1
|
Vennard CS, Oladeji SM, Sintim HO. Inhibitors of Cyclic Dinucleotide Phosphodiesterases and Cyclic Oligonucleotide Ring Nucleases as Potential Drugs for Various Diseases. Cells 2025; 14:663. [PMID: 40358186 PMCID: PMC12072042 DOI: 10.3390/cells14090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The phosphodiester linkage is found in DNA, RNA and many signaling molecules, such as cyclic mononucleotide, cyclic dinucleotides (CDNs) and cyclic oligonucleotides (cONs). Enzymes that cleave the phosphodiester linkage (nucleases and phosphodiesterases) play important roles in cell persistence and fitness and have therefore become targets for various diseased states. While various inhibitors have been developed for nucleases and cyclic mononucleotide phosphodiesterases, and some have become clinical successes, there is a paucity of inhibitors of the recently discovered phosphodiesterases or ring nucleases that cleave CDNs and cONs. Inhibitors of bacterial c-di-GMP or c-di-AMP phosphodiesterases have the potential to be used as anti-virulence compounds, while compounds that inhibit the degradation of 3',3'-cGAMP, cA3, cA4, cA6 could serve as antibiotic adjuvants as the accumulation of these second messengers leads to bacterial abortive infection. In humans, 2'3'-cGAMP plays critical roles in antiviral and antitumor responses. ENPP1 (the 2'3'-cGAMP phosphodiesterase) or virally encoded cyclic dinucleotide phosphodiesterases, such as poxin, however, blunt this response. Inhibitors of ENPP1 or poxin-like enzymes have the potential to be used as anticancer and antiviral agents, respectively. This review summarizes efforts made towards the discovery and development of compounds that inhibit CDN phosphodiesterases and cON ring nucleases.
Collapse
Affiliation(s)
- Christopher S. Vennard
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA; (C.S.V.); (S.M.O.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Samson Marvellous Oladeji
- Chemistry Department, Purdue University, West Lafayette, IN 47907, USA; (C.S.V.); (S.M.O.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
2
|
Mortensen S, Burnim A, Dufault-Thompson K, Lipka AE, Jiang X, Sondermann H. Ancestral proteins trace the emergence of substrate specificity and oligomerization within bacterial DEDDy dinucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.30.646021. [PMID: 40236078 PMCID: PMC11996385 DOI: 10.1101/2025.03.30.646021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nucleases play a crucial role in bacterial physiology, influencing processes such as DNA repair, genome maintenance, and host-pathogen interactions. We recently identified a class of nucleases, diDNases, which are encoded on mobile genetic elements and homologous to the house-keeping nanoRNase C (NrnC). Despite their shared structural fold, diDNases and NrnC orthologs exhibit differences. DiDNases form dimers and preferably cleave DNA dinucleotides, whereas NrnC homologs assemble into octamers that do not discriminate between RNA or DNA dinucleotides. Here, we investigate the evolutionary divergence of these enzymes using ancestral sequence reconstruction. Our results show that both diDNases and NrnC orthologs originated from a dimeric ancestor with intermediate substrate preferences. Structural analyses of ancestral and extant dinucleases provide a molecular rational for how gradual changes in conformation gave rise to substrate preferences, oligomeric state, and catalytic efficiency of these related, yet distinct enzyme clades. These findings provide insights into how small structural modifications enable large-scale changes in molecular assembly and functional specialization harnessing a conserved protein fold. In addition, the preference of the early ancestors for DNA dinucleotides and preservation of this activity in all extant enzymes strongly argues for a biological function of DNA dinucleotides.
Collapse
|
3
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Kalia M, Sauer K. Distinct transcriptome and traits of freshly dispersed Pseudomonas aeruginosa cells. mSphere 2024; 9:e0088424. [PMID: 39601567 DOI: 10.1128/msphere.00884-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Bacteria assume two distinct lifestyles: the planktonic and biofilm modes of growth. Additionally, dispersion has emerged as a third phenotype, accompanied by the distinct phenotypes and the unique expression of >600 genes. Here, we asked whether the distinct phenotype of dispersed cells is already apparent within minutes of egressing from the biofilm. We used RNA-seq to show that the physiology of freshly dispersed cells from Pseudomonas aeruginosa biofilms is highly different from those of planktonic and biofilm cells, apparent by dispersed cells uniquely expressing 194 genes. Unique and differentially expressed genes relative to planktonic or biofilm cells include genes associated with type IV pili, pyoverdine, type III and type VI secretion systems, and antibiotic resistance that are downregulated in dispersed cells, whereas the transcript abundance of genes involved in swimming motility, Hxc type II secretion system and various other virulence factors, and metabolic and energy-generating pathways are increased, indicative of dispersion coinciding with an awakening and re-energizing of dispersed cells, and a switch in virulence, further apparent by freshly dispersed cells significantly subverting engulfment by macrophages. The findings suggest that dispersed cells display a distinct phenotype within minutes of egressing from the biofilm, with freshly dispersed cells already capable of efficiently evading phagocytosis. IMPORTANCE Dispersion is considered a transitionary phenotype, enabling bacteria to switch between the communal, biofilm lifestyle, where cells share resources and are protected from harmful conditions to the planktonic state. Here, we demonstrate that within minutes of leaving the biofilm, dispersed cells express genes and display phenotypic traits that are distinct from biofilms and planktonic cells. Our findings suggest that dispersed cells quickly adapt to a less structured and protected but more nutrient-rich environment, with this trade-off in environment coinciding with an awakening and a switch in virulence, specifically a switch from directly intoxicating host cells and potential competitors toward more broadly active virulence factors and strategies of evasion. To our knowledge, this is the first report of dispersed cells' distinct (trade-off) phenotype and their enhanced resilience so soon after egressing from the biofilm.
Collapse
Affiliation(s)
- Manmohit Kalia
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
5
|
Kim SK, Orr MW, Turdiev H, Jenkins CC, Lormand JD, Myers TM, Burnim AA, Carter JA, Kung WC, Jiang X, Sondermann H, Winkler WC, Lee VT. Diribonuclease activity eliminates toxic diribonucleotide accumulation. Cell Rep 2024; 43:114759. [PMID: 39276351 PMCID: PMC11528712 DOI: 10.1016/j.celrep.2024.114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
RNA degradation is a central process required for transcriptional regulation. Eventually, this process degrades diribonucleotides into mononucleotides by specific diribonucleases. In Escherichia coli, oligoribonuclease (Orn) serves this function and is unique as the only essential exoribonuclease. Yet, related organisms, such as Pseudomonas aeruginosa, display a growth defect but are viable without Orn, contesting its essentiality. Here, we take advantage of P. aeruginosa orn mutants to screen for suppressors that restore colony morphology and identified yciV. Purified YciV (RNase AM) exhibits diribonuclease activity. While RNase AM is present in all γ-proteobacteria, phylogenetic analysis reveals differences that map to the active site. RNase AMPa expression in E. coli eliminates the necessity of orn. Together, these results show that diribonuclease activity prevents toxic diribonucleotide accumulation in γ-proteobacteria, suggesting that diribonucleotides may be utilized to monitor RNA degradation efficacy. Because higher eukaryotes encode Orn, these observations indicate a conserved mechanism for monitoring RNA degradation.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA; Research Institute for Drug Development, Pusan National University, Busan 46241, South Korea
| | - Mona W Orr
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Conor C Jenkins
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Justin D Lormand
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Tanner M Myers
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | | | - Jared A Carter
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Warren C Kung
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Xiaofang Jiang
- Intramural Research Program, NLM, NIH, Bethesda, MD 20894, USA
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD 20742, USA.
| |
Collapse
|
6
|
Wang Y, Hao W, Guo Z, Sun Y, Wu Y, Sun Y, Gao T, Luo Y, Jin L, Yang J, Cheng K. Structural and functional investigation of the DHH/DHHA1 family proteins in Deinococcus radiodurans. Nucleic Acids Res 2024; 52:7142-7157. [PMID: 38804263 PMCID: PMC11229311 DOI: 10.1093/nar/gkae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
DHH/DHHA1 family proteins have been proposed to play critical roles in bacterial resistance to environmental stresses. Members of the most radioresistant bacteria genus, Deinococcus, possess two DHH/DHHA1 family proteins, RecJ and RecJ-like. While the functions of Deinococcus radiodurans RecJ (DrRecJ) in DNA damage resistance have been well characterized, the role and biochemical activities of D. radiodurans RecJ-like (DrRecJ-like) remain unclear. Phenotypic and transcriptomic analyses suggest that, beyond DNA repair, DrRecJ is implicated in cell growth and division. Additionally, DrRecJ-like not only affects stress response, cell growth, and division but also correlates with the folding/stability of intracellular proteins, as well as the formation and stability of cell membranes/walls. DrRecJ-like exhibits a preferred catalytic activity towards short single-stranded RNA/DNA oligos and c-di-AMP. In contrast, DrRecJ shows no activity against RNA and c-di-AMP. Moreover, a crystal structure of DrRecJ-like, with Mg2+ bound in an open conformation at a resolution of 1.97 Å, has been resolved. Subsequent mutational analysis was conducted to pinpoint the crucial residues essential for metal cation and substrate binding, along with the dimerization state, necessary for DrRecJ-like's function. This finding could potentially extend to all NrnA-like proteins, considering their conserved amino acid sequence and comparable dimerization forms.
