1
|
Chen Y, Xu Y, Cao S, Lv Q, Ye Y, Gu J. Oxidative Phosphorylation Pathway in Ankylosing Spondylitis: Multi-Omics Analysis and Machine Learning. Int J Rheum Dis 2025; 28:e70175. [PMID: 40296690 DOI: 10.1111/1756-185x.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION Ankylosing spondylitis (AS) is a chronic inflammatory disease affecting the axial skeleton, characterized by immune microenvironment dysregulation and elevated cytokines like TNF-α and IL-17. Mitochondrial oxidative phosphorylation (OXPHOS), crucial for immune cell function and survival, is implicated in AS pathogenesis. This study explores OXPHOS-related mechanisms in AS, identifies key genes using machine learning, and highlights potential therapeutic targets for precision medicine. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) bulk transcriptomic and single-cell RNA sequencing (scRNA-seq) data from AS patients were analyzed to investigate the role of the OXPHOS pathway in AS. Weighted gene co-expression network analysis (WGCNA) was performed to identify key gene modules associated with OXPHOS. Machine learning techniques, including support vector machine with recursive feature elimination (SVM-RFE), random forest, and least absolute shrinkage and selection operator (LASSO), were applied to identify significant AS-related genes. Real-time PCR (RT-PCR) was used to quantify gene expression, examine their patterns in specific cell subtypes, and explore their functional implications. RESULTS Pathway enrichment analysis identified OXPHOS as a significantly enriched pathway distinguishing AS patients from healthy controls, with high normalized enrichment scores and significant group separation in principal component analysis. ScRNA-seq revealed significantly higher OXPHOS scores in AS patients, especially in dendritic cells (DCs) and monocytes, highlighting cell type-specific dysregulation. WGCNA identified two key gene modules (MEyellow and MEtan) that are closely associated with OXPHOS. Three hub genes-LAMTOR2, APBB1IP, and DGKQ-were screened using machine learning methods and validated by RT-PCR and scRNA-seq. Among them, LAMTOR2 was significantly more highly expressed in patients with AS, and functional analyses showed that it plays a role in promoting TH17 cell differentiation, which highlights its potential as a therapeutic target for ankylosing spondylitis. CONCLUSION This multi-omics study provides valuable insights into the complex interplay between OXPHOS and AS. The identified genes, particularly LAMTOR2, serve as potential therapeutic targets, contributing to our understanding of AS mechanisms and paving the way for precision medicine in AS treatment.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuan Xu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shuangyan Cao
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qing Lv
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuanchun Ye
- School of Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Pan D, Dai X, Li P, Xue L. A Bidirectional Mendelian Randomization Study Investigating the Causal Relationship Between Ankylosing Spondylitis and Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2025; 20:259-271. [PMID: 39944597 PMCID: PMC11818834 DOI: 10.2147/copd.s491579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/03/2025] [Indexed: 05/09/2025] Open
Abstract
Background Previous studies have found an association between ankylosing spondylitis (AS) and chronic obstructive pulmonary disease (COPD); however, no research has investigated this relationship using Mendelian randomization (MR). Methods This study employed a bidirectional two-sample MR approach to assess the causal connection between AS and COPD. The analysis utilized publicly available statistics on AS and COPD from the Genome-wide Association Study (GWAS). The primary MR method employed was Inverse-Variance Weighting (IVW), supplemented by additional MR methods such as weighted median, MR-Egger, simple mode, and weighted mode. Sensitivity analyses were also performed to evaluate the impact of heterogeneity and pleiotropy on the MR results. Results The study included two datasets related to AS (ebi-a-GCST005529 and ukb-a-88) and two datasets related to COPD (ebi-a-GCST90018807 and finn-b-J10_COPD). In our forward MR, the analysis of ebi-a-GCST005529 dataset against ebi-a-GCST90018807 dataset showed that AS was associated with an increased risk of COPD (OR = 1.1326, 95% CI = 1.0181-1.2600, P = 0.0221). However, there was no causal relationship between AS and COPD in the rest of the dataset analyses. In reverse MR analysis, no causal effect between COPD and AS was found among the datasets. Conclusion Our research provided partial evidence to support the viewpoint that AS may increase the prevalence of COPD. AS may be a risk factor for COPD, however, further studies are needed to validate these results and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Di Pan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoling Dai
- Shanghai Putuo Traditional Chinese Medicine Hospital, Shanghai, People’s Republic of China
| | - Pan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Luan Xue
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell BA, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes Reprogrammed by 4-PBA Potently Contribute to the Resolution of Inflammation and Atherosclerosis. Circ Res 2024; 135:856-872. [PMID: 39224974 PMCID: PMC11424066 DOI: 10.1161/circresaha.124.325023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. METHODS Systems analyses integrating single-cell RNA sequencing and complementary immunologic approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming were assessed by integrated biochemical and genetic approaches. The intercellular propagation of homeostasis resolution was evaluated by coculture assays with donor monocytes trained by 4-PBA and recipient naive monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high-fat diet-fed ApoE-/- mouse model with IP 4-PBA administration. Furthermore, the selective efficacy of 4-PBA-trained monocytes was examined by IV transfusion of ex vivo trained monocytes by 4-PBA into recipient high-fat diet-fed ApoE-/- mice. RESULTS In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 (intercellular adhesion molecule 1) via reducing peroxisome stress and attenuating SYK (spleen tyrosine kinase)-mTOR (mammalian target of rapamycin) signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ (peroxisome proliferator-activated receptor γ) neddylation mediated by TOLLIP (toll-interacting protein). 4-PBA-trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA-trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo. CONCLUSIONS Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ling Xie
- Department of Biochemistry and Molecular Biology, University of North Carolina at Chappell Hill, NC (L.X., X.C.)
| | - Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ziyue Yi
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Jacqueline Hou
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Feng Xu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Xian Chen
- Department of Biochemistry and Molecular Biology, University of North Carolina at Chappell Hill, NC (L.X., X.C.)
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| |
Collapse
|
4
|
Magri Z, Jetton D, Muendlein HI, Connolly WM, Russell H, Smirnova I, Sharma S, Bunnell S, Poltorak A. CD14 is a decision-maker between Fas-mediated death and inflammation. Cell Rep 2024; 43:114685. [PMID: 39213151 PMCID: PMC11471008 DOI: 10.1016/j.celrep.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling through classical death receptor Fas was mainly appreciated as a pro-death pathway until recent reports characterized pro-inflammatory outcomes of Fas-mediated activation in pathological contexts. How Fas signaling can switch to pro-inflammatory activation is poorly understood. Herein, we report that in macrophages and neutrophils, the Toll-like receptor (TLR) adapter CD14 determines the inflammatory output of Fas-mediated signaling. Our findings propose CD14 as a crucial chaperone of Fas receptor internalization in macrophages and neutrophils, resulting in Cd14-/- myeloid cells that are protected from FasL-induced apoptosis, activate nuclear factor κB (NF-κB), and release cytokines in response. As in TLR signaling, CD14 is also required for Fas to signal through the adaptor TRIF (TIR-domain-containing adapter-inducing interferon-β) and induce a pro-death complex. Our findings demonstrate that CD14 availability can determine the switch between Fas-mediated pro-death and pro-inflammatory outcomes by internalizing the receptor.
Collapse
Affiliation(s)
- Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Hunter Russell
- Graduate Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen Bunnell
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
5
|
Fan JN, Ho H, Chiang BL. Characterization of novel CD8 + regulatory T cells and their modulatory effects in murine model of inflammatory bowel disease. Cell Mol Life Sci 2024; 81:327. [PMID: 39085655 PMCID: PMC11335251 DOI: 10.1007/s00018-024-05378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Dysregulation of mucosal immune system has been proposed to be critical in the pathogenesis of inflammatory bowel diseases (IBDs). Regulatory T cells (Tregs) play an important role in regulating immune responses. Tregs are involved in maintaining intestinal homeostasis and exerting suppressive function in colitis. Our previous studies showed that a novel forkhead box protein P3 (Foxp3) negative Tregs (Treg-of-B cells), induced by culturing naïve CD4+ T cells with B cells, could protect against colitis and downregulate T helper (Th) 1 and Th17 cell cytokines in T cell-mediated colitis. In the present study, we aimed to induce Treg-of-B cells in the CD8+ T-cell population and investigate their characteristics and immunomodulatory functions. Our results showed that CD8+ Treg-of-B cells expressed Treg-associated markers, including lymphocyte-activation gene-3 (LAG3), inducible co-stimulator (ICOS), programmed death-1 (PD-1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), tumor necrosis factor receptor superfamily member-4 (TNFRSF4, OX40), and tumor necrosis factor receptor superfamily member-18 (TNFRSF18, GITR), but did not express Foxp3. CD8+ Treg-of-B cells produced higher concentration of inhibitory cytokine interleukin (IL)-10, and expressed higher levels of cytotoxic factor granzyme B and perforin after stimulation, compared to those of CD8+CD25- T cells. Moreover, CD8+ Treg-of-B cells suppressed T cell proliferation in vitro and alleviated colonic inflammation in chronic dextran sulfate sodium (DSS)-induced colitis. In conclusion, our study identified a novel subpopulation of CD8+ Tregs with suppressive effects through cell contact. These CD8+ Treg-of-B cells might have therapeutic potential for IBDs.
