following exogenous ketone ester supplementation or a ketogenic diet. CNDP2-dependent amino acid BHB-ylation and BHB-amino acid metabolites are also conserved in humans. Therefore, enzymatic amino acid BHB-ylation defines a ketone shunt pathway and bioactive ketone metabolites linked to energy balance.
Collapse
Affiliation(s)
- Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Barbara Oliveira
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Yuqin Dai
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jan Spaas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Kenyi Donoso
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Francisco Franco-Montalban
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja sn, 18071 Granada, Spain
| | - Anudari Letian
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine P Ward
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Zhang Y, Spitzer BW, Zhang Y, Wallace DA, Yu B, Qi Q, Argos M, Avilés-Santa ML, Boerwinkle E, Daviglus ML, Kaplan R, Cai J, Redline S, Sofer T. Untargeted metabolome atlas for sleep-related phenotypes in the Hispanic community health study/study of Latinos. EBioMedicine 2025; 111:105507. [PMID: 39693737 PMCID: PMC11722176 DOI: 10.1016/j.ebiom.2024.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sleep is essential to maintaining health and wellbeing of individuals, influencing a variety of outcomes from mental health to cardiometabolic disease. This study aims to assess the relationships between various sleep-related phenotypes and blood metabolites. METHODS Utilising data from the Hispanic Community Health Study/Study of Latinos, we performed association analyses between 40 sleep-related phenotypes, grouped in several domains (sleep disordered breathing (SDB), sleep duration, sleep timing, self-reported insomnia symptoms, excessive daytime sleepiness (EDS), and heart rate during sleep), and 768 metabolites measured via untargeted metabolomics profiling. Network analysis was employed to visualise and interpret the associations between sleep phenotypes and metabolites. FINDINGS The patterns of statistically significant associations between sleep phenotypes and metabolites differed by superpathways, and highlighted subpathways of interest for future studies. For example, primary bile acid metabolism showed the highest cumulative percentage of statistically significant associations across all sleep phenotype domains except for SDB and EDS phenotypes. Several metabolites were associated with multiple sleep phenotypes, from a few domains. Glycochenodeoxycholate, vanillyl mandelate (VMA) and 1-stearoyl-2-oleoyl-GPE (18:0/18:1) were associated with the highest number of sleep phenotypes, while pregnenolone sulfate was associated with all sleep phenotype domains except for sleep duration. N-lactoyl amino acids such as N-lactoyl phenylalanine (lac-Phe), were associated with sleep duration, SDB, sleep timing and heart rate during sleep. INTERPRETATION This atlas of sleep-metabolite associations will facilitate hypothesis generation and further study of the metabolic underpinnings of sleep health. FUNDING R01HL161012, R35HL135818, R01AG80598.
Collapse
Affiliation(s)
- Ying Zhang
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian W Spitzer
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yu Zhang
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Danielle A Wallace
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Argos
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA; Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | - M Larissa Avilés-Santa
- Division of Clinical and Health Services Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Eric Boerwinkle
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jianwen Cai
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susan Redline
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tamar Sofer
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Ahmad S, Wu T, Arnold M, Hankemeier T, Ghanbari M, Roshchupkin G, Uitterlinden AG, Neitzel J, Kraaij R, Van Duijn CM, Arfan Ikram M, Kaddurah-Daouk R, Kastenmüller G, Alzheimer’s Disease Metabolomics Consortium. The blood metabolome of cognitive function and brain health in middle-aged adults - influences of genes, gut microbiome, and exposome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.16.24317793. [PMID: 39763567 PMCID: PMC11702749 DOI: 10.1101/2024.12.16.24317793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Increasing evidence suggests the involvement of metabolic alterations in neurological disorders, including Alzheimer's disease (AD), and highlights the significance of the peripheral metabolome, influenced by genetic factors and modifiable environmental exposures, for brain health. In this study, we examined 1,387 metabolites in plasma samples from 1,082 dementia-free middle-aged participants of the population-based Rotterdam Study. We assessed the relation of metabolites with general cognition (G-factor) and magnetic resonance imaging (MRI) markers using linear regression and estimated the variance of these metabolites explained by genes, gut microbiome, lifestyle factors, common clinical comorbidities, and medication using gradient boosting decision tree analysis. Twenty-one metabolites and one metabolite were significantly associated with total brain volume and total white matter lesions, respectively. Fourteen metabolites showed significant associations with G-factor, with ergothioneine exhibiting the largest effect (adjusted mean difference = 0.122, P = 4.65×10-7). Associations for nine of the 14 metabolites were replicated in an independent, older cohort. The metabolite signature of incident AD in the replication cohort resembled that of cognition in the discovery cohort, emphasizing the potential relevance of the identified metabolites to disease pathogenesis. Lifestyle, clinical variables, and medication were most important in determining these metabolites' blood levels, with lifestyle, explaining up to 28.6% of the variance. Smoking was associated with ten metabolites linked to G-factor, while diabetes and antidiabetic medication were associated with 13 metabolites linked to MRI markers, including N-lactoyltyrosine. Antacid medication strongly affected ergothioneine levels. Mediation analysis revealed that lower ergothioneine levels may partially mediate negative effects of antacids on cognition (31.5%). Gut microbial factors were more important for the blood levels of metabolites that were more strongly associated with cognition and incident AD in the older replication cohort (beta-cryptoxanthin, imidazole propionate), suggesting they may be involved later in the disease process. The detailed results on how multiple modifiable factors affect blood levels of cognition- and brain imaging-related metabolites in dementia-free participants may help identify new AD prevention strategies.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Tong Wu
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Gennady Roshchupkin
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Julia Neitzel
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Cornelia M. Van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
13
|
Kim HS, Jung S, Kim MJ, Jeong JY, Hwang IM, Lee JH. Comparative Analysis of N-Lactoyl-phenylalanine and 3-Phenyllactic Acid Production in Lactic Acid Bacteria from Kimchi: Metabolic Insights and Influencing Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27177-27186. [PMID: 39606886 DOI: 10.1021/acs.jafc.4c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N-Lactoyl-phenylalanine (Lac-Phe) is a metabolite known for its appetite-suppressing and antiobesity properties, while phenyllactic acid (PLA) is recognized for its antibacterial activity. Both metabolites are derived from phenylalanine and lactic acid metabolism through peptidase and dehydrogenase activities. The aim of this study was to investigate the production of Lac-Phe and PLA in kimchi, focusing on the role of lactic acid bacteria (LAB). Ultrahigh performance liquid chromatography coupled with time-of-flight mass spectrometry was used to quantify these metabolites in homemade and commercial kimchi. Lac-Phe and PLA were detected in both kimchi sample types. Various genera, including Lactobacillus, Leuconostoc, and Weissella, were evaluated for Lac-Phe and PLA production. LAB strains exhibiting high Lac-Phe production generally showed lower PLA production, indicating an inverse relationship between these two metabolites. Analysis of dipeptidase sequences revealed that the presence of carnosine dipeptidase 2 (CNDP2)-like M20 metallopeptidase is crucial for Lac-Phe production in LAB. Additionally, phenylalanine was identified as a major factor for both Lac-Phe and PLA production, whereas lactic acid supplementation did not significantly affect their production levels.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sera Jung
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Min Ji Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji Young Jeong
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Hee Lee
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
14
|
Hinton A, Neikirk K, Le H, Oliver A, Harris C, Martin P, Gaye A. N-lactoyl phenylalanine suppresses appetite and obesity with important implications for aging and age-related diseases. AGING ADVANCES 2024; 1:172-173. [PMID: 39845129 PMCID: PMC11752169 DOI: 10.4103/agingadv.agingadv-d-24-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Affiliation(s)
- Antentor Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Han Le
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ashton Oliver
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Chanel Harris
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Pamela Martin
- Department of Biomedical Sciences, Meharry Medical College, Nashville, TN, USA
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
15
|
Sharma S, Dong Q, Haid M, Adam J, Bizzotto R, Fernandez-Tajes JJ, Jones AG, Tura A, Artati A, Prehn C, Kastenmüller G, Koivula RW, Franks PW, Walker M, Forgie IM, Giordano G, Pavo I, Ruetten H, Dermitzakis M, McCarthy MI, Pedersen O, Schwenk JM, Tsirigos KD, De Masi F, Brunak S, Viñuela A, Mari A, McDonald TJ, Kokkola T, Adamski J, Pearson ER, Grallert H. Role of human plasma metabolites in prediabetes and type 2 diabetes from the IMI-DIRECT study. Diabetologia 2024; 67:2804-2818. [PMID: 39349772 PMCID: PMC11604760 DOI: 10.1007/s00125-024-06282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/29/2024] [Indexed: 11/29/2024]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and type 2 diabetes. METHODS As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consortium, 3000 plasma samples were measured with the Biocrates AbsoluteIDQ p150 Kit and Metabolon analytics. A total of 911 metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statistical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively. RESULTS In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA1c progression rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate [fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially had a causal role in the development of type 2 diabetes. CONCLUSIONS/INTERPRETATION Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabolites, significantly associated with prediabetes and diabetes, that mediate the effect of diabetes from baseline to follow-up (18 and 48 months). Causal inference using genetic variants shows the role of lipid metabolism and n-3 fatty acids as being causal for metabolite-to-type 2 diabetes whereas the sum of hexoses is causal for type 2 diabetes-to-metabolite. Identified metabolite markers are useful for stratifying individuals based on their risk progression and should enable targeted interventions.