Collapse
Affiliation(s)
- Ying Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanshan Hao
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ziming Guo
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yiyang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Wu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianwen Gao
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yun Luo
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Lizan Jin
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Jieyu Yang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
7
|
Kennelly C, Tran P, Prindle A. Environmental purines decrease Pseudomonas aeruginosa biofilm formation by disrupting c-di-GMP metabolism. Cell Rep 2024; 43:114154. [PMID: 38669142 PMCID: PMC11197132 DOI: 10.1016/j.celrep.2024.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Cyclic di-guanosine monophosphate (c-di-GMP) is a bacterial second messenger that governs the lifestyle switch between planktonic and biofilm states. While substantial investigation has focused on the proteins that produce and degrade c-di-GMP, less attention has been paid to the potential for metabolic control of c-di-GMP signaling. Here, we show that micromolar levels of specific environmental purines unexpectedly decrease c-di-GMP and biofilm formation in Pseudomonas aeruginosa. Using a fluorescent genetic reporter, we show that adenosine and inosine decrease c-di-GMP even when competing purines are present. We confirm genetically that purine salvage is required for c-di-GMP decrease. Furthermore, we find that (p)ppGpp prevents xanthosine and guanosine from producing an opposing c-di-GMP increase, reinforcing a salvage hierarchy that favors c-di-GMP decrease even at the expense of growth. We propose that purines can act as a cue for bacteria to shift their lifestyle away from the recalcitrant biofilm state via upstream metabolic control of c-di-GMP signaling.
Collapse
Affiliation(s)
- Corey Kennelly
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Peter Tran
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
8
|
Guan C, Huang Y, Zhou Y, Han Y, Liu S, Liu S, Kong W, Wang T, Zhang Y. FlhF affects the subcellular clustering of WspR through HsbR in Pseudomonas aeruginosa. Appl Environ Microbiol 2024; 90:e0154823. [PMID: 38112425 PMCID: PMC10807432 DOI: 10.1128/aem.01548-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/21/2023] Open
Abstract
In bacteria, the second messenger cyclic di-GMP (c-di-GMP) is synthesized and degraded by multiple diguanylate cyclases (DGCs) and phosphodiesterases. A high level of c-di-GMP induces biofilm formation and represses motility. WspR, a hybrid response regulator DGC, produces c-di-GMP when it is phosphorylated. FlhF, a signal recognition particle-type GTPase, is initially localized to the cell poles and is indispensable for polar flagellar localization in Pseudomonas aeruginosa. In this study, we report that deletion of flhF affected biofilm formation and the c-di-GMP level in P. aeruginosa. Phenotypic analysis of a flhF knockout mutant revealed increased biofilm formation, wrinkled colonies on Congo red agar, and an elevated c-di-GMP level compared to the wild-type strain, PAO1. Yeast and bacterial two-hybrid systems showed that FlhF binds to the response regulator HsbR, and HsbR binds to WspR. Deletion of hsbR or wspR in the ΔflhF background abolished the phenotype of ΔflhF. In addition, confocal microscopy demonstrated that WspR-GFP was distributed throughout the cytoplasm and formed a visible cluster at one cell pole in PAO1 and ΔhsbR, but it was mainly distributed as visible clusters at the lateral side of the periplasm and with visible clusters at both cell poles in ΔflhF. These findings suggest that FlhF influences the subcellular cluster and localization of WspR and negatively modulates WspR DGC activity in a manner dependent on HsbR. Together, our findings demonstrate a novel mechanism for FlhF modulating the lifestyle transition between motility and biofilm via HsbR to regulate the DGC activity of WspR.IMPORTANCECyclic di-GMP (c-di-GMP) is a second messenger that controls flagellum biosynthesis, adhesion, virulence, motility, exopolysaccharide production, and biofilm formation in bacteria. Recent research has shown that distinct diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) produce highly specific outputs. Some DGCs and PDEs contribute to the total global c-di-GMP concentration, but others only affect local c-di-GMP in a microenvironment. However, the underlying mechanisms are unclear. Here, we report that FlhF affects the localization and DGC activity of WspR via HsbR and is implicated in local c-di-GMP signaling in Pseudomonas aeruginosa. This study establishes the link between the c-di-GMP signaling system and the flagellar localization and provides insight for understanding the complex regulatory network of c-di-GMP signaling.
Collapse
Affiliation(s)
- Congcong Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yi Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yun Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yuqian Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shuhui Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Shimin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Weina Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Tietao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Yani Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Yang L, Wang L, Wang M, Bajinka O, Wu G, Qin L, Tan Y. Oligoribonuclease mediates high adaptability of P. aeruginosa through metabolic conversion. BMC Microbiol 2024; 24:25. [PMID: 38238663 PMCID: PMC10797966 DOI: 10.1186/s12866-023-03175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Oligoribonuclease (orn) of P. aeruginosa is a highly conserved exonuclease, which can regulate the global gene expression levels of bacteria through regulation of both the nanoRNA and c-di-GMP. NanoRNA can regulate the expression of the bacterial global genome as a transcription initiator, and c-di-GMP is the most widely second messenger in bacterial cells. OBJECTIVE This study seeks to elucidate on the regulation by orn on pathogenicity of P. aeruginosa. METHODS P. aeruginosa with orn deletion was constructed by suicide plasmid homologous recombination method. The possible regulatory process of orn was analyzed by TMT quantitative labeling proteomics. Then experiments were conducted to verify the changes of Δorn on bacterial motility, virulence and biofilm formation. Bacterial pathogenicity was further detected in cell and animal skin trauma models. ELISA detection c-di-GMP concentration and colony aggregation and biofilm formation were observed by scanning electron microscope. RESULTS orn deletion changed the global metabolism of P. aeruginosa and reduced intracellular energy metabolism. It leads to the disorder of the quorum sensing system, the reduction of bacterial motility and virulence factors pyocyanin and rhamnolipids. But, orn deletion enhanced pathogenicity in vitro and in vivo, a high level of c-di-GMP and biofilm development of P. aeruginosa. CONCLUSION orn regulates the ability of P. aeruginosa to adapt to the external environment.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Mengyu Wang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ousman Bajinka
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Yurong Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
10
|
Kharadi RR, Hsueh BY, Waters CM, Sundin GW. pGpG-signaling regulates virulence and global transcriptomic targets in Erwinia amylovora. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575434. [PMID: 38260453 PMCID: PMC10802605 DOI: 10.1101/2024.01.12.575434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cyclic-di-GMP (c-di-GMP) is a critical bacterial second messenger that enables the physiological phase transition in Erwinia amylovora, the phytopathogenic bacterium that causes fire blight disease. C-di-GMP generation is dependent on diguanylate cyclase enzymes while the degradation of c-di-GMP can occur through the action of phosphodiesterase (PDE) enzymes that contain an active EAL and/or a HD-GYP domain. The HD-GYP-type PDEs, which are absent in E. amylovora, can directly degrade c-di-GMP into two GMP molecules. PDEs that contain an active EAL domain, as found in all active PDEs in E. amylovora, degrade c-di-GMP into pGpG. The signaling function of pGpG is not fully understood in bacterial systems. A transcriptomic approach revealed that elevated levels of pGpG in E. amylovora impacted several genes involved in metabolic and regulatory functions including several type III secretion and extracellular appendage related genes. The heterologous overexpression of an EAL or HD-GYP-type PDE in different background E. amylovora strains with varying c-di-GMP levels revealed that in contrast to the generation of pGpG, the direct breakdown of c-di-GMP into GMP by the HD-GYP-type PDE led to an elevation in amylovoran production and biofilm formation despite a decrease in c-di-GMP levels. The breakdown of c-di-GMP into pGpG (as opposed to GTP) also led to a decrease in virulence in apple shoots. The expression of hrpS was significantly increased in response to the breakdown of c-di-GMP into pGpG. Further, our model suggests that a balance in the intracellular ratio of pGpG and c-di-GMP is essential for biofilm regulation in E. amylovora.
Collapse
Affiliation(s)
- Roshni R. Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - George W. Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Scribani Rossi C, Eckartt K, Scarchilli E, Angeli S, Price-Whelan A, Di Matteo A, Chevreuil M, Raynal B, Arcovito A, Giacon N, Fiorentino F, Rotili D, Mai A, Espinosa-Urgel M, Cutruzzolà F, Dietrich LEP, Paone A, Paiardini A, Rinaldo S. Molecular insights into RmcA-mediated c-di-GMP consumption: Linking redox potential to biofilm morphogenesis in Pseudomonas aeruginosa. Microbiol Res 2023; 277:127498. [PMID: 37776579 DOI: 10.1016/j.micres.2023.127498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.