Collapse
Affiliation(s)
- Jia-Ning Fan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin Ho
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Cheng F, Wang C, Yan B, Yin Z, Liu Y, Zhang L, Li M, Liao P, Gao H, Jia Z, Li D, Liu Q, Lei P. CSF1R blockade slows progression of cerebral hemorrhage by reducing microglial proliferation and increasing infiltration of CD8 + CD122+ T cells into the brain. Int Immunopharmacol 2024; 133:112071. [PMID: 38636374 DOI: 10.1016/j.intimp.2024.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Microglia play a pivotal role in the neuroinflammatory response after brain injury, and their proliferation is dependent on colony-stimulating factors. In the present study, we investigated the effect of inhibiting microglia proliferation on neurological damage post intracerebral hemorrhage (ICH) in a mouse model, an aspect that has never been studied before. Using a colony-stimulating factor-1 receptor antagonist (GW2580), we observed that inhibition of microglia proliferation significantly ameliorated neurobehavioral deficits, attenuated cerebral edema, and reduced hematoma volume after ICH. This intervention was associated with a decrease in pro-inflammatory factors in microglia and an increased infiltration of peripheral regulatory CD8 + CD122+ T cells into the injured brain tissue. The CXCR3/CXCL10 axis is the mechanism of brain homing of regulatory CD8 + CD122+ T cells, and the high expression of IL-10 is the hallmark of their synergistic anti-inflammatory effect with microglia. And activated astrocytes around the insult site are a prominent source of CXCL10. Thus, inhibition of microglial proliferation offers a new perspective for clinical translation. The cross-talk between multiple cells involved in the regulation of the inflammatory response highlights the comprehensive nature of neuroimmunomodulation.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Han Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China
| | - Qiang Liu
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China.
| |
Collapse
|
7
|
Liu Y, Zhang Y, Du L, Chen D. The genetic relationships between immune cell traits, circulating inflammatory proteins and preeclampsia/eclampsia. Front Immunol 2024; 15:1389843. [PMID: 38873604 PMCID: PMC11170637 DOI: 10.3389/fimmu.2024.1389843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Preeclampsia/eclampsia (PE), a critical complication during pregnancy, has been suggested to correlate with immune cell phenotypes and levels of circulating inflammatory proteins. Our study aimed to employ a two-sample mendelian randomization (MR) analysis to assess the potential causal effects of immune cell phenotypes and circulating inflammatory proteins on the onset of PE. Methods We utilized summary-level data from genome-wide association studies (GWAS). This included statistics for 371 immune cell phenotypes from 3,757 individuals in the Sardinian founder population, and data on 91 circulating inflammatory proteins from 14,824 European ancestry participants. Additionally, genetic associations related to PE were extracted from the FinnGen consortium, involving 1,413 cases and 287,137 controls. We applied inverse variance weighting (IVW) and supplementary methods like MR-Egger, weighted median, and weighted mode to comprehensively assess potential causal links. Results Our analysis revealed significant causal associations of several immune cells type and inflammatory proteins with PE. Out of the immune cell phenotypes analyzed, six immune phenotypes emerged as significant risk factors (p <0.01), mainly include CD4 on activated and secreting CD4 regulatory T cells, CD28 on CD39+ CD4+ T cells, CD127- CD8+ T cell absolute cell (AC) counts, HLA DR on HLA DR+ CD8+ T cell, CD66b on CD66b++ myeloid cells, and HLA DR on dendritic cells. And ten were identified as protective factors (p <0.01). Such as CD45 on CD33br HLA DR+ CD14-, CD33+ HLA DR+ AC, CD33+ HLA DR+ CD14- AC, CD33+ HLA DR+ CD14dim AC, CD27 on CD24+ CD27+ B cell, CD20- CD38- %B cell, IgD- CD24- %B cell CD80 on plasmacytoid DC, CD25 on CD4+ T cell, and CD25 on activated & secreting CD4 regulatory T cell. Furthermore, among the inflammatory proteins studied, five showed a significant association with PE, with three offering protective effects mainly include that C-X-C motif chemokine 1, tumor necrosis factor ligand superfamily member 14, and C-C motif chemokine 19 and two exacerbating PE risk such as STAM-binding domain and Interleukin-6 (p <0.05). Conclusions Our study highlights the pivotal roles played by diverse immune cell phenotypes and circulating inflammatory proteins in the pathophysiology of PE. These findings illuminate the underlying genetic mechanisms, emphasizing the criticality of immune regulation during pregnancy. Such insights could pave the way for novel intervention strategies in managing PE, potentially enhancing maternal and neonatal health outcomes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
- Guangdong-Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
| | - Yuliang Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
- Guangdong-Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
- Guangdong-Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
