1
|
Cai J, Han X, Peng S, Chen J, Zhang JV, Huang C. Chemerin facilitates placental trophoblast invasion and spiral artery remodeling through the pentose phosphate pathway. Life Sci 2025; 373:123645. [PMID: 40280299 DOI: 10.1016/j.lfs.2025.123645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
AIMS The invasion of trophoblasts and remodeling of spiral arteries are the requisite processes for successful placentation. A defect of trophoblast invasion is closely associated with pregnancy complications, including miscarriage and preeclampsia. In this study, we investigated the function of chemerin in trophoblast invasion and artery remodeling and explored the underlying mechanism in this process. MAIN METHODS Immunostaining was performed to examine chemerin expression in different days of mouse placenta and early stage of human placenta. Chemerin KO and LPS-treated mice, with exogenous chemerin peptide, were used to evaluate trophoblast giant cells (TGC) invasion, artery remodeling, and NK cell infiltration. Chemerin KO and LPS-treated decidua on E8.5 were conducted in metabolites file and measured related enzymes' expression. Chemerin's function was further examined by human trophoblast HTR-8 cell migration and the enzymes expression in the pentose phosphate pathway. KEY FINDINGS Chemerin has high expression in mouse-invasive TGC and human extra-villous trophoblast cells. Deficiency of chemerin and LPS treatment in pregnant mice impaired placental TGC invasion, spiral artery remodeling, and NK cell infiltration in decidua, which mainly attributed to the downregulation of metabolites and G6PD and RPIA expression in pentose phosphate pathway (PPP). Chemerin activated the PPP to accelerate HTR-8 cell migration. Exogenous chemerin administration remarkably attenuated the defect of TGC invading and artery remodeling in LPS-treated mice, and promoted NK infiltration and maternal blood perfusion. SIGNIFICANCE This study described the indispensable role of chemerin in trophoblast invasion and arterial remodeling, and suggested its potential application in pregnancy complications miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jiaxuan Cai
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinyue Han
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Suohao Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jie Chen
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, China.
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
He C, Du Y, Chen R, Qiu Y, Huang J, Lin L, Kilby MD, Fu Y, Qi H, Baker PN, Tong C. Overload of Neprilysin in Placental Extracellular Vesicles Disrupts CNP-NPRB-Mediated Communication Between Vascular Endothelial and Smooth Muscle Cells: A Trigger for Symptoms of Preeclampsia. Circ Res 2025. [PMID: 40304042 DOI: 10.1161/circresaha.124.325673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Preeclampsia is a placenta-origin pregnancy complication. Although its development has long been divided into 2 stages: abnormal placentation (stage I) and the release of factors from the hypoperfused placenta into circulation, triggering preeclampsia due to endothelial dysfunction (stage II), the placenta-derived substances coupling the 2 stages remain unclear. METHODS Extracellular vesicles (EVs) from normal and preeclampsia-complicated placentas were intravenously administered to pregnant mice, and blood pressure was recorded throughout pregnancy. The differential cargo, including NEP (neprilysin), of placental EVs in normal and preeclamptic placentas was identified by LC-MS, and the cell types involved in NEP expression in the placenta were determined by single-cell RNA sequencing. The effects of placental EVs and recombinant mouse NEP on the uterine arteries were assessed by myography. Placenta-specific NEP overexpression mice were established by in situ injection of adenovirus. The binding affinity between NEP and the vasodilative peptides was determined using an Octet instrument. NEP-overexpressing HUVECs were established to measure CNP (C-type natriuretic peptide) release and cocultured with NPRB (natriuretic peptide receptor-B) knockdown vascular smooth muscle cells (VSMCs) to measure cGMP production in VSMCs. RESULTS Placental EVs from preeclamptic pregnancies impaired vascular endothelium-dependent vasodilation and induced preeclampsia in mice. NEP was expressed predominantly by syncytiotrophoblasts and upregulated in placental EVs from preeclamptic pregnancies. Recombinant mouse NEP administration resulted in outcomes like those of administration of placental EVs from preeclamptic pregnancies. Placenta-specific NEP overexpression disturbed maternal hemodynamics, resulting in hypertension and proteinuria of the mice. CNP exhibited high binding affinity for NEP, and NEP upregulation in HUVECs inhibited CNP release, which further influenced the production of cGMP in VSMCs; however, this effect was largely blunted in NPRB-deficient VSMCs. CONCLUSIONS Excessive NEP in placental EVs from preeclamptic pregnancies is transported into the endothelial cells of uterine and placental arteries to cleave and degrade CNP, resulting in compromised CNP paracrine activity and NPRB-mediated cGMP production in adjacent VSMCs and triggering the hypertensive manifestation of preeclampsia.
Collapse
Affiliation(s)
- Chengjin He
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Yi Du
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University (R.C.)
| | - Yuhan Qiu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, China (Y.Q.)
| | - Jiayu Huang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Li Lin
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, China (L.L.)
| | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's and Children's Foundation Trust, United Kingdom (M.D.K.)
- College of Medical and Health Sciences, University of Birmingham, United Kingdom (M.D.K.)
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Philip N Baker
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, United Kingdom (P.N.B.)
| | - Chao Tong
- Growth, Development and Mental Health Center of Children and Adolescents, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, China (C.T.)
| |
Collapse
|
3
|
Liu S, Chen W, Chen J, Liu T, Deng M, Xia L, Li Z, Shi J, Li Y, Peng Y, Ren Q, Miao Z, Wu G, Cao X, Xiao S, Zhang J, Zhong M, Wang L, Xia L. m 6A deficiency impairs uterine spiral artery remodeling to induce preeclampsia-like symptoms via FGF2. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2846-4. [PMID: 40304921 DOI: 10.1007/s11427-024-2846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
Failures in uterine spiral artery remodeling can lead to placental defects and subsequent preeclampsia, a leading cause of fetal and maternal mortality during pregnancy. N6-methyladenosine (m6A), the most abundant mRNA modification, is dysregulated in samples with preeclampsia. However, whether and how m6A regulates uterine spiral artery remodeling and leads to subsequent preeclampsia in vivo remains unexplored. In this study, we generated two m6A deficiency mouse models: one with a trophoblast-specific knockout of the m6A methyltransferase gene Mettl3, and another with a methyltransferase enzyme mutation. Using these models, we demonstrated that m6A deficiency impaired extravillous trophoblasts (EVTs) infiltration into the uterine spiral arteries, and the remodeling of the spiral arteries in vivo. We further showed that m6A inhibition induced preeclampsia-like symptoms. Mechanistically, we revealed that the m6A modification of FGF2 mRNA, which encodes a secreted peptide implicated in preeclampsia, facilitated its expression. Notably, administration of the FGF2 peptide largely restored EVTs invasion and uterine spiral artery remodeling in m6A-deficient mice. Our findings underscore the importance of m6A in facilitating uterine spiral artery remodeling and prove the pathological mechanisms in vivo, suggesting a new therapeutic approach for preeclampsia caused by m6A deficiency.
Collapse
Affiliation(s)
- Sun Liu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenqian Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Chen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tianqi Liu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mingqiang Deng
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Linjian Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zengguang Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junfang Shi
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - You Peng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qihuan Ren
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ziteng Miao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guangjin Wu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Cao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shan Xiao
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Diseases, Guangdong Medical University, Zhanjiang, 524001, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Liping Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Reproductive Medicine Centre, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Elovitz MA, Gee EPS, Delaney-Busch N, Moe AB, Reddy M, Khodursky A, La J, Abbas I, Mekaru K, Collins H, Siddiqui F, Nolan R, Boelig RC, Kiefer DG, Simmons PM, Saade GR, Saad A, Carter EB, McElrath TF, Quake SR, DePristo MA, Haverty C, Lee M, Namsaraev E, Berghella V, Collier ARY, Frolova AI, Park-Hwang E, Pacheco LD, Sutton EF, Jain M, Rood K, Grobman WA, Biggio JR, Gyamfi-Bannerman C, Jeyabalan A, Rasmussen M. Molecular subtyping of hypertensive disorders of pregnancy. Nat Commun 2025; 16:2948. [PMID: 40199872 PMCID: PMC11978969 DOI: 10.1038/s41467-025-58157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Hypertensive disorders of pregnancy (HDP), including preeclampsia, affect 1 in 6 pregnancies, are major contributors to maternal morbidity and mortality, yet lack precision medicine strategies. Analyzing transcriptomic data from a prospectively-collected diverse cohort (n = 9102), this study reveals distinct RNA subtypes in maternal blood, reclassifying clinical HDP phenotypes like early/late-onset preeclampsia. The placental gene PAPPA2 strongly predicts the most severe forms of preeclampsia in individuals without pre-existing high risk factors, months before symptoms, and its overexpression correlates with earlier delivery in a dose-dependent manner. Further, molecular subtypes characterized by immune genes are upregulated in less severe forms of HDP. These results reclassify HDP clinical phenotypes into two distinct molecular subtypes, placental-associated or immune-associated. Validation performance for placental-associated HDP yields an AUC of 0.88 in the advanced maternal age population without pre-existing high risk factors. Molecular subtypes create new opportunities to apply precision-based medicine in maternal health.
Collapse
Affiliation(s)
- Michal A Elovitz
- Mirvie Inc., South San Francisco, CA, USA
- Nuttall Women's Health, New York, NY, USA
| | | | | | | | | | | | - Johnny La
- Mirvie Inc., South San Francisco, CA, USA
| | - Ilma Abbas
- Mirvie Inc., South San Francisco, CA, USA
| | - Kay Mekaru
- Mirvie Inc., South San Francisco, CA, USA
| | | | | | - Rory Nolan
- Mirvie Inc., South San Francisco, CA, USA
| | - Rupsa C Boelig
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - Ebony B Carter
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas F McElrath
- Mirvie Inc., South San Francisco, CA, USA
- Brigham Women's Hospital, Boston, MA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Vincenzo Berghella
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ai-Ris Y Collier
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Kara Rood
- The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
5
|
Kim HS, Ahn SJ, Lee HS, Chu K. Rare manifestation of initial central nervous system involvement in severe fever with thrombocytopenia syndrome-associated encephalopathy/encephalitis: a case report. ENCEPHALITIS 2025; 5:61-66. [PMID: 40065490 PMCID: PMC12042690 DOI: 10.47936/encephalitis.2024.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 04/18/2025] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a potentially fatal infectious disease if not diagnosed and treated promptly. Typical clinical features include fever, thrombocytopenia, and lymphadenopathy. However, we encountered a case of SFTS in a 60-year-old male who initially did not exhibit these hallmark symptoms. The patient presented with headache and myalgia, but fever did not develop until the 4th day of hospitalization. Initial neuroimaging and cerebrospinal fluid (CSF) analysis revealed no abnormalities. When the fever emerged, follow-up imaging revealed findings consistent with meningitis as a complication of SFTS. The patient was successfully treated with antibiotics and made a full recovery. This case underscores the challenges in diagnosing SFTS in patients who lack fever, CSF pleocytosis, or typical neuroimaging findings at presentation. Additionally, it highlights the importance of differentiating SFTS-related meningitis from other causes of encephalitis to avoid inappropriate treatments, such as immunosuppressive therapy, which could worsen viral infections.