Collapse
Affiliation(s)
- Chiara Scribani Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Kelly Eckartt
- Department of Biological Sciences, Columbia University, New York, USA
| | - Elisabetta Scarchilli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Simone Angeli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, I-00185 Rome, Italy
| | - Maelenn Chevreuil
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection. Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, USA
| | - Alessio Paone
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
12
|
Fung DK, Trinquier AE, Wang JD. Crosstalk between (p)ppGpp and other nucleotide second messengers. Curr Opin Microbiol 2023; 76:102398. [PMID: 37866203 PMCID: PMC10842992 DOI: 10.1016/j.mib.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
In response to environmental cues, bacteria produce intracellular nucleotide messengers to regulate a wide variety of cellular processes and physiology. Studies on individual nucleotide messengers, such as (p)ppGpp or cyclic (di)nucleotides, have established their respective regulatory themes. As research on nucleotide signaling networks expands, recent studies have begun to uncover various crosstalk mechanisms between (p)ppGpp and other nucleotide messengers, including signal conversion, allosteric regulation, and target competition. The multiple layers of crosstalk implicate that (p)ppGpp is intricately linked to different nucleotide signaling pathways. From a physiological perspective, (p)ppGpp crosstalk enables fine-tuning and feedback regulation with other nucleotide messengers to achieve optimal adaptation.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aude E Trinquier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Myers TM, Ingle S, Weiss CA, Sondermann H, Lee V, Bechhofer D, Winkler W. Bacillus subtilis NrnB is expressed during sporulation and acts as a unique 3'-5' exonuclease. Nucleic Acids Res 2023; 51:9804-9820. [PMID: 37650646 PMCID: PMC10570053 DOI: 10.1093/nar/gkad662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
All cells employ a combination of endo- and exoribonucleases to degrade long RNA polymers to fragments 2-5 nucleotides in length. These short RNA fragments are processed to monoribonucleotides by nanoRNases. Genetic depletion of nanoRNases has been shown to increase abundance of short RNAs. This deleteriously affects viability, virulence, and fitness, indicating that short RNAs are a metabolic burden. Previously, we provided evidence that NrnA is the housekeeping nanoRNase for Bacillus subtilis. Herein, we investigate the biological and biochemical functions of the evolutionarily related protein, B. subtilis NrnB (NrnBBs). These experiments show that NrnB is surprisingly different from NrnA. While NrnA acts at the 5' terminus of RNA substrates, NrnB acts at the 3' terminus. Additionally, NrnA is expressed constitutively under standard growth conditions, yet NrnB is selectively expressed during endospore formation. Furthermore, NrnA processes only short RNAs, while NrnB unexpectedly processes both short RNAs and longer RNAs. Indeed, inducible expression of NrnB can even complement the loss of the known global 3'-5' exoribonucleases, indicating that it acts as a general exonuclease. Together, these data demonstrate that NrnB proteins, which are widely found in Firmicutes, Epsilonproteobacteria and Archaea, are fundamentally different than NrnA proteins and may be used for specialized purposes.
Collapse
Affiliation(s)
- Tanner M Myers
- Department of Chemistry and Biochemistry, The University of Maryland, College Park, MD 20742, USA
| | - Shakti Ingle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cordelia A Weiss
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - David H Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wade C Winkler
- Department of Chemistry and Biochemistry, The University of Maryland, College Park, MD 20742, USA
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Römling U. Cyclic di-GMP signaling-Where did you come from and where will you go? Mol Microbiol 2023; 120:564-574. [PMID: 37427497 DOI: 10.1111/mmi.15119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Microbes including bacteria are required to respond to their often continuously changing ecological niches in order to survive. While many signaling molecules are produced as seemingly circumstantial byproducts of common biochemical reactions, there are a few second messenger signaling systems such as the ubiquitous cyclic di-GMP second messenger system that arise through the synthesis of dedicated multidomain enzymes triggered by multiple diverse external and internal signals. Being one of the most numerous and widespread signaling system in bacteria, cyclic di-GMP signaling contributes to adjust physiological and metabolic responses in all available ecological niches. Those niches range from deep-sea and hydrothermal springs to the intracellular environment in human immune cells such as macrophages. This outmost adaptability is possible by the modularity of the cyclic di-GMP turnover proteins which enables coupling of enzymatic activity to the diversity of sensory domains and the flexibility in cyclic di-GMP binding sites. Nevertheless, commonly regulated fundamental microbial behavior include biofilm formation, motility, and acute and chronic virulence. The dedicated domains carrying out the enzymatic activity indicate an early evolutionary origin and diversification of "bona fide" second messengers such as cyclic di-GMP which is estimated to have been present in the last universal common ancestor of archaea and bacteria and maintained in the bacterial kingdom until today. This perspective article addresses aspects of our current view on the cyclic di-GMP signaling system and points to knowledge gaps that still await answers.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Junkermeier EH, Hengge R. Local signaling enhances output specificity of bacterial c-di-GMP signaling networks. MICROLIFE 2023; 4:uqad026. [PMID: 37251514 PMCID: PMC10211494 DOI: 10.1093/femsml/uqad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
For many years the surprising multiplicity, signal input diversity, and output specificity of c-di-GMP signaling proteins has intrigued researchers studying bacterial second messengers. How can several signaling pathways act in parallel to produce specific outputs despite relying on the same diffusible second messenger maintained at a certain global cellular concentration? Such high specificity and flexibility arise from combining modes of local and global c-di-GMP signaling in complex signaling networks. Local c-di-GMP signaling can be experimentally shown by three criteria being met: (i) highly specific knockout phenotypes for particular c-di-GMP-related enzymes, (ii) actual cellular c-di-GMP levels that remain unchanged by such mutations and/or below the Kd's of the relevant c-di-GMP-binding effectors, and (iii) direct interactions between the signaling proteins involved. Here, we discuss the rationale behind these criteria and present well-studied examples of local c-di-GMP signaling in Escherichia coli and Pseudomonas. Relatively simple systems just colocalize a local source and/or a local sink for c-di-GMP, i.e. a diguanylate cyclase (DGC) and/or a specific phosphodiesterase (PDE), respectively, with a c-di-GMP-binding effector/target system. More complex systems also make use of regulatory protein interactions, e.g. when a "trigger PDE" responds to locally provided c-di-GMP, and thereby serves as a c-di-GMP-sensing effector that directly controls a target's activity, or when a c-di-GMP-binding effector recruits and directly activates its own "private" DGC. Finally, we provide an outlook into how cells can combine local and global signaling modes of c-di-GMP and possibly integrate those into other signaling nucleotides networks.
Collapse
Affiliation(s)
- Eike H Junkermeier
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany
| | - Regine Hengge
- Corresponding author. Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany. Tel: +49-30-2093-49686; Fax: +49-30-2093-49682; E-mail:
| |
Collapse
|
16
|
Hengge R, Pruteanu M, Stülke J, Tschowri N, Turgay K. Recent advances and perspectives in nucleotide second messenger signaling in bacteria. MICROLIFE 2023; 4:uqad015. [PMID: 37223732 PMCID: PMC10118264 DOI: 10.1093/femsml/uqad015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Nucleotide second messengers act as intracellular 'secondary' signals that represent environmental or cellular cues, i.e. the 'primary' signals. As such, they are linking sensory input with regulatory output in all living cells. The amazing physiological versatility, the mechanistic diversity of second messenger synthesis, degradation, and action as well as the high level of integration of second messenger pathways and networks in prokaryotes has only recently become apparent. In these networks, specific second messengers play conserved general roles. Thus, (p)ppGpp coordinates growth and survival in response to nutrient availability and various stresses, while c-di-GMP is the nucleotide signaling molecule to orchestrate bacterial adhesion and multicellularity. c-di-AMP links osmotic balance and metabolism and that it does so even in Archaea may suggest a very early evolutionary origin of second messenger signaling. Many of the enzymes that make or break second messengers show complex sensory domain architectures, which allow multisignal integration. The multiplicity of c-di-GMP-related enzymes in many species has led to the discovery that bacterial cells are even able to use the same freely diffusible second messenger in local signaling pathways that can act in parallel without cross-talking. On the other hand, signaling pathways operating with different nucleotides can intersect in elaborate signaling networks. Apart from the small number of common signaling nucleotides that bacteria use for controlling their cellular "business," diverse nucleotides were recently found to play very specific roles in phage defense. Furthermore, these systems represent the phylogenetic ancestors of cyclic nucleotide-activated immune signaling in eukaryotes.
Collapse
Affiliation(s)
- Regine Hengge
- Corresponding author. Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany. Tel: +49-30-2093-49686; Fax: +49-30-2093-49682; E-mail:
| | | | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
| | - Kürşad Turgay
- Institute of Microbiology, Leibniz-Universität Hannover, 30419 Hannover, Germany
- Max Planck Unit for the Science of Pathogens, 10115 Berlin, Germany
| |
Collapse
|
17
|
Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL. Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei. J Microbiol Biotechnol 2023; 33:15-27. [PMID: 36451302 PMCID: PMC9899790 DOI: 10.4014/jmb.2207.07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
Collapse
Affiliation(s)
| | - Sheila Nathan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Corresponding author Phone: +03 8921 4561 Fax: +603 8921 3398 E-mail:
| |
Collapse
|
18
|
Badhwar P, Ahmad I, Sharma R, Taneja B. Structural investigation and gene deletion studies of mycobacterial oligoribonuclease reveal modulation of c-di-GMP-mediated phenotypes. Int J Biol Macromol 2022; 223:161-172. [PMID: 36356862 DOI: 10.1016/j.ijbiomac.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger required for normal physiology as well as survival under hypoxic and reductive stress conditions of mycobacterial cells. Complete degradation of c-di-GMP is necessary for signal termination and maintaining its homeostasis inside the cells. Homeostasis of c-di-GMP in mycobacteria is brought about by the bifunctional diguanylate cyclase (DGC) that synthesizes c-di-GMP from two molecules of GTP and also catalyses the asymmetric cleavage of c-di-GMP to linear pGpG through its phosphodiesterase activity. However, the mycobacterial enzyme for the last step of degradation from pGpG to GMP has not been characterized thus far. Here, we present the identification of oligoribonuclease (Orn) as the most likely phosphodiesterase to degrade pGpG to GMP through AlphaFold-empowered structural homology that exhibited in vitro phosphodiesterase activity on pGpG substrates. In order to understand the physiological role of Orn in mycobacteria, we created a deletion mutant of orn in M. smegmatis and analysed the phenotypes that are associated with c-di-GMP signaling. We find that orn plays important roles in vivo and is required not only for proper growth of M. smegmatis in normal and stress conditions but also for biofilm formation.
