1
|
Chen Y, Chen Z, Liang L, Li J, Meng L, Yuan W, Xie B, Zhang X, Feng L, Jia Y, Fu Z, Su P, Tong Z, Zhong J, Liu X. Multi-kingdom gut microbiota dysbiosis is associated with the development of pulmonary arterial hypertension. EBioMedicine 2025; 115:105686. [PMID: 40220715 PMCID: PMC12013117 DOI: 10.1016/j.ebiom.2025.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Gut microbiota dysbiosis has been implicated in pulmonary arterial hypertension (PAH). However, the exact roles and underlying mechanisms of multi-kingdom gut microbiota, including bacteria, archaea, and fungi, in PAH remain largely unclear. METHODS The shotgun metagenomics was used to analyse multi-kingdom gut microbial communities in patients with idiopathic PAH (IPAH) and healthy controls. Furthermore, fecal microbiota transplantation (FMT) was performed to transfer gut microbiota from IPAH patients or monocrotaline (MCT)-PAH rats to normal rats and from normal rats to MCT-PAH rats. FINDINGS Gut microbiota analysis revealed substantial alterations in the bacterial, archaeal, and fungal communities in patients with IPAH compared with healthy controls. Notably, FMT from IPAH patients or MCT-PAH rats induced PAH phenotypes in recipient rats. More intriguingly, FMT from normal rats to MCT-PAH rats significantly ameliorated PAH symptoms; restored gut bacteria, archaea, and fungi composition; and shifted the plasma metabolite profiles of MCT-PAH rats toward those of normal rats. In parallel, RNA-sequencing analysis demonstrated the expression of genes involved in key signalling pathways related to PAH. A panel of multi-kingdom markers exhibited superior diagnostic accuracy compared with single-kingdom panels for IPAH. INTERPRETATION Our findings established an association between multi-kingdom gut microbiota dysbiosis and PAH, thereby indicating the therapeutic potential of FMT in PAH. More importantly, apart from gut bacteria, gut archaea and fungi were also significantly associated with PAH pathogenesis, highlighting their indispensable role in PAH. FUNDING This work was supported by Noncommunicable Chronic Diseases-National Science and Technology Major Projects No. 2024ZD0531200, No. 2024ZD0531201 (Research on Prevention and Treatment of Cancer, Cardiovascular and Cerebrovascular Diseases, Respiratory Diseases, and Metabolic Diseases), the National Natural Science Foundation of China of China (No. 82170302, 82370432), Financial Budgeting Project of Beijing Institute of Respiratory Medicine (Ysbz2025004, Ysbz2025007), National clinical key speciality construction project Cardiovascular Surgery, Reform and Development Program of Beijing Institute of Respiratory Medicine (Ggyfz202417, Ggyfz202501), Clinical Research Incubation Program of Beijing Chaoyang Hospital Affiliated to Capital Medical University (CYFH202209).
Collapse
Affiliation(s)
- Yihang Chen
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhenzhen Chen
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Lirong Liang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Jifeng Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Liukun Meng
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Wen Yuan
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Boqia Xie
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xun Zhang
- Department of Pharmacy, Chinese PLA General Hospital, 100039, Beijing, China
| | - Lin Feng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, 100020, Beijing, China
| | - Yanxiong Jia
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Department of Cardiac Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhou Fu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Department of Cardiac Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Pixiong Su
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Department of Cardiac Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Xiaoyan Liu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
2
|
Abou-Alfa GK, Meyer T, Do RKG, Piha-Paul SA, Light JS, Sherrin S, Yaqubie A, O’Neill AC, Harding JJ, Al-Rajabi R, Denlinger CS, Cano P, Cornelius AS, O’Reilly EM, DiPrimeo D, Eli LD, Gordan JD, Solit DB. Neratinib Alone or in Combination with Immune Checkpoint Inhibitors with or without Mammalian Target of Rapamycin Inhibitors in Patients with Fibrolamellar Carcinoma. Liver Cancer 2025; 14:58-67. [PMID: 40144471 PMCID: PMC11936434 DOI: 10.1159/000540290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/05/2024] [Indexed: 03/28/2025] Open
Abstract
Introduction Fibrolamellar carcinoma (FLC) displays upregulation of several oncogenes, including HER2, and multiple immune-suppressive mechanisms. We investigated the efficacy and safety of the pan-HER tyrosine kinase inhibitor neratinib as monotherapy (SUMMIT phase 2 basket study) or with immune checkpoint and/or mammalian target of rapamycin (mTOR) inhibitors (compassionate-use program) in patients with FLC. Methods Patients received neratinib 240 mg/day orally in SUMMIT, or as doublet or triplet combinations with pembrolizumab 2 mg/kg intravenously every 3 weeks, nivolumab 240 mg intravenously every 2 weeks, everolimus 7.5 mg/day orally, or sunitinib 37.5 mg/day orally under compassionate use. The primary endpoint in SUMMIT was objective response rate; safety was a secondary endpoint. Results Fifteen patients with FLC received neratinib monotherapy in SUMMIT. The objective response rate was 5% (95% confidence interval [CI]: 0-21.8) and the disease control rate was 13.3% (95% CI: 1.7-40.5). Upon progression, five had added immune checkpoint inhibitors with or without everolimus or sunitinib. Two additional patients received neratinib-based combinations outside of SUMMIT, for a total of 17 neratinib-treated patients. One patient who received neratinib plus pembrolizumab had a confirmed partial response, one treated with neratinib plus everolimus had stable disease lasting 6 months, and one who received neratinib plus pembrolizumab plus sunitinib had stable disease lasting 16 months. Grade 3/4 adverse events with neratinib monotherapy occurred in 10 (66.7%)/2 (13.3%) patients, respectively. Grade 3 adverse events with neratinib-based combinations were hyperglycemia (n = 1; neratinib plus pembrolizumab), hepatic failure, and anaphylaxis (n = 1 each, neratinib plus pembrolizumab plus everolimus). There were no grade 4 adverse events with combination therapy. Conclusion In patients with FLC, single-agent neratinib had limited efficacy, but clinical benefit was observed with neratinib in combination with immunotherapy and/or mTOR-targeted agents.
Collapse
Affiliation(s)
- Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
- Department of Medicine, Medical School, Trinity College Dublin University, Dublin, Ireland
| | - Tim Meyer
- Department of Oncology, Royal Free Hospital, London, UK
- Department of Oncology, UCL Cancer Institute, University College London, London, UK
| | - Richard Kinh Gian Do
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph S. Light
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Sherrin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amin Yaqubie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - James J. Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - Raed Al-Rajabi
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Crystal S. Denlinger
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pablo Cano
- Department of Hematology/Oncology, Sudbury Regional Hospital, Sudbury, ON, Canada
| | - Albert S. Cornelius
- Department of Medicine, Helen DeVos Children’s Hospital, Grand Rapids, MI, USA
| | - Eileen M. O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | | | - Lisa D. Eli
- Translational Medicine and Biometrics, Puma Biotechnology Inc., Los Angeles, CA, USA
| | - John D. Gordan
- Division of Hematology/Oncology, CSF GI Medical Oncology, San Francisco, CA, USA
| | - David B. Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| |
Collapse
|
3
|
Fleifil Y, Gulati R, Jennings K, Miethke A, Bondoc A, Tiao G, Geller JI, Karns R, Timchenko L, Timchenko N. DNAJB1-PKAc Kinase Is Expressed in Young Patients with Pediatric Liver Cancers and Enhances Carcinogenic Pathways. Cancers (Basel) 2024; 17:83. [PMID: 39796711 PMCID: PMC11720578 DOI: 10.3390/cancers17010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background and Aims: Hepatoblastoma (HBL) and fibrolamellar hepatocellular carcinoma (FLC) are the most common liver malignancies in children and young adults. FLC oncogenesis is associated with the generation of the fusion kinase, DNAJB1-PKAc (J-PKAc). J-PKAc has been found in 90% of FLC patients' tumors but not in other liver cancers. Since previous studies of J-PKAc were performed with adolescent patients, we asked if young children may express J-PKAc and if there are consequences of such expression. Methods: The biobank of the pediatric HBL/HCN-NOS specimens was examined by QRT-PCR, Western blots, RNA-Seq, and immunostaining with fusion-specific antibodies. Results: J-PKAc is expressed in 70% of the HBL/HCN-NOS patients. RNA-Seq analysis revealed that HBL tumors that do not have cells expressing J-PKAc show elevated expression of the membrane attack complex (MAC), which eliminates cells expressing J-PKAc. The fusion-positive HBL/HCN-NOS samples have several signaling pathways that are different from fusion-negative HBLs. Upregulated pathways included genes involved in the G1 to S transition and in liver cancer. Downregulated pathways included over 60 tumor suppressors, the CYP family, and the SLC family. The repression of these genes involves J-PKAc-β-catenin-TCF4-mediated elevation of the HDAC1-Sp5 pathway. The identified upregulated and downregulated pathways are direct targets of the fusion kinase. The J-PKAc kinase is also detected in livers of 1-year-old children with biliary atresia (BA). Conclusions: J-PKAc is expressed in both HBL tumor and BA liver samples, contributing to the development of HBL and creating a transcriptome profiling consistent with the potential development of liver cancer in young patients.
Collapse
Affiliation(s)
- Yasmeen Fleifil
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
| | - Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
| | - Katherine Jennings
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Alexander Miethke
- Department of Gastroenterology, Hepatology & Nutrition, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229, USA; (A.M.); (R.K.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Alexander Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gregory Tiao
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James I. Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology & Nutrition, Cincinnati Children Hospital Medical Center, Cincinnati, OH 45229, USA; (A.M.); (R.K.)
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.F.); (R.G.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Requena D, Medico JA, Soto-Ugaldi LF, Shirani M, Saltsman JA, Torbenson MS, Coffino P, Simon SM. Liver cancer multiomics reveals diverse protein kinase A disruptions convergently produce fibrolamellar hepatocellular carcinoma. Nat Commun 2024; 15:10887. [PMID: 39738196 PMCID: PMC11685927 DOI: 10.1038/s41467-024-55238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis. RNA-seq data of 1412 liver tumors from FLC, hepatocellular carcinoma, hepatoblastoma and intrahepatic cholangiocarcinoma are analyzed, obtaining transcriptomic signatures unrestricted by experimental processing methods. These signatures reveal which dysregulations are unique to specific tumors and which are common to all liver cancers. Moreover, the transcriptomic FLC signature identifies a unifying phenotype for all FLC tumors regardless of how PKA was activated. We study this signature at multi-omics and single-cell levels in the first spatial transcriptomic characterization of FLC, identifying the contribution of tumor, normal, stromal, and infiltrating immune cells. Additionally, we study FLC metastases, finding small differences from the primary tumors.
Collapse
Affiliation(s)
- David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Jack A Medico
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - James A Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Farghli AR, Chan M, Sherman MS, Dickerson LK, Shui B, Nukaya M, Stephanou A, Ma RK, Pepe-Mooney BJ, Smith CJ, Long D, Munn PR, McNairn A, Grenier JK, Karski M, Ronnekleiv-Kelly SM, Pillarisetty VG, Goessling W, Gujral TS, Vakili K, Sethupathy P. Single-cell multi-omic analysis of fibrolamellar carcinoma reveals rewired cell-to-cell communication patterns and unique vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627911. [PMID: 39713360 PMCID: PMC11661214 DOI: 10.1101/2024.12.11.627911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Fibrolamellar carcinoma (FLC) is a rare malignancy disproportionately affecting adolescents and young adults with no standard of care. FLC is characterized by thick stroma, which has long suggested an important role of the tumor microenvironment. Over the past decade, several studies have revealed aberrant markers and pathways in FLC. However, a significant drawback of these efforts is that they were conducted on bulk tumor samples. Consequently, identities and roles of distinct cell types within the tumor milieu, and the patterns of intercellular communication, have yet to be explored. In this study we unveil cell-type specific gene signatures, transcription factor networks, and super-enhancers in FLC using a multi-omics strategy that leverages both single-nucleus ATAC-seq and single-nucleus RNA-seq. We also infer completely rewired cell-to-cell communication patterns in FLC including signaling mediated by SPP1-CD44, MIF-ACKR3, GDF15-TGFBR2, and FGF7-FGFR. Finally, we validate findings with loss-of-function studies in several models including patient tissue slices, identifying vulnerabilities that merit further investigation as candidate therapeutic targets in FLC.