Collapse
Affiliation(s)
- Hyun Seung Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seon-Jae Ahn
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory for Neurotherapeutics, Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Center for Hospital Medicine, Seoul National University Hospital, Seoul, Korea
| | - Han Sang Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory for Neurotherapeutics, Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Center for Hospital Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory for Neurotherapeutics, Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Zhou C, Zhu Y, Zhang L, Zhao M, Zhang C. Axl deficiency promotes preeclampsia and vascular malformations in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102408. [PMID: 39759877 PMCID: PMC11699228 DOI: 10.1016/j.omtn.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Preeclampsia (PE) is a significant complication of pregnancy, occurring in approximately 10% of pregnancies. However, the underlying mechanisms of this condition remain unclear. Placentation and tumorigenesis both share many characteristics, but PE is the result of insufficient placentation, in contrast to the overaggression of tumorigenesis. AXL is a biomarker and therapeutic target for multiple metastatic cancers. We hypothesized that its downregulation could play a crucial role in the development of PE. In our study, we demonstrated that pregnant Axl -/- mice exhibited typical PE symptoms, such as hypertension, proteinuria, and inadequate trophoblast invasion and spiral artery remodeling. Cross-mating and embryo transplantation experiments confirmed that these phenotypes were caused by the decidua. RNA sequencing results revealed the abnormal expression of several transcripts in the decidua, including Corin, which encodes a cardiac protease responsible for activating atrial natriuretic peptide (ANP). ANP is a cardiac hormone that regulates sodium homeostasis and blood pressure. Chromatin immunoprecipitation-qPCR analysis indicated that the decreased CORIN in Axl -/- decidua was due to reduced signal transducer and activator of transcription 3 (STAT3) binding. Treatment with ANP successfully alleviated the PE symptoms. Furthermore, we observed that in PE decidua, the level of AXL was significantly lower compared to normal pregnancies. These findings suggest that the dysregulation of decidua-derived AXL-CORIN-ANP signaling disrupts maternal-fetal crosstalk and contributes to the development of PE.
Collapse
Affiliation(s)
- Chan Zhou
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yunqing Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Miaomiao Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
7
|
Jiang Y, Chen X, Li S, Huang C, Cheng X. Maternal serum Numb in the first trimester of pregnancy as a biomarker for early prediction of pre-eclampsia: A prospective cohort study. Int J Gynaecol Obstet 2025; 168:1101-1108. [PMID: 39425599 DOI: 10.1002/ijgo.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 09/04/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Early identification of women at risk of developing pre-eclampsia is beneficial as it allows for timely intervention strategies. This study aimed to evaluate the potential of serum Numb in the first trimester as a biomarker for early prediction of pre-eclampsia. METHODS This prospective observational cohort study was carried out at a tertiary teaching hospital between January 2021 and December 2022. A total of 1024 women were recruited during their 8-13 weeks of pregnancy and were followed up until delivery. Serum Numb levels were measured during 8-13 weeks of gestation for all participants. At the same time, the participants' anthropometric, clinical, and laboratory data were collected. A logistic regression model was used to investigate the potential association between serum Numb levels and the risk of pre-eclampsia. Receiver operating characteristic curves (ROCs) and area under the curves (AUCs) were utilized to evaluate the predictive efficacy of serum Numb levels for pre-eclampsia in the first trimester. RESULTS Serum Numb levels were found to be significantly higher in pregnant women who developed pre-eclampsia compared to those who did not develop pre-eclampsia. Increased serum Numb levels were identified as an independent risk factor for pre-eclampsia, with an odds ratio (OR) of 3.27 (95% CI: 2.05-4.53) for the risk of pre-eclampsia. Numb levels showed a significant positive correlation with the risk of pre-eclampsia. Furthermore, Numb levels demonstrated a strong predictive efficacy for pre-eclampsia in the first trimester of pregnancy, with an AUC value of 0.86, a cutoff value of 48.73 ng/mL, a sensitivity of 79.24%, and a specificity of 75.73%. CONCLUSION Serum Numb in the first trimester of pregnancy can serve as a biomarker for the early prediction of pre-eclampsia. This provides a valuable approach in clinical practice to identify pregnant women in the first trimester of pregnancy, who are at a higher risk of developing pre-eclampsia.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Obstetrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaofeng Chen
- Department of Obstetrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Shaoxing Li
- Department of Obstetrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chaolin Huang
- Department of Gynecology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xuehua Cheng
- Department of Obstetrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Yue S, Meng J. Role of Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia. Am J Reprod Immunol 2025; 93:e70033. [PMID: 39739937 DOI: 10.1111/aji.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance. Furthermore, it explores how disruptions in these mechanisms and changes in the decidual microenvironment alter dNK cell properties, driving the progression of preeclampsia. Understanding the mechanisms of dNK cells and identifying potential therapeutic targets may provide new insights for clinical intervention.
Collapse
Affiliation(s)
- Shuang Yue
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinlai Meng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
9
|
Wei Y, Tian H, Wei X, Zhang A, Wei M, Wang R, Zhang L, Qiao P, Wang K. Distinct phenotypes in the preeclamptic-like mouse model induced by adenovirus carrying sFlt1 and recombinant sFlt1 protein. Eur J Med Res 2024; 29:642. [PMID: 39741314 DOI: 10.1186/s40001-024-02223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Preeclampsia (PE) is a pregnancy-specific, multisystemic disorder that affects 2-8% pregnancies worldwide and is a leading cause of maternal and perinatal mortality. At present, there is no cure for PE apart from delivery the placenta. Therefore, it is important and urgent to possess a suitable animal model to study the pathology and treatment of PE. When exogenous soluble fms-like tyrosine kinase-1 (sFlt-1) is administered, pregnant animals develop a PE-like phenotype. However, there is no report on the comparison between different methods of constructing PE mouse models using sFlt-1. METHODS In this study, the adenovirus carrying sFlt-1(ADV-Flt-1) and recombinant murine sFlt-1 protein (RM Flt-1) are two different methods were used to induce and compare PE-like mouse models. Pregnancy outcomes were examined on E14.5 and E17.5. RESULTS Our data showed that on E14.5, the adenovirus carrying sFlt-1 induced PE-like phenotype, whereas recombinant murine sFlt-1 protein not. On E17.5, both the two methods induced PE-like phenotype including hypertension, proteinuria, fetal growth restriction, placental and glomerular endotheliosis. Importantly, in the adenoviral-mediated sFlt-1 group, the circulating concentration of sFlt-1 were higher than in the recombinant sFlt-1 group, leading to earlier and more severe symptoms of PE. The ADV-Flt-1 group is easy to operate, quickly effective and efficient. The RM Flt-1 group is safer and more stable, with good repeatability, but slower to take effect. CONCLUSIONS We proposed that the adenoviral-mediated sFlt-1 model can better simulate early-onset and severe PE.
Collapse
Affiliation(s)
- Yingying Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haojun Tian
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuancheng Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ai Zhang
- Fetal Medicine Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266000, China
| | - Mengtian Wei
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ruixue Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lu Zhang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ping Qiao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Li J, Wang M, Zhou H, Jin Z, Yin H, Yang S. The role of pyroptosis in the occurrence and development of pregnancy-related diseases. Front Immunol 2024; 15:1400977. [PMID: 39351226 PMCID: PMC11439708 DOI: 10.3389/fimmu.2024.1400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin
University, Changchun, Jilin, China
| |
Collapse
|
11
|
Nikseresht M, Shahrebabaki AM, Mohammad-Sadeghipour M, Hajizadeh MR, Zarei S, Hosseiniara R, Mortazavi M, Vatankhah H, Sayadi AR, Mahmoodi M. Comparison of serum levels of IL-10 and IL-11 and mRNA expression of IL-10, IL-11, COX-2, BCL6, and ZEB Family in peripheral blood mononuclear cells (PBMC) of women with polycystic ovary syndrome and healthy individuals. J Reprod Immunol 2024; 164:104281. [PMID: 38941927 DOI: 10.1016/j.jri.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The roles of IL-10, IL-11, COX-2, BCL6, ZEB1, and ZEB2 genes in the potential correlation between polycystic ovary syndrome (PCOS), inflammation, and cancer remain controversial. AIMS This study aimed to compare serum levels of IL-10 and IL-11 and gene expression of IL-10, IL-11, COX-2, BCL6, ZEB1, and ZEB2 in PBMCs of women with PCOS and healthy controls. METHODS A case-control study included 40 women with PCOS as the case group and 40 healthy women as controls. Group matching for age and BMI was performed. Serum levels of IL-10 and IL-11 were assessed using ELISA, while gene expression was measured using real-time PCR. Parameters were compared between groups, and correlations among gene expression and serum levels were explored. RESULTS In comparison to healthy women, women with PCOS exhibited a significant decrease in the expression of COX-2 and IL-10 genes (p<0.001), alongside a significant increase in ZEB2 gene expression (p<0.001). There were no significant differences observed in the expression of IL-11, BCL6, and ZEB1 genes. Furthermore, the serum level of IL-10 was significantly lower in women with PCOS compared to the control group (p<0.001), while no significant difference was found in IL-11 levels. Additionally, no significant correlations were identified between gene expression and serum levels. CONCLUSION In women with PCOS, reduced IL-10 gene expression may indicate inflammation and serve as a diagnostic biomarker. However, conflicting findings on COX-2 expression complicate understanding. Elevated ZEB2 expression in PCOS women may lead to infertility, epithelial-mesenchymal transition, and aggressive phenotypes.