Collapse
Affiliation(s)
- Sapna Sharma
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Qiuling Dong
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians-University München, Munich, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jonathan Adam
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Roberto Bizzotto
- Institute of Neuroscience, National Research Council, Padova, Italy
| | | | - Angus G Jones
- Department of Clinical and Biomedical Sciences, University of Exeter College of Medicine & Health, Exeter, UK
| | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Anna Artati
- Metabolomics and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cornelia Prehn
- Metabolomics and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Robert W Koivula
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Paul W Franks
- Department of Clinical Science, Genetic and Molecular Epidemiology, Lund University Diabetes Centre, Malmö, Sweden
| | - Mark Walker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Ian M Forgie
- Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Giuseppe Giordano
- Department of Clinical Science, Genetic and Molecular Epidemiology, Lund University Diabetes Centre, Malmö, Sweden
| | - Imre Pavo
- Eli Lilly Regional Operations GmbH, Vienna, Austria
| | - Hartmut Ruetten
- Sanofi Partnering, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - Manolis Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Oluf Pedersen
- Center for Clinical Metabolic Research, Herlev and Gentofte University Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | | | - Federico De Masi
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Soren Brunak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ana Viñuela
- Biosciences Institute, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | | | - Tarja Kokkola
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jerzy Adamski
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Experimental Genetics, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ewan R Pearson
- Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), München Neuherberg, Germany.
| |
Collapse
|
16
|
Xiao Q, Gao M, Sun J, Tian Y, Zhang Z, Zhang P, Xu F. Discovery of Acylated Glycine and Alanine by Integrating Chemical Derivatization-Based LC-MS/MS and Knowledge-Driven Prediction. Anal Chem 2024. [PMID: 39556030 DOI: 10.1021/acs.analchem.4c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Acylated amino acids (acyl-AAs), which consist of an amino acid head and an organic acid tail, play vital roles in various biological processes. Glycine (Gly) is the most common substrate for acylation with the organic acid tails exhibiting considerable diversity. Alanine (Ala) also exists in multiple acylated forms, predominantly modified by long-chain fatty acids. However, the full scope of acylated Gly and Ala remains largely unexplored. In this study, we employed a knowledge-driven prediction approach to expand the spectrum of acylated Gly and Ala by incorporating 111 organic acids from five different classes as potential acyl donors, leading to the generation of 222 acylated Gly and Ala species. To enhance mass spectrometry (MS) response, we used a chemical derivatization-based LC-MS/MS approach, employing dimethylamino-naphthalene-1-sulfonyl piperazine (Dns-PP) and its stable isotope-labeled form (d6-Dns-PP) as labeling reagents. Moreover, in-source fragmentation (ISF) was utilized to increase the fragment diversity and utility, aiding in structure elucidation. This strategy resulted in the identification of 53 acylated Gly and Ala metabolites in rat biological matrices, including 17 novel metabolites with distinct tissue-specific distributions. Our approach offers a deeper understanding of the physiological and pathological roles of acylated Gly and Ala, while also opening avenues for the discovery of other modified metabolites.
Collapse
Affiliation(s)
- Qinwen Xiao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Meiyu Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiarui Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
17
|
Pan Y, Wu M, Cai H. Role of ABCC5 in cancer drug resistance and its potential as a therapeutic target. Front Cell Dev Biol 2024; 12:1446418. [PMID: 39563862 PMCID: PMC11573773 DOI: 10.3389/fcell.2024.1446418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Over 90% of treatment failures in cancer therapy can be attributed to multidrug resistance (MDR), which can develop intracellularly or through various routes. Numerous pathways contribute to treatment resistance in cancer, but one of the most significant pathways is intracellular drug efflux and reduced drug concentrations within cells, which are controlled by overexpressed drug efflux pumps. As a member of the family of ABC transporter proteins, ABCC5 (ATP Binding Cassette Subfamily C Member 5) reduces the intracellular concentration of a drug and its subsequent effectiveness using an ATP-dependent method to pump the drug out of the cell. Numerous studies have demonstrated that ABCC5 is strongly linked to both poor prognosis and poor treatment response. In addition, elevated ABCC5 expression is noted in a wide variety of malignancies. Given that ABCC5 is regulated by several pathways in a broad range of cancer types, it is a prospective target for cancer treatment. This review examined the expression, structure, function, and role of ABCC5 in various cancer types.
Collapse
Affiliation(s)
- Yinlong Pan
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengmeng Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Jiao H, Kalsbeek A, Yi CX. Microglia, circadian rhythm and lifestyle factors. Neuropharmacology 2024; 257:110029. [PMID: 38852838 DOI: 10.1016/j.neuropharm.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Microglia, a vital homeostasis-keeper of the central nervous system, perform critical functions such as synaptic pruning, clearance of cellular debris, and participation in neuroinflammatory processes. Recent research has shown that microglia exhibit strong circadian rhythms that not only actively regulate their own immune activity, but also affect neuronal function. Disruptions of the circadian clock have been linked to a higher risk of developing a variety of diseases. In this article we will provide an overview of how lifestyle factors impact microglial function, with a focus on disruptions caused by irregular sleep-wake patterns, reduced physical activity, and eating at the wrong time-of-day. We will also discuss the potential connection between these lifestyle factors, disrupted circadian rhythms, and the role of microglia in keeping brain health. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Feng J, Huang Z, Cui C, Zhao M, Feng Y. Synthesis, taste characteristics and taste mechanism of N-lactoyl leucine from soy sauce using sensory analysis and UPLC-MS/MS. Food Chem 2024; 454:139670. [PMID: 38820630 DOI: 10.1016/j.foodchem.2024.139670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Recently, amino acid derivatives gradually gained attention, but studies on N-lactoyl-leucine (Lac-Leu) and N-lactoyl-isoleucine (Lac-Ile) are limited. This study aims to explore the contributions of Lac-Leu and Lac-Ile to soy sauce. Lac-Leu and Lac-Ile were synthesized via enzymatic synthesis method catalyzed by Tgase. The mixed solutions containing Lac-Leu were found to have greater taste improvement than those containing Lac-Ile. Sensory evaluation indicated the sour, bitter, and astringent taste of Lac-Leu in water as well as its kokumi, astringent, and umami-enhancing taste in MSG solution. The taste threshold and umami-enhancing threshold of Lac-Leu measured by TDA and cTDA, respectively, were 0.08 mg/mL and 0.16 mg/mL. Molecular docking of Lac-Leu and Lac-Ile with the kokumi receptor CaSR and the umami receptors T1R1 and T1R3 indicated that Lac-Leu had higher affinities with receptors than Lac-Ile. These findings demonstrated the underlying contribution Lac-Leu made to soy sauce, indicating its potential to improve the flavor quality of soy sauce.
Collapse
Affiliation(s)
- Junwei Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
20
|
Fernandes Silva L, Vangipurapu J, Oravilahti A, Laakso M. Novel Metabolites Associated with Decreased GFR in Finnish Men: A 12-Year Follow-Up of the METSIM Cohort. Int J Mol Sci 2024; 25:10044. [PMID: 39337529 PMCID: PMC11432478 DOI: 10.3390/ijms251810044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Identification of the individuals having impaired kidney function is essential in preventing the complications of this disease. We measured 1009 metabolites at the baseline study in 10,159 Finnish men of the METSIM cohort and associated the metabolites with an estimated glomerular filtration rate (eGFR). A total of 7090 men participated in the 12-year follow-up study. Non-targeted metabolomics profiling was performed at Metabolon, Inc. (Morrisville, NC, USA) on EDTA plasma samples obtained after overnight fasting. We applied liquid chromatography mass spectrometry (LC-MS/MS) to identify the metabolites (the Metabolon DiscoveryHD4 platform). We performed association analyses between the eGFR and metabolites using linear regression adjusted for confounding factors. We found 108 metabolites significantly associated with a decrease in eGFR, and 28 of them were novel, including 12 amino acids, 8 xenobiotics, 5 lipids, 1 nucleotide, 1 peptide, and 1 partially characterized molecule. The most significant associations were with five amino acids, N-acetylmethionine, N-acetylvaline, gamma-carboxyglutamate, 3-methylglutaryl-carnitine, and pro-line. We identified 28 novel metabolites associated with decreased eGFR in the 12-year follow-up study of the METSIM cohort. These findings provide novel insights into the role of metabolites and metabolic pathways involved in the decline of kidney function.