Collapse
|
6
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 PMCID: PMC11975432 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J. Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D. Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D. Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
7
|
Shirani M, Levin S, Shebl B, Requena D, Finkelstein TM, Johnson DS, Ng D, Lalazar G, Heissel S, Hojrup P, Molina H, de Jong YP, Rice CM, Singhi AD, Torbenson MS, Coffino P, Lyons B, Simon SM. Increased Protein Kinase A Activity Induces Fibrolamellar Hepatocellular Carcinoma Features Independent of DNAJB1. Cancer Res 2024; 84:2626-2644. [PMID: 38888469 PMCID: PMC11325150 DOI: 10.1158/0008-5472.can-23-4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer that is driven by the fusion of DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). PKA activity is controlled through regulatory proteins that both inhibit catalytic activity and control localization, and an excess of regulatory subunits ensures PRKACA activity is inhibited. Here, we found an increase in the ratio of catalytic to regulatory units in FLC patient tumors driven by DNAJB1::PRKACA using mass spectrometry, biochemistry, and immunofluorescence, with increased nuclear localization of the kinase. Overexpression of DNAJB1::PRKACA, ATP1B1::PRKACA, or PRKACA, but not catalytically inactive kinase, caused similar transcriptomic changes in primary human hepatocytes, recapitulating the changes observed in FLC. Consistently, tumors in patients missing a regulatory subunit or harboring an ATP1B1::PRKACA fusion were indistinguishable from FLC based on the histopathological, transcriptomic, and drug-response profiles. Together, these findings indicate that the DNAJB1 domain of DNAJB1::PRKACA is not required for FLC. Instead, changes in PKA activity and localization determine the FLC phenotype. Significance: Alterations leading to unconstrained protein kinase A signaling, regardless of the presence or absence of PRKACA fusions, drive the phenotypes of fibrolamellar hepatocellular carcinoma, reshaping understanding of the pathogenesis of this rare liver cancer.
Collapse
Affiliation(s)
- Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Solomon Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Tova M. Finkelstein
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Daniel S. Johnson
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
- Department of Physics and Astronomy, Hofstra University, Hempstead, New York.
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, New York.
| | - Peter Hojrup
- Department of Biochemistry and Molecular Biology. University of Southern Denmark, Odense, Denmark.
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York.
| | - Ype P. de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York.
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York.
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York.
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| | - Barbara Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico.
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| |
Collapse
|
8
|
Ma RK, Tsai PY, Farghli AR, Shumway A, Kanke M, Gordan JD, Gujral TS, Vakili K, Nukaya M, Noetzli L, Ronnekleiv-Kelly S, Broom W, Barrow J, Sethupathy P. DNAJB1-PRKACA fusion protein-regulated LINC00473 promotes tumor growth and alters mitochondrial fitness in fibrolamellar carcinoma. PLoS Genet 2024; 20:e1011216. [PMID: 38512964 PMCID: PMC11020935 DOI: 10.1371/journal.pgen.1011216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/16/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.
Collapse
Affiliation(s)
- Rosanna K. Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Alaa R. Farghli
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexandria Shumway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - John D. Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, United States of America
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Manabu Nukaya
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Leila Noetzli
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Sean Ronnekleiv-Kelly
- Department of Surgery, Division of Surgical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Wendy Broom
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Joeva Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Neumayer C, Ng D, Requena D, Jiang CS, Qureshi A, Vaughan R, Prakash TP, Revenko A, Simon SM. GalNAc-conjugated siRNA targeting the DNAJB1-PRKACA fusion junction in fibrolamellar hepatocellular carcinoma. Mol Ther 2024; 32:140-151. [PMID: 37980543 PMCID: PMC10787139 DOI: 10.1016/j.ymthe.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer caused by a dominant recurrent fusion of the heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). Current therapies such as chemotherapy and radiation have limited efficacy, and new treatment options are needed urgently. We have previously shown that FLC tumors are dependent on the fusion kinase DNAJB1::PRKACA, making the oncokinase an ideal drug target. mRNA degrading modalities such as antisense oligonucleotides or small interfering RNAs (siRNAs) provide an opportunity to specifically target the fusion junction. Here, we identify a potent and specific siRNA that inhibits DNAJB1::PRKACA expression. We found expression of the asialoglycoprotein receptor in FLC to be maintained at sufficient levels to effectively deliver siRNA conjugated to the GalNAc ligand. We observe productive uptake and siRNA activity in FLC patient-derived xenografts (PDX) models in vitro and in vivo. Knockdown of DNAJB1::PRKACA results in durable growth inhibition of FLC PDX in vivo with no detectable toxicities. Our results suggest that this approach could be a treatment option for FLC patients.
Collapse
Affiliation(s)
- Christoph Neumayer
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Caroline S Jiang
- Hospital Biostatistics, The Rockefeller University, New York, NY, USA
| | - Adam Qureshi
- Hospital Biostatistics, The Rockefeller University, New York, NY, USA
| | - Roger Vaughan
- Hospital Biostatistics, The Rockefeller University, New York, NY, USA
| | | | | | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Itoh T, Omori Y, Seino M, Hirose K, Date F, Ono Y, Mizukami Y, Aoki S, Ishida M, Mizuma M, Morikawa T, Higuchi R, Honda G, Okamura Y, Kinoshita K, Unno M, Furukawa T. Gene Rearrangement and Expression of PRKACA and PRKACB Govern Morphobiology of Pancreatobiliary Oncocytic Neoplasms. Mod Pathol 2024; 37:100358. [PMID: 37871652 DOI: 10.1016/j.modpat.2023.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
Intraductal oncocytic papillary neoplasms (IOPNs) are distinct from intraductal papillary mucinous neoplasms based on characteristic morphologic and genetic features represented by fusion genes involving PRKACA or PRKACB (PRKACA/B). However, pancreatic and biliary tumors with partial oncocytic features are often encountered clinically, and their molecular features are yet to be clarified. This study included 80 intraductal papillary neoplasms: 32 tumors with mature IOPN morphology (typical), 28 with partial or subclonal oncocytic features (atypical), and 20 without oncocytic features (control). We analyzed PRKACA/B fusion genes, including ATP1B1::PRKACA, DNAJB1::PRKACA, and ATP1B1::PRKACB, by reverse-transcription PCR; mRNA expression of fusion genes and nonrearranged PRKACA/B genes by quantitative reverse-transcription PCR; mutations in KRAS, BRAF, and GNAS by targeted sequencing or droplet digital PCR; and the expression of cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunits α (PRKACA) and β (PRKACB), phosphorylated cAMP response element-binding protein, and aberrations of p16, p53, SMAD4, STK11, and β-catenin by immunohistochemistry. PRKACA/B fusion genes were detected in 100% (32/32) of typical, 46% (13/28) of atypical, and 0% (0/20) of control (P < .05). Expression of PRKACA, PRKACB, and phosphorylated cAMP response element-binding protein was upregulated in neoplasms with PRKACA/B fusion genes (P < .05). mRNA expression of the PRKACA/B fusion genes and protein expression of PRKACA or PRKACB tended to be higher in typical than in atypical cases (mRNA, P = .002; protein expression, P = .054). In some atypical neoplasms with mixed subtypes, PRKACA/B fusion genes were superimposed exclusively on oncocytic components. Typical IOPNs harbored fewer KRAS and GNAS mutations than control samples and fewer alterations in p53 and STK11 than atypical samples (P < .05). In conclusion, PRKACA/B fusion genes not only are the characteristic drivers of IOPNs but also play a crucial role in the development of subclonal oncocytic neoplasms. Moreover, oncocytic morphology is strongly associated with upregulation of PRKACA/B, which may provide clues for potential therapeutic options.
Collapse
Affiliation(s)
- Taito Itoh
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Mitsuru Seino
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Hirose
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiko Date
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Shuichi Aoki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryota Higuchi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Goro Honda
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasunobu Okamura
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan; Tohoku University Graduate School of Information Sciences, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
11
|
Leiting JL, Hernandez MC, Bergquist JR, Yonkus JA, Abdelrahman AM, Torbenson MS, Tran NH, Halfdanarson TR, Graham RP, Smoot RL, Truty MJ. Therapeutic Efficacy of Temsirolimus in a Patient-derived Model of Metastatic Fibrolamellar Hepatocellular Carcinoma. In Vivo 2023; 37:1940-1950. [PMID: 37652480 PMCID: PMC10500502 DOI: 10.21873/invivo.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Fibrolamellar hepatocellular carcinoma (FLHCC) is a rare tumor presenting in younger patients without chronic liver disease. Up to 80-100% develop recurrent disease, necessitating additional surgery or systemic treatment. Systemic options and pre-clinical treatment studies are lacking. We previously described patient-derived xenograft (PDX) development, allowing for pre-clinical studies. Herein, we develop FLHCC PDX models and utilize these to define tumor characteristics and determine the efficacy of systemic agents. MATERIALS AND METHODS Primary and lymph node metastatic tumor tissues were obtained at the time of FLHCC resection in two patients. Tumor lysates were screened for protein upregulation. Cell lines were generated from metastatic and primary tumor tissue. The viability of the cell lines was assessed after treatment with temsirolimus, gemcitabine/oxaliplatin, and FOLFIRINOX. Two PDX models were developed from metastatic tissue. For in vivo studies, tumor-bearing mice were treated with temsirolimus, FOLFIRINOX, and Gemcitabine/oxaliplatin. RESULTS PDX models were successfully generated from metastatic FLHCC, which closely recapitulated the original tumor. Upregulation of mTOR was seen in metastatic tissue compared to primary tumors. Cell lines from metastatic tissue demonstrated significant sensitivity to temsirolimus. In vivo testing of PDX models demonstrated a significant response to single-agent temsirolimus with minimal toxicity. CONCLUSION Herein, we demonstrate the feasibility of developing PDX models that closely recapitulate FLHCC. Upregulation of mTOR was seen in metastatic tissue compared to primary tissue. The efficacy of mTOR inhibition with temsirolimus treatment suggests that the upregulation of the mTOR pathway may be a significant mechanism for growth in metastatic lesions and a potential target for therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nguyen H Tran
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, U.S.A
| | | | | | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN, U.S.A
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, U.S.A.;
| |
Collapse
|
12
|
Kim J, Kim Y, Lee B. Identification of Long Non-Coding RNA Profiles and Potential Therapeutic Agents for Fibrolamellar Carcinoma Based on RNA-Sequencing Data. Genes (Basel) 2023; 14:1709. [PMID: 37761849 PMCID: PMC10530820 DOI: 10.3390/genes14091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Fibrolamellar carcinoma (FLC) is a rare type of liver cancer that primarily affects adolescents and young adults without prior liver disease or viral infections. Patients with FLC generally have non-specific symptoms, are often diagnosed at a later stage, and experience a higher frequency of metastases compared to patients with other liver cancers. A fusion transcript of DNAJB1 and PRKACA, which can lead to increased activity of PKA and cellular proliferation, has been identified in all FLC patients, but the exact mechanism through which FLC develops remains unclear. In this study, we investigated common lncRNA profiles in various FLC samples using bioinformatics analyses. METHODS We analyzed differentially expressed (DE) lncRNAs from three RNA sequencing datasets. Using lncRNAs and DE mRNAs, we predicted potential lncRNA target genes and performed Gene Ontology (GO) and KEGG analyses with the DE lncRNA target genes. Moreover, we screened for small-molecule compounds that could act as therapeutic targets for FLC. RESULTS We identified 308 DE lncRNAs from the RNA sequencing datasets. In addition, we performed a trans-target prediction analysis and identified 454 co-expressed pairs in FLC. The GO analysis showed that the lncRNA-related up-regulated mRNAs were enriched in the regulation of protein kinase C signaling and cAMP catabolic processes, while lncRNA-related down-regulated mRNAs were enriched in steroid, retinol, cholesterol, and xenobiotic metabolic processes. The analysis of small-molecule compounds for FLC treatment identified vitexin, chlorthalidone, triamterene, and amiloride, among other compounds. CONCLUSIONS We identified potential therapeutic targets for FLC, including lncRNA target genes as well as small-molecule compounds that could potentially be used as treatments. Our findings could contribute to furthering our understanding of FLC and providing potential avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Janghyun Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea (Y.K.)
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea (Y.K.)
| | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| |
Collapse
|
13
|
Levin SN, Tomasini MD, Knox J, Shirani M, Shebl B, Requena D, Clark J, Heissel S, Alwaseem H, Surjan R, Lahasky R, Molina H, Torbenson MS, Lyons B, Migler RD, Coffino P, Simon SM. Disruption of proteome by an oncogenic fusion kinase alters metabolism in fibrolamellar hepatocellular carcinoma. SCIENCE ADVANCES 2023; 9:eadg7038. [PMID: 37343102 PMCID: PMC10284549 DOI: 10.1126/sciadv.adg7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a usually lethal primary liver cancer driven by a somatic dysregulation of protein kinase A. We show that the proteome of FLC tumors is distinct from that of adjacent nontransformed tissue. These changes can account for some of the cell biological and pathological alterations in FLC cells, including their drug sensitivity and glycolysis. Hyperammonemic encephalopathy is a recurrent problem in these patients, and established treatments based on the assumption of liver failure are unsuccessful. We show that many of the enzymes that produce ammonia are increased and those that consume ammonia are decreased. We also demonstrate that the metabolites of these enzymes change as expected. Thus, hyperammonemic encephalopathy in FLC may require alternative therapeutics.
Collapse
Affiliation(s)
- Solomon N. Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael D. Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James Knox
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jackson Clark
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rodrigo Surjan
- General Surgery Division, Surgery Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Ron Lahasky
- Lahasky Medical Clinic, Abbeville, LA 70510, USA
- The Fibrolamellar Registry, New York, NY 10028, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | - Barbara Lyons
- The Fibrolamellar Registry, New York, NY 10028, USA
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- The Fibrolamellar Registry, New York, NY 10028, USA
| |
Collapse
|
14
|
Rüland L, Andreatta F, Massalini S, Chuva de Sousa Lopes S, Clevers H, Hendriks D, Artegiani B. Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss. Nat Commun 2023; 14:2377. [PMID: 37137901 PMCID: PMC10156813 DOI: 10.1038/s41467-023-37951-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.