Collapse
Affiliation(s)
- Mahsa Nikseresht
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Morshedi Shahrebabaki
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Hosseiniara
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mortazavi
- Department of Obstetrics and Gynecology, School of Medicine, Nicknafs Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hajar Vatankhah
- Department of Obstetrics and Gynecology, School of Medicine, Nicknafs Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Reza Sayadi
- Department of Psychiatric Nursing, School of Nursing and Midwifery, Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Fedorka CE, Scoggin KE, El-Sheikh Ali H, Troedsson MHT. Evaluating the IL-6 Family of Cytokines Throughout Equine Gestation. Am J Reprod Immunol 2024; 92:e13910. [PMID: 39072818 DOI: 10.1111/aji.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION The interleukin (IL)-6 family of cytokines is grouped by a common receptor subunit (gp130), but functions in distinct but overlapping physiological activities, including regulation of acute phase reaction and the balance between effector and regulatory T cell populations-both of which play a role in successful pregnancy maturation. METHODS Here, we aim to assess the expression profiles of members of the IL-6 cytokine family throughout equine gestation. To do so, RNA Sequencing was performed on chorioallantois and endometrium of mares at 120, 180, 300, and 330 days of gestation (n = 4/stage), as well as 45-day chorioallantois (n = 4) and diestrus endometrium (n = 3). Expression levels of members of the IL-6 cytokine family including ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1), cardiotrophin-like cytokine factor 1 (CLCF1), galectin-10, oncostatin M (OSM), and IL-6, -11, and -27 were evaluated in addition to the receptors for IL-6 (IL-6R) and the common receptor subunit gp130. Additionally, peripheral concentration of IL-6 was assessed. RESULTS In the chorioallantois, differential expression of IL-6, IL-11, CNTF, CLCF1, OSM, and CT-1 was noted. In the endometrium, the gestational age of pregnancy impacted the expression of IL-11, CNTF, and CT-1. Circulatory IL-6 concentrations reached their highest concentrations at 120 days, with lesser concentrations noted at 45, 180, 300, and 330 days. Both IL-6R and gp130 altered in expression throughout equine gestation. CONCLUSION In conclusion, members of the IL-6 cytokine family appear to fluctuate constantly throughout equine pregnancy, with varying expression profiles noted when comparing individual members. Additionally, different expression profiles were noted when comparing chorioallantois, endometrium, and circulation, indicating that the function of the cytokine is tissue-specific.
Collapse
Affiliation(s)
- Carleigh E Fedorka
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kirsten E Scoggin
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hossam El-Sheikh Ali
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Mats H T Troedsson
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Rollman TB, Berkebile ZW, Okae H, Bardwell VJ, Gearhart MD, Bierle CJ. Human trophoblast stem cells restrict human cytomegalovirus replication. J Virol 2024; 98:e0193523. [PMID: 38451085 PMCID: PMC11019952 DOI: 10.1128/jvi.01935-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024] Open
Abstract
Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first-trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and Wingless/Integrated signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. IMPORTANCE Placental infection plays a central role in human cytomegalovirus (HCMV) pathogenesis during pregnancy, but the species specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human trophoblast stem cells (TSCs) represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.
Collapse
Affiliation(s)
- Tyler B. Rollman
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zachary W. Berkebile
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hiroaki Okae
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Vivian J. Bardwell
- Developmental Biology Center, Department of Genetics, Cell Biology and Development and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Micah D. Gearhart
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Craig J. Bierle
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Zhang H, Li H, Yao J, Zhao M, Zhang C. The mutation of NSUN5 R295C promotes preeclampsia by impairing decidualization through downregulating IL-11Rα. iScience 2024; 27:108899. [PMID: 38559585 PMCID: PMC10978358 DOI: 10.1016/j.isci.2024.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/24/2023] [Accepted: 01/09/2024] [Indexed: 04/04/2024] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder that severely impairs maternal and fetal health. However, its pathogenesis remains elusive. NOP2/Sun5 (NSUN5) is an RNA methyltransferase. This study discovered a significant correlation between rs77133388 of NSUN5 and PE in a cohort of 868 severe PE patients and 982 healthy controls. To further explore this association, the researchers generated single-base mutant mice (NSUN5 R295C) at rs77133388. The pregnant NSUN5 R295C mice exhibited PE symptoms. Additionally, compared to the controls, the decidual area of the placenta was significantly reduced in NSUN5 R295C mice, and their decidualization was impaired with a significantly decrease in polyploid cell numbers after artificially induced decidualization. The study also found a decrease in phosphorylated JAK2, STAT3, and IL-11Rα, Cyclin D3 expression in NSUN5 R295C mice. Overall, these findings suggest that NSUN5 mutation potentially alters decidualization through the IL-11Rα/JAK2/STAT3/Cyclin D3 pathway, ultimately impairing placental development and contributing to PE occurrence.
Collapse
Affiliation(s)
- Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jiatong Yao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Miaomiao Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, Shandong 250001, China
| |
Collapse
|
15
|
Rollman TB, Berkebile ZW, Okae H, Bardwell VJ, Gearhart MD, Bierle CJ. Human Trophoblast Stem Cells Restrict Human Cytomegalovirus Replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571456. [PMID: 38168202 PMCID: PMC10760179 DOI: 10.1101/2023.12.13.571456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first trimester placenta. HCMV was found to non-productively infect TSCs, EVTs, and STBs. Immunofluorescence assays and flow cytometry experiments further revealed that infected TSCs frequently only express immediate early viral gene products. Similarly, RNA-sequencing found that viral gene expression in TSCs does not follow the kinetic patterns observed during lytic infection in fibroblasts. Canonical antiviral responses were largely not observed in HCMV-infected TSCs and TSC-derived trophoblasts. Rather, infection dysregulated factors involved in cell identity, differentiation, and WNT signaling. Thus, while HCMV does not replicate in TSCs, infection may perturb trophoblast differentiation in ways that could interfere with placental function. Importance Placental infection plays a central role in HCMV pathogenesis during pregnancy, but the species-specificity of HCMV and the limited availability and lifespan of primary trophoblasts have been persistent barriers to understanding how infection impacts this vital organ. Human TSCs represent a new approach to modeling viral infection early in placental development. This study reveals that TSCs, like other stem cell types, restrict HCMV replication. However, infection perturbs the expression of genes involved in differentiation and cell fate determination, pointing to a mechanism by which HCMV could cause placental injury.
Collapse
|
16
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
17
|
Li BJ, Zhu TT, Hu XY, He CM. Uric acid as a mediator in the correlation between white blood cells and preeclampsia severity: a retrospective cohort study. Sci Rep 2023; 13:20161. [PMID: 37978251 PMCID: PMC10656492 DOI: 10.1038/s41598-023-47625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
This study aimed to analyze the independent risk factors for predicting preeclampsia severity and explore its underlying mechanism. Clinical data of patients with preeclampsia were collected from the Medical Information Mart for Intensive Care (MIMIC)-IV database. Univariate and multivariate analyses were employed to assess the significant factors associated with preeclampsia severity. Additionally, we performed multivariate logistic regression analysis and mediation analysis to investigate the potential regulatory path. Based on inclusion and exclusion criteria, 731 participants were enrolled: severe preeclampsia (n = 381) and mild to moderate preeclampsia (n = 350). Age, white blood cells (WBC), platelet, creatinine, albumin, uric acid, aspartate aminotransferase, alanine aminotransferase, international normalized ratio, and prothrombin time were significantly related to preeclampsia severity. Besides, hospital length of stay was significantly higher in the severe group. Notably, age and uric acid were independent predictors for preeclampsia severity. Further, WBC and creatinine were significantly associated with uric acid. Finally, the mediation analysis showed that uric acid was a mediator of the relationship between WBC and preeclampsia severity. In conclusion, WBC might affect preeclampsia severity and progression via the mediation of uric acid. This study might provide novel insight into preventing preeclampsia development.
Collapse
Affiliation(s)
- Bai-Jia Li
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Shangcheng District, Hangzhou, 310018, Zhejiang, China
| | - Ting-Ting Zhu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Shangcheng District, Hangzhou, 310018, Zhejiang, China
| | - Xiao-Ying Hu
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Shangcheng District, Hangzhou, 310018, Zhejiang, China
| | - Chao-Man He
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, No. 3 East Qingchun Road, Shangcheng District, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
18
|
Wu J, Ma W, Qiu Z, Zhou Z. Roles and mechanism of IL-11 in vascular diseases. Front Cardiovasc Med 2023; 10:1171697. [PMID: 37304948 PMCID: PMC10250654 DOI: 10.3389/fcvm.2023.1171697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, effective treatment strategies that can reduce the risk of vascular diseases are urgently needed. The relationship between Interleukin-11 (IL-11) and development of vascular diseases has gained increasing attention. IL-11, a target for therapeutic research, was initially thought to participate in stimulating platelet production. Additional research concluded that IL-11 is effective in treating several vascular diseases. However, the function and mechanism of IL-11 in these diseases remain unknown. This review summarizes IL-11 expression, function, and signal transduction mechanism. This study also focuses on the role of IL-11 in coronary artery disease, hypertension, pulmonary hypertension, cerebrovascular disease, aortic disease, and other vascular diseases and its potential as a therapeutic target. Consequently, this study provides new insight into the clinical diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Menkhorst E, Santos LL, Zhou W, Yang G, Winship AL, Rainczuk KE, Nguyen P, Zhang JG, Moore P, Williams M, Lê Cao KA, Mansell A, Dimitriadis E. IL11 activates the placental inflammasome to drive preeclampsia. Front Immunol 2023; 14:1175926. [PMID: 37292200 PMCID: PMC10244672 DOI: 10.3389/fimmu.2023.1175926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Preeclampsia is a life-threatening disorder of pregnancy unique to humans. Interleukin (IL)11 is elevated in serum from pregnancies that subsequently develop early-onset preeclampsia and pharmacological elevation of IL11 in pregnant mice causes the development of early-onset preeclampsia-like features (hypertension, proteinuria, and fetal growth restriction). However, the mechanism by which IL11 drives preeclampsia is unknown. Method Pregnant mice were administered PEGylated (PEG)IL11 or control (PEG) from embryonic day (E)10-16 and the effect on inflammasome activation, systolic blood pressure (during gestation and at 50/90 days post-natal), placental development, and fetal/post-natal pup growth measured. RNAseq analysis was performed on E13 placenta. Human 1st trimester placental villi were treated with IL11 and the effect on inflammasome activation and pyroptosis identified by immunohistochemistry and ELISA. Result PEGIL11 activated the placental inflammasome causing inflammation, fibrosis, and acute and chronic hypertension in wild-type mice. Global and placental-specific loss of the inflammasome adaptor protein Asc and global loss of the Nlrp3 sensor protein prevented PEGIL11-induced fibrosis and hypertension in mice but did not prevent PEGIL11-induced fetal growth restriction or stillbirths. RNA-sequencing and histology identified that PEGIL11 inhibited trophoblast differentiation towards spongiotrophoblast and syncytiotrophoblast lineages in mice and extravillous trophoblast lineages in human placental villi. Discussion Inhibition of ASC/NLRP3 inflammasome activity could prevent IL11-induced inflammation and fibrosis in various disease states including preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Leilani L. Santos
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Guannan Yang
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Amy L. Winship
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katarzyna E. Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Philana Nguyen
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Paddy Moore
- Abortion and Contraception, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Michelle Williams
- Biomedical Animal Facility, The University of Melbourne, Parkville, VIC, Australia
| | - Kim-Anh Lê Cao
- Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Shi M, Yang X, Sun L, Ding Y, Huang Z, Zhang P, Yang X, Li R, Wang G. Comparison of different modified operations in the reduced uteroplacental perfusion pressure rat model of preeclampsia. J Reprod Immunol 2023; 156:103815. [PMID: 36701883 DOI: 10.1016/j.jri.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Animal models are indispensable tools in studying the mechanisms underlying the diseases. Rat models with reduced uterine perfusion pressure (RUPP) were able to mimic the pathophysiological traits of placental ischemia and hypoxia in preeclampsia (PE). However, ischemic injury can lead to a cascade of damage to lower limb ischemia in RUPP. Therefore, the aim of our study was to compare three modified surgical procedures of reducing uteroplacental perfusion pressure, and to provide a reference for the recognition of different PE phenotypes in the future. MATERIAL AND METHODS To establish a specific uteroplacental malperfusion model of PE in rats, we bilaterally ligated uterine vessels (UU), ovarian vessels distal to ovarian branches (OO), or both (sRUPP) at 13.5 days post coitum. 21 Sprague-Dawley rats in total were used and were divided into four groups: Sham (n = 4), UU (n = 6), OO (n = 5) and sRUPP (n = 8). RESULTS The results showed that the OO and sRUPP groups could successfully mimic the phenotypes of PE while UU group not. Then, autophagy, apoptosis, and synthesis of unsaturated fatty acids were increased in both the OO and sRUPP groups compared with the Sham group, while inflammation were not statistically different. CONCLUSIONS The OO and sRUPP groups could successfully establish the rat model of PE while the UU group not. Notably, between the OO and sRUPP groups, the OO group has a higher fetal survival rate and might be more suitable for studying fetal-related questions, while the sRUPP group has a heavier phenotypic profile and is more suitable for studying maternal phenotypes related to PE.