Collapse
Affiliation(s)
- Pooja Badhwar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Iftekhar Ahmad
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Sharma
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Koppenhöfer S, Lang AS. Patterns of abundance, chromosomal localization, and domain organization among c-di-GMP-metabolizing genes revealed by comparative genomics of five alphaproteobacterial orders. BMC Genomics 2022; 23:834. [PMID: 36522693 PMCID: PMC9756655 DOI: 10.1186/s12864-022-09072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a bacterial second messenger that affects diverse processes in different bacteria, including the cell cycle, motility, and biofilm formation. Its cellular levels are controlled by the opposing activities of two types of enzymes, with synthesis by diguanylate cyclases containing a GGDEF domain and degradation by phosphodiesterases containing either an HD-GYP or an EAL domain. These enzymes are ubiquitous in bacteria with up to 50 encoded in some genomes, the specific functions of which are mostly unknown. RESULTS We used comparative analyses to identify genomic patterns among genes encoding proteins with GGDEF, EAL, and HD-GYP domains in five orders of the class Alphaproteobacteria. GGDEF-containing sequences and GGDEF-EAL hybrids were the most abundant and had the highest diversity of co-occurring auxiliary domains while EAL and HD-GYP containing sequences were less abundant and less diverse with respect to auxiliary domains. There were striking patterns in the chromosomal localizations of the genes found in two of the orders. The Rhodobacterales' EAL-encoding genes and Rhizobiales' GGDEF-EAL-encoding genes showed opposing patterns of distribution compared to the GGDEF-encoding genes. In the Rhodobacterales, the GGDEF-encoding genes showed a tri-modal distribution with peaks mid-way between the origin (ori) and terminus (ter) of replication and at ter while the EAL-encoding genes peaked near ori. The patterns were more complex in the Rhizobiales, but the GGDEF-encoding genes were biased for localization near ter. CONCLUSIONS The observed patterns in the chromosomal localizations of these genes suggest a coupling of synthesis and hydrolysis of c-di-GMP with the cell cycle. Moreover, the higher proportions and diversities of auxiliary domains associated with GGDEF domains and GGDEF-EAL hybrids compared to EAL or HD-GYP domains could indicate that more stimuli affect synthesis compared to hydrolysis of c-di-GMP.
Collapse
Affiliation(s)
- Sonja Koppenhöfer
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
20
|
Schmitz C, Madej M, Nowakowska Z, Cuppari A, Jacula A, Ksiazek M, Mikruta K, Wisniewski J, Pudelko-Malik N, Saran A, Zeytuni N, Mlynarz P, Lamont RJ, Usón I, Siksnys V, Potempa J, Solà M. Response regulator PorX coordinates oligonucleotide signalling and gene expression to control the secretion of virulence factors. Nucleic Acids Res 2022; 50:12558-12577. [PMID: 36464236 PMCID: PMC9757075 DOI: 10.1093/nar/gkac1103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022] Open
Abstract
The PglZ family of proteins belongs to the alkaline phosphatase superfamily, which consists of metallohydrolases with limited sequence identity but similar metal-coordination architectures in otherwise divergent active sites. Proteins with a well-defined PglZ domain are ubiquitous among prokaryotes as essential components of BREX phage defence systems and two-component systems (TCSs). Whereas other members of the alkaline phosphatase superfamily are well characterized, the activity, structure and biological function of PglZ family proteins remain unclear. We therefore investigated the structure and function of PorX, an orphan response regulator of the Porphyromonas gingivalis TCS containing a putative PglZ effector domain. The crystal structure of PorX revealed a canonical receiver domain, a helical bundle, and an unprecedented PglZ domain, similar to the general organization of the phylogenetically related BREX-PglZ proteins. The PglZ domain of PorX features an active site cleft suitable for large substrates. An extensive search for substrates revealed that PorX is a phosphodiesterase that acts on cyclic and linear oligonucleotides, including signalling molecules such as cyclic oligoadenylates. These results, combined with mutagenesis, biophysical and enzymatic analysis, suggest that PorX coordinates oligonucleotide signalling pathways and indirectly regulates gene expression to control the secretion of virulence factors.
Collapse
Affiliation(s)
- Claus Schmitz
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Barcelona E-08028, Spain
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Anna Cuppari
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Barcelona E-08028, Spain
| | - Anna Jacula
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Miroslaw Ksiazek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Katarzyna Mikruta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw PL-50-370, Poland
| | - Natalia Pudelko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw PL-50-370, Poland
| | - Anshu Saran
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec H3A 0C7, Canada
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec H3A 0C7, Canada
| | - Piotr Mlynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw PL-50-370, Poland
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | - Isabel Usón
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Barcelona E-08028, Spain
- ICREA Institució Catalana de Recerca i Estudis Avançats, Barcelona E-08010, Spain
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków PL-30-387, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | - Maria Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Barcelona E-08028, Spain
| |
Collapse
|
21
|
Badhwar P, Khan SH, Taneja B. Three-dimensional structure of a mycobacterial oligoribonuclease reveals a unique C-terminal tail that stabilizes the homodimer. J Biol Chem 2022; 298:102595. [PMID: 36244449 PMCID: PMC9676404 DOI: 10.1016/j.jbc.2022.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Oligoribonucleases (Orns) are highly conserved DnaQ-fold 3'-5' exoribonucleases that have been found to carry out the last step of cyclic-di-GMP (c-di-GMP) degradation, that is, pGpG to GMP in several bacteria. Removal of pGpG is critical for c-di-GMP homeostasis, as excess uncleaved pGpG can have feedback inhibition on phosphodiesterases, thereby perturbing cellular signaling pathways regulated by c-di-GMP. Perturbation of c-di-GMP levels not only affects survival under hypoxic, reductive stress, or nutrient-limiting conditions but also affects pathogenicity in infection models as well as antibiotic response in mycobacteria. Here, we have determined the crystal structure of MSMEG_4724, the Orn of Mycobacterium smegmatis (Ms_orn) to 1.87 Å resolution to investigate the function of its extended C-terminal tail that is unique among bacterial Orns. Ms_orn is a homodimer with the canonical RNase-H fold of exoribonucleases and conserved catalytic residues in the active site. Further examination of the substrate-binding site with a modeled pGpG emphasized the role of a phosphate cap and "3'OH cap" in constricting a 2-mer substrate in the active site. The unique C-terminal tail of Ms_orn aids dimerization by forming a handshake-like flap over the second protomer of the dimer. Our thermal and denaturant-induced unfolding experiments suggest that it helps in higher stability of Ms_orn as compared with Escherichia coli Orn or a C-terminal deletion mutant. We also show that the C-terminal tail is required for modulating response to stress agents in vivo. These results will help in further evaluating the role of signaling and regulation by c-di-GMP in mycobacteria.
Collapse
Affiliation(s)
- Pooja Badhwar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,For correspondence: Bhupesh Taneja
| |
Collapse
|
22
|
Lee VT, Sondermann H, Winkler WC. Nano-RNases: oligo- or dinucleases? FEMS Microbiol Rev 2022; 46:6677394. [PMID: 36026528 PMCID: PMC9779919 DOI: 10.1093/femsre/fuac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
Diribonucleotides arise from two sources: turnover of RNA transcripts (rRNA, tRNA, mRNA, and others) and linearization of cyclic-di-nucleotide signaling molecules. In both cases, there appears to be a requirement for a dedicated set of enzymes that will cleave these diribonucleotides into mononucleotides. The first enzyme discovered to mediate this activity is oligoribonuclease (Orn) from Escherichia coli. In addition to being the enzyme that cleaves dinucleotides and potentially other short oligoribonucleotides, Orn is also the only known exoribonuclease enzyme that is essential for E. coli, suggesting that removal of the shortest RNAs is an essential cellular function. Organisms naturally lacking the orn gene encode other nanoRNases (nrn) that can complement the conditional E. coli orn mutant. This review covers the history and recent advances in our understanding of these enzymes and their substrates. In particular, we focus on (i) the sources of diribonucleotides; (ii) the discovery of exoribonucleases; (iii) the structural features of Orn, NrnA/NrnB, and NrnC; (iv) the enzymatic activity of these enzymes against diribonucleotides versus other substrates; (v) the known physiological consequences of accumulation of linear dinucleotides; and (vi) outstanding biological questions for diribonucleotides and diribonucleases.
Collapse
|
23
|
Biofilm control by interfering with c-di-GMP metabolism and signaling. Biotechnol Adv 2022; 56:107915. [PMID: 35101567 DOI: 10.1016/j.biotechadv.2022.107915] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 01/30/2023]
Abstract
Biofilm formation and biofilm-induced biodeterioration of surfaces have deeply affected the life of our community. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a small nucleic acid signal molecule in bacteria, which functions as a second messenger mediating a wide range of bacterial processes, such as cell motility, biofilm formation, virulence expression, and cell cycle progression. C-di-GMP regulated phenotypes are triggered by a variety of determinants, such as metabolic cues and stress factors that affect c-di-GMP synthesis, the transduction and conduction of signals by specific effectors, and their actions on terminal targets. Therefore, understanding of the regulatory mechanisms of c-di-GMP would greatly benefit the control of the relevant bacterial processes, particularly for the development of anti-biofilm technologies. Here, we discuss the regulatory determinants of c-di-GMP signaling, identify the corresponding chemical inhibitors as anti-biofilm agents, and shed light on further perspectives in the metabolic regulation of c-di-GMP through chemical and biological approaches. This Review will advance the development of anti-biofilm policies applied in the industries of medicine, environment and engineering.