Collapse
Affiliation(s)
- Laura Rüland
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Simone Massalini
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Abstract
The fight against rare cancers faces myriad challenges, including missed or wrong diagnoses, lack of information and diagnostic tools, too few samples and too little funding. Yet many advances in cancer biology, such as the realization that there are tumour suppressor genes, have come from studying well-defined, albeit rare, cancers. Fibrolamellar hepatocellular carcinoma (FLC), a typically lethal liver cancer, mainly affects adolescents and young adults. FLC is both rare, 1 in 5 million, and problematic to diagnose. From the paucity of data, it was not known whether FLC was one cancer or a collection with similar phenotypes, or whether it was genetically inherited or the result of a somatic mutation. A personal journey through a decade of work reveals answers to these questions and a road map of steps and missteps in our fight against a rare cancer.
Collapse
|
16
|
Wilson BAP, Li N, Martinez Fiesco JA, Dalilian M, Wang D, Smith EA, Wamiru A, Shah R, Goncharova EI, Beutler JA, Grkovic T, Zhang P, O’Keefe BR. Biochemical Discovery, Intracellular Evaluation, and Crystallographic Characterization of Synthetic and Natural Product Adenosine 3',5'-Cyclic Monophosphate-Dependent Protein Kinase A (PKA) Inhibitors. ACS Pharmacol Transl Sci 2023; 6:633-650. [PMID: 37082750 PMCID: PMC10111623 DOI: 10.1021/acsptsci.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 04/22/2023]
Abstract
The recent demonstration that adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) plays an oncogenic role in a number of important cancers has led to a renaissance in drug development interest targeting this kinase. We therefore have established a suite of biochemical, cell-based, and structural biology assays for identifying and evaluating new pharmacophores for PKA inhibition. This discovery process started with a 384-well high-throughput screen of more than 200,000 substances, including fractionated natural product extracts. Identified active compounds were further prioritized in biochemical, biophysical, and cell-based assays. Priority lead compounds were assessed in detail to fully characterize several previously unrecognized PKA pharmacophores including the generation of new X-ray crystallography structures demonstrating unique interactions between PKA and bound inhibitor molecules.
Collapse
Affiliation(s)
- Brice A. P. Wilson
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ning Li
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Juliana A. Martinez Fiesco
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Masoumeh Dalilian
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dongdong Wang
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily A. Smith
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Antony Wamiru
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Rohan Shah
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ekaterina I. Goncharova
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Advanced
Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - John A. Beutler
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Tanja Grkovic
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Developmental Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Ping Zhang
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Barry R. O’Keefe
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Developmental Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
17
|
Chan GKL, Maisel S, Hwang YC, Pascual BC, Wolber RRB, Vu P, Patra KC, Bouhaddou M, Kenerson HL, Lim HC, Long D, Yeung RS, Sethupathy P, Swaney DL, Krogan NJ, Turnham RE, Riehle KJ, Scott JD, Bardeesy N, Gordan JD. Oncogenic PKA signaling increases c-MYC protein expression through multiple targetable mechanisms. eLife 2023; 12:e69521. [PMID: 36692000 PMCID: PMC9925115 DOI: 10.7554/elife.69521] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a range of genetic changes that activate PKA in human cancer. Two signaling networks were identified downstream of PKA: RAS/MAPK components and an Aurora Kinase A (AURKA)/glycogen synthase kinase (GSK3) sub-network with activity toward MYC oncoproteins. Findings were validated in two PKA-dependent cancer models: a novel, patient-derived fibrolamellar carcinoma (FLC) line that expresses a DNAJ-PKAc fusion and a PKA-addicted melanoma model with a mutant type I PKA regulatory subunit. We identify PKA signals that can influence both de novo translation and stability of the proto-oncogene c-MYC. However, the primary mechanism of PKA effects on MYC in our cell models was translation and could be blocked with the eIF4A inhibitor zotatifin. This compound dramatically reduced c-MYC expression and inhibited FLC cell line growth in vitro. Thus, targeting PKA effects on translation is a potential treatment strategy for FLC and other PKA-driven cancers.
Collapse
Affiliation(s)
- Gary KL Chan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Samantha Maisel
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Yeonjoo C Hwang
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Bryan C Pascual
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Rebecca RB Wolber
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Phuong Vu
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Krushna C Patra
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- J. David Gladstone InstituteSan FranciscoUnited States
| | - Heidi L Kenerson
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - Huat C Lim
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Donald Long
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityNew YorkUnited States
| | - Raymond S Yeung
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell UniversityNew YorkUnited States
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- J. David Gladstone InstituteSan FranciscoUnited States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Rigney E Turnham
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| | - Kimberly J Riehle
- Department of Surgery and Northwest Liver Research Program, University of WashingtonSeattleUnited States
| | - John D Scott
- Department of Pharmacology, University of Washington Medical CenterSeattleUnited States
| | - Nabeel Bardeesy
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Massachusetts General Hospital Cancer CenterBostonUnited States
| | - John D Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute (QBI), University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
18
|
State of the art and perspectives in pediatric hepatocellular carcinoma. Biochem Pharmacol 2023; 207:115373. [PMID: 36513143 DOI: 10.1016/j.bcp.2022.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Hepatoblastoma (HB) and pediatric hepatocellular carcinoma (HCC) are rare primary malignant liver cancers in children and young adults. HB is the most common and accounts for about 70 % cases; it is usually diagnosed during the first 3 years of life. Instead, pediatric HCC is uncommon, and it is associated with a poor prognosis. Overall, the prognosis of pediatric HCC is dismal with 5-year event-free survival of <30 % as compared to >80 % for HB. Surgery approaches, either resection or transplant, remain the best chance for the cure of pediatric HCC. However, chemotherapy can be helpful as an adjuvant or neoadjuvant treatment. International groups have done trials in pediatric HCC with a chemotherapy regimen, based on cisplatin and doxorubicin (PLADO) as for HB, but the efficacy is limited. Sorafenib, a multi-kinase inhibitor, following positive results in adults and in a pilot study in children, is now tested in conjunction with chemotherapy in the PHITT phase III clinical trial. Some studies have been exploring the genetic profiles of patients to find biological hallmarks that determine the aggressiveness of pediatric HCC. Pathways involved in growth and differentiation are dysregulated and as demonstrated in HB and adult HCC, an important role of the Wnt/CTNNB1 pathway in the pathogenesis of pediatric HCC is also emerging. An extended molecular analysis of tumor samples could give information about pathways as possible targets of biological and immunotherapeutic agents bringing new pharmacological options for the treatment of pediatric HCC.
Collapse
|
19
|
Berkovitz A, Migler RD, Qureshi A, Rosemore C, Torbenson MS, Vaughan R, Marcotte E, Simon SM. Clinical and demographic predictors of survival for fibrolamellar carcinoma patients-A patient community, registry-based study. Hepatol Commun 2022; 6:3539-3549. [PMID: 36245434 PMCID: PMC9701473 DOI: 10.1002/hep4.2105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary liver cancer that affects primarily adolescents and young adults. It is associated with a poor overall prognosis. There is a need to better define risk factors, but small sample size has limited such studies. An FLC patient registry now provides data sufficient for statistically robust inferences. We leveraged a unique patient community-based FLC registry to analyze the prognostic impact of demographic and clinical characteristics evident at diagnosis. Variables were analyzed using Cox proportional hazards regression to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). In multivariable models of 149 patients (88 females and 61 males), female gender was associated with statistically significant improved survival with HR of 0.52 (95% CI 0.29-0.93). Factors evident at diagnosis that are associated with worse survival included the presence of 10 or more tumors within the liver (HR 7.1; 95% CI 2.4-21.04), and metastases at diagnosis (HR 2.17; 95% CI 1.19-3.94). Positive lymph nodes at diagnosis, despite being found significantly associated with worse survival in a univariate analysis, did not remain significant when adjusted for covariates in a multivariable analysis. We found no statistically significant effect of age at diagnosis nor tumor size at diagnosis on survival. Female gender may confer a favorable prognosis in FLC. Established high-risk prognostic factors that we confirmed in this Registry included the diagnostic presence of numerous intrahepatic tumors, and metastases. This is the first study derived from a FLC patient community-based registry, and highlights how registries of rare tumors can empower patients to meaningfully advance clinical and scientific discoveries.
Collapse
Affiliation(s)
- Amichai Berkovitz
- Laboratory of Cellular BiophysicsThe Rockefeller UniversityNew YorkNew YorkUSA
| | | | - Adam Qureshi
- Hospital BiostatisticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Carly Rosemore
- Laboratory of Cellular BiophysicsThe Rockefeller UniversityNew YorkNew YorkUSA
- Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | | | - Roger Vaughan
- Hospital BiostatisticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Erin Marcotte
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Sanford M. Simon
- Laboratory of Cellular BiophysicsThe Rockefeller UniversityNew YorkNew YorkUSA
- The Fibrolamellar RegistryNew YorkNew YorkUSA
| |
Collapse
|
20
|
Maimaitiaili Y, Fukumura Y, Hirabayashi K, Kinowaki Y, Naito Y, Saito A, Rong L, Nakahodo J, Yao T. Investigation of -PRKACA/-PRKACB fusion genes in oncocytic tumors of the pancreatobiliary and other systems. Virchows Arch 2022; 481:865-876. [PMID: 36152045 DOI: 10.1007/s00428-022-03415-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/10/2022] [Accepted: 09/18/2022] [Indexed: 12/14/2022]
Abstract
Intraductal oncocytic papillary neoplasms (IOPNs) of the pancreatobiliary system are tumors comprising oncocytic cells, in which three types of fusion genes involving -PRKACA/-PRKACB were recently identified. IOPNs infrequently combine with other histological subtypes of pancreatic intraductal papillary mucinous neoplasms (IPMNs) and intraductal papillary neoplasms of the bile duct (IPNBs). This study aimed to confirm the sensitivity/specificity of the fusion genes for IOPNs and to examine their significance in other oncocytic lesions. An RT-PCR, followed by DNA sequencing, was undertaken to examine the fusions in 18 histologically diagnosed IOPNs, including four combined IOPNs. Moreover, in two IOPN cases, invasive carcinomatous lesions were separately examined on their fusion status. Oncocytic thyroidal (n = 10), renal (n = 10), and salivary gland (n = 3) lesions and IPMNs (n = 9)/IPNBs (n = 4) with focal oncocytic changes were examined as controls. Fluorescence in situ hybridization using PRKACA break-apart probes was conducted for the combined IOPN cases. Target sequencing of KRAS exon2/3 and GNAS exon 8/9 was performed for IOPN cases. Fusions were detected in all IOPN cases including invasive lesions/none of the control cases. The fusion event was confirmed also in non-IOPN component in one of the four combined cases. Regarding mutation events, 5.6%/0% of IOPNs were KRAS-mt/GNAS-mt, respectively, and both components of combined IOPNs were all KRAS-wt/GNAS-wt. In conclusion, our study confirmed the sensitivity and specificity of these fusions for IOPNs. Here, we analyzed the roles of these fusion genes in combined IOPNs, proposing the possibility of IOPN development via IPMNs/IPNBs. Further studies with more combined cases are warranted.
Collapse
Affiliation(s)
- Yifare Maimaitiaili
- Department of Human Pathology, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yuki Fukumura
- Department of Human Pathology, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.
| | - Kenichi Hirabayashi
- Department of Diagnostic Pathology, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshiki Naito
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Fukuoka, Japan
| | - Akira Saito
- Department of Pathology, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Chiba, Japan
| | - Lu Rong
- Department of Human Pathology, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Jun Nakahodo
- Department of Human Pathology, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.,Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
21
|
Schalm SS, O’Hearn E, Wilson K, LaBranche TP, Silva G, Zhang Z, DiPietro L, Bifulco N, Woessner R, Stransky N, Sappal D, Campbell R, Lobbardi R, Palmer M, Kim J, Ye C, Dorsch M, Lengauer C, Guzi T, Kadambi V, Garner A, Hoeflich KP. Evaluation of Protein Kinase cAMP-Activated Catalytic Subunit Alpha as a Therapeutic Target for Fibrolamellar Carcinoma. GASTRO HEP ADVANCES 2022; 2:307-321. [PMID: 39132655 PMCID: PMC11307690 DOI: 10.1016/j.gastha.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Fibrolamellar carcinoma (FLC) is a rare, difficult-to-treat liver cancer primarily affecting pediatric and adolescent patients, and for which precision medicine approaches have historically not been possible. The DNAJB1-PRKACA gene fusion was identified as a driver of FLC pathogenesis. We aimed to assess whether FLC tumors maintain dependency on this gene fusion and determine if PRKACA is a viable therapeutic target. Methods FLC patient-derived xenograft (PDX) shRNA cell lines were implanted subcutaneously into female NOD-SCID mice and tumors were allowed to develop prior to randomization to doxycycline (to induce knockdown) or control groups. Tumor development was assessed every 2 days. To assess the effect of treatment with novel selective PRKACA small molecule kinase inhibitors, BLU0588 and BLU2864, FLC PDX tumor cells were implanted subcutaneously into NOD-SCID mice and tumors allowed to develop. Mice were randomized to treatment (BLU0588 and BLU2864, orally, once daily) or control groups and tumor size determined as previously. Results Knockdown of DNAJB1-PRKACA reversed a FLC-specific gene signature and reduced PDX tumor growth in mice compared to the control group. Furthermore, FLC PDX tumor growth was significantly reduced with BLU0588 and BLU2864 treatment vs control (P = .003 and P = .0005, respectively). Conclusion We demonstrated, using an inducible knockdown and small molecule approaches, that FLC PDX tumors were dependent upon DNAJB1-PRKACA fusion activity. In addition, this study serves as a proof-of-concept that PRKACA is a viable therapeutic target for FLC and warrants further investigation.