Collapse
Affiliation(s)
- Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliate Hospital of Jinan University, Jinan University, Guangzhou 510630, China.
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Abstract
Pre-eclampsia is a life-threatening disease of pregnancy unique to humans and a leading cause of maternal and neonatal morbidity and mortality. Women who survive pre-eclampsia have reduced life expectancy, with increased risks of stroke, cardiovascular disease and diabetes, while babies from a pre-eclamptic pregnancy have increased risks of preterm birth, perinatal death and neurodevelopmental disability and cardiovascular and metabolic disease later in life. Pre-eclampsia is a complex multisystem disease, diagnosed by sudden-onset hypertension (>20 weeks of gestation) and at least one other associated complication, including proteinuria, maternal organ dysfunction or uteroplacental dysfunction. Pre-eclampsia is found only when a placenta is or was recently present and is classified as preterm (delivery <37 weeks of gestation), term (delivery ≥37 weeks of gestation) and postpartum pre-eclampsia. The maternal syndrome of pre-eclampsia is driven by a dysfunctional placenta, which releases factors into maternal blood causing systemic inflammation and widespread maternal endothelial dysfunction. Available treatments target maternal hypertension and seizures, but the only 'cure' for pre-eclampsia is delivery of the dysfunctional placenta and baby, often prematurely. Despite decades of research, the aetiology of pre-eclampsia, particularly of term and postpartum pre-eclampsia, remains poorly defined. Significant advances have been made in the prediction and prevention of preterm pre-eclampsia, which is predicted in early pregnancy through combined screening and is prevented with daily low-dose aspirin, starting before 16 weeks of gestation. By contrast, the prediction of term and postpartum pre-eclampsia is limited and there are no preventive treatments. Future research must investigate the pathogenesis of pre-eclampsia, in particular of term and postpartum pre-eclampsia, and evaluate new prognostic tests and treatments in adequately powered clinical trials.
Collapse
|
22
|
Wei X, Yang X. The central role of natural killer cells in preeclampsia. Front Immunol 2023; 14:1009867. [PMID: 36865565 PMCID: PMC9972679 DOI: 10.3389/fimmu.2023.1009867] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Preeclampsia (PE) is a disease that is unique to pregnancy and affects multiple systems. It can lead to maternal and perinatal mortality. The precise etiology of PE is unclear. Patients with PE may have systemic or local immune abnormalities. A group of researchers has proposed that the immune communication between the fetus and mother is primarily moderated by natural killer (NK) cells as opposed to T cells, since NK cells are the most abundant immune cells in the uterus. This review examines the immunological roles of NK cells in the pathogenesis of PE. Our aim is to provide obstetricians with a comprehensive and updated research progress report on NK cells in PE patients. It has been reported that decidual NK (dNK) cells contribute to the process of uterine spiral artery remodeling and can modulate trophoblast invasion. Additionally, dNK cells can stimulate fetal growth and regulate delivery. It appears that the count or proportion of circulating NK cells is elevated in patients with or at risk for PE. Changes in the number or function of dNK cells may be the cause of PE. The Th1/Th2 equilibrium in PE has gradually shifted to an NK1/NK2 equilibrium based on cytokine production. An improper combination of killer cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA)-C may lead to insufficient activation of dNK cells, thereby causing PE. In the etiology of PE, NK cells appear to exert a central effect in both peripheral blood and the maternal-fetal interface. To maintain immune equilibrium both locally and systemically, it is necessary to take therapeutic measures directed at NK cells.
Collapse
Affiliation(s)
- Xiaoqi Wei
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Shang J, Lin L, Huang X, Zhou L, Huang Q. Re-expression of circ_0043610 contributes to trophoblast dysfunction through the miR-558/RYBP pathway in preeclampsia. Endocr J 2022; 69:1373-1385. [PMID: 35908953 DOI: 10.1507/endocrj.ej22-0153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An increasing number of data have shown the pathogenesis of preeclampsia (PE) involves circular RNA (circRNA). The study aims to investigate the function and the potential mechanism of circ_0043610 in PE. The study was performed on two human placental trophoblastic cell lines (JEG-3 and HTR-8/SVneo). The expression of circ_0043610, microRNA-558 (miR-558), and RING1 and YY1 binding protein (RYBP) was detected by quantitative real-time polymerase chain reaction. The protein levels of N-cadherin, E-cadherin, and RYBP were assessed by Western blotting. Cell viability, proliferation, apoptosis, invasion, and migration were evaluated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine, flow cytometry analysis, transwell invasion assay, and wound-healing assay, respectively. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA pull-down assay were performed to identify the associations among circ_0043610, miR-558, and RYBP. Compared with normal placental controls, the increased expression of circ_0043610 and RYBP and the decreased miR-558 expression were detected in PE placental tissues. The overexpression of circ_0043610 led to decreased trophoblast cell proliferation, invasion, and migration but increased cell apoptosis. Mechanistically, circ_0043610 acted as a miR-558 sponge, and miR-558 bound to RYBP. Besides, miR-558 introduction remitted circ_0043610-mediated effects in JEG-3 and HTR-8/SVneo cells. Moreover, RYBP participated in the regulation of miR-558 on trophoblast cell behaviors. Further, the ectopic expression of circ_0043610 led to RYBP upregulation through miR-558. Circ_0043610 induced RYBP production to promote trophoblast dysfunction by binding to miR-558 in PE.
Collapse
Affiliation(s)
- Jing Shang
- Department of Obstetrics and Gynecology, Zhongshan Hospital Xiamen University, Xiamen City, 361000, Fujian, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Zhongshan Hospital Xiamen University, Xiamen City, 361000, Fujian, China
| | - Xiumin Huang
- Department of Obstetrics and Gynecology, Zhongshan Hospital Xiamen University, Xiamen City, 361000, Fujian, China
| | - Lihua Zhou
- Department of Obstetrics and Gynecology, Zhongshan Hospital Xiamen University, Xiamen City, 361000, Fujian, China
| | - Qi Huang
- Department of Obstetrics and Gynecology, Zhongshan Hospital Xiamen University, Xiamen City, 361000, Fujian, China
| |
Collapse
|
24
|
Yan X, Rong M, Zhou Q, Zhang C. DCAF13 is essential for the pathogenesis of preeclampsia through its involvement in endometrial decidualization. Mol Cell Endocrinol 2022; 556:111741. [PMID: 35932979 DOI: 10.1016/j.mce.2022.111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE) is a syndrome that occurs during pregnancy and affects more than 8 million mother-infant pairs each year. Most previous studies on the pathogenesis of PE have focused on the placenta. However, decidualization is the basis for placentation and subsequent development. The CRL4 (Cullin 4-RING E3 ubiquitin ligase) complex ubiquitinates and degrades substrates, while DCAF13 (DDB1 and CUL4-associated factor 13) is a component and substrate receptor of this complex, which recognizes and recruits the complex different substrates. DCAF13 plays a major role in the maintenance of follicles and the development of oocytes. However, its role in subsequent pregnancies remains unclear. In the present study, we first investigated DCAF13 levels in the decidua of PE patients and found that it is significantly lower than that of normal pregnant women. Second, we found that DCAF13 expression increases during decidualization, and reducing expression of DCAF13 by siRNA prevents decidualization. Third, in vivo experiments in mice further revealed that Dcaf13 expression increases with decidualization. Finally, we generated and found that uteri of pseudopregnant conditional Dcaf13 knockout mice fails to undergo decidualization. Therefore, we propose that DCAF13 plays a key role in decidualization. Abnormal expression of DCAF13 affects the decidualization process, which is likely involved in the occurrence and development of PE.