Collapse
Affiliation(s)
- Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (L.F.S.); (J.V.); (A.O.)
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (L.F.S.); (J.V.); (A.O.)
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (L.F.S.); (J.V.); (A.O.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (L.F.S.); (J.V.); (A.O.)
- Department of Medicine, Kuopio University Hospital, 70200 Kuopio, Finland
| |
Collapse
|
21
|
González-Domínguez Á, Savolainen O, Domínguez-Riscart J, Landberg R, Lechuga-Sancho A, González-Domínguez R. Probing erythrocytes as sensitive and reliable sensors of metabolic disturbances in the crosstalk between childhood obesity and insulin resistance: findings from an observational study, in vivo challenge tests, and ex vivo incubation assays. Cardiovasc Diabetol 2024; 23:336. [PMID: 39261864 PMCID: PMC11391635 DOI: 10.1186/s12933-024-02395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Although insulin resistance (IR) is among the most frequent and pathogenically relevant complications accompanying childhood obesity, its role in modulating and exacerbating obesity pathophysiology has not yet been completely clarified. METHODS To get deeper insights into the interplay between childhood obesity and IR, we leveraged a comprehensive experimental design based on a combination of observational data, in vivo challenge tests (i.e., oral glucose tolerance test), and ex vivo assays (i.e., incubation of erythrocytes with insulin) using a population comprising children with obesity and IR, children with obesity without IR, and healthy controls, from whom plasma and erythrocyte samples were collected for subsequent metabolomics analysis. RESULTS Children with concomitant IR showed exacerbated metabolic disturbances in the crosstalk between endogenous, microbial, and environmental determinants, including failures in energy homeostasis, amino acid metabolism, oxidative stress, synthesis of steroid hormones and bile acids, membrane lipid composition, as well as differences in exposome-related metabolites associated with diet, exposure to endocrine disruptors, and gut microbiota. Furthermore, challenge tests and ex vivo assays revealed a deleterious impact of IR on individuals' metabolic flexibility, as reflected in blunted capacity to regulate homeostasis in response to hyperinsulinemia, at both systemic and erythroid levels. CONCLUSIONS Thus, we have demonstrated for the first time that metabolite alterations in erythrocytes represent reliable and sensitive biomarkers to disentangle the metabolic complexity of IR and childhood obesity. This study emphasizes the crucial need of addressing inter-individual variability factors, such as the presence of comorbidities, to obtain a more accurate understanding of obesity-related molecular mechanisms.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Otto Savolainen
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Jesús Domínguez-Riscart
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediatría, Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Alfonso Lechuga-Sancho
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain
- Unidad de Endocrinología Pediátrica y Diabetes, Servicio de Pediatría, Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
- Departamento Materno Infantil y Radiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, 11009, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, 11009, Spain.
| |
Collapse
|
22
|
Moya-Garzon MD, Wang M, Li VL, Lyu X, Wei W, Tung ASH, Raun SH, Zhao M, Coassolo L, Islam H, Oliveira B, Dai Y, Spaas J, Delgado-Gonzalez A, Donoso K, Alvarez-Buylla A, Franco-Montalban F, Letian A, Ward C, Liu L, Svensson KJ, Goldberg EL, Gardner CD, Little JP, Banik SM, Xu Y, Long JZ. A secondary β-hydroxybutyrate metabolic pathway linked to energy balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612087. [PMID: 39314488 PMCID: PMC11418978 DOI: 10.1101/2024.09.09.612087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
β-hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve interconversion of BHB and primary energy intermediates. Here we show that CNDP2 controls a previously undescribed secondary BHB metabolic pathway via enzymatic conjugation of BHB and free amino acids. This BHB-ylation reaction produces a family of endogenous ketone metabolites, the BHB-amino acids. Genetic ablation of CNDP2 in mice eliminates tissue amino acid BHB-ylation activity and reduces BHB-amino acid levels. Administration of BHB-Phe, the most abundant BHB-amino acid, to obese mice activates neural populations in the hypothalamus and brainstem and suppresses feeding and body weight. Conversely, CNDP2-KO mice exhibit increased food intake and body weight upon ketosis stimuli. CNDP2-dependent amino acid BHB-ylation and BHB-amino acid metabolites are also conserved in humans. Therefore, the metabolic pathways of BHB extend beyond primary metabolism and include secondary ketone metabolites linked to energy balance.
Collapse
Affiliation(s)
- Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Barbara Oliveira
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Yuqin Dai
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Jan Spaas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Kenyi Donoso
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Francisco Franco-Montalban
- Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, Campus de Cartuja sn, 18011, Granada, Spain
| | - Anudari Letian
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Ward
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lichao Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L Goldberg
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Löding S, Antti H, Sjöberg RL, Melin B, Björkblom B. Blood based metabolic markers of glioma from pre-diagnosis to surgery. Sci Rep 2024; 14:20680. [PMID: 39237693 PMCID: PMC11377417 DOI: 10.1038/s41598-024-71375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Gliomas are highly complex and metabolically active brain tumors associated with poor prognosis. Recent reports have found altered levels of blood metabolites during early tumor development, suggesting that tumor development could be detected several years before clinical manifestation. In this study, we performed metabolite analyses of blood samples collected from healthy controls and future glioma patients, up to eight years before glioma diagnosis, and on the day of glioma surgery. We discovered that metabolites related to early glioma development were associated with an increased energy turnover, as highlighted by elevated levels of TCA-related metabolites such as fumarate, malate, lactate and pyruvate in pre-diagnostic cases. We also found that metabolites related to glioma progression at surgery were primarily high levels of amino acids and metabolites of amino acid catabolism, with elevated levels of 11 amino acids and two branched-chain alpha-ketoacids, ketoleucine and ketoisoleucine. High amino acid turnover in glioma tumor tissue is currently utilized for PET imaging, diagnosis and delineation of tumor margins. By examining blood-based metabolic progression patterns towards disease onset, we demonstrate that this high amino acid turnover is also detectable in a simple blood sample. These findings provide additional insight of metabolic alterations during glioma development and progression.
Collapse
Affiliation(s)
- Sebastian Löding
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden.
| | - Henrik Antti
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden
| | - Rickard L Sjöberg
- Department of Clinical Science, Neurosciences, Umeå University, 901 85, Umeå, Sweden
| | - Beatrice Melin
- Department of Diagnostics and Intervention, Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Benny Björkblom
- Department of Chemistry, Umeå University, Linnaeus väg 10, 901 87, Umeå, Sweden.