- Guangdong-Hong Kong Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Liu Q, Zhou X, Liu K, Wang Y, Liu C, Gao C, Cai Q, Sun C. Exploring risk factors for autoimmune diseases complicated by non-hodgkin lymphoma through regulatory T cell immune-related traits: a Mendelian randomization study. Front Immunol 2024; 15:1374938. [PMID: 38863695 PMCID: PMC11165099 DOI: 10.3389/fimmu.2024.1374938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Background The effect of immune cells on autoimmune diseases (ADs) complicated by non-Hodgkin lymphoma (NHL) has been widely recognized, but a causal relationship between regulatory T cell (Treg) immune traits and ADs complicated by NHL remains debated. Methods Aggregate data for 84 Treg-related immune traits were downloaded from the Genome-Wide Association Study (GWAS) catalog, and GWAS data for diffuse large B-cell lymphoma (DLBCL; n=315243), follicular lymphoma (FL; n=325831), sjögren's syndrome (SS; n=402090), rheumatoid arthritis (RA; n=276465), dermatopolymyositis (DM; n=311640), psoriasis (n=407876), atopic dermatitis (AD; n=382254), ulcerative colitis (UC; n=411317), crohn's disease(CD; n=411973) and systemic lupus erythematosus (SLE; n=307587) were downloaded from the FinnGen database. The inverse variance weighting (IVW) method was mainly used to infer any causal association between Treg-related immune traits and DLBCL, FL, SS, DM, RA, Psoriasis, AD, UC, CD and SLE, supplemented by MR-Egger, weighted median, simple mode, and weighted mode. Moreover, we performed sensitivity analyses to assess the validity of the causal relationships. Results There was a potential genetic predisposition association identified between CD39+ CD8br AC, CD39+ CD8br % T cell, and the risk of DLBCL (OR=1.51, p<0.001; OR=1.25, p=0.001) (adjusted FDR<0.1). Genetic prediction revealed potential associations between CD25++ CD8br AC, CD28- CD25++ CD8br % T cell, CD39+ CD8br % CD8br, and the risk of FL (OR=1.13, p=0.022; OR=1.28, p=0.042; OR=0.90, p=0.016) (adjusted FDR>0.1). Furthermore, SLE and CD exhibited a genetically predicted potential association with the CD39+ CD8+ Tregs subset. SS and DM were possibly associated with an increase in the quantity of the CD4+ Tregs subset; RA may have reduced the quantity of the CD39+ CD8+ Tregs subset, although no causal relationship was identified. Sensitivity analyses supported the robustness of our findings. Conclusions There existed a genetically predicted potential association between the CD39+ CD8+ Tregs subset and the risk of DLBCL, while SLE and CD were genetically predicted to be potentially associated with the CD39+ CD8+ Tregs subset. The CD39+ CD8+ Tregs subset potentially aided in the clinical diagnosis and treatment of SLE or CD complicated by DLBCL.
Collapse
Affiliation(s)
- Qi Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine Department, Beijing University of Chinese Medicine, Beijing, China
| | - Yimin Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
9
|
París-Muñoz A, León-Triana O, Pérez-Martínez A, Barber DF. Helios as a Potential Biomarker in Systemic Lupus Erythematosus and New Therapies Based on Immunosuppressive Cells. Int J Mol Sci 2023; 25:452. [PMID: 38203623 PMCID: PMC10778776 DOI: 10.3390/ijms25010452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The Helios protein (encoded by the IKZF2 gene) is a member of the Ikaros transcription family and it has recently been proposed as a promising biomarker for systemic lupus erythematosus (SLE) disease progression in both mouse models and patients. Helios is beginning to be studied extensively for its influence on the T regulatory (Treg) compartment, both CD4+ Tregs and KIR+/Ly49+ CD8+ Tregs, with alterations to the number and function of these cells correlated to the autoimmune phenomenon. This review analyzes the most recent research on Helios expression in relation to the main immune cell populations and its role in SLE immune homeostasis, specifically focusing on the interaction between T cells and tolerogenic dendritic cells (tolDCs). This information could be potentially useful in the design of new therapies, with a particular focus on transfer therapies using immunosuppressive cells. Finally, we will discuss the possibility of using nanotechnology for magnetic targeting to overcome some of the obstacles related to these therapeutic approaches.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Odelaisy León-Triana
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| |
Collapse
|
10
|
Ma X, Cao L, Raneri M, Wang H, Cao Q, Zhao Y, Bediaga NG, Naselli G, Harrison LC, Hawthorne WJ, Hu M, Yi S, O’Connell PJ. Human HLA-DR+CD27+ regulatory T cells show enhanced antigen-specific suppressive function. JCI Insight 2023; 8:e162978. [PMID: 37874660 PMCID: PMC10795828 DOI: 10.1172/jci.insight.162978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell-depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ-/- mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Martina Raneri
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Yuanfei Zhao
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Naiara G. Bediaga
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Leonard C. Harrison
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Wayne J. Hawthorne
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Min Hu
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Shounan Yi
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Philip J. O’Connell
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Wu S, Zhang X, Hu C, Zhong Y, Chen J, Chong WP. CD8 + T cells reduce neuroretina inflammation in mouse by regulating autoreactive Th1 and Th17 cells through IFN-γ. Eur J Immunol 2023; 53:e2350574. [PMID: 37689974 DOI: 10.1002/eji.202350574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Various regulatory CD8+ T-cell subsets have been proposed for immune tolerance and have been implicated in controlling autoimmune diseases. However, their phenotypic identities and suppression mechanisms are not yet understood. This study found that coculture of T-cell receptor (TCR)- or interferon (IFN)-β-activated CD8+ T cells significantly suppressed the cytokine production of Th1 and Th17 cells. By experimenting with the experimental autoimmune uveitis (EAU), we found that adoptive transfer of TCR or IFN-β-activated CD8+ T cells significantly lessened disease development in an IFN-γ-dependent manner with a decreased uveitogenic Th1 and Th17 response. Interestingly, after adoptive transfer into the EAU mice, the IFN-γ+ CD8+ T cells were recruited more efficiently into the secondary lymphoid organs during the disease-priming phase. This recruitment depends on the IFN-γ-inducible chemokine receptor CXCR3; knocking out CXCR3 abolishes the protective effect of CD8+ T cells in EAU. In conclusion, we identified the critical role of IFN-γ for CD8+ T cells to inhibit Th1 and Th17 responses and ameliorate EAU. CXCR3 is necessary to recruit IFN-γ+ CD8+ T cells to the secondary lymphoid organ for the regulation of autoreactive Th1 and Th17 cells.