Collapse
Affiliation(s)
| | - Erin O’Hearn
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Kevin Wilson
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Grace Silva
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Zhuo Zhang
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Neil Bifulco
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | | | - Darshan Sappal
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Riadh Lobbardi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Michael Palmer
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Joseph Kim
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Chaoyang Ye
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Marion Dorsch
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | | - Timothy Guzi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Vivek Kadambi
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | - Andrew Garner
- Blueprint Medicines Corporation, Cambridge, Massachusetts
| | | |
Collapse
|
22
|
Polychronidis G, Murtha-Lemekhova A, Fuchs J, Karathanasi E, Hoffmann K. A Multidisciplinary Approach to the Management of Fibrolamellar Carcinoma: Current Perspectives and Future Prospects. Onco Targets Ther 2022; 15:1095-1103. [PMID: 36212724 PMCID: PMC9541294 DOI: 10.2147/ott.s296127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare primary liver tumor affecting predominantly younger and otherwise healthy patients. Typically, FLC presents with advanced disease due to the paucity of typical symptoms and no history of underlying liver disease. Depending on tumor characteristics and the patient's general condition, surgical treatment is the most promising treatment modality. Aggressive resection and liver transplantation have been utilized and are presently indispensable curative treatment options. Under certain circumstances surgical resection is also possible for metachronous metastases or local recurrence. Recent tumor biology discoveries have contributed to improved diagnostic specificity and systemic treatment options.
Collapse
Affiliation(s)
- Georgios Polychronidis
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Anastasia Murtha-Lemekhova
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Juri Fuchs
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Evdokia Karathanasi
- Post-Graduate Program “Human Genetics- Genetic Counseling”, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Heidelberg, 69120, Germany,Correspondence: Katrin Hoffmann, Department of General, Visceral and Transplant Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, Heidelberg, 69120, Germany, Email
| |
Collapse
|
23
|
Boisteau E, Posseme C, Di Modugno F, Edeline J, Coulouarn C, Hrstka R, Martisova A, Delom F, Treton X, Eriksson LA, Chevet E, Lièvre A, Ogier-Denis E. Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology. Oncogene 2022; 41:4673-4685. [PMID: 36068336 DOI: 10.1038/s41388-022-02452-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
Collapse
Affiliation(s)
- Emeric Boisteau
- INSERM U1242, University of Rennes, Rennes, France
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France
| | - Céline Posseme
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Federico Di Modugno
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Xavier Treton
- Assistance Publique-Hôpitaux de Paris, University of Paris, Clichy, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Astrid Lièvre
- INSERM U1242, University of Rennes, Rennes, France.
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France.
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
24
|
Gulati R, Johnston M, Rivas M, Cast A, Kumbaji M, Hanlon MA, Lee S, Zhou P, Lake C, Schepers E, Min K, Yoon J, Karns R, Reid LM, Lopez‐Terrada D, Timchenko L, Parameswaran S, Weirauch MT, Ranganathan S, Bondoc A, Geller J, Tiao G, Shin S, Timchenko N. β-catenin cancer-enhancing genomic regions axis is involved in the development of fibrolamellar hepatocellular carcinoma. Hepatol Commun 2022; 6:2950-2963. [PMID: 36000549 PMCID: PMC9512470 DOI: 10.1002/hep4.2055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a disease that occurs in children and young adults. The development of FLC is associated with creation of a fusion oncoprotein DNAJB1-PKAc kinase, which activates multiple cancer-associated pathways. The aim of this study was to examine the role of human genomic regions, called cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs), in the development of FLC. Previous studies revealed that CEGRs/ALCDs are located in multiple oncogenes and cancer-associated genes, regularly silenced in normal tissues. Using the regulatory element locus intersection (RELI) algorithm, we searched a large compendium of chromatin immunoprecipitation-sequencing (ChIP) data sets and found that CEGRs/ALCDs contain regulatory elements in several human cancers outside of pediatric hepatic neoplasms. The RELI algorithm further identified components of the β-catenin-TCF7L2/TCF4 pathway, which interacts with CEGRs/ALCDs in several human cancers. Particularly, the RELI algorithm found interactions of transcription factors and chromatin remodelers with many genes that are activated in patients with FLC. We found that these FLC-specific genes contain CEGRs/ALCDs, and that the driver of FLC, fusion oncoprotein DNAJB1-PKAc, phosphorylates β-catenin at Ser675, resulting in an increase of β-catenin-TCF7L2/TCF4 complexes. These complexes increase a large family of CEGR/ALCD-dependent collagens and oncogenes. The DNAJB1-PKAc-β-catenin-CEGR/ALCD pathway is preserved in lung metastasis. The inhibition of β-catenin in FLC organoids inhibited the expression of CEGRs/ALCDs-dependent collagens and oncogenes, preventing the formation of the organoid's structure. Conclusion: This study provides a rationale for the development of β-catenin-based therapy for patients with FLC.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Michael Johnston
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Maria Rivas
- Institute of BiosciencesUniversity of São PauloSão PauloBrazil
| | - Ashley Cast
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Meenasri Kumbaji
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Margaret A. Hanlon
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Sanghoon Lee
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Ping Zhou
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charissa Lake
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Emily Schepers
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kyung‐Won Min
- Department of BiologyGangneung‐Wonju National UniversityGangneungRepublic of Korea
| | - Je‐Hyun Yoon
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Lola M. Reid
- Departments of Cell Biology and PhysiologyProgram in Molecular Biology and BiotechnologyUNC School of MedicineChapel HillNorth CarolinaUSA
| | - Dolores Lopez‐Terrada
- Department of Pathology and Immunology, and Department of PediatricsBaylor College of MedicineOne Baylor PlazaHoustonTexasUSA
| | - Lubov Timchenko
- Department of NeurologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and EtiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and EtiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Divisions of Biomedical Informatics and Developmental BiologyCCHMCDepartment of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | | | - Alexander Bondoc
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - James Geller
- Department of OncologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Gregory Tiao
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Soona Shin
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Nikolai Timchenko
- Division of General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
25
|
Shebl B, Ng D, Lalazar G, Rosemore C, Finkelstein TM, Migler RD, Zheng G, Zhang P, Jiang CS, Qureshi A, Vaughan R, Yarchoan M, de Jong YP, Rice CM, Coffino P, Ortiz MV, Zhou D, Simon SM. Targeting BCL-XL in fibrolamellar hepatocellular carcinoma. JCI Insight 2022; 7:e161820. [PMID: 36073545 PMCID: PMC9536265 DOI: 10.1172/jci.insight.161820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare and often lethal liver cancer with no proven effective systemic therapy. Inhibition of the antiapoptotic protein BCL-XL was found to synergize with a variety of systemic therapies in vitro using cells dissociated from patient-derived xenografts (PDX) of FLC or cells dissociated directly from surgical patient resections. As BCL-XL is physiologically expressed in platelets, prior efforts to leverage this vulnerability in other cancers have been hampered by severe thrombocytopenia. To overcome this toxicity, we treated FLC models with DT2216, a proteolysis targeting chimera (PROTAC) that directs BCL-XL for degradation via the von Hippel-Lindau (VHL) E3 ligase, which is minimally expressed in platelets. The combination of irinotecan and DT2216 in vitro on cells directly acquired from patients or in vivo using several xenografts derived from patients with FLC demonstrated remarkable synergy and at clinically achievable doses not associated with significant thrombocytopenia.
Collapse
Affiliation(s)
- Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
| | - Carly Rosemore
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tova M. Finkelstein
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
| | | | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Caroline S. Jiang
- Hospital Biostatistics, The Rockefeller University, New York, New York, USA
| | - Adam Qureshi
- Hospital Biostatistics, The Rockefeller University, New York, New York, USA
| | - Roger Vaughan
- Hospital Biostatistics, The Rockefeller University, New York, New York, USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ype P. de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
| | - Michael V. Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology and Center for Innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, USA
| |
Collapse
|
26
|
Narayan NJC, Requena D, Lalazar G, Ramos-Espiritu L, Ng D, Levin S, Shebl B, Wang R, Hammond WJ, Saltsman JA, Gehart H, Torbenson MS, Clevers H, LaQuaglia MP, Simon SM. Human liver organoids for disease modeling of fibrolamellar carcinoma. Stem Cell Reports 2022; 17:1874-1888. [PMID: 35803261 PMCID: PMC9391427 DOI: 10.1016/j.stemcr.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare, often lethal, liver cancer affecting adolescents and young adults, for which there are no approved therapeutics. The development of therapeutics is hampered by a lack of in vitro models. Organoids have shown utility as a model system for studying many diseases. In this study, tumor tissue and the adjacent non-tumor liver were obtained at the time of surgery. The tissue was dissociated and grown as organoids. We developed 21 patient-derived organoid lines: 12 from metastases, three from the liver tumor and six from adjacent non-tumor liver. These patient-derived FLC organoids recapitulate the histologic morphology, immunohistochemistry, and transcriptome of the patient tumor. Patient-derived FLC organoids were used in a preliminary high-throughput drug screen to show proof of concept for the identification of therapeutics. This model system has the potential to improve our understanding of this rare cancer and holds significant promise for drug testing and development.
Collapse
Affiliation(s)
- Nicole J C Narayan
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lavoisier Ramos-Espiritu
- High Throughput and Spectroscopy Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Solomon Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ruisi Wang
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - William J Hammond
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James A Saltsman
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Helmuth Gehart
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
| | - Michael S Torbenson
- Department of Laboratory Medicine and Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hans Clevers
- Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
| | - Michael P LaQuaglia
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
27
|
Whyte SS, Karns R, Min K, Cho J, Lee S, Lake C, Bondoc A, Yoon J, Shin S. Integrated analysis using ToppMiR uncovers altered miRNA- mRNA regulatory networks in pediatric hepatocellular carcinoma-A pilot study. Cancer Rep (Hoboken) 2022; 6:e1685. [PMID: 35859536 PMCID: PMC9875636 DOI: 10.1002/cnr2.1685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pediatric hepatocellular carcinoma (HCC) is a group of liver cancers whose mechanisms behind their pathogenesis and progression are poorly understood. AIM We aimed to identify alterations in the expression of miRNAs and their putative target mRNAs in not only tumor tissues of patients with pediatric HCC but also in corresponding non-tumorous background livers by using liver tissues without underlying liver disease as a control. METHODS AND RESULTS We performed a small-scale miRNA and mRNA profiling of pediatric HCC (consisting of fibrolamellar carcinoma [FLC] and non-FLC HCC) and paired liver tissues to identify miRNAs whose expression levels differed significantly from control livers without underlying liver disease. ToppMiR was used to prioritize both miRNAs and their putative target mRNAs in a gene-annotation network, and the mRNA profile was used to refine the prioritization. Our analysis generated prioritized lists of miRNAs and mRNAs from the following three sets of analyses: (a) pediatric HCC versus control; (b) FLC versus control; and (c) corresponding non-tumorous background liver tissues from the same patients with pediatric HCC versus control. No liver disease liver tissues were used as the control group for all analyses. Many miRNAs whose expressions were deregulated in pediatric HCC were consistent with their roles in adult HCC and/or other non-hepatic cancers. Our gene ontology analysis of target mRNAs revealed enrichment of biological processes related to the sustenance and propagation of cancer and significant downregulation of metabolic processes. CONCLUSION Our pilot study indicates that alterations in miRNA-mRNA networks were detected in not only tumor tissues but also corresponding non-tumorous liver tissues from patients with pediatric HCC, suggesting multi-faceted roles of miRNAs in disease progression. Our results may lead to novel hypotheses for future large-scale studies.