Collapse
Affiliation(s)
- Xingyu Yan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | - Miaomiao Rong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qianhui Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
25
|
Menkhorst E, Zhou W, Santos L, Zhang JG, St-Pierre Y, Young MJ, Dimitriadis E. Galectin-7 dysregulates renin-angiotensin-aldosterone and NADPH oxide synthase pathways in preeclampsia. Pregnancy Hypertens 2022; 30:130-136. [PMID: 36183583 DOI: 10.1016/j.preghy.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Preeclampsia is a life-threatening disorder of pregnancy unique to humans. Poor placentation in the first trimester of pregnancy is widely accepted to be an underlying cause of preeclampsia. Galectin-7 is abnormally elevated in chorionic villous samples and serum from women that subsequently develop pre-term preeclampsia. Administration of exogenous galectin-7 to pregnant mice causes preeclampsia-like features (hypertension, proteinuria), associated with dysregulation of the renin-angiotensin system (RAS). In this study investigated the mechanism by which galectin-7 induces alterations to tissue RAS homeostasis and ROS production. We hypothesized that galectin-7 induces alterations in the production of either placental RAS or NADPH oxidases (or both) to drive the dysregulated RAS and ROS production seen in preeclampsia. STUDY DESIGN Mated female mice (n = 5-6/group) received single (embryonic day [E]12/13) or multiple (E8-12) subcutaneous injections of 400 μg/kg/day galectin-7 or vehicle control and killed on E13 or E18. Human first trimester placental villous and decidual tissue (n = 11) was cultured under 8 % oxygen with 1 µg/mL galectin-7 or vehicle control for 16 h. RESULTS Galectin-7 administration to pregnant mice impaired placental labyrinth formation, suppressed circulating aldosterone and altered placental RAS (Agt, Renin) and NADPH oxidase (Cyba, Cybb and Icam1) mRNA expression. In vitro, galectin-7 regulated human placental villous RAS (AGT) and NADPH oxidase (CYBA, ICAM1 and VCAM1) mRNA expression. CONCLUSIONS Overall, galectin-7 likely drives hypertension in preeclampsia via its direct regulation of multiple pathways associated with preeclampsia in the placenta. Galectin-7 may therefore be a therapeutic target to improve placental function and prevent preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Leilani Santos
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Morag J Young
- Baker Heart & Diabetes Institute, Prahran, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
26
|
Leung JH, Ng B, Lim WW. Interleukin-11: A Potential Biomarker and Molecular Therapeutic Target in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11142257. [PMID: 35883698 PMCID: PMC9318853 DOI: 10.3390/cells11142257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer and is a fast progressive disease when left untreated. Identification of potential biomarkers in NSCLC is an ongoing area of research that aims to detect, diagnose, and prognosticate patients early to optimize treatment. We review the role of interleukin-11 (IL11), a stromal-cell derived pleiotropic cytokine with profibrotic and cellular remodeling properties, as a potential biomarker in NSCLC. This review identifies the need for biomarkers in NSCLC, the potential sources of IL11, and summarizes the available information leveraging upon published literature, publicly available datasets, and online tools. We identify accumulating evidence suggesting IL11 to be a potential biomarker in NSCLC patients. Further in-depth studies into the pathophysiological effects of IL11 on stromal-tumor interaction in NSCLC are warranted and current available literature highlights the potential value of IL11 detection as a diagnostic and prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Jason Hongting Leung
- Department of Cardiothoracic Surgery, National Heart Center Singapore, Singapore 169609, Singapore
- Correspondence:
| | - Benjamin Ng
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore; (B.N.); (W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169609, Singapore
| | - Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore; (B.N.); (W.-W.L.)
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169609, Singapore
| |
Collapse
|
27
|
Ozmen A, Guzeloglu-Kayisli O, Tabak S, Guo X, Semerci N, Nwabuobi C, Larsen K, Wells A, Uyar A, Arlier S, Wickramage I, Alhasan H, Totary-Jain H, Schatz F, Odibo AO, Lockwood CJ, Kayisli UA. Preeclampsia is Associated With Reduced ISG15 Levels Impairing Extravillous Trophoblast Invasion. Front Cell Dev Biol 2022; 10:898088. [PMID: 35837332 PMCID: PMC9274133 DOI: 10.3389/fcell.2022.898088] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 01/29/2023] Open
Abstract
Among several interleukin (IL)-6 family members, only IL-6 and IL-11 require a gp130 protein homodimer for intracellular signaling due to lack of intracellular signaling domain in the IL-6 receptor (IL-6R) and IL-11R. We previously reported enhanced decidual IL-6 and IL-11 levels at the maternal-fetal interface with significantly higher peri-membranous IL-6 immunostaining in adjacent interstitial trophoblasts in preeclampsia (PE) vs. gestational age (GA)-matched controls. This led us to hypothesize that competitive binding of these cytokines to the gp130 impairs extravillous trophoblast (EVT) differentiation, proliferation and/or invasion. Using global microarray analysis, the current study identified inhibition of interferon-stimulated gene 15 (ISG15) as the only gene affected by both IL-6 plus IL-11 vs. control or IL-6 or IL-11 treatment of primary human cytotrophoblast cultures. ISG15 immunostaining was specific to EVTs among other trophoblast types in the first and third trimester placental specimens, and significantly lower ISG15 levels were observed in EVT from PE vs. GA-matched control placentae (p = 0.006). Induction of primary trophoblastic stem cell cultures toward EVT linage increased ISG15 mRNA levels by 7.8-fold (p = 0.004). ISG15 silencing in HTR8/SVneo cultures, a first trimester EVT cell line, inhibited invasion, proliferation, expression of ITGB1 (a cell migration receptor) and filamentous actin while increasing expression of ITGB4 (a receptor for hemi-desmosomal adhesion). Moreover, ISG15 silencing further enhanced levels of IL-1β-induced pro-inflammatory cytokines (CXCL8, IL-6 and CCL2) in HTR8/SVneo cells. Collectively, these results indicate that ISG15 acts as a critical regulator of EVT morphology and function and that diminished ISG15 expression is associated with PE, potentially mediating reduced interstitial trophoblast invasion and enhancing local inflammation at the maternal-fetal interface. Thus, agents inducing ISG15 expression may provide a novel therapeutic approach in PE.
Collapse
Affiliation(s)
- Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Selcuk Tabak
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Chinedu Nwabuobi
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ali Wells
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Asli Uyar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ishani Wickramage
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hasan Alhasan
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Hana Totary-Jain
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anthony O. Odibo
- Divisions of Maternal-Fetal Medicine and Ultrasound, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles J. Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Umit A. Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,*Correspondence: Umit A. Kayisli,
| |
Collapse
|
28
|
Amjadi F, Zandieh Z, Mehdizadeh M, Ajdary M, Aghamajidi A, Raoufi E, Aflatoonian R. Molecular signature of immunological mechanism behind impaired endometrial receptivity in polycystic ovarian syndrome. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:303-311. [PMID: 35551681 PMCID: PMC9832857 DOI: 10.20945/2359-3997000000476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Objective Despite the treatment of anovulation, infertility is still one of the main complications in PCOS women during reproductive age, which appears to be mainly due to impaired uterine receptivity. This study investigated the transcriptome profiles of endometrium in PCOS patients and healthy fertile individuals as the control group. Methods Total mRNA was extracted from endometrial tissues of PCOS patients (n = 12) and healthy fertile individuals (n = 10) during the luteal phase. After cDNA synthesis, PCR array was performed using Human Female Infertility RT2 Profiler PCR Array kit (Qiagen, Cat.No: PAHS-164Z) for evaluating expression of 84 genes contributing to the female infertility. Results PCR Array data analysis identified significantly greater expression of CSF, IL11, IL15, IL1r1, IL1b, TNF, LIF, TNFRSF10B, TGFβ, C3, ITGA4 (Cd49d), SPP1, and Calca in PCOS women than in controls (P < 0.05). However, the expression of LIFR, C2, CD55, CFD, CALCA, LAM1, LAMC2, MMP2, MMP7, MMP9, ESR, SELL, ITGB3, and VCAM1 was significantly lower in PCOS group than in controls (P < 0.05). The results revealed dysregulation of immune-inflammatory molecules, complement activation and downregulation of IGF-I as well as adhesion molecules in PCOS group. Conclusion The findings of this study indicated some potential causes of reduced receptivity of endometrium thus compromising the fertility in PCOS patients.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Akbarabadi IVF clinic, Akbarabadi Hospital, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Akbarabadi IVF clinic, Akbarabadi Hospital, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Raoufi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Vaccines and Immunotherapeutics, Bioluence Biopharmaceutical Company, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,
| |
Collapse
|
29
|
Menkhorst E, Than NG, Jeschke U, Barrientos G, Szereday L, Dveksler G, Blois SM. Medawar's PostEra: Galectins Emerged as Key Players During Fetal-Maternal Glycoimmune Adaptation. Front Immunol 2022; 12:784473. [PMID: 34975875 PMCID: PMC8715898 DOI: 10.3389/fimmu.2021.784473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Gynaecological Research Centre, The Women's Hospital, Melbourne, VIC, Australia
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enyzmology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University, Bethesda, MD, United States
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Zhou W, Menkhorst E, Dimitriadis E. Characterization of chloride intracellular channel 4 in the regulation of human trophoblast function. Placenta 2022; 119:24-30. [DOI: 10.1016/j.placenta.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
|
31
|
Kim Y, Kim S, Lee H, Oh NS, Rhee MS, Yoon Y. Fermented Maillard reaction product alleviates injurious effects in colon caused by Clostridium perfringens. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Shan L, Hou X. Circular RNA hsa_circ_0026552 inhibits the proliferation, migration and invasion of trophoblast cells via the miR‑331‑3p/TGF‑βR1 axis in pre‑eclampsia. Mol Med Rep 2021; 24:798. [PMID: 34523694 PMCID: PMC8456345 DOI: 10.3892/mmr.2021.12438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022] Open
Abstract
Globally, pre-eclampsia (PE) is a gestational disorder that causes increased morbidity of the fetus and mortality induced by pregnancy. Despite various studies, the understanding of the causes or mechanism of the development of PE remains elusive. Thus, the present study aimed to investigate the role of circular (circ)RNA hsa_circ_0026552 (hsa_circ_0026552) in the development of PE and its mechanism of regulation. hsa_circ_0026552 differential expression in PE tissue data and clinical samples were analyzed and it was observed that hsa_circ_0026552 is highly upregulated in PE samples. Furthermore, miR-331-3p was detected as an hsa_circ_0026552 target miRNA and TGF-βR1 gene as a target of miR-331-3p. These results were confirmed using various assays, including dual-luciferase reporter, reverse transcription-quantitative PCR and RNA pull-down assay. It was observed that miR-331-3p expression was negatively correlated to hsa_circ_0026552 relative expression, while TGF-βR1 expression was positively correlated to hsa_circ_0026552 expression evaluated by Pearson's correlation test. The functional experiments, including Cell Counting Kit-8, colony formation and Transwell assay, showed that silencing hsa_circ_0026552 could significantly strengthen the proliferation, migration and invasion of the trophoblastic HTR-8/SVneo cells, but the subsequent overexpression of hsa_circ_0026552 reversed this. Mechanistically, it was concluded that hsa_circ_0026552 acts as a miR-331-3p sponge to upregulate TGF-βR1 expression in trophoblasts and is involved significantly in PE development and progression in pregnant women. The circRNA hsa_circ_0026552 could be a novel therapeutic target and prognostic biomarker for PE.