Collapse
|
24
|
Heo K, Lee JW, Jang Y, Kwon S, Lee J, Seok C, Ha NC, Seok YJ. A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae. J Biol Chem 2022; 298:101626. [PMID: 35074425 PMCID: PMC8861645 DOI: 10.1016/j.jbc.2022.101626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
The bacterial second messenger bis-(3′-5′)-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain–containing diguanylate cyclases and degraded by HD-GYP domain–containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain–containing PDE-As to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist. To date, the only enzyme known to hydrolyze pGpG is oligoribonuclease Orn, which degrades all kinds of oligoribonucleotides. Here, we identified a pGpG-specific PDE, which we named PggH, using biochemical approaches in the gram-negative bacteria Vibrio cholerae. Biochemical experiments revealed that PggH exhibited specific PDE activity only toward pGpG, thus differing from the previously reported Orn. Furthermore, the high-resolution structure of PggH revealed the basis for its PDE activity and narrow substrate specificity. Finally, we propose that PggH could modulate the activities of PDE-As and the intracellular concentration of c-di-GMP, resulting in phenotypic changes including in biofilm formation.
Collapse
Affiliation(s)
- Kyoo Heo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Jae-Woo Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Yongdae Jang
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Pseudomonas aeruginosa
Oligoribonuclease Controls Susceptibility to Polymyxin B by Regulating Pel Exopolysaccharide Production. Antimicrob Agents Chemother 2022; 66:e0207221. [DOI: 10.1128/aac.02072-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymyxins are considered as the last resort antibiotics to treat infections caused by multidrug-resistant Gram negative pathogens.
Pseudomonas aeruginosa
is an opportunistic pathogen that causes various infections in humans. Proteins involved in lipopolysaccharide modification and maintaining inner and outer membrane integrities have been found to contribute to the bacterial resistance to polymyxins. Oligoribonuclease (Orn) is an exonuclease that regulates the homeostasis of intracellular (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), thereby regulating the production of extracellular polysaccharide in
P. aeruginosa
. Previously, we demonstrated that Orn affects the bacterial resistance to fluoroquinolone, β-lactam and aminoglycoside antibiotics. In this study, we found that mutation of
orn
increased the bacterial survival following polymyxin B treatment in a wild type
P. aeruginosa
strain PA14. Overexpression of c-di-GMP degradation enzymes in the
orn
mutant reduced the bacterial survival. By using a fluorescence labeled polymyxin B, we found that mutation of
orn
increased the bacterial surface bound polymyxin B. Deletion of the Pel synthesis genes or treatment with a Pel hydrolase reduced the surface bound polymyxin B and bacterial survival. We further demonstrated that Pel binds to extracellular DNA (eDNA), which traps polymyxin B and thus protects the bacterial cells. Collectively, our results revealed a novel defense mechanism against polymyxin in
P. aeruginosa
.
Collapse
|
26
|
Park S, Sauer K. Controlling Biofilm Development Through Cyclic di-GMP Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:69-94. [PMID: 36258069 PMCID: PMC9891824 DOI: 10.1007/978-3-031-08491-1_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date summary of c-di-GMP pathways connected to biofilm formation by the opportunistic pathogen P. aeruginosa. Emphasis will be on the timing of c-di-GMP production over the course of biofilm formation, to highlight non-uniform and hierarchical increases in c-di-GMP levels, as well as biofilm growth conditions that do not conform with our current model of c-di-GMP.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
- Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
27
|
Mgomi FC, Yuan L, Chen CW, Zhang YS, Yang ZQ. Bacteriophages: A weapon against mixed-species biofilms in the food processing environment. J Appl Microbiol 2021; 133:2107-2121. [PMID: 34932868 DOI: 10.1111/jam.15421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/18/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Mixed-species biofilms represent the most frequent actual lifestyles of microorganisms in food processing environments, and they are usually more resistant to control methods than single-species biofilms. The persistence of biofilms formed by foodborne pathogens is believed to cause serious human diseases. These challenges have encouraged researchers to search for novel, natural methods that are more effective towards mixed-species biofilms. Recently, the use of bacteriophages to control mixed-species biofilms have grown significantly in the food industry as an alternative to conventional methods. This review highlights a comprehensive introduction of mixed-species biofilms formed by foodborne pathogens and their enhanced resistance to anti-biofilm removal strategies. Additionally, several methods for controlling mixed-species biofilms briefly focused on applying bacteriophages in the food industry have also been discussed. This article concludes by suggesting that using bacteriophage, combined with other 'green' methods, could effectively control mixed-species biofilms in the food industry.
Collapse
Affiliation(s)
- Fedrick C Mgomi
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Cao-Wei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yuan-Song Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| |
Collapse
|
28
|
Zhang J, Sun L, Zhang Q, Bartlam M. Crystal structure of oligoribonuclease from Vibrio cholerae O1 El Tor with bound peptide. Acta Crystallogr F Struct Biol Commun 2021; 77:437-443. [PMID: 34866598 PMCID: PMC8647215 DOI: 10.1107/s2053230x21011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
Oligoribonuclease (Orn), a member of the DEDDh superfamily, can hydrolyse 2-5 nt nanoRNAs to mononucleotides. It is involved in maintaining the intracellular levels of RNA, c-di-GMP signalling and transcription initiation in many bacterial species. Here, the crystal structure of Orn from Vibrio cholerae O1 El Tor (VcOrn) is reported at a resolution of 1.7 Å. VcOrn, which consists of nine α-helices and six β-strands, crystallizes with a single monomer in the asymmetric unit but forms a homodimer via crystallographic twofold symmetry. Electron density is observed in the active pocket that corresponds to an intersubunit N-terminal expression tag with sequence GPLGSHHH. The positively charged N-terminal tag binds in the negatively charged nucleotide-binding pocket with a buried surface area of ∼500 Å2. The N-terminal tag interacts with VcOrn via π-π stacking with two conserved residues involved in nucleotide binding, as well as via salt bridges and hydrogen bonds. The structure reported here reveals that the active pocket can accommodate polypeptides in addition to nucleotides, thus providing an important starting point for investigation into substrate modification and inhibitor design targeting VcOrn.
Collapse
Affiliation(s)
- Jianyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Liyuan Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| |
Collapse
|
29
|
Apura P, Gonçalves LG, Viegas SC, Arraiano CM. The world of ribonucleases from pseudomonads: a short trip through the main features and singularities. Microb Biotechnol 2021; 14:2316-2333. [PMID: 34427985 PMCID: PMC8601179 DOI: 10.1111/1751-7915.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
The development of synthetic biology has brought an unprecedented increase in the number molecular tools applicable into a microbial chassis. The exploration of such tools into different bacteria revealed not only the challenges of context dependency of biological functions but also the complexity and diversity of regulatory layers in bacterial cells. Most of the standardized genetic tools and principles/functions have been mostly based on model microorganisms, namely Escherichia coli. In contrast, the non-model pseudomonads lack a deeper understanding of their regulatory layers and have limited molecular tools. They are resistant pathogens and promising alternative bacterial chassis, making them attractive targets for further studies. Ribonucleases (RNases) are key players in the post-transcriptional control of gene expression by degrading or processing the RNA molecules in the cell. These enzymes act according to the cellular requirements and can also be seen as the recyclers of ribonucleotides, allowing a continuous input of these cellular resources. This makes these post-transcriptional regulators perfect candidates to regulate microbial physiology. This review summarizes the current knowledge and unique properties of ribonucleases in the world of pseudomonads, taking into account genomic context analysis, biological function and strategies to use ribonucleases to improve biotechnological processes.