Collapse
Affiliation(s)
- Sihan Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Cuiping Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yajie Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
12
|
Abdelwahab T, Stadler D, Knöpper K, Arampatzi P, Saliba AE, Kastenmüller W, Martini R, Groh J. Cytotoxic CNS-associated T cells drive axon degeneration by targeting perturbed oligodendrocytes in PLP1 mutant mice. iScience 2023; 26:106698. [PMID: 37182098 PMCID: PMC10172788 DOI: 10.1016/j.isci.2023.106698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Myelin defects lead to neurological dysfunction in various diseases and in normal aging. Chronic neuroinflammation often contributes to axon-myelin damage in these conditions and can be initiated and/or sustained by perturbed myelinating glia. We have previously shown that distinct PLP1 mutations result in neurodegeneration that is largely driven by adaptive immune cells. Here we characterize CD8+ CNS-associated T cells in myelin mutants using single-cell transcriptomics and identify population heterogeneity and disease-associated changes. We demonstrate that early sphingosine-1-phosphate receptor modulation attenuates T cell recruitment and neural damage, while later targeting of CNS-associated T cell populations is inefficient. Applying bone marrow chimerism and utilizing random X chromosome inactivation, we provide evidence that axonal damage is driven by cytotoxic, antigen specific CD8+ T cells that target mutant myelinating oligodendrocytes. These findings offer insights into neural-immune interactions and are of translational relevance for neurological conditions associated with myelin defects and neuroinflammation.
Collapse
Affiliation(s)
- Tassnim Abdelwahab
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Institute for Systems Immunology, University of Würzburg, Würzburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | | | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Morita N, Hoshi M, Tezuka H, Ando T, Yoshida S, Sato F, Yokoi H, Ito H, Saito K. CD8+ Regulatory T Cells Induced by Lipopolysaccharide Improve Mouse Endotoxin Shock. Immunohorizons 2023; 7:353-363. [PMID: 37212786 PMCID: PMC10579971 DOI: 10.4049/immunohorizons.2200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Sepsis is a systemic inflammatory disease caused by a bacterial infection that leads to severe mortality, especially in elderly patients, because of an excessive immune response and impaired regulatory functions. Antibiotic treatment is widely accepted as the first-line therapy for sepsis; however, its excessive use has led to the emergence of multidrug-resistant bacteria in patients with sepsis. Therefore, immunotherapy may be effective in treating sepsis. Although CD8+ regulatory T cells (Tregs) are known to have immunomodulatory effects in various inflammatory diseases, their role during sepsis remains unclear. In this study, we investigated the role of CD8+ Tregs in an LPS-induced endotoxic shock model in young (8-12 wk old) and aged (18-20 mo old) mice. The adoptive transfer of CD8+ Tregs into LPS-treated young mice improved the survival rate of LPS-induced endotoxic shock. Moreover, the number of CD8+ Tregs in LPS-treated young mice increased through the induction of IL-15 produced by CD11c+ cells. In contrast, LPS-treated aged mice showed a reduced induction of CD8+ Tregs owing to the limited production of IL-15. Furthermore, CD8+ Tregs induced by treatment with the rIL-15/IL-15Rα complex prevented LPS-induced body wight loss and tissue injury in aged mice. In this study, to our knowledge, the induction of CD8+ Tregs as novel immunotherapy or adjuvant therapy for endotoxic shock might reduce the uncontrolled immune response and ultimately improve the outcomes of endotoxic shock.