Collapse
Affiliation(s)
- Senyo S. Whyte
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology & NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kyung‐Won Min
- Department of BiologyGangneung‐Wonju National UniversityGangneungRepublic of Korea
| | - Jung‐Hyun Cho
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Sanghoon Lee
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charissa Lake
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA,Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Je‐Hyun Yoon
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Soona Shin
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA,Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
28
|
Short SS, Kastenberg ZJ, Wei G, Bondoc A, Dasgupta R, Tiao GM, Watters E, Heaton TE, Lotakis D, La Quaglia MP, Murphy AJ, Davidoff AM, Mansfield SA, Langham MR, Lautz TB, Superina RA, Ott KC, Malek MM, Morgan KM, Kim ES, Zamora A, Lascano D, Roach J, Murphy JT, Rothstein DH, Vasudevan SA, Whitlock R, Lal DR, Hallis B, Bütter A, Baertschiger RM, Lapidus-Krol E, Putra J, Tracy ER, Aldrink JH, Apfeld J, Le HD, Park KY, Rich BS, Glick RD, Fialkowski EA, Utria AF, Meyers RL, Riehle KJ. Histologic type predicts disparate outcomes in pediatric hepatocellular neoplasms: A Pediatric Surgical Oncology Research Collaborative study. Cancer 2022; 128:2786-2795. [PMID: 35561331 PMCID: PMC9423382 DOI: 10.1002/cncr.34256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/06/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a rare cancer in children, with various histologic subtypes and a paucity of data to guide clinical management and predict prognosis. METHODS A multi-institutional review of children with hepatocellular neoplasms was performed, including demographic, staging, treatment, and outcomes data. Patients were categorized as having conventional HCC (cHCC) with or without underlying liver disease, fibrolamellar carcinoma (FLC), and hepatoblastoma with HCC features (HB-HCC). Univariate and multivariate analyses identified predictors of mortality and relapse. RESULTS In total, 262 children were identified; and an institutional histologic review revealed 110 cHCCs (42%; 69 normal background liver, 34 inflammatory/cirrhotic, 7 unknown), 119 FLCs (45%), and 33 HB-HCCs (12%). The authors observed notable differences in presentation and behavior among tumor subtypes, including increased lymph node involvement in FLC and higher stage in cHCC. Factors associated with mortality included cHCC (hazard ratio [HR], 1.63; P = .038), elevated α-fetoprotein (HR, 3.1; P = .014), multifocality (HR, 2.4; P < .001), and PRETEXT (pretreatment extent of disease) stage IV (HR, 5.76; P < .001). Multivariate analysis identified increased mortality in cHCC versus FLC (HR, 2.2; P = .004) and in unresectable tumors (HR, 3.4; P < .001). Disease-free status at any point predicted survival. CONCLUSIONS This multi-institutional, detailed data set allowed a comprehensive analysis of outcomes for children with these rare hepatocellular neoplasms. The current data demonstrated that pediatric HCC subtypes are not equivalent entities because FLC and cHCC have distinct anatomic patterns and outcomes in concert with their known molecular differences. This data set will be further used to elucidate the impact of histology on specific treatment responses, with the goal of designing risk-stratified algorithms for children with HCC. LAY SUMMARY This is the largest reported granular data set on children with hepatocellular carcinoma. The study evaluates different subtypes of hepatocellular carcinoma and identifies key differences between subtypes. This information is pivotal in improving understanding of these rare cancers and may be used to improve clinical management and subsequent outcome in children with these rare malignancies.
Collapse
Affiliation(s)
- Scott S. Short
- Division of Pediatric Surgery, Primary Children’s Hospital, University of Utah, Salt Lake City, Utah
| | - Zachary J. Kastenberg
- Division of Pediatric Surgery, Primary Children’s Hospital, University of Utah, Salt Lake City, Utah
| | - Guo Wei
- Division of Pediatric Surgery, Primary Children’s Hospital, University of Utah, Salt Lake City, Utah
| | - Alex Bondoc
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Roshni Dasgupta
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Greg M. Tiao
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Erin Watters
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Todd E. Heaton
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dimitra Lotakis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Andrew J. Murphy
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Andrew M. Davidoff
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sara A. Mansfield
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Max R. Langham
- Department of Surgery, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Timothy B. Lautz
- Department of Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois
| | - Riccardo A. Superina
- Department of Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois
| | - Katherine C. Ott
- Department of Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois
| | - Marcus M. Malek
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katrina M. Morgan
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eugene S. Kim
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Abigail Zamora
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Danny Lascano
- Division of Pediatric Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jonathan Roach
- Department of Pediatric Surgery, Children’s Hospital of Colorado, Denver, Colorado
| | - Joseph T. Murphy
- Division of Pediatric Surgery, Children’s Medical Center, University of Texas Southwestern, Dallas, Texas
| | - David H. Rothstein
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Seattle Children’s Hospital, University of Washington, Seattle, Washington
| | - Sanjeev A. Vasudevan
- Division of Pediatric Surgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Richard Whitlock
- Division of Pediatric Surgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Dave R. Lal
- Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian Hallis
- Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andreana Bütter
- Division of Pediatric Surgery, Children’s Hospital, London Health Sciences Center, London, Ontario, Canada
| | - Reto M. Baertschiger
- Department of General and Pediatric Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eveline Lapidus-Krol
- Department of General and Pediatric Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Juan Putra
- Division of Pediatric Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elisabeth R. Tracy
- Division of Pediatric Surgery, Duke University Medical Center, Durham, North Carolina
| | - Jennifer H. Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jordan Apfeld
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Hau D. Le
- Division of Pediatric Surgery, American Family Children’s Hospital, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Keon Y. Park
- Division of Pediatric Surgery, American Family Children’s Hospital, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Barrie S. Rich
- Division of Pediatric Surgery, Cohen Children’s Medical Center, Zucker School of Medicine at Northwell/Hofstra, New Hyde Park, New York
| | - Richard D. Glick
- Division of Pediatric Surgery, Cohen Children’s Medical Center, Zucker School of Medicine at Northwell/Hofstra, New Hyde Park, New York
| | - Elizabeth A. Fialkowski
- Division of Pediatric Surgery, Oregon Health and Science University Doernbecher Children’s Hospital, Portland, Oregon
| | - Alan F. Utria
- Division of Pediatric Surgery, Oregon Health and Science University Doernbecher Children’s Hospital, Portland, Oregon
| | - Rebecka L. Meyers
- Division of Pediatric Surgery, Primary Children’s Hospital, University of Utah, Salt Lake City, Utah
| | - Kimberly J. Riehle
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Seattle Children’s Hospital, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Francisco AB, Li J, Farghli AR, Kanke M, Shui B, Munn PR, Grenier JK, Soloway PD, Wang Z, Reid LM, Liu J, Sethupathy P. Chemical, Molecular, and Single-nucleus Analysis Reveal Chondroitin Sulfate Proteoglycan Aberrancy in Fibrolamellar Carcinoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:663-678. [PMID: 36923282 PMCID: PMC10010304 DOI: 10.1158/2767-9764.crc-21-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Fibrolamellar carcinoma (FLC) is an aggressive liver cancer with no effective therapeutic options. The extracellular environment of FLC tumors is poorly characterized and may contribute to cancer growth and/or metastasis. To bridge this knowledge gap, we assessed pathways relevant to proteoglycans, a major component of the extracellular matrix. We first analyzed gene expression data from FLC and nonmalignant liver tissue (n = 27) to identify changes in glycosaminoglycan (GAG) biosynthesis pathways and found that genes associated with production of chondroitin sulfate, but not other GAGs, are significantly increased by 8-fold. We then implemented a novel LC/MS-MS based method to quantify the abundance of different types of GAGs in patient tumors (n = 16) and found that chondroitin sulfate is significantly more abundant in FLC tumors by 6-fold. Upon further analysis of GAG-associated proteins, we found that versican (VCAN) expression is significantly upregulated at the mRNA and protein levels, the latter of which was validated by IHC. Finally, we performed single-cell assay for transposase-accessible chromatin sequencing on FLC tumors (n = 3), which revealed for the first time the different cell types in FLC tumors and also showed that VCAN is likely produced not only from FLC tumor epithelial cells but also activated stellate cells. Our results reveal a pathologic aberrancy in chondroitin (but not heparan) sulfate proteoglycans in FLC and highlight a potential role for activated stellate cells. Significance This study leverages a multi-disciplinary approach, including state-of-the-art chemical analyses and cutting-edge single-cell genomic technologies, to identify for the first time a marked chondroitin sulfate aberrancy in FLC that could open novel therapeutic avenues in the future.
Collapse
Affiliation(s)
- Adam B Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Alaa R Farghli
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Paul R Munn
- Genomics Innovation Hub, Biotechnology Resource Center, Cornell University, Ithaca, New York
| | - Jennifer K Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York.,Genomics Innovation Hub, Biotechnology Resource Center, Cornell University, Ithaca, New York
| | - Paul D Soloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Zhangjie Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lola M Reid
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
30
|
Francisco AB, Kanke M, Massa AP, Dinh TA, Sritharan R, Vakili K, Bardeesy N, Sethupathy P. Multiomic analysis of microRNA-mediated regulation reveals a proliferative axis involving miR-10b in fibrolamellar carcinoma. JCI Insight 2022; 7:e154743. [PMID: 35482409 PMCID: PMC9220943 DOI: 10.1172/jci.insight.154743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is an aggressive liver cancer primarily afflicting adolescents and young adults. Most patients with FLC harbor a heterozygous deletion on chromosome 19 that leads to the oncogenic gene fusion, DNAJB1-PRKACA. There are currently no effective therapeutics for FLC. To address that, it is critical to gain deeper mechanistic insight into FLC pathogenesis. We assembled a large sample set of FLC and nonmalignant liver tissue (n = 52) and performed integrative multiomic analysis. Specifically, we carried out small RNA sequencing to define altered microRNA expression patterns in tumor samples and then coupled this analysis with RNA sequencing and chromatin run-on sequencing data to identify candidate master microRNA regulators of gene expression in FLC. We also evaluated the relationship between DNAJB1-PRKACA and microRNAs of interest in several human and mouse cell models. Finally, we performed loss-of-function experiments for a specific microRNA in cells established from a patient-derived xenograft (PDX) model. We identified miR-10b-5p as the top candidate pro-proliferative microRNA in FLC. In multiple human cell models, overexpression of DNAJB1-PRKACA led to significant upregulation of miR-10b-5p. Inhibition of miR-10b in PDX-derived cells increased the expression of several potentially novel target genes, concomitant with a significant reduction in metabolic activity, proliferation, and anchorage-independent growth. This study highlights a potentially novel proliferative axis in FLC and provides a rich resource for further investigation of FLC etiology.
Collapse
Affiliation(s)
- Adam B. Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Andrew P. Massa
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Timothy A. Dinh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Nabeel Bardeesy
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
31
|
Jerves T, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic diseases. VIII. Neoplasias. Mol Genet Metab 2022; 136:118-124. [PMID: 35422340 PMCID: PMC9189061 DOI: 10.1016/j.ymgme.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Cancer, caused by multiple cumulative pathogenic variants in tumor suppressor genes and proto-oncogenes, is a leading cause of mortality worldwide. The uncontrolled and rapid cell growth of the tumors requires a reprogramming of the complex cellular metabolic network to favor anabolism. Adequate management and treatment of certain inherited metabolic diseases might prevent the development of certain neoplasias, such as hepatocellular carcinoma in tyrosinemia type 1 or hepatocellular adenomas in glycogen storage disorder type 1a. We reviewed and updated the list of known metabolic etiologies associated with various types of benign and malignant neoplasias, finding 64 relevant inborn errors of metabolism. This is the eighth article of the series attempting to create a comprehensive list of clinical and metabolic differential diagnosis by system involvement.
Collapse
Affiliation(s)
- Teodoro Jerves
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Dinh TA, Utria AF, Barry KC, Ma R, Abou-Alfa GK, Gordan JD, Jaffee EM, Scott JD, Zucman-Rossi J, O’Neill AF, Furth ME, Sethupathy P. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 2022; 19:328-342. [PMID: 35190728 PMCID: PMC9516439 DOI: 10.1038/s41575-022-00580-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1-PRKACA) encoding a fusion protein (DNAJ-PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ-PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.
Collapse
Affiliation(s)
- Timothy A. Dinh
- Medical Scientist Training Program, University of North Carolina, Chapel Hill, NC, USA.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Alan F. Utria
- Department of Surgery, University of Washington, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Kevin C. Barry
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,These authors contributed equally: Timothy A. Dinh, Alan F. Utria, Kevin C. Barry
| | - Rosanna Ma
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA
| | - John D. Gordan
- Gastrointestinal oncology, University of California at San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Elizabeth M. Jaffee
- Department of oncology, Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - John D. Scott
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne université, Inserm, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Allison F. O’Neill
- Department of Paediatric Hematology/oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Mark E. Furth
- Fibrolamellar Cancer Foundation, Greenwich, CT, USA.,;
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA.,;
| |
Collapse
|
33
|
Guo J, Li W, Cheng L, Gao X. Identification and Validation of Hub Genes with Poor Prognosis in Hepatocellular Carcinoma by Integrated Bioinformatical Analysis. Int J Gen Med 2022; 15:3933-3941. [PMID: 35431572 PMCID: PMC9012340 DOI: 10.2147/ijgm.s353708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the reason for the world’s second largest cancer-related death. It is clinically valuable to study the molecular mechanisms of HCC occurrence and development for formulating more effective diagnosis and treatment strategies. Methods The five microarray data sets GSE45267, GSE101685, GSE84402, GSE62232 and GSE45267 were downloaded from Gene Expression Omnibus (GEO) database, including 165 HCC tissues and 73 normal tissues. Differential expressed genes (DEGs) between HCC tissues and normal tissues were determined by GEO2R. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and the protein–protein interaction network (PPI) network analysis were employed to identify DEGs and to evaluate the clinical significance in prognosis of HCC. Results A total of 152 genes differentially expressed in HCC tissues and normal tissues were identified. GO and KEGG functional enrichment analysis revealed that 39 up-regulated genes were mainly enriched in mitosis, cell cycle and oocyte meiosis, while those down-regulated genes (113) were concentrated in exogenous drug catabolism and the metabolism of cytochrome P450 on exogenous drugs. Totally, 19 hub genes were chosen by PPI network and module analysis and verified by The Cancer Genome Atlas (TCGA) database. Finally, 8 hub genes were selected, including CDK1, CYP2C8, CCNB1, AURKA, CYP2C9, BUB1B, MAD2L1 and TTK, which were associated with the overall survival rate of HCC patients. Conclusion This study presented eight target genes connected to the prognosis of HCC patients. Those mainly exists in cell cycle and drug catabolism, which may be latent targets for clinical treatment.