Collapse
Affiliation(s)
- Li Shan
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaofei Hou
- Department of Prenatal Screening Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
33
|
Xu Y, Shao M, Liu N, Dong D, Tang J, Gu Q. Clinical feature of severe fever with thrombocytopenia syndrome (SFTS)-associated encephalitis/encephalopathy: a retrospective study. BMC Infect Dis 2021; 21:904. [PMID: 34479504 PMCID: PMC8418043 DOI: 10.1186/s12879-021-06627-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/OBJECTIVE Severe fever with thrombocytopenia syndrome (SFTS) cause encephalitis/encephalopathy, but few reports were available. We aimed to investigate the incidence of encephalitis/encephalopathy in SFTS patients and to summarize clinical characteristics, laboratory findings and imaging features. METHODS We conducted a retrospective review of all patients with confirmed SFTS admitted to Nanjing Drum Tower Hospital, a tertiary hospital in Nanjing City, China, between January 2016 and July 2020. The patients were divided into two groups according to whether they had encephalitis/encephalopathy: encephalitis/encephalopathy group and non- encephalitis/encephalopathy group. Clinical data, laboratory findings, imaging characteristics, treatments and outcomes of these patients were collected and analyzed. RESULTS A total of 109 SFTS patients with were included, of whom 30 (27.5 %) developed encephalitis/encephalopathy. In-hospital mortality (43.3 %) was higher in encephalitis/encephalopathy group than non-encephalitis/encephalopathy group (12.7 %). Univariate logistic regression showed that cough, wheezing, dyspnoea, respiratory failure, vasopressors use, bacteremia, invasive pulmonary aspergillosis (IPA) diagnoses, PCT > 0.5 ug/L, CRP > 8 mg/L, AST > 200 U/L and serum amylase level > 80 U/L were the risk factors for the development of encephalitis/encephalopathy for SFTS patients. Multivariate logistic regression analysis identified bacteremia, PCT > 0.5 mg/L and serum amylase level > 80 U/L as independent predictors of encephalitis/ encephalopathy development for SFTS patients. CONCLUSIONS SFTS-associated encephalitis/encephalopathy has high morbidity and mortality. it was necessary to strengthen the screening of CSF testing and brain imaging after admission for SFTS patients who had symptoms of encephalitis/encephalopathy. SFTS patients with bacteremia, PCT > 0.5 ug/L or serum amylase level > 80 U/L should be warned to progress to encephalopathy.
Collapse
Affiliation(s)
- Ying Xu
- Department of Intensive Care Unit, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Mingran Shao
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Ning Liu
- Department of Intensive Care Unit, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Danjiang Dong
- Department of Intensive Care Unit, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Jian Tang
- Department of Intensive Care Unit, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Qin Gu
- Department of Intensive Care Unit, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China.
| |
Collapse
|
34
|
Zhou W, Menkhorst E, Dimitriadis E. Jagged1 regulates endometrial receptivity in both humans and mice. FASEB J 2021; 35:e21784. [PMID: 34252231 DOI: 10.1096/fj.202100590r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
The human endometrium undergoes cycle-dependent changes and is only receptive to an implanting blastocyst within a narrow window of 2-4 days in the mid-secretory phase. Such functional changes require delicate interplay between a diversity of factors including cytokines and signaling pathways. The Notch signaling pathway members are expressed in human endometrium. We have previously demonstrated that Notch ligand Jagged1 (JAG1) localizes in the endometrial luminal epithelium (LE) and is abnormally reduced in infertile women during receptivity. However, the functional consequences of reduced JAG1 production on endometrial receptivity to implantation of the blastocyst are unknown. This study aimed to determine the role of JAG1 in regulating endometrial receptivity in humans and mice. Knockdown of JAG1 in both primary human endometrial epithelial cells and Ishikawa cells significantly reduced their adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids. We confirmed that in human endometrial epithelial cells, JAG1 interacted with Notch Receptor 3 (NOTCH3) and knockdown of JAG1 significantly reduced the expression of Notch signaling downstream target HEY1 and classical receptivity markers. Knockdown of Jag1 in mouse LE significantly impaired blastocyst implantation. We identified ten genes (related to tight junction, infertility, and cell adhesion) that were differentially expressed by Jag1 knockdown in LE in mice. Further analysis of the tight junction family members in both species revealed that JAG1 altered the expression of tight junction components only in mice. Together, our data demonstrated that JAG1 altered endometrial epithelial cell adhesive capacity and regulated endometrial receptivity in both humans and mice likely via different mechanisms.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Ellen Menkhorst
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| |
Collapse
|
35
|
Chen H, Williams KE, Kwan EY, Kapidzic M, Puckett KA, Aburajab RK, Robinson JF, Fisher SJ. Global proteomic analyses of human cytotrophoblast differentiation/invasion. Development 2021; 148:dev199561. [PMID: 34121116 PMCID: PMC8276980 DOI: 10.1242/dev.199561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
During human pregnancy, cytotrophoblasts (CTBs) from the placenta differentiate into specialized subpopulations that play crucial roles in proper fetal growth and development. A subset of these CTBs differentiate along an invasive pathway, penetrating the decidua and anchoring the placenta to the uterus. A crucial hurdle in pregnancy is the ability of these cells to migrate, invade and remodel spiral arteries, ensuring adequate blood flow to nourish the developing fetus. Although advances continue in describing the molecular features regulating the differentiation of these cells, assessment of their global proteomic changes at mid-gestation remain undefined. Here, using sequential window acquisition of all theoretical fragment-ion spectra (SWATH), which is a data-independent acquisition strategy, we characterized the protein repertoire of second trimester human CTBs during their differentiation towards an invasive phenotype. This mass spectrometry-based approach allowed identification of 3026 proteins across four culture time points corresponding to sequential stages of differentiation, confirming the expression dynamics of established molecules and offering new information into other pathways involved. The availability of a SWATH CTB global spectral library serves as a beneficial resource for hypothesis generation and as a foundation for further understanding CTB differentiation dynamics.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Katherine E. Williams
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
| | - Elaine Y. Kwan
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Mirhan Kapidzic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Kenisha A. Puckett
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Rayyan K. Aburajab
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Susan J. Fisher
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, CA 94143, USA
- Division of Maternal Fetal Medicine, University of California, San Francisco, CA 94143, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- Human Embryonic Stem Cell Program, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
36
|
Maroni P, Bendinelli P, Ferraretto A, Lombardi G. Interleukin 11 (IL-11): Role(s) in Breast Cancer Bone Metastases. Biomedicines 2021; 9:biomedicines9060659. [PMID: 34201209 PMCID: PMC8228851 DOI: 10.3390/biomedicines9060659] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022] Open
Abstract
Bone metastases represent the main problem related to the progression of breast cancer, as they are the main cause of death for these patients. Unfortunately, to date, bone metastases are incurable and represent the main challenge for the researcher. Chemokines and cytokines affect different stages of the metastatic process, and in bone metastases, interleukin (IL) -6, IL-8, IL-1β, and IL-11 participate in the interaction between cancer cells and bone cells. This review focuses on IL-11, a pleiotropic cytokine that, in addition to its well-known effects on several tissues, also mediates certain signals in cancer cells. In particular, as IL-11 works on bone remodeling, it plays a relevant role in the osteolytic vicious cycle of bone resorption and tumour growth, which characterizes bone metastasis. IL-11 appears as a candidate for anti-metastatic therapy. Even if different therapeutic approaches have considered IL-11 and the downstream-activated gp130 signaling pathways activated downstream of gp130, further studies are needed to decipher the contribution of the different cytokines and their mechanisms of action in breast cancer progression to define therapeutic strategies.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (A.F.); or (G.L.)
- Correspondence: ; Tel.: +39-02-6621-4759
| | - Paola Bendinelli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via L. Mangiagalli 31, 20133 Milano, Italy;
| | - Anita Ferraretto
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (A.F.); or (G.L.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via L. Mangiagalli 31, 20133 Milano, Italy;
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy; (A.F.); or (G.L.)
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| |
Collapse
|
37
|
Rong M, Yan X, Zhang H, Zhou C, Zhang C. Dysfunction of Decidual Macrophages Is a Potential Risk Factor in the Occurrence of Preeclampsia. Front Immunol 2021; 12:655655. [PMID: 34054819 PMCID: PMC8152936 DOI: 10.3389/fimmu.2021.655655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Preeclampsia is a multi-factorial and multi-genetic disorder that affects more than eight million mother and baby pairs each year. Currently, most of the attention to the pathogenesis of preeclampsia has been focused on placenta, but recent progresses suggest that excellent decidualization lays foundation for placentation and growth. Moreover, preeclampsia is associated with an imbalance in immunoregulatory mechanisms, however, how the immune regulatory system in the decidua affects preeclampsia is still unclear. In our study, after intersecting the genes of differentially expressed between preeclampsia and the control gotten by conventional expression profile analysis and the genes contained in the ligand receptor network, we found eight differentially expressed genes in a ligand-receptor relationship, and the eight genes have a characteristic: most of them participate in the interaction between decidual macrophages and other decidual immune cells. The results of single-cell sequencing of decidual cells further demonstrated that decidual macrophages affect the functions of other immune cells through export. As a result, abnormal gene expression affects the export function of decidual macrophages, which in turn affects the interaction of decidual macrophages with other immune cells, thereby destroying the original immune regulation mechanism, and ultimately leading to the occurrence of preeclampsia.