Collapse
Affiliation(s)
- Nanaka Morita
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
| | - Masato Hoshi
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyuki Tezuka
- Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Tatsuya Ando
- Joint Research Laboratory of Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Sayaka Yoshida
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Fumiaki Sato
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyuki Yokoi
- Department of Informative Clinical Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroyasu Ito
- Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
14
|
Teramatsu K, Oono T, Oyama K, Fujimori N, Murakami M, Yasumori S, Ohno A, Matsumoto K, Takeno A, Nakata K, Nakamura M, Ogawa Y. Circulating CD8+CD122+ T cells as a prognostic indicator of pancreatic cancer. BMC Cancer 2022; 22:1134. [PMCID: PMC9636831 DOI: 10.1186/s12885-022-10207-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Purpose
The distribution of tissue infiltrating lymphocytes has been shown to affect the prognosis of patients with pancreatic cancer in some previous studies. However, the role of peripheral lymphocytes in pancreatic cancer remains debated. The purpose of this study was to analyze the peripheral subtypes of T lymphocytes, and establish their association with the prognosis of patients with pancreatic cancer.
Methods
Blood and tissue samples were collected from patients with metastatic pancreatic cancer (n = 54), resectable pancreatic cancer (n = 12), and benign pancreatic cysts (n = 52) between April 2019 and January 2022 and analyzed.
Results
Patients with metastatic pancreatic cancer had a larger proportion of both tumor-suppressive and tumor-promoting cells than those with benign pancreatic cysts. In addition, the proportion of peripheral CD4+ T cells positively correlated with the survival of patients with metastatic pancreatic cancer, and the proportion of peripheral CD8+CD122+ T cells was associated with early mortality (< 90 days). After chemotherapy, CD8+CD122+ T cells decreased in patients who had a partial response or stable disease. Moreover, by analyzing resected specimens, we first proved that the existence of CD8+CD122+ T cells in a tumor microenvironment (TME) depends on their proportion in peripheral blood.
Conclusion
Circulating CD8+CD122+ T cells can be a prognostic indicator in patients with pancreatic cancer.
Collapse
|
15
|
Lee J, McCullough LD. Revisiting regulatory T cells for stroke therapy. J Clin Invest 2022; 132:e161703. [PMID: 35912860 PMCID: PMC9337822 DOI: 10.1172/jci161703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability. T cells have been extensively studied for their dual role in regulating immunity and inflammation following stroke. In this issue of the JCI, Cai, Shi, et al. demonstrated that CD8+ regulatory-like T cells (CD8+ TRLs) are one of the earliest lymphocyte subtypes to enter the brain after experimental ischemic stroke. Using a mouse model of stroke and comprehensive experimental approaches, the authors found that CD8+ TRLs reduced both brain damage and functional deficits in both young and aged mice. These unique early responding regulatory T cells may also play a role in a wide array of other T cell-mediated neurological disorders.
Collapse
|
16
|
Cai W, Shi L, Zhao J, Xu F, Dufort C, Ye Q, Yang T, Dai X, Lyu J, Jin C, Pu H, Yu F, Hassan S, Sun Z, Zhang W, Hitchens TK, Shi Y, Thomson AW, Leak RK, Hu X, Chen J. Neuroprotection against ischemic stroke requires a specific class of early responder T cells in mice. J Clin Invest 2022; 132:157678. [PMID: 35912857 PMCID: PMC9337834 DOI: 10.1172/jci157678] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/17/2022] [Indexed: 12/20/2022] Open
Abstract
Immunomodulation holds therapeutic promise against brain injuries, but leveraging this approach requires a precise understanding of mechanisms. We report that CD8+CD122+CD49dlo T regulatory-like cells (CD8+ TRLs) are among the earliest lymphocytes to infiltrate mouse brains after ischemic stroke and temper inflammation; they also confer neuroprotection. TRL depletion worsened stroke outcomes, an effect reversed by CD8+ TRL reconstitution. The CXCR3/CXCL10 axis served as the brain-homing mechanism for CD8+ TRLs. Upon brain entry, CD8+ TRLs were reprogrammed to upregulate leukemia inhibitory factor (LIF) receptor, epidermal growth factor–like transforming growth factor (ETGF), and interleukin 10 (IL-10). LIF/LIF receptor interactions induced ETGF and IL-10 production in CD8+ TRLs. While IL-10 induction was important for the antiinflammatory effects of CD8+ TRLs, ETGF provided direct neuroprotection. Poststroke intravenous transfer of CD8+ TRLs reduced infarction, promoting long-term neurological recovery in young males or aged mice of both sexes. Thus, these unique CD8+ TRLs serve as early responders to rally defenses against stroke, offering fresh perspectives for clinical translation.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ligen Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingyan Zhao
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fei Xu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Connor Dufort
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xuejiao Dai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Junxuan Lyu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chenghao Jin
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hongjian Pu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sulaiman Hassan
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Zeyu Sun
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - T Kevin Hitchens
- Animal Imaging Center and Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