Collapse
Affiliation(s)
- Jiang Guo
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Wei Li
- Center of Liver Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Long Cheng
- Department of Interventional Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xuesong Gao
- Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Correspondence: Xuesong Gao, Department of General Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China, Tel +86 13718689825, Fax +861084322146, Email
| |
Collapse
|
34
|
Polychronidis G, Feng J, Murtha-Lemekhova A, Heger U, Mehrabi A, Hoffmann K. Factors Influencing Overall Survival for Patients with Fibrolamellar Hepatocellular Carcinoma: Analysis of the Surveillance, Epidemiology, and End Results Database. Int J Gen Med 2022; 15:393-406. [PMID: 35035232 PMCID: PMC8754463 DOI: 10.2147/ijgm.s338066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background The study aimed to develop a nomogram to predict overall survival (OS) for patients with FLC using a national database. Methods The Surveillance, Epidemiology, and End Results database of the National Cancer Institute was reviewed to identify FLC cases with histological confirmation between 2004 and 2014. Cox proportional hazards models were used to identify factors associated with OS. The validation of the nomogram was performed using concordance index (C-index) and calibration curves. Results Out of 170 cases with complete follow-up, 87 received surgery/ablation and 12 received transplantation with significantly higher OS than chemotherapy alone while transplantation combined with chemotherapy showed better survival than solely transplantation. The combination of surgery and chemotherapy showed worse OS than surgery alone. Survival was negatively influenced by T4 stadium (HR = 5.91), while young age and surgery were positive predictive factors. There was no influence of gender, ethnicity or nodal status on survival. The rate of AFP positivity was comparable with and without the presence of distal metastases. Conclusion FLC survival is greatly dependent upon appropriate surgical management irrespective of tumor stadium.
Collapse
Affiliation(s)
- Georgios Polychronidis
- Department of General, Visceral and Transplant Surgery, Heidelberg University Clinic, Heidelberg, Germany
| | - Jincheng Feng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Anastasia Murtha-Lemekhova
- Department of General, Visceral and Transplant Surgery, Heidelberg University Clinic, Heidelberg, Germany
| | - Ulrike Heger
- Department of General, Visceral and Transplant Surgery, Heidelberg University Clinic, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, Heidelberg University Clinic, Heidelberg, Germany
| | - Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, Heidelberg University Clinic, Heidelberg, Germany
| |
Collapse
|
35
|
Chen X, Xia Z, Wan Y, Huang P. Identification of hub genes and candidate drugs in hepatocellular carcinoma by integrated bioinformatics analysis. Medicine (Baltimore) 2021; 100:e27117. [PMID: 34596112 PMCID: PMC8483840 DOI: 10.1097/md.0000000000027117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third cancer-related cause of death in the world. Until now, the involved mechanisms during the development of HCC are largely unknown. This study aims to explore the driven genes and potential drugs in HCC. METHODS Three mRNA expression datasets were used to analyze the differentially expressed genes (DEGs) in HCC. The bioinformatics approaches include identification of DEGs and hub genes, Gene Ontology terms analysis and Kyoto encyclopedia of genes and genomes enrichment analysis, construction of protein-protein interaction network. The expression levels of hub genes were validated based on The Cancer Genome Atlas, Gene Expression Profiling Interactive Analysis, and the Human Protein Atlas. Moreover, overall survival and disease-free survival analysis of HCC patients were further conducted by Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis. DGIdb database was performed to search the candidate drugs for HCC. RESULTS A total of 197 DEGs were identified. The protein-protein interaction network was constructed using Search Tool for the Retrieval of Interacting Genes software, 10 genes were selected by Cytoscape plugin cytoHubba and served as hub genes. These 10 genes were all closely related to the survival of HCC patients. DGIdb database predicted 29 small molecules as the possible drugs for treating HCC. CONCLUSION Our study provides some new insights into HCC pathogenesis and treatments. The candidate drugs may improve the efficiency of HCC therapy in the future.
Collapse
Affiliation(s)
- Xiaolong Chen
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhixiong Xia
- Department of Pathology, The Center Hospital of Wuhan, Hubei, China
| | - Yafeng Wan
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Huang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Lalazar G, Requena D, Ramos-Espiritu L, Ng D, Bhola PD, de Jong YP, Wang R, Narayan NJC, Shebl B, Levin S, Michailidis E, Kabbani M, Vercauteren KOA, Hurley AM, Farber BA, Hammond WJ, Saltsman JA, Weinberg EM, Glickman JF, Lyons BA, Ellison J, Schadde E, Hertl M, Leiting JL, Truty MJ, Smoot RL, Tierney F, Kato T, Wendel HG, LaQuaglia MP, Rice CM, Letai A, Coffino P, Torbenson MS, Ortiz MV, Simon SM. Identification of Novel Therapeutic Targets for Fibrolamellar Carcinoma Using Patient-Derived Xenografts and Direct-from-Patient Screening. Cancer Discov 2021; 11:2544-2563. [PMID: 34127480 PMCID: PMC8734228 DOI: 10.1158/2159-8290.cd-20-0872] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
To repurpose therapeutics for fibrolamellar carcinoma (FLC), we developed and validated patient-derived xenografts (PDX) from surgical resections. Most agents used clinically and inhibitors of oncogenes overexpressed in FLC showed little efficacy on PDX. A high-throughput functional drug screen found primary and metastatic FLC were vulnerable to clinically available inhibitors of TOPO1 and HDAC and to napabucasin. Napabucasin's efficacy was mediated through reactive oxygen species and inhibition of translation initiation, and specific inhibition of eIF4A was effective. The sensitivity of each PDX line inversely correlated with expression of the antiapoptotic protein Bcl-xL, and inhibition of Bcl-xL synergized with other drugs. Screening directly on cells dissociated from patient resections validated these results. This demonstrates that a direct functional screen on patient tumors provides therapeutically informative data within a clinically useful time frame. Identifying these novel therapeutic targets and combination therapies is an urgent need, as effective therapeutics for FLC are currently unavailable. SIGNIFICANCE: Therapeutics informed by genomics have not yielded effective therapies for FLC. A functional screen identified TOPO1, HDAC inhibitors, and napabucasin as efficacious and synergistic with inhibition of Bcl-xL. Validation on cells dissociated directly from patient tumors demonstrates the ability for functional precision medicine in a solid tumor.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Lavoisier Ramos-Espiritu
- High Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, New York
| | - Denise Ng
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Patrick D Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| | - Ruisi Wang
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Nicole J C Narayan
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Solomon Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| | - Koen O A Vercauteren
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Arlene M Hurley
- Hospital Program Direction, The Rockefeller University, New York, New York
| | - Benjamin A Farber
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Department of Surgery, Division of Pediatric Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - William J Hammond
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - James A Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Ethan M Weinberg
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Fraser Glickman
- High Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, New York
| | - Barbara A Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
| | - Jessica Ellison
- Division of Transplantation, Rush University Medical Center, Chicago, Illinois
| | - Erik Schadde
- Department of Surgery, Division of Transplantation and Division of Surgical Oncology, Rush University Medical Center, Chicago, Illinois
| | - Martin Hertl
- Division of Transplantation, Rush University Medical Center, Chicago, Illinois
| | - Jennifer L Leiting
- Division of Subspecialty General Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mark J Truty
- Division of Subspecialty General Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Rory L Smoot
- Division of Subspecialty General Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Faith Tierney
- Division of Abdominal Organ Transplantation, New York-Presbyterian/Columbia University, New York, New York
| | - Tomoaki Kato
- Division of Abdominal Organ Transplantation, New York-Presbyterian/Columbia University, New York, New York
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael P LaQuaglia
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | | | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.
| |
Collapse
|
37
|
Rowan DJ, Yasir S, Chen ZE, Mounajjed T, Erdogan Damgard S, Cummins L, Zhang L, Whitcomb E, Falck V, Simon SM, Singhi AD, Torbenson MS. Morphologic and Molecular Findings in Myxoid Hepatic Adenomas. Am J Surg Pathol 2021; 45:1098-1107. [PMID: 34232602 PMCID: PMC8608350 DOI: 10.1097/pas.0000000000001711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myxoid hepatic adenomas are a rare subtype of hepatic adenomas with distinctive deposition of extracellular myxoid material between the hepatic plates. A total of 9 cases were identified in 6 women and 3 men with an average of 59±12 years. The myxoid adenomas were single tumors in 5 cases and multiple in 4 cases. In 1 case with multiple adenomas, the myxoid adenoma arose in the background of GNAS-mutated hepatic adenomatosis. Myxoid hepatic adenomas had a high frequency of malignant transformation (N=5 cases). They were characterized at the molecular level by HNF1A inactivating mutations, leading to loss of LFABP protein expression. In addition, myxoid adenomas had recurrent mutations in genes within the protein kinase A (PKA) pathway or in genes that regulate the PKA pathway: GNAS, CDKN1B (encodes p27), and RNF123. In sum, myxoid adenomas are rare, occur in older-aged persons, have a high risk of malignant transformation, and are characterized by the combined inactivation of HNF1A and additional mutations that appear to cluster in the PKA pathway.