| |
Collapse
|
24
|
Wei W, Lyu X, Markhard AL, Fu S, Mardjuki RE, Cavanagh PE, Zeng X, Rajniak J, Lu N, Xiao S, Zhao M, Moya-Garzon MD, Truong SD, Chou JCC, Wat LW, Chidambaranathan-Reghupaty S, Coassolo L, Xu D, Shen F, Huang W, Ramirez CB, Jang C, Li L, Svensson KJ, Fischbach MA, Long JZ. PTER is a N-acetyltaurine hydrolase that regulates feeding and obesity. Nature 2024; 633:182-188. [PMID: 39112712 PMCID: PMC11374699 DOI: 10.1038/s41586-024-07801-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/09/2024] [Indexed: 08/11/2024]
Abstract
Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in the biosynthesis of taurine from cysteine and in the downstream metabolism of secondary taurine metabolites4,5. One taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by stimuli that alter taurine or acetate flux, including endurance exercise7, dietary taurine supplementation8 and alcohol consumption6,9. So far, the identities of the enzymes involved in N-acetyltaurine metabolism, and the potential functions of N-acetyltaurine itself, have remained unknown. Here we show that the body mass index associated orphan enzyme phosphotriesterase-related (PTER)10 is a physiological N-acetyltaurine hydrolase. In vitro, PTER catalyses the hydrolysis of N-acetyltaurine to taurine and acetate. In mice, PTER is expressed in the kidney, liver and brainstem. Genetic ablation of Pter in mice results in complete loss of tissue N-acetyltaurine hydrolysis activity and a systemic increase in N-acetyltaurine levels. After stimuli that increase taurine levels, Pter knockout mice exhibit reduced food intake, resistance to diet-induced obesity and improved glucose homeostasis. Administration of N-acetyltaurine to obese wild-type mice also reduces food intake and body weight in a GFRAL-dependent manner. These data place PTER into a central enzymatic node of secondary taurine metabolism and uncover a role for PTER and N-acetyltaurine in body weight control and energy balance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Andrew L Markhard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Sipei Fu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rachel E Mardjuki
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Peter E Cavanagh
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Xianfeng Zeng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jakub Rajniak
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Steven D Truong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Lianna W Wat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Saranya Chidambaranathan-Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Fangfang Shen
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Wentao Huang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cuauhtemoc B Ramirez
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Lingyin Li
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A Fischbach
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
Li VL, Xiao S, Schlosser P, Scherer N, Wiggenhorn AL, Spaas J, Tung ASH, Karoly ED, Köttgen A, Long JZ. SLC17A1/3 transporters mediate renal excretion of Lac-Phe in mice and humans. Nat Commun 2024; 15:6895. [PMID: 39134528 PMCID: PMC11319466 DOI: 10.1038/s41467-024-51174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating SLC17A1/3-dependent de-coupling of urine and plasma Lac-Phe pools. Together, these data establish SLC17A1/3 family members as the physiologic urine Lac-Phe transporters and uncover a biochemical pathway for the renal excretion of this signaling metabolite.
Collapse
Affiliation(s)
- Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jan Spaas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | | | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
26
|
Lee YU, Fox BW, Guo R, Curtis BJ, Yu J, Kim S, Nanda S, Baumann V, Yilmaz LS, Haynes CM, Schroeder FC, Walhout AJM. Host-microbe interactions rewire metabolism in a C. elegans model of leucine breakdown deficiency. Nat Metab 2024; 6:1584-1600. [PMID: 39117959 PMCID: PMC11670331 DOI: 10.1038/s42255-024-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
In humans, defects in leucine catabolism cause a variety of inborn errors in metabolism. Here, we use Caenorhabditis elegans to investigate the impact of mutations in mccc-1, an enzyme that functions in leucine breakdown. Through untargeted metabolomic and transcriptomic analyses we find extensive metabolic rewiring that helps to detoxify leucine breakdown intermediates via conversion into previously undescribed metabolites and to synthesize mevalonate, an essential metabolite. We also find that the leucine breakdown product 3,3-hydroxymethylbutyrate (HMB), commonly used as a human muscle-building supplement, is toxic to C. elegans and that bacteria modulate this toxicity. Unbiased genetic screens revealed interactions between the host and microbe, where components of bacterial pyrimidine biosynthesis mitigate HMB toxicity. Finally, upregulated ketone body metabolism genes in mccc-1 mutants provide an alternative route for biosynthesis of the mevalonate precursor 3-hydroxy-3-methylglutaryl-CoA. Our work demonstrates that a complex host-bacteria interplay rewires metabolism to allow host survival when leucine catabolism is perturbed.
Collapse
Affiliation(s)
- Yong-Uk Lee
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bennett W Fox
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Rui Guo
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Science, Hangzhou, P. R. China
| | - Brian J Curtis
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Sookyung Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shivani Nanda
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victor Baumann
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - L Safak Yilmaz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha J M Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
27
|
Xiao S, Li VL, Long JZ. Lac-Phe (N-lactoyl-phenylalanine). Trends Endocrinol Metab 2024; 35:758-759. [PMID: 39137723 PMCID: PMC11446501 DOI: 10.1016/j.tem.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Department of Chemistry, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; The Phil and Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
van Wegberg AMJ, van der Weerd JC, Engelke UFH, Coene KLM, Jahja R, Bakker SJL, Huijbregts SCJ, Wevers RA, Heiner-Fokkema MR, van Spronsen FJ. The clinical relevance of novel biomarkers as outcome parameter in adults with phenylketonuria. J Inherit Metab Dis 2024; 47:624-635. [PMID: 38556470 DOI: 10.1002/jimd.12732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Recent studies in PKU patients identified alternative biomarkers in blood using untargeted metabolomics. To test the added clinical value of these novel biomarkers, targeted metabolomics of 11 PKU biomarkers (phenylalanine, glutamyl-phenylalanine, glutamyl-glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, the dipeptides phenylalanyl-phenylalanine and phenylalanyl-leucine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate) was performed in stored serum samples of the well-defined PKU patient-COBESO cohort and a healthy control group. Serum samples of 35 PKU adults and 20 healthy age- and sex-matched controls were analyzed using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Group differences were tested using the Mann-Whitney U test. Multiple linear regression analyses were performed with these biomarkers as predictors of (neuro-)cognitive functions working memory, sustained attention, inhibitory control, and mental health. Compared to healthy controls, phenylalanine, glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate were significant elevated in PKU adults (p < 0.001). The remaining three were below limit of detection in PKU and controls. Both phenylalanine and N-lactoyl-phenylalanine were associated with DSM-VI Attention deficit/hyperactivity (R2 = 0.195, p = 0.039 and R2 = 0.335, p = 0.002, respectively) of the ASR questionnaire. In addition, N-lactoyl-phenylalanine showed significant associations with ASR DSM-VI avoidant personality (R2 = 0.265, p = 0.010), internalizing (R2 = 0.192, p = 0.046) and externalizing problems (R2 = 0.217, p = 0.029) of the ASR questionnaire and multiple aspects of the MS2D and FI tests, reflecting working memory with R2 between 0.178 (p = 0.048) and 0.204 (p = 0.033). Even though the strength of the models was not considered strong, N-lactoyl-phenylalanine outperformed phenylalanine in its association with working memory and mental health outcomes.
Collapse
Affiliation(s)
- A M J van Wegberg
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| | - J C van der Weerd
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - U F H Engelke
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K L M Coene
- Laboratory of Clinical Chemistry and Hematology, Máxima Medical Centre, Veldhoven, The Netherlands
| | - R Jahja
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| | - S J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - S C J Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - R A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M R Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - F J van Spronsen
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| |
Collapse
|
29
|
Hoogstraten CA, Schirris TJJ, Russel FGM. Unlocking mitochondrial drug targets: The importance of mitochondrial transport proteins. Acta Physiol (Oxf) 2024; 240:e14150. [PMID: 38666512 DOI: 10.1111/apha.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
A disturbed mitochondrial function contributes to the pathology of many common diseases. These organelles are therefore important therapeutic targets. On the contrary, many adverse effects of drugs can be explained by a mitochondrial off-target effect, in particular, due to an interaction with carrier proteins in the inner membrane. Yet this class of transport proteins remains underappreciated and understudied. The aim of this review is to provide a deeper understanding of the role of mitochondrial carriers in health and disease and their significance as drug targets. We present literature-based evidence that mitochondrial carrier proteins are associated with prevalent diseases and emphasize their potential as drug (off-)target sites by summarizing known mitochondrial drug-transporter interactions. Studying these carriers will enhance our knowledge of mitochondrial drug on- and off-targets and provide opportunities to further improve the efficacy and safety of drugs.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans G M Russel
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
30
|
Becker A, Filipp M, Lantz C, Glinton K, Thorp EB. HIF-1α is Required to Differentiate the Neonatal Macrophage Secretome from Adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591000. [PMID: 38712137 PMCID: PMC11071477 DOI: 10.1101/2024.04.24.591000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The immune response to stress diverges with age, with neonatal macrophages implicated in tissue regeneration versus tissue scarring and maladaptive inflammation in adults. Integral to the macrophage stress response is the recognition of hypoxia and pathogen-associated molecular patterns (PAMPs), which are often coupled. The age-specific, cell-intrinsic nature of this stress response remains vague. To uncover age-defined divergences in macrophage crosstalk potential after exposure to hypoxia and PAMPs, we interrogated the secreted proteomes of neonatal versus adult macrophages via non-biased mass spectrometry. Through this approach, we newly identified age-specific signatures in the secretomes of neonatal versus adult macrophages in response to hypoxia and the prototypical PAMP, lipopolysaccharide (LPS). Neonatal macrophages polarized to an anti-inflammatory, regenerative phenotype protective against apoptosis and oxidative stress, dependent on hypoxia inducible transcription factor-1α ( HIF-1α). In contrast, adult macrophages adopted a pro-inflammatory, glycolytic phenotypic signature consistent with pathogen killing. Taken together, these data uncover fundamental age and HIF-1α dependent macrophage programs that may be targeted to calibrate the innate immune response during stress and inflammation.