Collapse
Affiliation(s)
- Patrícia Apura
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Luis G. Gonçalves
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| |
Collapse
|
30
|
Li ML, Jiao J, Zhang B, Shi WT, Yu WH, Tian CF. Global Transcriptional Repression of Diguanylate Cyclases by MucR1 Is Essential for Sinorhizobium-Soybean Symbiosis. mBio 2021; 12:e0119221. [PMID: 34700374 PMCID: PMC8546604 DOI: 10.1128/mbio.01192-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous bacterial second messenger c-di-GMP is intensively studied in pathogens but less so in mutualistic bacteria. Here, we report a genome-wide investigation of functional diguanylate cyclases (DGCs) synthesizing c-di-GMP from two molecules of GTP in Sinorhizobium fredii CCBAU45436, a facultative microsymbiont fixing nitrogen in nodules of diverse legumes, including soybean. Among 25 proteins harboring a putative GGDEF domain catalyzing the biosynthesis of c-di-GMP, eight functional DGCs were identified by heterogenous expression in Escherichia coli in a Congo red binding assay. This screening result was further verified by in vitro enzymatic assay with purified full proteins or the GGDEF domains from representative functional and nonfunctional DGCs. In the same in vitro assay, a functional EAL domain catalyzing the degradation of c-di-GMP into pGpG was identified in a protein that has an inactive GGDEF domain but with an active phosphodiesterase (PDE) function. The identified functional DGCs generally exhibited low transcription levels in soybean nodules compared to free-living cultures, as revealed in transcriptomes. An engineered upregulation of a functional DGC in nodules led to a significant increase of c-di-GMP level and symbiotic defects, which were not observed when a functional EAL domain was upregulated at the same level. Further transcriptional analysis and gel shift assay demonstrated that these functional DGCs were all transcriptionally repressed in nodules by a global pleiotropic regulator, MucR1, that is essential in Sinorhizobium-soybean symbiosis. These findings shed novel insights onto the systematic regulation of c-di-GMP biosynthesis in mutualistic symbiosis. IMPORTANCE The ubiquitous second messenger c-di-GMP is well-known for its role in biofilm formation and host adaptation of pathogens, whereas it is less investigated in mutualistic symbioses. Here, we reveal a cocktail of eight functional diguanylate cyclases (DGCs) catalyzing the biosynthesis of c-di-GMP in a broad-host-range Sinorhizobium that can establish nitrogen-fixing nodules on soybean and many other legumes. These functional DGCs are generally transcribed at low levels in soybean nodules compared to free-living conditions. The engineered nodule-specific upregulation of DGC can elevate the c-di-GMP level and cause symbiotic defects, while the upregulation of a phosphodiesterase that quenches c-di-GMP has no detectable symbiotic defects. Moreover, eight functional DGCs located on two different replicons are all directly repressed in nodules by a global silencer, MucR1, that is essential for Sinorhizobium-soybean symbiosis. These findings represent a novel mechanism of a strategic regulation of the c-di-GMP biosynthesis arsenal in prokaryote-eukaryote interactions.
Collapse
Affiliation(s)
- Meng-Lin Li
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Tao Shi
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Hao Yu
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
NrnA is a linear dinucleotide phosphodiesterase with limited function in cyclic dinucleotide metabolism in Listeria monocytogenes. J Bacteriol 2021; 204:e0020621. [PMID: 34662239 DOI: 10.1128/jb.00206-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes produces both c-di-AMP and c-di-GMP to mediate many important cellular processes, but the levels of both nucleotides must be regulated. C-di-AMP accumulation attenuates virulence and diminishes stress response, and c-di-GMP accumulation impairs bacterial motility. An important regulatory mechanism to maintain c-di-AMP and c-di-GMP homeostasis is to hydrolyze them to the linear dinucleotides pApA and pGpG, respectively, but the fates of these hydrolytic products have not been examined in L. monocytogenes. We found that NrnA, a stand-alone DHH-DHHA1 phosphodiesterase, has a broad substrate range, but with a strong preference for linear dinucleotides over cyclic dinucleotides. Although NrnA exhibited detectable cyclic dinucleotide hydrolytic activities in vitro, NrnA had negligible effects on their levels in the bacterial cell, even in the absence of the c-di-AMP phosphodiesterases PdeA and PgpH. The ΔnrnA mutant had a mammalian cell infection defect that was fully restored by E. coli Orn. Together, our data indicate that L. monocytogenes NrnA is functionally orthologous to Orn, and its preferred physiological substrates are most likely linear dinucleotides. Furthermore, our findings revealed that, unlike some other c-di-AMP and c-di-GMP-producing bacteria, L. monocytogenes does not employ their hydrolytic products to regulate their phosphodiesterases, at least at the pApA and pGpG levels in the ΔnrnA mutant. Finally, the ΔnrnA infection defect was overcome by constitutive activation of PrfA, the master virulence regulator, suggesting that accumulated linear dinucleotides might inhibit the expression, stability, or function of PrfA-regulated virulence factors. IMPORTANCE Listeria monocytogenes produces both c-di-AMP and c-di-GMP, and encodes specific phosphodiesterases that degrade them into pApA and pGpG, respectively, but the metabolism of these products has not been characterized in this bacterium. We found that L. monocytogenes NrnA degrades a broad range of nucleotides. Among the tested cyclic and linear substrates, it exhibits a strong biochemical and physiological preference the linear dinucleotides pApA, pGpG, and pApG. Unlike in some other bacteria, these oligoribonucleotides do not appear to interfere with cyclic dinucleotide hydrolysis. The absence of NrnA is well tolerated by L. monocytogenes in broth cultures but impairs its ability to infect mammalian cells. These findings indicate a separation of cyclic dinucleotide signaling and oligoribonucleotide metabolism in L. monocytogenes.
Collapse
|
32
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
33
|
Lormand JD, Kim SK, Walters-Marrah GA, Brownfield BA, Fromme JC, Winkler WC, Goodson JR, Lee VT, Sondermann H. Structural characterization of NrnC identifies unifying features of dinucleotidases. eLife 2021; 10:70146. [PMID: 34533457 PMCID: PMC8492067 DOI: 10.7554/elife.70146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonuclease, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses, we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC and Orn employ similar structural features that distinguish these two classes of dinucleases from other exonucleases, the key determinants for dinuclease activity are realized through distinct structural scaffolds. The structures, together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases, indicate convergent evolution as the mechanism of how dinuclease activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinuclease activity further underlines the important role these analogous proteins play for cell growth.
Collapse
Affiliation(s)
- Justin D Lormand
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | | | - Bryce A Brownfield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jonathan R Goodson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Holger Sondermann
- Department of Molecular Medicine, Cornell University, Ithaca, United States.,CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
34
|
Oxidative Stress Response in Pseudomonas aeruginosa. Pathogens 2021; 10:pathogens10091187. [PMID: 34578219 PMCID: PMC8466533 DOI: 10.3390/pathogens10091187] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental and human opportunistic pathogen highly adapted to many different environmental conditions. It can cause a wide range of serious infections, including wounds, lungs, the urinary tract, and systemic infections. The high versatility and pathogenicity of this bacterium is attributed to its genomic complexity, the expression of several virulence factors, and its intrinsic resistance to various antimicrobials. However, to thrive and establish infection, P. aeruginosa must overcome several barriers. One of these barriers is the presence of oxidizing agents (e.g., hydrogen peroxide, superoxide, and hypochlorous acid) produced by the host immune system or that are commonly used as disinfectants in a variety of different environments including hospitals. These agents damage several cellular molecules and can cause cell death. Therefore, bacteria adapt to these harsh conditions by altering gene expression and eliciting several stress responses to survive under oxidative stress. Here, we used PubMed to evaluate the current knowledge on the oxidative stress responses adopted by P. aeruginosa. We will describe the genes that are often differently expressed under oxidative stress conditions, the pathways and proteins employed to sense and respond to oxidative stress, and how these changes in gene expression influence pathogenicity and the virulence of P. aeruginosa. Understanding these responses and changes in gene expression is critical to controlling bacterial pathogenicity and developing new therapeutic agents.
Collapse
|
35
|
Chen G, Zhou J, Zuo Y, Huo W, Peng J, Li M, Zhang Y, Wang T, Zhang L, Zhang L, Liang H. Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa. eLife 2021; 10:67289. [PMID: 34498587 PMCID: PMC8457831 DOI: 10.7554/elife.67289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD, which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.
Collapse
Affiliation(s)
- Gukui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, ShaanXi, China
| | - Jiashen Zhou
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yili Zuo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, ShaanXi, China
| | - Weiping Huo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, ShaanXi, China
| | - Juan Peng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, ShaanXi, China
| | - Meng Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, ShaanXi, China
| | - Yani Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, ShaanXi, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, ShaanXi, China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, ShaanXi, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
36
|
Kharadi RR, Schachterle JK, Yuan X, Castiblanco LF, Peng J, Slack SM, Zeng Q, Sundin GW. Genetic Dissection of the Erwinia amylovora Disease Cycle. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:191-212. [PMID: 33945696 DOI: 10.1146/annurev-phyto-020620-095540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fire blight, caused by the bacterial phytopathogen Erwinia amylovora, is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an E. amylovora infection in the host. We discuss the key aspects of type III secretion-mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to E. amylovora pathogenesis, including an exploration of the impact of floral microbiomes on E. amylovora colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Xiaochen Yuan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jingyu Peng
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Suzanne M Slack
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
37
|
Transcriptomic Reprograming of Xanthomonas campestris pv. campestris after Treatment with Hydrolytic Products Derived from Glucosinolates. PLANTS 2021; 10:plants10081656. [PMID: 34451701 PMCID: PMC8400333 DOI: 10.3390/plants10081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
The bacterium Xanthomonas campestris pv. campestris (Xcc) causes black rot disease in Brassica crops. Glucosinolates are known to be part of the defence system of Brassica crops against Xcc infection. They are activated upon pathogen attack by myrosinase enzymes. Their hydrolytic products (GHPs) inhibit the growth of Xcc in vitro. However, the mechanisms underlying this inhibition and the way Xcc can overcome it are not well understood. We studied the transcriptomic reprogramming of Xcc after being supplemented with two chemically different GHPs, one aliphatic isothiocyanate (allyl-ITC) and one indole (indol-3-carbinol), by RNA-seq. Based on our results, the arrest in Xcc growth is related to the need to stop cell division to repair damaged DNA and cell envelope components. Otherwise, GHPs modify energy metabolism by inhibiting aerobic respiration and increasing the synthesis of glycogen. Xcc induces detoxification mechanisms such as the antioxidant defence system and the multidrug efflux system to cope with the toxic effects driven by GHPs. This is the first time that the transcriptomic reprogramming of a plant pathogenic bacterium treated with GHPs has been studied. This information will allow a better understanding of the interaction of a plant pathogen mediated by GSLs.