Collapse
Affiliation(s)
- Daniel J Rowan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Saba Yasir
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Zongming E Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Taofic Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Lisa Cummins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Emma Whitcomb
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Vince Falck
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | |
Collapse
|
38
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Olivieri C, Walker C, Karamafrooz A, Wang Y, Manu VS, Porcelli F, Blumenthal DK, Thomas DD, Bernlohr DA, Simon SM, Taylor SS, Veglia G. Defective internal allosteric network imparts dysfunctional ATP/substrate-binding cooperativity in oncogenic chimera of protein kinase A. Commun Biol 2021; 4:321. [PMID: 33692454 PMCID: PMC7946884 DOI: 10.1038/s42003-021-01819-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
An aberrant fusion of the DNAJB1 and PRKACA genes generates a chimeric protein kinase (PKA-CDNAJB1) in which the J-domain of the heat shock protein 40 is fused to the catalytic α subunit of cAMP-dependent protein kinase A (PKA-C). Deceivingly, this chimeric construct appears to be fully functional, as it phosphorylates canonical substrates, forms holoenzymes, responds to cAMP activation, and recognizes the endogenous inhibitor PKI. Nonetheless, PKA-CDNAJB1 has been recognized as the primary driver of fibrolamellar hepatocellular carcinoma and is implicated in other neoplasms for which the molecular mechanisms remain elusive. Here we determined the chimera's allosteric response to nucleotide and pseudo-substrate binding. We found that the fusion of the dynamic J-domain to PKA-C disrupts the internal allosteric network, causing dramatic attenuation of the nucleotide/PKI binding cooperativity. Our findings suggest that the reduced allosteric cooperativity exhibited by PKA-CDNAJB1 alters specific recognitions and interactions between substrates and regulatory partners contributing to dysregulation.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adak Karamafrooz
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yingjie Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Chemistry, University of Minnesota, Minneapolis, MN, USA
- Shenzhen Bay Laboratory, Shenzhen, China
| | - V S Manu
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Fernando Porcelli
- DIBAF - University of Tuscia - Largo dell' Università, Viterbo, Italy
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry and Pharmacology, University of California at San Diego, La Jolla, CA, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
40
|
Gigante E, Paradis V, Ronot M, Cauchy F, Soubrane O, Ganne-Carrié N, Nault JC. New insights into the pathophysiology and clinical care of rare primary liver cancers. JHEP Rep 2021; 3:100174. [PMID: 33205035 PMCID: PMC7653076 DOI: 10.1016/j.jhepr.2020.100174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocholangiocarcinoma, fibrolamellar carcinoma, hepatic haemangioendothelioma and hepatic angiosarcoma represent less than 5% of primary liver cancers. Fibrolamellar carcinoma and hepatic haemangioendothelioma are driven by unique somatic genetic alterations (DNAJB1-PRKCA and CAMTA1-WWTR1 fusions, respectively), while the pathogenesis of hepatocholangiocarcinoma remains more complex, as suggested by its histological diversity. Histology is the gold standard for diagnosis, which remains challenging even in an expert centre because of the low incidences of these liver cancers. Resection, when feasible, is the cornerstone of treatment, together with liver transplantation for hepatic haemangioendothelioma. The role of locoregional therapies and systemic treatments remains poorly studied. In this review, we aim to describe the recent advances in terms of diagnosis and clinical management of these rare primary liver cancers.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- AFP, alpha-fetoprotein
- APHE, arterial phase hyperenhancement
- CA19-9, carbohydrate antigen 19-9
- CCA, cholangiocarcinoma
- CEUS, contrast-enhanced ultrasound
- CK, cytokeratin
- CLC, cholangiolocellular carcinoma
- EpCAM, epithelial cell adhesion molecule
- FISH, fluorescence in situ hybridisation
- FLC, fibrolamellar carcinoma
- Fibrolamellar carcinoma
- HAS, hepatic angiosarcoma
- HCC, hepatocellular carcinoma
- HEH, hepatic epithelioid haemangioendothelioma
- HepPar1, hepatocyte specific antigen antibody
- Hepatic angiosarcoma
- Hepatic hemangioendothelioma
- Hepatocellular carcinoma
- Hepatocholangiocarcinoma
- IHC, immunohistochemistry
- LI-RADS, liver imaging reporting and data system
- LT, liver transplantation
- Mixed tumor
- RT-PCR, reverse transcription PCR
- SIRT, selective internal radiation therapy
- TACE, transarterial chemoembolisation
- WHO, World Health Organization
- cHCC-CCA, combined hepatocholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
Collapse
Affiliation(s)
- Elia Gigante
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
| | - Valérie Paradis
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service d'anatomie pathologique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Maxime Ronot
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de radiologie, Hôpital Beaujon, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - François Cauchy
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Olivier Soubrane
- Centre de recherche sur l’inflammation, Inserm, Université de Paris, INSERM UMR 1149 « De l'inflammation au cancer », Paris, France
- Service de chirurgie hépato-bilio-pancréatique et transplantation hépatique, Hôpitaux Universitaires Paris-Nord-Val-de-Seine, Assistance-Publique Hôpitaux de Paris, Clichy, France
- Université de Paris, Paris, France
| | - Nathalie Ganne-Carrié
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| | - Jean-Charles Nault
- Service d’hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Paris, France
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris, INSERM UMR 1138, Functional Genomics of Solid Tumors, F-75006, Paris, France
| |
Collapse
|
41
|
Lu TW, Aoto PC, Weng JH, Nielsen C, Cash JN, Hall J, Zhang P, Simon SM, Cianfrocco MA, Taylor SS. Structural analyses of the PKA RIIβ holoenzyme containing the oncogenic DnaJB1-PKAc fusion protein reveal protomer asymmetry and fusion-induced allosteric perturbations in fibrolamellar hepatocellular carcinoma. PLoS Biol 2020; 18:e3001018. [PMID: 33370777 PMCID: PMC7793292 DOI: 10.1371/journal.pbio.3001018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/08/2021] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
When the J-domain of the heat shock protein DnaJB1 is fused to the catalytic (C) subunit of cAMP-dependent protein kinase (PKA), replacing exon 1, this fusion protein, J-C subunit (J-C), becomes the driver of fibrolamellar hepatocellular carcinoma (FL-HCC). Here, we use cryo-electron microscopy (cryo-EM) to characterize J-C bound to RIIβ, the major PKA regulatory (R) subunit in liver, thus reporting the first cryo-EM structure of any PKA holoenzyme. We report several differences in both structure and dynamics that could not be captured by the conventional crystallography approaches used to obtain prior structures. Most striking is the asymmetry caused by the absence of the second cyclic nucleotide binding (CNB) domain and the J-domain in one of the RIIβ:J-C protomers. Using molecular dynamics (MD) simulations, we discovered that this asymmetry is already present in the wild-type (WT) RIIβ2C2 but had been masked in the previous crystal structure. This asymmetry may link to the intrinsic allosteric regulation of all PKA holoenzymes and could also explain why most disease mutations in PKA regulatory subunits are dominant negative. The cryo-EM structure, combined with small-angle X-ray scattering (SAXS), also allowed us to predict the general position of the Dimerization/Docking (D/D) domain, which is essential for localization and interacting with membrane-anchored A-Kinase-Anchoring Proteins (AKAPs). This position provides a multivalent mechanism for interaction of the RIIβ holoenzyme with membranes and would be perturbed in the oncogenic fusion protein. The J-domain also alters several biochemical properties of the RIIβ holoenzyme: It is easier to activate with cAMP, and the cooperativity is reduced. These results provide new insights into how the finely tuned allosteric PKA signaling network is disrupted by the oncogenic J-C subunit, ultimately leading to the development of FL-HCC.
Collapse
Affiliation(s)
- Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Phillip C. Aoto
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Cole Nielsen
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Jennifer N. Cash
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James Hall
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Ping Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York, United States of America
| | - Michael A. Cianfrocco
- Life Sciences Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
42
|
El Dika I, Mayer RJ, Venook AP, Capanu M, LaQuaglia MP, Kobos R, O'Neill AF, Chou JF, Ly M, Ang C, O'Reilly EM, Gordan JD, Abou‐Alfa GK. A Multicenter Randomized Three-Arm Phase II Study of (1) Everolimus, (2) Estrogen Deprivation Therapy (EDT) with Leuprolide + Letrozole, and (3) Everolimus + EDT in Patients with Unresectable Fibrolamellar Carcinoma. Oncologist 2020; 25:925-e1603. [PMID: 32400000 PMCID: PMC7648371 DOI: 10.1634/theoncologist.2020-0367] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
LESSONS LEARNED FLC is a complex cancer with many implicated oncogenic pathways. Single or dual targeting does not appear to alter the natural history of the cancer, and novel therapeutics are needed. Estrogen deprivation therapy with letrozole and leuprolide, alone or in combination with the mTOR inhibitor, everolimus, did not demonstrate clinical activity in advanced fibrolamellar carcinoma. The study drugs were well tolerated when administered as single agents or in combination in this patient population. This study demonstrates that, despite the rarity of FLC, multicenter therapeutic clinical trials are feasible and support the value of this consortium. BACKGROUND Fibrolamellar carcinoma (FLC) is an uncommon malignancy in young people and is sometimes associated with pregnancy and oral contraceptive use. Immunohistochemical staining and genetic profiling of FLC tumor specimens have revealed aromatase overexpression. The overexpression of mTOR and S6 kinase has been noted in 25% of FLC. On the basis of interaction between estrogen and the PI3K/Akt/mTOR pathway, we hypothesized that suppression of estrogen and mTOR signaling could have antineoplastic activity in FLC. METHODS Patients were randomized to arm A (everolimus), arm B (letrozole/leuprolide; estrogen deprivation therapy [EDT]), or arm C (everolimus/letrozole/leuprolide). Upon disease progression, patients in arm A or B could proceed to part 2 (everolimus/letrozole/leuprolide). The primary endpoint was progression-free survival (PFS) at 6 months (PFS6) assessed using a Simon's minimax two-stage design, hypothesizing an improvement in PFS6 from 40% to 64% with the study regimen. RESULTS Twenty-eight patients were enrolled. An unplanned analysis was performed because of perceived concern for lack of efficacy. Stable disease was observed in 9 of 26 evaluable patients (35%). PFS6 was 0%. Median overall survival (OS) was 12.4 months (95% confidence interval [CI], 7.4-20.9) for the whole study cohort. Grade 3 adverse events in ≥10% of patients were nausea (11%), vomiting (11%), anemia (11%), elevated aspartate transaminase (AST; 32%), alanine transaminase (ALT; 36%), and alkaline phosphatase (14%). All 28 patients experienced an event for PFS outcome, and four deaths were due to disease progression. CONCLUSION Neither EDT nor mTOR inhibition improved outcomes in FLC. Other treatment strategies are needed.
Collapse
Affiliation(s)
- Imane El Dika
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Weill Cornell College of MedicineNew YorkNew YorkUSA
| | - Robert J. Mayer
- Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Alan P. Venook
- University of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Michael P. LaQuaglia
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Weill Cornell College of MedicineNew YorkNew YorkUSA
| | - Rachel Kobos
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Weill Cornell College of MedicineNew YorkNew YorkUSA
| | - Allison F. O'Neill
- Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Joanne F. Chou
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Michele Ly
- Sidney Kimmel Medical College of Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Celina Ang
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Eileen M. O'Reilly
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Weill Cornell College of MedicineNew YorkNew YorkUSA
| | - John D. Gordan
- University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ghassan K. Abou‐Alfa
- Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Weill Cornell College of MedicineNew YorkNew YorkUSA
| |
Collapse
|
43
|
El Dika I, Bowman AS, Berger MF, Capanu M, Chou JF, Benayed R, Zehir A, Shia J, O'Reilly EM, Klimstra DS, Solit DB, Abou-Alfa GK. Molecular profiling and analysis of genetic aberrations aimed at identifying potential therapeutic targets in fibrolamellar carcinoma of the liver. Cancer 2020; 126:4126-4135. [PMID: 32663328 DOI: 10.1002/cncr.32960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Fibrolamellar carcinoma (FLC) is a rare primary liver cancer of young adults. A functional chimeric transcript resulting from the in-frame fusion of the DNAJ homolog, subfamily B, member 1 (DNAJB1), and the catalytic subunit of protein kinase A (PRKACA) genes on chromosome 19 is believed to be unique in FLC, with a possible role in pathogenesis, yet with no established therapeutic value. The objective of the current study was to understand the molecular landscape of FLC and to identify potential novel therapeutic targets. METHODS Archival fresh, formalin-fixed, paraffin-embedded samples from patients with FLC who prospectively consented to an institutional review board-approved protocol were analyzed using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT), a next-generation sequencing assay encompassing up to 468 key cancer genes. Custom targeted RNA-Seq was performed in selected patients. Demographics, treatment, and outcome data were collected prospectively. Survival outcomes were estimated and correlated with mutation and/or copy number alterations. RESULTS A total of 33 tumor samples from 31 patients with FLC were analyzed. The median age of the patients at the time of diagnosis was 18 years and approximately 53% were women. The DNAJB1-PRKACA fusion transcript was detected in 100% of patients. In 10 of 31 patients in which MSK-IMPACT did not detect the fusion, its presence was confirmed by targeted RNA-Seq. TERT promoter mutation was the second most common, and was detected in 7 patients. The median follow up was 30 months (range, 6-153 months). The 3-year overall survival rate was 84% (95% CI, 61%-93%). CONCLUSIONS The DNAJB1-PRKACA fusion transcript is nonspecific and nonsensitive to FLC. Its potential therapeutic value currently is under evaluation. Opportunities currently are under development for therapy that may be driven or related to the DNAJB1-PRKACA fusion transcript or any therapeutic target identified from next-generation sequencing in patients with FLC.
Collapse
Affiliation(s)
- Imane El Dika
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - Anita S Bowman
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael F Berger
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - Marinela Capanu
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joanne F Chou
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryma Benayed
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ahmet Zehir
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jinru Shia
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - Eileen M O'Reilly
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - David S Klimstra
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell College of Medicine, New York, New York, USA
| |
Collapse
|
44
|
de Oliveira S, Houseright RA, Korte BG, Huttenlocher A. DnaJ-PKAc fusion induces liver inflammation in a zebrafish model of fibrolamellar carcinoma. Dis Model Mech 2020; 13:dmm042564. [PMID: 32102783 PMCID: PMC7197716 DOI: 10.1242/dmm.042564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver cancer that affects adolescents and young adults. Genomic analysis of FLC has revealed a 400 kb deletion in chromosome 19 that leads to the chimeric transcript DNAJB1-PRKACA (DnaJ-PKAc), comprised of the first exon of heat shock protein 40 (DNAJB1) and exons 2-10 of the catalytic subunit of protein kinase A (PRKACA). Here, we report a new zebrafish model of FLC induced by ectopic expression of zebrafish Dnaja-Pkaca (zfDnaJa-Pkaca) in hepatocytes that is amenable to live imaging of early innate immune inflammation. Expression of zfDnaJa-Pkaca in hepatocytes induces hepatomegaly and increased hepatocyte size. In addition, FLC larvae exhibit early innate immune inflammation characterized by early infiltration of neutrophils and macrophages into the liver microenvironment. Increased Caspase-a (the zebrafish homolog for human caspase-1) activity was also found in the liver of FLC larvae, and pharmacological inhibition of Tnfα and caspase-a decreased liver size and inflammation. Overall, these findings show that innate immune inflammation is an early feature in a zebrafish model of FLC and that pharmacological inhibition of TNFα or caspase-1 activity might be targets to treat inflammation and progression in FLC patients.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sofia de Oliveira
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ruth A Houseright
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin G Korte
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
45
|
Dinh TA, Sritharan R, Smith FD, Francisco AB, Ma RK, Bunaciu RP, Kanke M, Danko CG, Massa AP, Scott JD, Sethupathy P. Hotspots of Aberrant Enhancer Activity in Fibrolamellar Carcinoma Reveal Candidate Oncogenic Pathways and Therapeutic Vulnerabilities. Cell Rep 2020; 31:107509. [PMID: 32294439 PMCID: PMC7474926 DOI: 10.1016/j.celrep.2020.03.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare, therapeutically intractable liver cancer that disproportionately affects youth. Although FLC tumors exhibit a distinct gene expression profile, the chromatin regulatory landscape and the genes most critical for tumor cell survival remain unclear. Here, we use chromatin run-on sequencing to discover ∼7,000 enhancers and 141 enhancer hotspots activated in FLC relative to nonmalignant liver. Bioinformatic analyses reveal aberrant ERK/MEK signaling and candidate master transcriptional regulators. We also define the genes most strongly associated with hotspots of FLC enhancer activity, including CA12 and SLC16A14. Treatment of FLC cell models with inhibitors of CA12 or SLC16A14 independently reduce cell viability and/or significantly enhance the effect of the MEK inhibitor cobimetinib. These findings highlight molecular targets for drug development, as well as drug combination approaches.