Collapse
|
31
|
Li VL, Xiao S, Schlosser P, Scherer N, Wiggenhorn AL, Spaas J, Tung ASH, Karoly ED, Köttgen A, Long JZ. SLC17 transporters mediate renal excretion of Lac-Phe in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.589815. [PMID: 38659895 PMCID: PMC11042375 DOI: 10.1101/2024.04.18.589815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are also increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating that urine and plasma Lac-Phe pools are functionally and biochemically de-coupled. Together, these data establish SLC17 family members as the physiologic urine transporters for Lac-Phe and uncover a biochemical pathway for the renal excretion of this signaling metabolite.
Collapse
|
32
|
Pfeffer T, Krug SM, Kracke T, Schürfeld R, Colbatzky F, Kirschner P, Medert R, Freichel M, Schumacher D, Bartosova M, Zarogiannis SG, Muckenthaler MU, Altamura S, Pezer S, Volk N, Schwab C, Duensing S, Fleming T, Heidenreich E, Zschocke J, Hell R, Poschet G, Schmitt CP, Peters V. Knock-out of dipeptidase CN2 in human proximal tubular cells disrupts dipeptide and amino acid homeostasis and para- and transcellular solute transport. Acta Physiol (Oxf) 2024; 240:e14126. [PMID: 38517248 DOI: 10.1111/apha.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
AIM Although of potential biomedical relevance, dipeptide metabolism has hardly been studied. We found the dipeptidase carnosinase-2 (CN2) to be abundant in human proximal tubules, which regulate water and solute homeostasis. We therefore hypothesized, that CN2 has a key metabolic role, impacting proximal tubular transport function. METHODS A knockout of the CN2 gene (CNDP2-KO) was generated in human proximal tubule cells and characterized by metabolomics, RNA-seq analysis, paracellular permeability analysis and ion transport. RESULTS CNDP2-KO in human proximal tubule cells resulted in the accumulation of cellular dipeptides, reduction of amino acids and imbalance of related metabolic pathways, and of energy supply. RNA-seq analyses indicated altered protein metabolism and ion transport. Detailed functional studies demonstrated lower CNDP2-KO cell viability and proliferation, and altered ion and macromolecule transport via trans- and paracellular pathways. Regulatory and transport protein abundance was disturbed, either as a consequence of the metabolic imbalance or the resulting functional disequilibrium. CONCLUSION CN2 function has a major impact on intracellular amino acid and dipeptide metabolism and is essential for key metabolic and regulatory functions of proximal tubular cells. These findings deserve in vivo analysis of the relevance of CN2 for nephron function and regulation of body homeostasis.
Collapse
Affiliation(s)
- Tilman Pfeffer
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | - Tamara Kracke
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Robin Schürfeld
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Florian Colbatzky
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Philip Kirschner
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Maria Bartosova
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Sotiris G Zarogiannis
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology and Hopp Children Cancer Center (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), EMBL and University of Heidelberg, Heidelberg, Germany
| | - Silvia Pezer
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Nadine Volk
- Tissue Bank of the National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Elena Heidenreich
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Claus P Schmitt
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Verena Peters
- Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
33
|
Scott B, Day EA, O'Brien KL, Scanlan J, Cromwell G, Scannail AN, McDonnell ME, Finlay DK, Lynch L. Metformin and feeding increase levels of the appetite-suppressing metabolite Lac-Phe in humans. Nat Metab 2024; 6:651-658. [PMID: 38499765 PMCID: PMC11052712 DOI: 10.1038/s42255-024-01018-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Metformin, a widely used first-line treatment for type 2 diabetes (T2D), is known to reduce blood glucose levels and suppress appetite. Here we report a significant elevation of the appetite-suppressing metabolite N-lactoyl phenylalanine (Lac-Phe) in the blood of individuals treated with metformin across seven observational and interventional studies. Furthermore, Lac-Phe levels were found to rise in response to acute metformin administration and post-prandially in patients with T2D or in metabolically healthy volunteers.
Collapse
Affiliation(s)
- Barry Scott
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily A Day
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Katie L O'Brien
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - John Scanlan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Grace Cromwell
- Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aine Ni Scannail
- Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marie E McDonnell
- Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
TeSlaa T. Metformin induces a Lac-Phe gut-brain signalling axis. Nat Metab 2024; 6:603-605. [PMID: 38499764 DOI: 10.1038/s42255-024-01014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Tara TeSlaa
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Xiao S, Li VL, Lyu X, Chen X, Wei W, Abbasi F, Knowles JW, Tung ASH, Deng S, Tiwari G, Shi X, Zheng S, Farrell L, Chen ZZ, Taylor KD, Guo X, Goodarzi MO, Wood AC, Chen YDI, Lange LA, Rich SS, Rotter JI, Clish CB, Tahir UA, Gerszten RE, Benson MD, Long JZ. Lac-Phe mediates the effects of metformin on food intake and body weight. Nat Metab 2024; 6:659-669. [PMID: 38499766 PMCID: PMC11062621 DOI: 10.1038/s42255-024-00999-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. There is ongoing debate about the mechanisms that mediate metformin's effects on energy balance. Here, we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite N-lactoyl-phenylalanine (Lac-Phe) in cells, in mice and two independent human cohorts. Metformin drives Lac-Phe biosynthesis through the inhibition of complex I, increased glycolytic flux and intracellular lactate mass action. Intestinal epithelial CNDP2+ cells, not macrophages, are the principal in vivo source of basal and metformin-inducible Lac-Phe. Genetic ablation of Lac-Phe biosynthesis in male mice renders animals resistant to the effects of metformin on food intake and body weight. Lastly, mediation analyses support a role for Lac-Phe as a downstream effector of metformin's effects on body mass index in participants of a large population-based observational cohort, the Multi-Ethnic Study of Atherosclerosis. Together, these data establish Lac-Phe as a critical mediator of the body weight-lowering effects of metformin.
Collapse
Affiliation(s)
- Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xudong Chen
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Fahim Abbasi
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua W Knowles
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gaurav Tiwari
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark D Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Wei W, Lyu X, Markhard AL, Fu S, Mardjuki RE, Cavanagh PE, Zeng X, Rajniak J, Lu N, Xiao S, Zhao M, Moya-Garzon MD, Truong SD, Chou JCC, Wat LW, Chidambaranathan-Reghupaty S, Coassolo L, Xu D, Shen F, Huang W, Ramirez CB, Jang C, Svensson KJ, Fischbach MA, Long JZ. A PTER-dependent pathway of taurine metabolism linked to energy balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586194. [PMID: 38562797 PMCID: PMC10983888 DOI: 10.1101/2024.03.21.586194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in biosynthesis of taurine from cysteine as well as the downstream derivatization of taurine into secondary taurine metabolites4,5. One such taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by diverse physiologic perturbations that alter taurine and/or acetate flux, including endurance exercise7, nutritional taurine supplementation8, and alcohol consumption6,9. While taurine N-acetyltransferase activity has been previously detected in mammalian cells6,7, the molecular identity of this enzyme, and the physiologic relevance of N-acetyltaurine, have remained unknown. Here we show that the orphan body mass index-associated enzyme PTER (phosphotriesterase-related)10 is the principal mammalian taurine N-acetyltransferase/hydrolase. In vitro, recombinant PTER catalyzes bidirectional taurine N-acetylation with free acetate as well as the reverse N-acetyltaurine hydrolysis reaction. Genetic ablation of PTER in mice results in complete loss of tissue taurine N-acetyltransferase/hydrolysis activities and systemic elevation of N-acetyltaurine levels. Upon stimuli that increase taurine levels, PTER-KO mice exhibit lower body weight, reduced adiposity, and improved glucose homeostasis. These phenotypes are recapitulated by administration of N-acetyltaurine to wild-type mice. Lastly, the anorexigenic and anti-obesity effects of N-acetyltaurine require functional GFRAL receptors. Together, these data uncover enzymatic control of a previously enigmatic pathway of secondary taurine metabolism linked to energy balance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Andrew L. Markhard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Sipei Fu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rachel E. Mardjuki
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Xianfeng Zeng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jakub Rajniak
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Steven D. Truong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Lianna W. Wat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Saranya Chidambaranathan-Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Fangfang Shen
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Wentao Huang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cuauhtemoc B. Ramirez
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A Fischbach
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
37
|
Rogers RS, Sharma R, Shah HB, Skinner OS, Guo XA, Panda A, Gupta R, Durham TJ, Shaughnessy KB, Mayers JR, Hibbert KA, Baron RM, Thompson BT, Mootha VK. Circulating N-lactoyl-amino acids and N-formyl-methionine reflect mitochondrial dysfunction and predict mortality in septic shock. Metabolomics 2024; 20:36. [PMID: 38446263 PMCID: PMC10917846 DOI: 10.1007/s11306-024-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA.