Collapse
|
38
|
Banerjee P, Sahoo PK, Sheenu, Adhikary A, Ruhal R, Jain D. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Aspects Med 2021; 81:101001. [PMID: 34311995 DOI: 10.1016/j.mam.2021.101001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and is the primary cause of nosocomial infections. Biofilm formation by this organism results in chronic and hard to eradicate infections. The intracellular signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a secondary messenger in bacterial cells crucial for motile to sessile transition. The signalling pathway components encompass two classes of enzymes with antagonistic activities, the diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that regulate the cellular levels of c-di-GMP at distinct stages of biofilm initiation, maturation and dispersion. This review summarizes the structural analysis and functional studies of the DGCs and PDEs involved in biofilm regulation in P. aeruginosa. In addition, we also describe the effector proteins that sense the perturbations in c-di-GMP levels to elicit a functional output. Finally, we discuss possible mechanisms that allow the dynamic levels of c-di-GMP to regulate cognate cellular response. Uncovering the details of the regulation of the c-di-GMP signalling pathway is vital for understanding the behaviour of the pathogen and characterization of novel targets for anti-biofilm interventions.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Anirban Adhikary
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
39
|
Kunz S, Graumann PL. Spatial organization enhances versatility and specificity in cyclic di-GMP signaling. Biol Chem 2021; 401:1323-1334. [PMID: 32918803 DOI: 10.1515/hsz-2020-0202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023]
Abstract
The second messenger cyclic di-GMP regulates a variety of processes in bacteria, many of which are centered around the decision whether to adopt a sessile or a motile life style. Regulatory circuits include pathogenicity, biofilm formation, and motility in a wide variety of bacteria, and play a key role in cell cycle progression in Caulobacter crescentus. Interestingly, multiple, seemingly independent c-di-GMP pathways have been found in several species, where deletions of individual c-di-GMP synthetases (DGCs) or hydrolases (PDEs) have resulted in distinct phenotypes that would not be expected based on a freely diffusible second messenger. Several recent studies have shown that individual signaling nodes exist, and additionally, that protein/protein interactions between DGCs, PDEs and c-di-GMP receptors play an important role in signaling specificity. Additionally, subcellular clustering has been shown to be employed by bacteria to likely generate local signaling of second messenger, and/or to increase signaling specificity. This review highlights recent findings that reveal how bacteria employ spatial cues to increase the versatility of second messenger signaling.
Collapse
Affiliation(s)
- Sandra Kunz
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, D-35043Marburg, Germany.,Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Straße 4, D-35032Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, D-35043Marburg, Germany.,Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Straße 4, D-35032Marburg, Germany
| |
Collapse
|
40
|
Draft Genome Sequence of Pseudomonas aeruginosa Strain PA14-UM. Microbiol Resour Announc 2020; 9:9/46/e00978-20. [PMID: 33184157 PMCID: PMC7660996 DOI: 10.1128/mra.00978-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative nosocomial pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals worldwide. The isolate examined in this study, PA14-UM, is a well-characterized isolate utilized in studies from the University of Maryland.
Collapse
|
41
|
Safi H, Lingaraju S, Ma S, Husain S, Hoque M, Soteropoulos P, Rustad T, Sherman DR, Alland D. Rapidly Correcting Frameshift Mutations in the Mycobacterium tuberculosis orn Gene Produce Reversible Ethambutol Resistance and Small-Colony-Variant Morphology. Antimicrob Agents Chemother 2020; 64:e00213-20. [PMID: 32571828 PMCID: PMC7449195 DOI: 10.1128/aac.00213-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/18/2020] [Indexed: 11/20/2022] Open
Abstract
We have identified a previously unknown mechanism of reversible high-level ethambutol (EMB) resistance in Mycobacterium tuberculosis that is caused by a reversible frameshift mutation in the M. tuberculosisorn gene. A frameshift mutation in orn produces the small-colony-variant (SCV) phenotype, but this mutation does not change the MICs of any drug for wild-type M. tuberculosis However, the same orn mutation in a low-level EMB-resistant double embB-aftA mutant (MIC = 8 μg/ml) produces an SCV with an EMB MIC of 32 μg/ml. Reversible resistance is indistinguishable from a drug-persistent phenotype, because further culture of these orn-embB-aftA SCV mutants results in rapid reversion of the orn frameshifts, reestablishing the correct orn open reading frame, returning the culture to normal colony size, and reversing the EMB MIC back to that (8 μg/ml) of the parental strain. Transcriptomic analysis of orn-embB-aftA mutants compared to wild-type M. tuberculosis identified a 27-fold relative increase in the expression of embC, which is a cellular target for EMB. Expression of embC in orn-embB-aftA mutants was also increased 5-fold compared to that in the parental embB-aftA mutant, whereas large-colony orn frameshift revertants of the orn-embB-aftA mutant had levels of embC expression similar to that of the parental embB-aftA strain. Reversible frameshift mutants may contribute to a reversible form of microbiological drug resistance in human tuberculosis.
Collapse
Affiliation(s)
- Hassan Safi
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Subramanya Lingaraju
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Seema Husain
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Mainul Hoque
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Patricia Soteropoulos
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Tige Rustad
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - David Alland
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
42
|
Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication. Biochem J 2020; 476:3333-3353. [PMID: 31647518 DOI: 10.1042/bcj20190399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3'3'-cyclic GMP-AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5'-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5'-pGpG-Ca2+ structure, β5-α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5'-pGpG-Ca2+ structure quite different from other 5'-pGpG bound structures reported earlier.
Collapse
|
43
|
Sun S, Pandelia ME. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Biochemistry 2020; 59:2340-2350. [PMID: 32496757 DOI: 10.1021/acs.biochem.0c00257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic dinucleotides are signaling molecules that modulate many processes, including immune response and virulence factor production. Their cellular levels in bacteria are fine-tuned by metal-dependent phosphodiesterases, namely, the EAL and HD-GYP proteins, with HD-GYPs belonging to the larger HD domain superfamily. In this study, we first focus on the catalytic properties and the range of metal ions and substrates of the HD-[HD-GYP] subfamily, consisting of two HD domains. We identified SO3491 as a homologue of VCA0681 and the second example of an HD-[HD-GYP]. Both proteins hydrolyze c-di-GMP and 3'3'c-GAMP and coordinate various metal ions, but only Fe and to a lesser extent Co support hydrolysis. The proteins are active only in the diferrous form and not in the one-electron more oxidized FeIIFeIII state. Although the C-terminal HD-GYP domain is essential for activity, the role of the N-terminal HD domain remains unknown. We show that the N-terminal site is important for protein stability, influences the individual apparent kcat and KM (but not kcat/KM), and cannot bind c-di-GMP, thus precluding its involvement in cyclic dinucleotide sensing. We proceeded to perform phylogenetic analyses to examine the distribution and functional relationships of the HD-[HD-GYP]s to the rest of the HD-GYPs. The phylogeny provides a correlation map that draws a link between the evolutionary and functional diversification of HD-GYPs, serving as a template for predicting the chemical nature of the metallocofactor, level of activity, and reaction outcome.
Collapse
Affiliation(s)
- Sining Sun
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
44
|
Harrison JJ, Almblad H, Irie Y, Wolter DJ, Eggleston HC, Randall TE, Kitzman JO, Stackhouse B, Emerson JC, Mcnamara S, Larsen TJ, Shendure J, Hoffman LR, Wozniak DJ, Parsek MR. Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections. PLoS Genet 2020; 16:e1008848. [PMID: 32530919 PMCID: PMC7314104 DOI: 10.1371/journal.pgen.1008848] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/24/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa colonizes the airways of cystic fibrosis (CF) patients, causing infections that can last for decades. During the course of these infections, P. aeruginosa undergoes a number of genetic adaptations. One such adaptation is the loss of swimming motility functions. Another involves the formation of the rugose small colony variant (RSCV) phenotype, which is characterized by overproduction of the exopolysaccharides Pel and Psl. Here, we provide evidence that the two adaptations are linked. Using random transposon mutagenesis, we discovered that flagellar mutations are linked to the RSCV phenotype. We found that flagellar mutants overexpressed Pel and Psl in a surface-contact dependent manner. Genetic analyses revealed that flagellar mutants were selected for at high frequencies in biofilms, and that Pel and Psl expression provided the primary fitness benefit in this environment. Suppressor mutagenesis of flagellar RSCVs indicated that Psl overexpression required the mot genes, suggesting that the flagellum stator proteins function in a surface-dependent regulatory pathway for exopolysaccharide biosynthesis. Finally, we identified flagellar mutant RSCVs among CF isolates. The CF environment has long been known to select for flagellar mutants, with the classic interpretation being that the fitness benefit gained relates to an impairment of the host immune system to target a bacterium lacking a flagellum. Our new findings lead us to propose that exopolysaccharide production is a key gain-of-function phenotype that offers a new way to interpret the fitness benefits of these mutations. Microbiologists have known for decades that Pseudomonas aeruginosa mutates during chronic respiratory infection of cystic fibrosis (CF) patients. One of the most reported functions lost during these infections is flagellar motility. A long-standing interpretation of this observation is that the flagellum is disadvantageous for the bacterium in the CF environment. We report the surprising finding that mutation of a wide range of flagellar genes results in the overproduction of the biofilm matrix polysaccharides Psl and Pel. We propose, therefore, that flagellar mutations represent a gain-of-function that would help the bacterium to form biofilms and persist in the CF airways.