Collapse
Affiliation(s)
- Miaomiao Rong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Xingyu Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Chan Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Ji’nan, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
38
|
Kortekaas RK, Burgess JK, van Orsoy R, Lamb D, Webster M, Gosens R. Therapeutic Targeting of IL-11 for Chronic Lung Disease. Trends Pharmacol Sci 2021; 42:354-366. [PMID: 33612289 DOI: 10.1016/j.tips.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-11 was originally recognized as an immunomodulatory and hematopoiesis-inducing cytokine. However, although IL-11 is typically not found in healthy individuals, it is now becoming evident that IL-11 may play a role in diverse pulmonary conditions, including IPF, asthma, and lung cancer. Additionally, experimental strategies targeting IL-11, such as humanized antibodies, have recently been developed, revealing the therapeutic potential of IL-11. Thus, further insight into the underlying mechanisms of IL-11 in lung disease may lead to the ability to interfere with pathological conditions that have a clear need for disease-modifying treatments, such as IPF. In this review, we outline the effects, expression, signaling, and crosstalk of IL-11 and focus on its role in lung disease and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rosa K Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janette K Burgess
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Medical Biology and Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roël van Orsoy
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Lamb
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Megan Webster
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
39
|
George AF, Jang KS, Nyegaard M, Neidleman J, Spitzer TL, Xie G, Chen JC, Herzig E, Laustsen A, Marques de Menezes EG, Houshdaran S, Pilcher CD, Norris PJ, Jakobsen MR, Greene WC, Giudice LC, Roan NR. Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling. Hum Reprod 2021; 35:617-640. [PMID: 32219408 DOI: 10.1093/humrep/deaa015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Do seminal plasma (SP) and its constituents affect the decidualization capacity and transcriptome of human primary endometrial stromal fibroblasts (eSFs)? SUMMARY ANSWER SP promotes decidualization of eSFs from women with and without inflammatory disorders (polycystic ovary syndrome (PCOS), endometriosis) in a manner that is not mediated through semen amyloids and that is associated with a potent transcriptional response, including the induction of interleukin (IL)-11, a cytokine important for SP-induced decidualization. WHAT IS KNOWN ALREADY Clinical studies have suggested that SP can promote implantation, and studies in vitro have demonstrated that SP can promote decidualization, a steroid hormone-driven program of eSF differentiation that is essential for embryo implantation and that is compromised in women with the inflammatory disorders PCOS and endometriosis. STUDY DESIGN, SIZE, DURATION This is a cross-sectional study involving samples treated with vehicle alone versus treatment with SP or SP constituents. SP was tested for the ability to promote decidualization in vitro in eSFs from women with or without PCOS or endometriosis (n = 9). The role of semen amyloids and fractionated SP in mediating this effect and in eliciting transcriptional changes in eSFs was then studied. Finally, the role of IL-11, a cytokine with a key role in implantation and decidualization, was assessed as a mediator of the SP-facilitated decidualization. PARTICIPANTS/MATERIALS, SETTING, METHODS eSFs and endometrial epithelial cells (eECs) were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. Assays were conducted to assess whether the treatment of eSFs with SP or SP constituents affects the rate and extent of decidualization in women with and without inflammatory disorders. To characterize the response of the endometrium to SP and SP constituents, RNA was isolated from treated eSFs or eECs and analyzed by RNA sequencing (RNAseq). Secreted factors in conditioned media from treated cells were analyzed by Luminex and ELISA. The role of IL-11 in SP-induced decidualization was assessed through Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-9-mediated knockout experiments in primary eSFs. MAIN RESULTS AND THE ROLE OF CHANCE SP promoted decidualization both in the absence and presence of steroid hormones (P < 0.05 versus vehicle) in a manner that required seminal proteins. Semen amyloids did not promote decidualization and induced weak transcriptomic and secretomic responses in eSFs. In contrast, fractionated SP enriched for seminal microvesicles (MVs) promoted decidualization. IL-11 was one of the most potently SP-induced genes in eSFs and was important for SP-facilitated decidualization. LARGE SCALE DATA RNAseq data were deposited in the Gene Expression Omnibus repository under series accession number GSE135640. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS Our results support the notion that SP promotes decidualization, including within eSFs from women with inflammatory disorders. Despite the general ability of amyloids to induce cytokines known to be important for implantation, semen amyloids poorly signaled to eSFs and did not promote their decidualization. In contrast, fractionated SP enriched for MVs promoted decidualization and induced a transcriptional response in eSFs that overlapped with that of SP. Our results suggest that SP constituents, possibly those associated with MVs, can promote decidualization of eSFs in an IL-11-dependent manner in preparation for implantation. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH (R21AI116252, R21AI122821 and R01AI127219) to N.R.R. and (P50HD055764) to L.C.G. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Ashley F George
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Karen S Jang
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jason Neidleman
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Trimble L Spitzer
- Lt Col, USAF; Women's Health Clinic, Naval Medical Center, Portsmouth, VA, USA
| | - Guorui Xie
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | | | - Eytan Herzig
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Erika G Marques de Menezes
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Christopher D Pilcher
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, CA, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
40
|
Grbac E, So T, Varshney S, Williamson N, Dimitriadis E, Menkhorst E. Prednisolone Alters Endometrial Decidual Cells and Affects Decidual-Trophoblast Interactions. Front Cell Dev Biol 2021; 9:647496. [PMID: 33898438 PMCID: PMC8063028 DOI: 10.3389/fcell.2021.647496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Poor pregnancy outcomes such as recurrent pregnancy loss (RPL) and preeclampsia are associated with impaired decidualization and abnormal trophoblast invasion. Emerging evidence suggests that use of corticosteroids, including prednisolone affects fertility by altering uterine function and may be associated with preeclampsia incidence. In this study, using primary and gestational-age appropriate tissue, we aimed to define the effect of prednisolone on human endometrial stromal fibroblast (hESF) decidualization and determine whether hESF decidualization in the presence of prednisolone would alter hESF regulation of trophoblast function. We found that prednisolone treatment reduced hESF cytokine expression (IL6, IL11, IL18, LIF, and LIFR) but had no effect on hESF expression or secretion of the classic markers of decidualization [prolactin (PRL) and IGFBP1]. Using proteomics we determined that prednisolone altered decidualized hESF protein production, enriching hESF proteins associated with acetylation and mitrochondria. Conditioned media from hESF decidualized in the presence of prednisolone significantly enhanced trophoblast outgrowth and trophoblast mRNA expression of cell motility gene PLCG1 and reduced trophoblast production of PGF. Prednisolone treatment during the menstrual cycle and 1st trimester of pregnancy might alter decidual interactions with other cells, including invasive trophoblast.
Collapse
Affiliation(s)
- Eliza Grbac
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Teresa So
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Swati Varshney
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology, Parkville, VIC, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Ellen Menkhorst
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| |
Collapse
|
41
|
Xu H, Xie Y, Sun Y, Guo R, Lv D, Li X, Li F, He M, Fan Y, Deng D. Integrated analysis of multiple microarray studies to identify potential pathogenic gene modules in preeclampsia. Exp Mol Pathol 2021; 120:104631. [PMID: 33744280 DOI: 10.1016/j.yexmp.2021.104631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/15/2021] [Accepted: 03/14/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Preeclampsia is a life-threatening hypertensive disorder during pregnancy, while underlying pathogenesis and its diagnosis are incomplete. METHODS In this study, we utilized the Robust Rank Aggregation method to integrate 6 eligible preeclampsia microarray datasets from Gene Expression Omnibus database. We used linear regression to assess the associations between significant differentially expressed genes (DEGs) and blood pressure. Functional annotation, protein-protein interaction, Gene Set Enrichment Analysis (GSEA) and single sample GSEA were employed for investigating underlying pathogenesis in preeclampsia. RESULTS We filtered 52 DEGs and further screened for 5 hub genes (leptin, pappalysin 2, endoglin, fms related receptor tyrosine kinase 1, tripartite motif containing 24) that were positively correlated with both systolic blood pressure and diastolic blood pressure. Receiver operating characteristic indicated that hub genes were potential biomarkers for diagnosis and prognosis in preeclampsia. GSEA for single hub gene revealed that they were all closely related to angiogenesis and estrogen response in preeclampsia. Moreover, single sample GSEA showed that the expression levels of 5 hub genes were correlated with those of immune cells in immunologic microenvironment at maternal-fetal interface. CONCLUSIONS These findings provide new insights into underlying pathogenesis in preeclampsia; 5 hub genes were identified as biomarkers for diagnosis and prognosis in preeclampsia.
Collapse
Affiliation(s)
- Heze Xu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; The Second Clinical Medicine College, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Yin Xie
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanan Sun
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rong Guo
- Department of Software Engineering College, Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Dan Lv
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuanxuan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fanfan Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengzhou He
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yao Fan
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongrui Deng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Molecular and immunological developments in placentas. Hum Immunol 2021; 82:317-324. [PMID: 33581928 DOI: 10.1016/j.humimm.2021.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Cytotrophoblasts differentiate in two directions during early placentation: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). STBs face maternal immune cells in placentas, and EVTs, which invade the decidua and uterine myometrium, face the cells in the uterus. This situation, in which trophoblasts come into contact with maternal immune cells, is known as the maternal-fetal interface. Despite fetuses and fetus-derived trophoblast cells being of the semi-allogeneic conceptus, fetuses and placentas are not rejected by the maternal immune system because of maternal-fetal tolerance. The acquired tolerance develops during normal placentation, resulting in normal fetal development in humans. In this review, we introduce placental development from the viewpoint of molecular biology. In addition, we discuss how the disruption of placental development could lead to complications in pregnancy, such as hypertensive disorder of pregnancy, fetal growth restriction, or miscarriage.
Collapse
|
43
|
Bao Q, Hadas R, Markovic S, Neeman M, Frydman L. Diffusion and perfusion MRI of normal, preeclamptic and growth-restricted mice models reveal clear fetoplacental differences. Sci Rep 2020; 10:16380. [PMID: 33009455 PMCID: PMC7532452 DOI: 10.1038/s41598-020-72885-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Diffusion-weighted MRI on rodents could be valuable to evaluate pregnancy-related dysfunctions, particularly in knockout models whose biological nature is well understood. Echo Planar Imaging’s sensitivity to motions and to air/water/fat heterogeneities, complicates these studies in the challenging environs of mice abdomens. Recently developed MRI methodologies based on SPatiotemporal ENcoding (SPEN) can overcome these obstacles, and deliver diffusivity maps at ≈150 µm in-plane resolutions. The present study exploits these capabilities to compare the development in wildtype vs vascularly-altered mice. Attention focused on the various placental layers—deciduae, labyrinth, trophoblast, fetal vessels—that the diffusivity maps could resolve. Notable differences were then observed between the placental developments of wildtype vs diseased mice; these differences remained throughout the pregnancies, and were echoed by perfusion studies relying on gadolinium-based dynamic contrast-enhanced MRI. Longitudinal monitoring of diffusivity in the animals throughout the pregnancies also showed differences between the development of the fetal brains in the wildtype and vascularly-altered mice, even if these disparities became progressively smaller as the pregnancies progressed. These results are analyzed on the basis of the known physiology of normal and preeclamptic pregnancies, as well as in terms of the potential that they might open for the early detection of disorders in human pregnancies.