| | - Rohit Sharma
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Hardik B Shah
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Owen S Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | | | | | - Rahul Gupta
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Timothy J Durham
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Kelsey B Shaughnessy
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Jared R Mayers
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care, Brigham & Women's Hospital, Boston, MA, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
38
|
Chmielewska K, Vittorio S, Gervasoni S, Dzierzbicka K, Inkielewicz-Stepniak I, Vistoli G. Human carnosinases: A brief history, medicinal relevance, and in silico analyses. Drug Discov Today 2024; 29:103860. [PMID: 38128717 DOI: 10.1016/j.drudis.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Carnosine, an endogenous dipeptide, has been found to have a plethora of medicinal properties, such as antioxidant, antiageing, and chelating effects, but with one downside: a short half-life. Carnosinases and two hydrolytic enzymes, which remain enigmatic, are responsible for these features. Hence, here we emphasize why research is valuable for better understanding crucial concepts like ageing, neurodegradation, and cancerogenesis, given that inhibition of carnosinases might significantly prolong carnosine bioavailability and allow its further use in medicine. Herein, we explore the literature regarding carnosinases and present a short in silico analysis aimed at elucidating the possible recognition pattern between CN1 and its ligands.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy; Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
39
|
Suciu I, Delp J, Gutbier S, Suess J, Henschke L, Celardo I, Mayer TU, Amelio I, Leist M. Definition of the Neurotoxicity-Associated Metabolic Signature Triggered by Berberine and Other Respiratory Chain Inhibitors. Antioxidants (Basel) 2023; 13:49. [PMID: 38247474 PMCID: PMC10812665 DOI: 10.3390/antiox13010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
To characterize the hits from a phenotypic neurotoxicity screen, we obtained transcriptomics data for valinomycin, diethylstilbestrol, colchicine, rotenone, 1-methyl-4-phenylpyridinium (MPP), carbaryl and berberine (Ber). For all compounds, the concentration triggering neurite degeneration correlated with the onset of gene expression changes. The mechanistically diverse toxicants caused similar patterns of gene regulation: the responses were dominated by cell de-differentiation and a triggering of canonical stress response pathways driven by ATF4 and NRF2. To obtain more detailed and specific information on the modes-of-action, the effects on energy metabolism (respiration and glycolysis) were measured. Ber, rotenone and MPP inhibited the mitochondrial respiratory chain and they shared complex I as the target. This group of toxicants was further evaluated by metabolomics under experimental conditions that did not deplete ATP. Ber (204 changed metabolites) showed similar effects as MPP and rotenone. The overall metabolic situation was characterized by oxidative stress, an over-abundance of NADH (>1000% increase) and a re-routing of metabolism in order to dispose of the nitrogen resulting from increased amino acid turnover. This unique overall pattern led to the accumulation of metabolites known as biomarkers of neurodegeneration (saccharopine, aminoadipate and branched-chain ketoacids). These findings suggest that neurotoxicity of mitochondrial inhibitors may result from an ensemble of metabolic changes rather than from a simple ATP depletion. The combi-omics approach used here provided richer and more specific MoA data than the more common transcriptomics analysis alone. As Ber, a human drug and food supplement, mimicked closely the mode-of-action of known neurotoxicants, its potential hazard requires further investigation.
Collapse
Affiliation(s)
- Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Johannes Delp
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Simon Gutbier
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Julian Suess
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Lars Henschke
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Thomas U. Mayer
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
40
|
Fernandes Silva L, Hokkanen J, Vangipurapu J, Oravilahti A, Laakso M. Metabolites as Risk Factors for Diabetic Retinopathy in Patients With Type 2 Diabetes: A 12-Year Follow-up Study. J Clin Endocrinol Metab 2023; 109:100-106. [PMID: 37560996 PMCID: PMC10735554 DOI: 10.1210/clinem/dgad452] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Diabetic retinopathy (DR) is a specific microvascular complication in patients with diabetes and the leading cause of blindness. Recent advances in omics, especially metabolomics, offer the possibility identifying novel potential biomarkers for DR. OBJECTIVE The aim was to identify metabolites associated with DR. METHODS We performed a 12-year follow-up study including 1349 participants with type 2 diabetes (1021 without DR, 328 with DR) selected from the METSIM cohort. Individuals who had retinopathy before the baseline study were excluded (n = 63). The diagnosis of retinopathy was based on fundus photography examination. We performed nontargeted metabolomics profiling to identify metabolites. RESULTS We found 17 metabolites significantly associated with incident DR after adjustment for confounding factors. Among amino acids, N-lactoyl isoleucine, N-lactoyl valine, N-lactoyl tyrosine, N-lactoyl phenylalanine, N-(2-furoyl) glycine, and 5-hydroxylysine were associated with an increased risk of DR, and citrulline with a decreased risk of DR. Among the fatty acids N,N,N-trimethyl-5-aminovalerate was associated with an increased risk of DR, and myristoleate (14:1n5), palmitoleate (16:1n7), and 5-dodecenoate (12:1n7) with a decreased risk of DR. Sphingomyelin (d18:2/24:2), a sphingolipid, was significantly associated with a decreased risk of DR. Carboxylic acid maleate and organic compounds 3-hydroxypyridine sulfate, 4-vinylphenol sulfate, 4-ethylcatechol sulfate, and dimethyl sulfone were significantly associated with an increased risk of DR. CONCLUSION Our study is the first large population-based longitudinal study to identify metabolites for DR. We found multiple metabolites associated with an increased and decreased risk for DR from several different metabolic pathways.
Collapse
Affiliation(s)
- Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jenna Hokkanen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Internal Medicine, Kuopio University Hospital, 70211 Kuopio, Finland
| |
Collapse
|
41
|
Ikeda Y, Fujii J. The Emerging Roles of γ-Glutamyl Peptides Produced by γ-Glutamyltransferase and the Glutathione Synthesis System. Cells 2023; 12:2831. [PMID: 38132151 PMCID: PMC10741565 DOI: 10.3390/cells12242831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiquitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly maintained via regulated synthesis, which is catalyzed via the coordination of γ-glutamyl-cysteine synthetase (γ-GCS) and glutathione synthetase, as well as by reductive recycling by glutathione reductase. A prevailing short supply of L-cysteine (Cys) tends to limit glutathione synthesis, which leads to the production of various other γ-glutamyl peptides due to the unique enzymatic properties of γ-GCS. Extracellular degradation of glutathione by γ-glutamyltransferase (GGT) is a dominant source of Cys for some cells. GGT catalyzes the hydrolytic removal of the γ-glutamyl group of glutathione or transfers it to amino acids or to dipeptides outside cells. Such processes depend on an abundance of acceptor substrates. However, the physiological roles of extracellularly preserved γ-glutamyl peptides have long been unclear. The identification of γ-glutamyl peptides, such as glutathione, as allosteric modulators of calcium-sensing receptors (CaSRs) could provide insights into the significance of the preservation of γ-glutamyl peptides. It is conceivable that GGT could generate a new class of intercellular messaging molecules in response to extracellular microenvironments.