Collapse
Affiliation(s)
- Joe J Harrison
- Department of Biological Sciences, University of Calgary, University Drive NW, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, University Drive NW, Calgary, AB, Canada
| | - Yasuhiko Irie
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daniel J Wolter
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America.,Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Heather C Eggleston
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, University Drive NW, Calgary, AB, Canada
| | - Jacob O Kitzman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Bethany Stackhouse
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julia C Emerson
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Sharon Mcnamara
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Tyler J Larsen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lucas R Hoffman
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America.,Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, Department of Microbiology, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
45
|
Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A, Robson Francisco de S, Cristiane Rodrigues G. The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules 2020; 25:molecules25102462. [PMID: 32466317 PMCID: PMC7288161 DOI: 10.3390/molecules25102462] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The regulation of multiple bacterial phenotypes was found to depend on different cyclic dinucleotides (CDNs) that constitute intracellular signaling second messenger systems. Most notably, c-di-GMP, along with proteins related to its synthesis, sensing, and degradation, was identified as playing a central role in the switching from biofilm to planktonic modes of growth. Recently, this research topic has been under expansion, with the discoveries of new CDNs, novel classes of CDN receptors, and the numerous functions regulated by these molecules. In this review, we comprehensively describe the three main bacterial enzymes involved in the synthesis of c-di-GMP, c-di-AMP, and cGAMP focusing on description of their three-dimensional structures and their structural similarities with other protein families, as well as the essential residues for catalysis. The diversity of CDN receptors is described in detail along with the residues important for the interaction with the ligand. Interestingly, genomic data strongly suggest that there is a tendency for bacterial cells to use both c-di-AMP and c-di-GMP signaling networks simultaneously, raising the question of whether there is crosstalk between different signaling systems. In summary, the large amount of sequence and structural data available allows a broad view of the complexity and the importance of these CDNs in the regulation of different bacterial behaviors. Nevertheless, how cells coordinate the different CDN signaling networks to ensure adaptation to changing environmental conditions is still open for much further exploration.
Collapse
|
46
|
Chen G, Gan J, Yang C, Zuo Y, Peng J, Li M, Huo W, Xie Y, Zhang Y, Wang T, Deng X, Liang H. The SiaA/B/C/D signaling network regulates biofilm formation in Pseudomonas aeruginosa. EMBO J 2020; 39:e103412. [PMID: 32090355 DOI: 10.15252/embj.2019103412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Bacterial cyclic-di-GMP (c-di-GMP) production is associated with biofilm development and the switch from acute to chronic infections. In Pseudomonas aeruginosa, the diguanylate cyclase (DGC) SiaD and phosphatase SiaA, which are co-transcribed as part of a siaABCD operon, are essential for cellular aggregation. However, the detailed functions of this operon and the relationships among its constituent genes are unknown. Here, we demonstrate that the siaABCD operon encodes for a signaling network that regulates SiaD enzymatic activity to control biofilm and aggregates formation. Through protein-protein interaction, SiaC promotes SiaD diguanylate cyclase activity. Biochemical and structural data revealed that SiaB is an unusual protein kinase that phosphorylates SiaC, whereas SiaA phosphatase can dephosphorylate SiaC. The phosphorylation state of SiaC is critical for its interaction with SiaD, which will switch on or off the DGC activity of SiaD and regulate c-di-GMP levels and subsequent virulence phenotypes. Collectively, our data provide insights into the molecular mechanisms underlying the modulation of DGC activity associated with chronic infections, which may facilitate the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Gukui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chun Yang
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yili Zuo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Juan Peng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Meng Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Weiping Huo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yani Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
47
|
Bhasme P, Wei Q, Xu A, Naqvi STA, Wang D, Ma LZ. Evaluation and characterization of the predicted diguanylate cyclase-encoding genes in Pseudomonas aeruginosa. Microbiologyopen 2020; 9:e975. [PMID: 32012489 PMCID: PMC7066473 DOI: 10.1002/mbo3.975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Opportunistic pathogen Pseudomonas aeruginosa can cause acute and chronic infections in humans. It is notorious for its resistance to antibiotics due to the formation of biofilms. Cyclic‐di‐GMP is a bacterial second messenger that plays important roles during biofilm development. There are 40 genes in P. aeruginosa predicted to participate in c‐di‐GMP biosynthesis or degradation. It is time‐consuming for the functional characterization of these genes. Here, we cloned 16 genes from P. aeruginosa PAO1 that are predicted to encode diguanylate cyclases (DGCs, responsible for c‐di‐GMP biosynthesis) and constructed their corresponding in‐frame deletion mutants. We evaluated the methods to measure the intracellular c‐di‐GMP concentration by using deletion mutants and PAO1 strains containing a plasmid expressing one of the 16 genes, respectively. Functional outputs of all PAO1‐derived stains were also detected and evaluated, including biofilm formation, production of exopolysaccharide, swimming and swarming motilities. Our data showed that measuring the c‐di‐GMP level only characterized a few DGC by using either pCdrA::gfp as a reporter or LC/MS/MS. Functional output results indicated that overexpression of a DGC gave more pronounced phenotypes than the corresponding deletion mutant and suggested that the swimming motility assay could be a quick way to briefly estimate a predicted DGC for further studies. The overall evaluation suggested 15 out of 16 predicted DGCs were functional DGCs, wherein six were characterized to encode DGCs previously. Altogether, we have provided not only a cloning library of 16 DGC‐encoding genes and their corresponding in‐frame deletion mutants but also paved ways to briefly characterize a predicted DGC.
Collapse
Affiliation(s)
- Pramod Bhasme
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anming Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Syed Tatheer Alam Naqvi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Wang ZQ, Xuan TF, Liu J, Chen WM, Lin J. A fluorescence-based high-throughput screening method for determining the activity of diguanylate cyclases and c-di-GMP phosphodiesterases. RSC Adv 2020; 10:19482-19489. [PMID: 35515470 PMCID: PMC9054106 DOI: 10.1039/d0ra02540b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
The dinucleotide 3′,5′-cyclic diguanylic acid (c-di-GMP) is a critical second messenger found in bacteria. High cellular levels of c-di-GMP are associated with a sessile, biofilm lifestyle in many bacteria, which is associated with more than 70% of clinically resistant infections. Cellular c-di-GMP concentrations are regulated by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), which are responsible for the production and degradation, respectively, of c-di-GMP. Therefore, DGCs and PDEs might be attractive drug targets for controlling biofilm formation. In this study, a simple and universal high-throughput method based on a c-di-GMP-specific fluorescent probe for the determination of DGC and PDE activity was described. By using the proposed method, the c-di-GMP content in samples was rapidly quantified by measuring the fluorescence intensity in a 96-well plate by using a microplate reader. In addition, the probe molecule A18 directly interacted with the substrate c-di-GMP, and the method was not limited by the structure of enzymes. The dinucleotide 3′,5′-cyclic diguanylic acid (c-di-GMP) is a critical second messenger found in bacteria.![]()
Collapse
Affiliation(s)
- Zi-Qiang Wang
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Teng-Fei Xuan
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Jun Liu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Wei-Min Chen
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Jing Lin
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| |
Collapse
|
49
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
50
|
Diguanylate Cyclases and Phosphodiesterases Required for Basal-Level c-di-GMP in Pseudomonas aeruginosa as Revealed by Systematic Phylogenetic and Transcriptomic Analyses. Appl Environ Microbiol 2019; 85:AEM.01194-19. [PMID: 31444209 DOI: 10.1128/aem.01194-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is an important second messenger involved in bacterial switching from motile to sessile lifestyles. In the opportunistic pathogen Pseudomonas aeruginosa, at least 40 genes are predicted to encode proteins for the making and breaking of this signal molecule. However, there is still paucity of information concerning the systemic expression pattern of these genes and the functions of uncharacterized genes. In this study, we analyzed the phylogenetic distribution of genes from P. aeruginosa that were predicted to have a GGDEF domain and found five genes (PA5487, PA0285, PA0290, PA4367, and PA5017) with highly conserved distribution across 52 public complete pseudomonad genomes. PA5487 was further characterized as a typical diguanylate cyclase (DGC) and was named dgcH A systemic analysis of the gene expression data revealed that the expression of dgcH is highly invariable and that dgcH probably functions as a conserved gene to maintain the basal level of c-di-GMP, as reinforced by gene expression analyses. The other four conserved genes also had an expression pattern similar to that of dgcH The functional analysis suggested that PA0290 encoded a DGC, while the others functioned as phosphodiesterases (PDEs). Our data revealed that there are five DGC and PDE genes that maintain the basal level of c-di-GMP in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that can cause infections in animals, humans, and plants. The formation of biofilms by P. aeruginosa is the central mode of action to persist in hosts and evade immune and antibiotic attacks. Cyclic-di-GMP (c-di-GMP) is an important second messenger involved in the regulation of biofilm formation. In P. aeruginosa PAO1 strain, there are around 40 genes that encode enzymes for making and breaking this dinucleotide. A major missing piece of information in this field is the phylogeny and expression profile of those genes. Here, we took a systemic approach to investigate this mystery. We found that among 40 c-di-GMP metabolizing genes, 5 have well-conserved phylogenetic distribution and invariable expression profiles, suggesting that there are enzymes required for the basal level of c-di-GMP in P. aeruginosa This study thus provides putative therapeutic targets against P. aeruginosa infections.
Collapse
|