Collapse
Affiliation(s)
- Qingjia Bao
- Department of Chemical and Biological Physics, Weizmann Institute, 7610001, Rehovot, Israel
| | - Ron Hadas
- Department of Biological Regulation, Weizmann Institute, 7610001, Rehovot, Israel
| | - Stefan Markovic
- Department of Chemical and Biological Physics, Weizmann Institute, 7610001, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute, 7610001, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute, 7610001, Rehovot, Israel.
| |
Collapse
|
44
|
Albrecht ED, Pepe GJ. Regulation of Uterine Spiral Artery Remodeling: a Review. Reprod Sci 2020; 27:1932-1942. [PMID: 32548805 PMCID: PMC7452941 DOI: 10.1007/s43032-020-00212-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
Extravillous trophoblast remodeling of the uterine spiral arteries is essential for promoting blood flow to the placenta and fetal development, but little is known about the regulation of this process. A defect in spiral artery remodeling underpins adverse conditions of human pregnancy, notably early-onset preeclampsia and fetal growth restriction, which result in maternal and fetal morbidity and mortality. Many in vitro studies have been conducted to determine the ability of growth and other factors to stimulate trophoblast cells to migrate across a synthetic membrane. Clinical studies have investigated whether the maternal levels of various factors are altered during abnormal human pregnancy. Animal models have been established to assess the ability of various factors to recapitulate the pathophysiological symptoms of preeclampsia. This review analyzes the results of the in vitro, clinical, and animal studies and describes a nonhuman primate experimental paradigm of defective uterine artery remodeling to study the regulation of vessel remodeling.
Collapse
Affiliation(s)
- Eugene D Albrecht
- Bressler Research Laboratories, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
45
|
Menkhorst E, Zhou W, Santos LL, Delforce S, So T, Rainczuk K, Loke H, Syngelaki A, Varshney S, Williamson N, Pringle K, Young MJ, Nicolaides KH, St-Pierre Y, Dimitriadis E. Galectin-7 Impairs Placentation and Causes Preeclampsia Features in Mice. Hypertension 2020; 76:1185-1194. [PMID: 32862708 DOI: 10.1161/hypertensionaha.120.15313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preeclampsia is a serious pregnancy-induced disorder unique to humans. The etiology of preeclampsia is poorly understood; however, poor placental formation is thought causal. Galectin-7 is produced by trophoblast and is elevated in first-trimester serum of women who subsequently develop preeclampsia. We hypothesized that elevated placental galectin-7 may be causative of preeclampsia. Here, we demonstrated increased galectin-7 production in chorionic villous samples from women who subsequently develop preterm preeclampsia compared with uncomplicated pregnancies. In vitro, galectin-7 impaired human first-trimester trophoblast outgrowth, increased placental production of the antiangiogenic sFlt-1 splice variant, sFlt-1-e15a, and reduced placental production and secretion of ADAM12 (a disintegrin and metalloproteinase12) and angiotensinogen. In vivo, galectin-7 administration (E8-E12) to pregnant mice caused elevated systolic blood pressure, albuminuria, impaired placentation (reduced labyrinth vascular branching, impaired decidual spiral artery remodeling, and a proinflammatory placental state demonstrated by elevated IL1β, IL6 and reduced IL10), and dysregulated expression of renin-angiotensin system components in the placenta, decidua, and kidney, including angiotensinogen, prorenin, and the angiotensin II type 1 receptor. Collectively, this study demonstrates that elevated galectin-7 during placental formation contributes to abnormal placentation and suggests that it leads to the development of preeclampsia via altering placental production of sFlt-1 and renin-angiotensin system components. Targeting galectin-7 may be a new treatment option for preeclampsia.
Collapse
Affiliation(s)
- Ellen Menkhorst
- From the Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.).,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.).,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia (E.M., K.R., H.L., E.D.)
| | - Wei Zhou
- From the Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.).,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.)
| | - Leilani L Santos
- From the Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.).,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.)
| | - Sarah Delforce
- School of Biomedical Sciences and Pharmacy (S.D., K.P.), University of Newcastle, NSW, Australia.,Priority Research Centre for Reproductive Sciences (S.D., K.P.), University of Newcastle, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, NSW, Australia (S.D., K.P.)
| | - Teresa So
- From the Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.).,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.)
| | - Kate Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia (E.M., K.R., H.L., E.D.)
| | - Hannah Loke
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia (E.M., K.R., H.L., E.D.)
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (A.S., K.H.N.)
| | - Swati Varshney
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, VIC, Australia (S.V., N.W.)
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, VIC, Australia (S.V., N.W.)
| | - Kirsty Pringle
- School of Biomedical Sciences and Pharmacy (S.D., K.P.), University of Newcastle, NSW, Australia.,Priority Research Centre for Reproductive Sciences (S.D., K.P.), University of Newcastle, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, NSW, Australia (S.D., K.P.)
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia (M.J.Y.).,Baker Heart & Diabetes Institute, Prahran, VIC, Australia (M.J.Y.)
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (A.S., K.H.N.)
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Laval, QC, Canada (Y.S.-P.)
| | - Eva Dimitriadis
- From the Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.).,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia (E.M., W.Z., L.L.S., T.S., E.D.).,Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia (E.M., K.R., H.L., E.D.).,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia (E.D.)
| |
Collapse
|
46
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
47
|
Ou Y, Zhu L, Wei X, Bai S, Chen M, Chen H, Zhang J. Circular RNA circ_0111277 attenuates human trophoblast cell invasion and migration by regulating miR-494/HTRA1/Notch-1 signal pathway in pre-eclampsia. Cell Death Dis 2020; 11:479. [PMID: 32587240 PMCID: PMC7316814 DOI: 10.1038/s41419-020-2679-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
Abstract
Mounting evidence has revealed that impaired spiral artery remodeling, placental dysfunction, and inadequate trophoblast invasion are closely correlated with the etiology and pathogenesis of pre-eclampsia (PE). Moreover, defective trophoblast invasion may trigger poor maternal-fetal circulation and placental hypoxia, leading to PE. However, the detailed molecular pathology of PE remains unclear. Although circRNAs, as a new type of stable and abundant endogenous noncoding RNA, have been proven to be essential to the pathogenesis of various diseases, their role in PE requires further verification. In this context, it is necessary to unveil the roles of circRNAs in regulating the migration and invasion of extravillous trophoblasts. In this study, using quantitative real-time PCR, we confirmed that hsa_circ_0111277 was upregulated in PE placentas relative to the level in normal pregnancy placentas. In addition, positive correlations between hsa_circ_0111277 expression and PE-related factors (proteinuria level at 24 h and placental weight) were identified by Pearson's analysis based on the clinical data of 25 PE patients. Moreover, fluorescence in situ hybridization analysis illustrated that circ_0111277 was preferentially localized within the cytoplasm. Mechanistically, circ_0111277 sponged hsa-miR-494-3p in trophoblast cells to attenuate the latter's repression by regulating HTRA1/Notch-1 expression. In conclusion, trophoblast cell migration and invasion were shown to be promoted and modulated by the hsa_circ_0111277/miR-494-3p/HTRA1/Notch-1 axis, which provides useful insight for exploring a new therapeutic approach for PE.
Collapse
Affiliation(s)
- Yuhua Ou
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Xiangcai Wei
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Shiyu Bai
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Manqi Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
48
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
49
|
Menendez-Castro C, Cordasic N, Dambietz T, Veelken R, Amann K, Hartner A, Hilgers KF. Correlations Between Interleukin-11 Expression and Hypertensive Kidney Injury in a Rat Model of Renovascular Hypertension. Am J Hypertens 2020; 33:331-340. [PMID: 31840157 DOI: 10.1093/ajh/hpz194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/10/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Interleukin-11 (IL-11) is a pleiotropic cytokine of the interleukin-6 family. Recent studies revealed its crucial role in the development of cardiovascular fibrosis. In this study we examined IL-11 expression levels in the heart and the kidney exposed to high blood pressure in renovascular hypertensive rats and their correlations to fibrotic markers and kidney injury. METHODS Two-kidney, one-clip renovascular hypertension (2K1C) was induced in rats. IL-11 expression was measured by real-time polymerase chain reaction in the left ventricle and the right kidney. The correlation of cardiac IL-11 expression with biomarkers of renal fibrosis was assessed. We further investigated IL-11 expression in 2K1C rats grouped into rats with malignant vs. nonmalignant hypertension (distinguishing criteria: weight loss, number of fibrinoid necrosis, and onion skin lesions). RESULTS Thirty-five days after clipping, mean arterial pressure was significantly increased in 2K1C. Renal IL-11 expression was elevated in 2K1C. In the heart there was only a trend toward higher IL-11 expression in 2K1C. IL-11 in the kidney in 2K1C correlated with the expression of transforming growth factor (TGF)-β1/2, collagens, fibronectin, osteopontin, as well as tissue inhibitors of metalloprotease 1/2. There were also correlations of IL-11 with tissue collagen expansion, number of activated fibroblasts and serum creatinine, but no correlation with mean arterial pressure. Renal expression of IL-11 was highest in rats with malignant hypertension. CONCLUSIONS Renal IL-11 expression of renovascular hypertensive rats is markedly increased and correlates with profibrotic markers and loss of function and might therefore serve as a biomarker for the severity of hypertensive nephrosclerosis.
Collapse
Affiliation(s)
- Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Thomas Dambietz
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital of Erlangen, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
50
|
Lamale-Smith LM, Gumina DL, Kramer AW, Browne VA, Toledo-Jaldin L, Julian CG, Winn VD, Moore LG. Uteroplacental Ischemia Is Associated with Increased PAPP-A2. Reprod Sci 2020; 27:529-536. [PMID: 31994005 DOI: 10.1007/s43032-019-00050-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/22/2019] [Indexed: 11/29/2022]
Abstract
Residence at high altitude (> 2500 m) has been associated with an increased frequency of preeclampsia. Pappalysin-2 (PAPP-A2) is an insulin-like growth factor binding protein-5 (IGFBP-5) protease that is elevated in preeclampsia, and up-regulated by hypoxia in placental explants. The relationships between PAPP-A2, altitude, and indices of uteroplacental ischemia are unknown. We aimed to evaluate the association of altitude, preeclampsia, and uterine artery flow or vascular resistance with PAPP-A2 levels. PAPP-A2, uterine artery diameter, volumetric blood flow, and pulsatility indices were measured longitudinally in normotensive Andean women residing at low or high altitudes in Bolivia and in a separate Andean high-altitude cohort with or without preeclampsia. PAPP-A2 levels increased with advancing gestation, with the rise tending to be greater at high compared to low altitude, and higher in early-onset preeclamptic compared to normotensive women at high altitude. Uterine artery blood flow was markedly lower and pulsatility index higher in early-onset preeclamptic normotensive women compared to normotensive women. PAPP-A2 was unrelated to uterine artery pulsatility index in normotensive women but positively correlated in the early-onset preeclampsia cases. We concluded that PAPP-A2 is elevated at high altitude and especially in cases of early-onset preeclampsia with Doppler indices of uteroplacental ischemia.
Collapse
Affiliation(s)
- Leah M Lamale-Smith
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, San Diego, CA, USA.
| | - Diane L Gumina
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Anita W Kramer
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Vaughn A Browne
- Department of Emergency Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Colleen G Julian
- Department of Medicine, University of Colorado, Denver, Aurora, CO, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|