Collapse
Affiliation(s)
- Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City 990-9585, Japan
| |
Collapse
|
42
|
Li S, Guo R, Wang J, Zheng X, Zhao S, Zhang Z, Yu W, Li S, Zheng P. The effect of blood flow restriction exercise on N-lactoylphenylalanine and appetite regulation in obese adults: a cross-design study. Front Endocrinol (Lausanne) 2023; 14:1289574. [PMID: 38116312 PMCID: PMC10728722 DOI: 10.3389/fendo.2023.1289574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Background N-lactoylphenylalanine (Lac-Phe) is a new form of "exerkines" closely related to lactate (La), which may be able to inhibit appetite. Blood flow restriction (BFR) can lead to local tissue hypoxia and increase lactate accumulation. Therefore, this study investigated the effects of combining Moderate-intensity Continuous Exercise (MICE) with BFR on Lac-Phe and appetite regulation in obese adults. Methods This study employed the cross-design study and recruited 14 obese adults aged 18-24 years. The participants were randomly divided into three groups and performed several tests with specific experimental conditions: (1) M group (MICE without BFR, 60%VO2max, 200 kJ); (2) B group (MICE with BFR, 60%VO2max, 200 kJ); and (3) C group (control session without exercise). Participants were given a standardized meal 60 min before exercise and a ad libitum 60 min after exercise. In addition, blood and Visual Analogue Scale (VAS) were collected before, immediately after, and 1 hour after performing the exercise. Results No significant difference in each index was detected before exercise. After exercise, the primary differential metabolites detected in the M and B groups were xanthine, La, succinate, Lac-Phe, citrate, urocanic acid, and myristic acid. Apart from that, the major enrichment pathways include the citrate cycle, alanine, aspartate, and glutamate metabolism. The enhanced Lac-Phe and La level in the B group was higher than M and C groups. Hunger of the B group immediately after exercise substantially differed from M group. The total ghrelin, glucagon-like peptide-1 and hunger in the B group 1 hour after exercise differed substantially from M group. The results of calorie intake showed no significant difference among the indexes in each group. Conclusions In conclusion, this cross-design study demonstrated that the combined MICE and BFR exercise reduced the appetite of obese adults by promoting the secretion of Lac-Phe and ghrelin. However, the exercise did not considerably affect the subsequent ad libitum intake.
Collapse
Affiliation(s)
- Shuoqi Li
- School of Sports Science, Nantong University, Nantong, China
| | - Rong Guo
- School of Foreign Languages, Ludong University, Yantai, China
| | - Juncheng Wang
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Xinyu Zheng
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Shuo Zhao
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Zhiru Zhang
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Wenbing Yu
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Shiming Li
- Department of Physical Education, Ocean University of China, Qingdao, China
| | - Peng Zheng
- Department of Physical Education, Ocean University of China, Qingdao, China
| |
Collapse
|
43
|
Hao M, Qin Y, Li Y, Tang Y, Ma Z, Tan J, Jin L, Wang F, Gong X. Metabolome subtyping reveals multi-omics characteristics and biological heterogeneity in major psychiatric disorders. Psychiatry Res 2023; 330:115605. [PMID: 38006718 DOI: 10.1016/j.psychres.2023.115605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Growing evidence suggests that major psychiatric disorders (MPDs) share common etiologies and pathological processes. However, the diagnosis is currently based on descriptive symptoms, which ignores the underlying pathogenesis and hinders the development of clinical treatments. This highlights the urgency of characterizing molecular biomarkers and establishing objective diagnoses of MPDs. Here, we collected untargeted metabolomics, proteomics and DNA methylation data of 327 patients with MPDs, 131 individuals with genetic high risk and 146 healthy controls to explore the multi-omics characteristics of MPDs. First, differential metabolites (DMs) were identified and we classified MPD patients into 3 subtypes based on DMs. The subtypes showed distinct metabolomics, proteomics and DNA methylation signatures. Specifically, one subtype showed dysregulation of complement and coagulation proteins, while the DNA methylation showed abnormalities in chemical synapses and autophagy. Integrative analysis in metabolic pathways identified the important roles of the citrate cycle, sphingolipid metabolism and amino acid metabolism. Finally, we constructed prediction models based on the metabolites and proteomics that successfully captured the risks of MPD patients. Our study established molecular subtypes of MPDs and elucidated their biological heterogeneity through a multi-omics investigation. These results facilitate the understanding of pathological mechanisms and promote the diagnosis and prevention of MPDs.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Xiao S, Li VL, Lyu X, Chen X, Wei W, Abbasi F, Knowles JW, Deng S, Tiwari G, Shi X, Zheng S, Farrell L, Chen ZZ, Taylor KD, Guo X, Goodarzi MO, Wood AC, Ida Chen YD, Lange LA, Rich SS, Rotter JI, Clish CB, Tahir UA, Gerszten RE, Benson MD, Long JZ. Lac-Phe mediates the anti-obesity effect of metformin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565321. [PMID: 37961394 PMCID: PMC10635077 DOI: 10.1101/2023.11.02.565321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. The mechanisms that mediate metformin's effects on energy balance remain incompletely defined. Here we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite Lac-Phe in mice as well as in two independent human cohorts. In cell culture, metformin drives Lac-Phe biosynthesis via inhibition of complex I, increased glycolytic flux, and intracellular lactate mass action. Other biguanides and structurally distinct inhibitors of oxidative phosphorylation also increase Lac-Phe levels in vitro. Genetic ablation of CNDP2, the principal biosynthetic enzyme for Lac-Phe, in mice renders animals resistant to metformin's anorexigenic and anti-obesity effects. Mediation analyses also support a role for Lac-Phe in metformin's effect on body mass index in humans. These data establish the CNDP2/Lac-Phe pathway as a critical mediator of the effects of metformin on energy balance.
Collapse
Affiliation(s)
- Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Veronica L. Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Xudong Chen
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Fahim Abbasi
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua W. Knowles
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Gaurav Tiwari
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | | | - Usman A. Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Mark D. Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| |
Collapse
|
45
|
Löding S, Andersson U, Kaaks R, Schulze MB, Pala V, Urbarova I, Amiano P, Colorado-Yohar SM, Guevara M, Heath AK, Chatziioannou AC, Johansson M, Nyberg L, Antti H, Björkblom B, Melin B. Altered plasma metabolite levels can be detected years before a glioma diagnosis. JCI Insight 2023; 8:e171225. [PMID: 37651185 PMCID: PMC10619434 DOI: 10.1172/jci.insight.171225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Genetic and metabolic changes in tissue and blood are reported to occur several years before glioma diagnosis. Since gliomas are currently detected late, a liquid biopsy for early detection could affect the quality of life and prognosis of patients. Here, we present a nested case-control study of 550 prediagnostic glioma cases and 550 healthy controls from the Northern Sweden Health and Disease study (NSHDS) and the European Prospective Investigation into Cancer and Nutrition (EPIC) study. We identified 93 significantly altered metabolites related to glioma development up to 8 years before diagnosis. Out of these metabolites, a panel of 20 selected metabolites showed strong disease correlation and a consistent progression pattern toward diagnosis in both the NSHDS and EPIC cohorts, and they separated future cases from controls independently of biological sex. The blood metabolite panel also successfully separated both lower-grade glioma and glioblastoma cases from controls, up to 8 years before diagnosis in patients within the NSHDS cohort and up to 2 years before diagnosis in EPIC. Pathway enrichment analysis detected metabolites related to the TCA cycle, Warburg effect, gluconeogenesis, and cysteine, pyruvate, and tyrosine metabolism as the most affected.
Collapse
Affiliation(s)
| | - Ulrika Andersson
- Biobank Reserach Unit, and
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilona Urbarova
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pilar Amiano
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Public Health Laboratory in Gipuzkoa, San Sebastián, Spain
- Epidemiology of Chronic and Comunnicable Diseases Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Sandra M. Colorado-Yohar
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Marcela Guevara
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Institute of Public and Labor Health and Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | | | | | - Lars Nyberg
- Department of Radiation Sciences, Diagnositc Radiology, and
- Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | | | | | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
46
|
Vu HM, Mohammad HB, Nguyen TNC, Lee JH, Do Y, Sung JY, Lee SH, Kim MS. Quantitative proteomic analysis of bronchoalveolar lavage fluids from patients with small cell lung cancers. Proteomics Clin Appl 2023; 17:e2300011. [PMID: 36807835 DOI: 10.1002/prca.202300011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Small cell lung cancer (SCLC) is one of the malignant cancers with aggressive progression and poor prognosis. Bronchoalveolar lavage fluid (BALF) has been arising recently as a potential source of biomarkers for lung cancers. In this study, we performed quantitative BALF proteomic analysis to identify potential biomarkers for SCLC. EXPERIMENTAL DESIGN BALF were collected from tumor-bearing lungs and non-tumor lungs of five SCLC patients. Then, BALF proteomes were prepared for a TMT-based quantitative mass spectrometry analysis. Differentially expressed proteins (DEP) were identified when considering individual variation. Potential SCLC biomarker candidates were validated by immunohistochemistry (IHC). A public database of multiple SCLC cell lines was used to evaluate the correlation of these markers with SCLC subtypes and chemo-drug responses. RESULTS We identified 460 BALF proteins in SCLC patients and observed considerable individual variation among the patients. Immunohistochemical analysis and bioinformatics resulted in the identification of CNDP2 and RNPEP as potential subtype markers for ASCL1 and NEUROD1, respectively. In addition, CNDP2 was found to be positively correlated with responses to etoposide, carboplatin, and irinotecan. CONCLUSIONS AND CLINICAL RELEVANCE BALF is an emerging source of biomarkers, making it useful for the diagnosis and prognosis of lung cancers. We characterized the proteomes of paired BALF samples collected from tumor-bearing and non-tumor lungs of SCLC patients. Several proteins were found elevated in tumor-bearing BALF, and especially CNDP2 and RNPEP appeared to be potential indicators for ASLC1-high and NEUROD1-high subtypes of SCLC, respectively. The positive correlation of CNDP2 with chemo-drug responses would help to make decisions for treatment of SCLC patients. These putative biomarkers could be comprehensively investigated for a clinical use towards precision medicine.