París-Muñoz A, Aizpurua G, Barber DF. Helios Expression Is Downregulated on CD8+ Treg in Two Mouse Models of Lupus During Disease Progression. Front Immunol 2022; 13:922958. [PMID: 35784310 PMCID: PMC9244697 DOI: 10.3389/fimmu.2022.922958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
T-cell–mediated autoimmunity reflects an imbalance in this compartment that is not restored by tolerogenic immune cells, e.g., regulatory T cells or tolerogenic dendritic cells (tolDCs). Although studies into T-cell equilibrium have mainly focused on regulatory CD4+FoxP3+ T cells (CD4+ Tregs), recent findings on the lesser known CD8+ Tregs (CD44+CD122+Ly49+) have highlighted their non-redundant role in regulating lupus-like disease and their regulatory phenotype facilitated by the transcription factor Helios in mice and humans. However, there are still remaining questions about Helios regulation and dynamics in different autoimmune contexts. Here, we show the absence of CD8+ Tregs in two lupus-prone murine models: MRL/MPJ and MRL/lpr, in comparison with a non-prone mouse strain like C57BL/6. We observed that all MRL animals showed a dramatically reduced population of CD8+ Tregs and a greater Helios downregulation on diseased mice. Helios induction was detected preferentially on CD8+ T cells from OT-I mice co-cultured with tolDCs from C57BL/6 but not in MRL animals. Furthermore, the Helios profile was also altered in other relevant T-cell populations implicated in lupus, such as CD4+ Tregs, conventional CD4+, and double-negative T cells. Together, these findings could make Helios a versatile maker across the T-cell repertoire that is capable of differentiating lupus disease states.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gonzalo Aizpurua
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- *Correspondence: Domingo F. Barber,
| |
Collapse
|
18
|
Li J, Zaslavsky M, Su Y, Guo J, Sikora MJ, van Unen V, Christophersen A, Chiou SH, Chen L, Li J, Ji X, Wilhelmy J, McSween AM, Palanski BA, Mallajosyula VVA, Bracey NA, Dhondalay GKR, Bhamidipati K, Pai J, Kipp LB, Dunn JE, Hauser SL, Oksenberg JR, Satpathy AT, Robinson WH, Dekker CL, Steinmetz LM, Khosla C, Utz PJ, Sollid LM, Chien YH, Heath JR, Fernandez-Becker NQ, Nadeau KC, Saligrama N, Davis MM. KIR +CD8 + T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science 2022; 376:eabi9591. [PMID: 35258337 PMCID: PMC8995031 DOI: 10.1126/science.abi9591] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Jing Li
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxim Zaslavsky
- Program in Computer Science, Stanford University, Stanford, CA, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J. Sikora
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Shin-Heng Chiou
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang Chen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiefu Li
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Wilhelmy
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alana M. McSween
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Nathan A. Bracey
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Gopal Krishna R. Dhondalay
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Kartik Bhamidipati
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy Pai
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucas B. Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey E. Dunn
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen L. Hauser
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jorge R. Oksenberg
- Department of Neurology and UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - William H. Robinson
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cornelia L. Dekker
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lars M. Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ludvig M. Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Yueh-Hsiu Chien
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Kari C. Nadeau
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Naresha Saligrama
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Bolivar-Wagers S, Larson JH, Jin S, Blazar BR. Cytolytic CD4 + and CD8 + Regulatory T-Cells and Implications for Developing Immunotherapies to Combat Graft-Versus-Host Disease. Front Immunol 2022; 13:864748. [PMID: 35493508 PMCID: PMC9040077 DOI: 10.3389/fimmu.2022.864748] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).
Collapse
Affiliation(s)
| | | | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
20
|
Beyzaei Z, Shojazadeh A, Geramizadeh B. The role of regulatory T cells in liver transplantation. Transpl Immunol 2022; 70:101512. [PMID: 34871717 DOI: 10.1016/j.trim.2021.101512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
The liver is considered a tolerogenic organ that can induce peripheral tolerance. The exact mechanisms of tolerance in the liver remain undefined. Regulatory T cells (Tregs) have been demonstrated to be involved in inducing and maintaining peripheral tolerance. They play an important role in the prevention of immune responses and autoimmunity. The main focus of this review is the role of Tregs and their subpopulation in liver transplantation. More specifically, this manuscript will highlight the recent findings about using Treg cells as a biomarker in liver transplantation. There are some reports and animal models about the role of Tregs in the process of rejection of liver transplantation. Previous reports and studies have suggested that by increasing the number of Tregs better liver transplant outcomes will be accomplished by enhancing tolerance. It has been shown that the levels of CD4 + CD25 + FOXP3+ Treg cells correlate with the inhibition of acute allograft rejection in liver transplantation; however, further studies must be done to address the potential role of Treg cells in chronic rejection. Indeed, in the future, Treg cells may have potential use as a beneficial biomarker to screen long-term graft function.