Collapse
Affiliation(s)
- Timothy A Dinh
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - F Donelson Smith
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Adam B Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rosanna K Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Charles G Danko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Andrew P Massa
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - John D Scott
- Department of Pharmacology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
46
|
Vyas M, Hechtman JF, Zhang Y, Benayed R, Yavas A, Askan G, Shia J, Klimstra DS, Basturk O. DNAJB1-PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma. Mod Pathol 2020; 33:648-656. [PMID: 31676785 PMCID: PMC7125037 DOI: 10.1038/s41379-019-0398-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
Abstract
Recently discovered DNAJB1-PRKACA oncogenic fusions have been considered diagnostic for fibrolamellar hepatocellular carcinoma. In this study, we describe six pancreatobiliary neoplasms with PRKACA fusions, five of which harbor the DNAJB1-PRKACA fusion. All neoplasms were subjected to a hybridization capture-based next-generation sequencing assay (MSK-IMPACT), which enables the identification of sequence mutations, copy number alterations, and selected structural rearrangements involving ≥410 genes (n = 6) and/or to a custom targeted, RNA-based panel (MSK-Fusion) that utilizes Archer Anchored Multiplex PCR technology and next-generation sequencing to detect gene fusions in 62 genes (n = 2). Selected neoplasms also underwent FISH analysis, albumin mRNA in-situ hybridization, and arginase-1 immunohistochemical labeling (n = 3). Five neoplasms were pancreatic, and one arose in the intrahepatic bile ducts. All revealed at least focal oncocytic morphology: three cases were diagnosed as intraductal oncocytic papillary neoplasms, and three as intraductal papillary mucinous neoplasms with mixed oncocytic and pancreatobiliary or gastric features. Four cases had an invasive carcinoma component composed of oncocytic cells. Five cases revealed DNAJB1-PRKACA fusions and one revealed an ATP1B1-PRKACA fusion. None of the cases tested were positive for albumin or arginase-1. Our data prove that DNAJB1-PRKACA fusion is neither exclusive nor diagnostic for fibrolamellar hepatocellular carcinoma, and caution should be exercised in diagnosing liver tumors with DNAJB1-PRKACA fusions as fibrolamellar hepatocellular carcinoma, particularly if a pancreatic lesion is present. Moreover, considering DNAJB1-PRKACA fusions lead to upregulated protein kinase activity and that this upregulated protein kinase activity has a significant role in tumorigenesis of fibrolamellar hepatocellular carcinoma, protein kinase inhibition could have therapeutic potential in the treatment of these pancreatobiliary neoplasms as well, once a suitable drug is developed.
Collapse
Affiliation(s)
- Monika Vyas
- Memorial Sloan Kettering Cancer Center, NY, US
| | | | | | | | | | - Gokce Askan
- Memorial Sloan Kettering Cancer Center, NY, US
| | - Jinru Shia
- Memorial Sloan Kettering Cancer Center, NY, US
| | | | - Olca Basturk
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
47
|
Qiao C, Liu W, Jiang H, He M, Yang Q, Xing Y. Integrated analysis of miRNA and mRNA expression profiles in p53-edited PFF cells. Cell Cycle 2020; 19:949-959. [PMID: 32213107 DOI: 10.1080/15384101.2020.1742852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
p53 is the most frequently mutated gene in human cancers, with over half of all tumors harboring mutation at this locus. R248 and R249 (corresponding to porcine R241 and R242), are among the hotspot mutations frequently mutated in liver, lung, breast, and some other cancers. In this study, p53 gene was knocked out or point-edited (R241 and R242 were converted to 241W and 242S) in porcine fetal fibroblast (PFF) cells via CRISPR-Cas9 technique. High throughput sequencing of miRNA and mRNA uncovered a total of 225 differentially expressed miRNAs (DEMs) and 738 differentially expressed genes (DEGs) in the p53 knockout (p53-KO) cells, and a total of 211 DEMs and 722 DEGs in the point-modified (p53-241W242S) cells. Totally 28 annotated DEMs were found to overlap between p53-KO/p53-WT and p53-241W242S/p53-WT miRNAs datasets, of which miR-34 c, miR-218, miR-205, miR-105-1, miR-105-2, miR-206, miR-224 and miR-429 play important roles in p53 regulatory network. Among the top 10 DEGs in p53-KO and p53-241W242S cells, most genes were reported to be involved in tumors, cell proliferation or cell migration. p53-KO and p53-241W242S cells showed a significantly higher (P < 0.01) proliferation rate compared with p53-WT cells. In conclusion, genetic modifications of p53 gene significantly affect the expression levels of a large number of genes and miRNAs in the PFF cells. The p53-edited PFF cells could be used as non-tumor cell models for investigating the p53 signaling network, and as donor cells for somatic nuclear transfer, with the aim to develop porcine models with the corresponding p53 mutations.Abbreviations: CRISPR-Cas9: Clustered regularly interspaced short palindromic repeats-associated protein 9; PFF: porcine fetal fibroblasts; SCNT: somatic cell nuclear transfer; RNA sequencing: small RNA sequencing and mRNA sequencing; DEGs: differentially expressed mRNAs; DEMs: differentially expressed miRNAs.
Collapse
Affiliation(s)
- Chuanmin Qiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Haoyun Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Maozhang He
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiang Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
48
|
Abou-Alfa GK, Mayer R, Venook AP, O'Neill AF, Beg MS, LaQuaglia M, Kingham PT, Kobos R, Basturk O, Brennan C, Yopp A, Harding JJ, Leong S, Crown J, Hoti E, Leonard G, Ly M, Bradley M, Valentino E, Markowitz D, Zukiwski A, Ren K, Gordan JD. Phase II Multicenter, Open-Label Study of Oral ENMD-2076 for the Treatment of Patients with Advanced Fibrolamellar Carcinoma. Oncologist 2020; 25:e1837-e1845. [PMID: 32154962 DOI: 10.1634/theoncologist.2020-0093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
LESSONS LEARNED The fibrolamellar carcinoma-associated DNAJB1-PRKACA gene fusion transcript RNA codes for the catalytic domain of protein kinase A and, thus, overexpression of Aurora kinase A. ENMD-2076 showed a favorable toxicity profile. The limited results, one patient (3%) with a partial response and 57% of patients with stable disease, do not support further evaluation of ENMD-2076 as single agent. Future studies will depend on the simultaneous targeting approach of DNAJB1-PRKACA and the critical downstream components. BACKGROUND Fibrolamellar carcinoma (FLC) represents approximately 0.85% of liver cancers. The associated DNAJB1-PRKACA gene fusion transcript RNA codes for the catalytic domain of protein kinase A and overexpression of Aurora kinase A (AURKA). ENMD-2076 is a selective anti-AURKA inhibitor. METHODS Patients aged >12 years with pathologically confirmed incurable FLC, with measurable disease, Eastern Cooperative Oncology Group performance status 0-2 or Lansky 70-100, and adequate organ function were eligible. Patients were prescribed ENMD-2076 based on body surface area. The primary endpoint was overall objective response rate by RECIST v1.1, with a null hypothesis of true response rate of 2% versus one-sided alternative of 15%. Secondary endpoints included 6-month progression-free survival (PFS) rate (Fig. 1), median PFS, time to progression (TTP), and overall survival (OS). Safety was evaluated throughout the study. RESULTS Of 35 patients who enrolled and received treatment, 1 (3%) had a partial response (PR) and 20 (57%) had stable disease (SD). Median TTP, PFS, and OS were 5, 3.9, and 19 months, respectively. The most frequently reported drug-related serious adverse event was hypertension in three patients. Three deaths were reported on-study-two due to disease progression and one due to pulmonary embolism not related to ENMD-2076. CONCLUSION The study provided no rationale for further studying ENMD-2076 as a single agent in FLC.
Collapse
Affiliation(s)
- Ghassan K Abou-Alfa
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Mayer
- Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts, USA
| | - Alan P Venook
- University of California San Francisco, San Francisco, California, USA
| | - Allison F O'Neill
- Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts, USA
| | | | - Michael LaQuaglia
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter T Kingham
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rachel Kobos
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Olca Basturk
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Cameron Brennan
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Adam Yopp
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - James J Harding
- Weill Medical College at Cornell University, New York, New York, USA
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephen Leong
- University of Colorado Cancer Center, Aurora, Colorado, USA
| | - John Crown
- St Vincent's Private Hospital, Dublin, Ireland
| | - Emir Hoti
- St Vincent's Private Hospital, Dublin, Ireland
| | | | - Michele Ly
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mikaela Bradley
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Emily Valentino
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | - Ken Ren
- CASI Pharmaceuticals, Inc., Rockville, Maryland, USA
| | - John D Gordan
- University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
49
|
Singhi AD, Wood LD, Parks E, Torbenson MS, Felsenstein M, Hruban RH, Nikiforova MN, Wald AI, Kaya C, Nikiforov YE, Favazza L, He J, McGrath K, Fasanella KE, Brand RE, Lennon AM, Furlan A, Dasyam AK, Zureikat AH, Zeh HJ, Lee K, Bartlett DL, Slivka A. Recurrent Rearrangements in PRKACA and PRKACB in Intraductal Oncocytic Papillary Neoplasms of the Pancreas and Bile Duct. Gastroenterology 2020; 158:573-582.e2. [PMID: 31678302 PMCID: PMC7010554 DOI: 10.1053/j.gastro.2019.10.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Intraductal oncocytic papillary neoplasms (IOPNs) of the pancreas and bile duct contain epithelial cells with numerous, large mitochondria and are cystic precursors to pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA), respectively. However, IOPNs do not have the genomic alterations found in other pancreatobiliary neoplasms. In fact, no recurrent genomic alterations have been described in IOPNs. PDACs without activating mutations in KRAS contain gene rearrangements, so we investigated whether IOPNs have recurrent fusions in genes. METHODS We analyzed 20 resected pancreatic IOPNs and 3 resected biliary IOPNs using a broad RNA-based targeted sequencing panel to detect cancer-related fusion genes. Four invasive PDACs and 2 intrahepatic CCAs from the same patients as the IOPNs, were also available for analysis. Samples of pancreatic cyst fluid (n = 5, collected before surgery) and bile duct brushings (n = 2) were analyzed for translocations. For comparison, we analyzed pancreatobiliary lesions from 126 patients without IOPN (controls). RESULTS All IOPNs evaluated were found to have recurring fusions of ATP1B1-PRKACB (n = 13), DNAJB1-PRKACA (n = 6), or ATP1B1-PRKACA (n = 4). These fusions also were found in corresponding invasive PDACs and intrahepatic CCAs, as well as in matched pancreatic cyst fluid and bile duct brushings. These gene rearrangements were absent from all 126 control pancreatobiliary lesions. CONCLUSIONS We identified fusions in PRKACA and PRKACB genes in pancreatic and biliary IOPNs, as well as in PDACs and pancreatic cyst fluid and bile duct cells from the same patients. We did not identify these gene fusions in 126 control pancreatobiliary lesions. These fusions might be used to identify patients at risk for IOPNs and their associated invasive carcinomas.
Collapse
Affiliation(s)
- Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Emma Parks
- Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota
| | - Matthäus Felsenstein
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Cihan Kaya
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Laura Favazza
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne Marie Lennon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anil K Dasyam
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern, Dallas, Texas
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Yao X, Hu W, Zhang J, Huang C, Zhao H, Yao X. Application of cAMP-dependent catalytic subunit β (PRKACB) Low Expression in Predicting Worse Overall Survival: A Potential Therapeutic Target for Colorectal Carcinoma. J Cancer 2020; 11:4841-4850. [PMID: 32626531 PMCID: PMC7330678 DOI: 10.7150/jca.46156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023] Open
Abstract
Low expressions of PRKACB are related to the occurrence of various human malignancies. However, the prognostic value of PRKACB expression in colorectal cancer (CRC) patients remains controversial. In this analysis, PRKACB expression in CRC tumors was evaluated across the GEO, TCGA, and Oncomine databases, and a PRKACB survival analysis was performed based on the TCGA profile. We detected PRKACB in 7 GEO series (GSE110225, GSE32323, GSE44076, GSE9348, GSE41328, GSE21510, GSE68468) and TCGA spectra (all P <0.05). A meta-analysis performed in the Oncomine database revealed that PRKACB was significantly up-regulated in neoplastic tissues compared to normal tissues (all P <0.05). A Kaplan-Meier analysis demonstrated that lower PRKACB expression in tumors was significantly associated with poorer overall survival (OS) in patients with CRC (P <0.05). A subgroup analysis showed that low expression of PRKACB correlated with poor 1-, 3-, and 5-year OS (all P <0.05). Furthermore, in males (P = 0.0083), whites (P = 0.0463), and non-mucinous adenocarcinoma patients (P = 0.0108), the down-regulation of PRKACB expression was more significant for the OS prognostic value. Conclusion: PRKACB is down-regulated in tumors and associated with worsening OS in CRC patients.
Collapse
Affiliation(s)
- Xiaoya Yao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Weixian Hu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jie Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Chengzhi Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Haibi Zhao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xueqing Yao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- ✉ Corresponding author: Xueqing Yao, MD, Ph.D., Department of General Surgery, Guangdong Provincial People′s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
| |
Collapse
|