Collapse
Affiliation(s)
- Hung M Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hazara Begum Mohammad
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Thy N C Nguyen
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jun Hyung Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yeji Do
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ji-Youn Sung
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Hyeun Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, DGIST, Daegu, Republic of Korea
- Center for Cell Fate Reprogramming and Control, DGIST, Daegu, Republic of Korea
| |
Collapse
|
47
|
Hwang E, Portillo B, Grose K, Fujikawa T, Williams KW. Exercise-induced hypothalamic neuroplasticity: Implications for energy and glucose metabolism. Mol Metab 2023; 73:101745. [PMID: 37268247 PMCID: PMC10326746 DOI: 10.1016/j.molmet.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Neuroplasticity refers to the brain's ability to undergo functional and structural changes in response to diverse challenges. Converging evidence supports the notion that exercise serves as a metabolic challenge, triggering the release of multiple factors both in the periphery and within the brain. These factors actively contribute to plasticity in the brain, and in turn, regulate energy and glucose metabolism. SCOPE OF REVIEW The primary focus of this review is to explore the impact of exercise-induced plasticity in the brain on metabolic homeostasis, with an emphasis on the role of the hypothalamus in this process. Additionally, the review provides an overview of various factors induced by exercise that contribute to energy balance and glucose metabolism. Notably, these factors exert their effects, at least in part, through actions within the hypothalamus and more broadly in the central nervous system. MAJOR CONCLUSIONS Exercise elicits both transient and sustained changes in metabolism, accompanied by changes in neural activity within specific brain regions. Importantly, the contribution of exercise-induced plasticity and the underlying mechanisms by which neuroplasticity influences the effects of exercise are not well understood. Recent work has begun to overcome this gap in knowledge by examining the complex interactions of exercise-induced factors which alter neural circuit properties to influence metabolism.
Collapse
Affiliation(s)
- Eunsang Hwang
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Bryan Portillo
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kyle Grose
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
48
|
Kowalski K, Marciniak P, Rychlik L. Proteins from toad's parotoid macroglands: do they play a role in gland functioning and chemical defence? Front Zool 2023; 20:21. [PMID: 37328749 DOI: 10.1186/s12983-023-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Parotoid gland secretion of bufonid toads is a rich source of toxic molecules that are used against predators, parasites and pathogens. Bufadienolides and biogenic amines are the principal compounds responsible for toxicity of parotoid secretion. Many toxicological and pharmacological analyses of parotoid secretions have been performed, but little is known about the processes related to poison production and secretion. Therefore, our aim was to investigate protein content in parotoids of the common toad, Bufo bufo, to understand the processes that regulate synthesis and excretion of toxins as well as functioning of parotoid macroglands. RESULTS Applying a proteomic approach we identified 162 proteins in the extract from toad's parotoids that were classified into 11 categories of biological functions. One-third (34.6%) of the identified molecules, including acyl-CoA-binding protein, actin, catalase, calmodulin, and enolases, were involved in cell metabolism. We found many proteins related to cell division and cell cycle regulation (12.0%; e.g. histone and tubulin), cell structure maintenance (8.4%; e.g. thymosin beta-4, tubulin), intra- and extracellular transport (8.4%), cell aging and apoptosis (7.3%; e.g. catalase and pyruvate kinase) as well as immune (7.0%; e.g. interleukin-24 and UV excision repair protein) and stress (6.3%; including heat shock proteins, peroxiredoxin-6 and superoxide dismutase) response. We also identified two proteins, phosphomevalonate kinase and isopentenyl-diphosphate delta-isomerase 1, that are involved in synthesis of cholesterol which is a precursor for bufadienolides biosynthesis. STRING protein-protein interaction network predicted for identified proteins showed that most proteins are related to metabolic processes, particularly glycolysis, stress response and DNA repair and replication. The results of GO enrichment and KEGG analyses are also consistent with these findings. CONCLUSION This finding indicates that cholesterol may be synthesized in parotoids, and not only in the liver from which is then transferred through the bloodstream to the parotoid macroglands. Presence of proteins that regulate cell cycle, cell division, aging and apoptosis may indicate a high epithelial cell turnover in parotoids. Proteins protecting skin cells from DNA damage may help to minimize the harmful effects of UV radiation. Thus, our work extends our knowledge with new and important functions of parotoids, major glands involved in the bufonid chemical defence.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Institute of Biology, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Leszek Rychlik
- Department of Systematic Zoology, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
49
|
Huang Z, Feng Y, Zeng J, Zhao M. Six categories of amino acid derivatives with potential taste contributions: a review of studies on soy sauce. Crit Rev Food Sci Nutr 2023; 64:7981-7992. [PMID: 37009850 DOI: 10.1080/10408398.2023.2194422] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
During the fermentation of soy sauce, the metabolism of microorganisms and the Maillard reaction produce a wide variety of metabolites that contribute to the unique and rich flavor characteristics of soy sauce, such as amino acids, organic acids and peptides. Amino acid derivatives, a relatively new taste compounds, formed by the reaction of enzymes or non-enzymes from sugars, amino acids, and organic acids released through metabolism by microorganisms during soy sauce fermentation, have begun to gain more and more attention in recent years. This review focused on our existing knowledge of the sources, taste characteristics and synthesis methods of the 6 categories of amino acid derivatives, including Amadori compounds, γ-glutamyl peptides, pyroglutamyl amino acids, N-lactoyl amino acids, N-acetyl amino acids and N-succinyl amino acids. Sixty-four amino acid derivatives were detected in soy sauce, of which 47 were confirmed to have potential contribution to the taste of soy sauce, especially umami and kokumi, and some of them also have the effect of reducing bitterness. Furthermore, some amino acid derivatives, like γ-glutamyl peptides and N-lactoyl amino acids, were found to be synthesized enzymatically in vitro, which laid the foundation for further study on their formation pathways in the future.
Collapse
Affiliation(s)
- Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Jing Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, China
| |
Collapse
|
50
|
Trans-10, cis-12 conjugated linoleic acid- and caloric restriction-mediated upregulation of CNDP2 expression in white adipose tissue in rodents, with implications in feeding and obesity. J Nutr Biochem 2023; 114:109269. [PMID: 36641073 DOI: 10.1016/j.jnutbio.2023.109269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Certain dietary supplements such as trans-10, cis-12 conjugated linoleic acid (t10-c12 CLA), and diets including caloric-restricted diets can promote weight loss in certain animal models and humans. A very recent study showed that exercise induces the biosynthesis of N-lactoyl-phenylalanine (Lac-Phe), a circulating signaling metabolite that suppresses feeding and obesity selectively in mice fed with a high-fat diet, and that cytosolic nonspecific dipeptidase 2 (CNDP2) catalyzes the synthesis of Lac-Phe from lactate (Lac) and phenylalanine (Phe). In this in silico study, we found that two anti-obesity strategies, namely treatment with t10-c12 CLA and caloric restriction, increase CNDP2 expression in adipose tissue in mice and rats, respectively. We showed that the effect of t10-c12 CLA on CNDP2 expression might be isomer-specific. We hypothesized that these t10-c12 CLA treatment- or caloric-restricted diet-mediated increases in CNDP2 expression might contribute to their anti-obesity effects, possibly due to increased Lac-Phe levels and ultimately due to Lac-Phe-mediated decreases in daily food consumption, reduced body weight and fat mass. A better understanding of the regulation of CNDP2 expression in diverse tissues in mammals might be of high importance in the treatment of obesity, considering its role in the synthesis of Lac-Phe, a metabolite that decreases body weight and fat mass selectively in mice fed with a high-fat diet. Further research is needed to find out how these two strategies lead to the upregulation of CNDP2 expression and whether this increased expression of CNDP2 might translate to reduced body weight and fat mass through higher Lac-Phe levels.
Collapse
|