Collapse
Affiliation(s)
- Zahra Beyzaei
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shojazadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Medical School of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Li J, Zaslavsky M, Su Y, Sikora MJ, van Unen V, Christophersen A, Chiou SH, Chen L, Li J, Ji X, Wilhelmy J, McSween AM, Palanski BA, Aditya Mallajosyula VV, Dhondalay GKR, Bhamidipati K, Pai J, Kipp LB, Dunn JE, Hauser SL, Oksenberg JR, Satpathy AT, Robinson WH, Steinmetz LM, Khosla C, Utz PJ, Sollid LM, Heath JR, Fernandez-Becker NQ, Nadeau KC, Saligrama N, Davis MM. Human KIR + CD8 + T cells target pathogenic T cells in Celiac disease and are active in autoimmune diseases and COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.23.473930. [PMID: 34981055 PMCID: PMC8722592 DOI: 10.1101/2021.12.23.473930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UNLABELLED Previous reports show that Ly49 + CD8 + T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8 + T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR + CD8 + T cells can efficiently eliminate pathogenic gliadin-specific CD4 + T cells from Celiac disease (CeD) patients' leukocytes in vitro . Furthermore, we observe elevated levels of KIR + CD8 + T cells, but not CD4 + regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR + CD8 + T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8 + T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells. ONE-SENTENCE SUMMARY Here we identified KIR + CD8 + T cells as a regulatory CD8 + T cell subset in humans that suppresses self-reactive or otherwise pathogenic CD4 + T cells.
Collapse
|
22
|
Wang X, Xie F, Zhou X, Chen T, Xue Y, Wang W. 18β-Glycyrrhetinic acid inhibits the apoptosis of cells infected with rotavirus SA11 via the Fas/FasL pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1098-1105. [PMID: 34411493 PMCID: PMC8382007 DOI: 10.1080/13880209.2021.1961821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT 18β-Glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid saponin metabolite of glycyrrhizin, exhibits several biological activities. OBJECTIVE We investigated the effects of 18β-GA on MA104 cells infected with rotavirus (RV) and its potential mechanism of action. MATERIALS AND METHODS Cell Counting Kit-8 was used to assess tissue culture infective dose 50 (TCID50) and 50% cellular cytotoxicity (CC50) concentration. MA104 cells infected with RV SA11 were treated with 18β-GA (1, 2, 4, and 8 μg/mL, respectively). Cytopathic effects were observed. The virus inhibition rate, concentration for 50% of maximal effect (EC50), and selection index (SI) were calculated. Cell cycle, cell apoptosis, and mRNA and protein expression related to the Fas/FasL pathway were detected. RESULTS TCID50 of RV SA11 was 10-4.47/100 µL; the CC50 of 18β-GA on MA104 cells was 86.92 µg/mL. 18β-GA showed significant antiviral activity; EC50 was 3.14 μg/mL, and SI was 27.68. The ratio of MA104 cells infected with RV SA11 in the G0/G1 phase and the G2/M phase decreased and increased, respectively, after 18β-GA treatment. 18β-GA significantly induced apoptosis in the infected cells. Furthermore, after 18β-GA treatment, the mRNA and protein expression levels of Fas, FasL, caspase 3, and Bcl-2 decreased, whereas the expression levels of Bax increased. DISCUSSION AND CONCLUSIONS The study demonstrates that 18β-GA may be a promising candidate for the treatment of RV SA11 infection and provides theoretical support for the clinical development of glycyrrhizic acid compounds for the treatment of RV infection.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fang Xie
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaofeng Zhou
- Linyi Traditional Chinese Medicine Hospital-Endoscopic Centre, Linyi, China
| | - Ting Chen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ye Xue
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Wang
- Department of Spleen and Stomach Diseases, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
23
|
Kwesi-Maliepaard EM, Jacobs H, van Leeuwen F. Signals for antigen-independent differentiation of memory CD8 + T cells. Cell Mol Life Sci 2021; 78:6395-6408. [PMID: 34398252 PMCID: PMC8558200 DOI: 10.1007/s00018-021-03912-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Weerakoon H, Straube J, Lineburg K, Cooper L, Lane S, Smith C, Alabbas S, Begun J, Miles JJ, Hill MM, Lepletier A. Expression of CD49f defines subsets of human regulatory T cells with divergent transcriptional landscape and function that correlate with ulcerative colitis disease activity. Clin Transl Immunology 2021; 10:e1334. [PMID: 34504692 PMCID: PMC8419695 DOI: 10.1002/cti2.1334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023] Open
Abstract
Objective Adoptive regulatory T cell (Treg) therapy is being trialled for the treatment of different autoimmune disorders, including inflammatory bowel diseases (IBD). In‐depth understanding of the biological variability of Treg in the human blood may be required to improve IBD immune monitoring and treatment strategies. Methods Through a combination of quantitative proteomic, multiparametric flow cytometry, RNA‐sequencing data analysis and functional assays on Treg enriched from the blood of ulcerative colitis (UC) patients and healthy controls, we investigated the association between CD49f expression, Treg phenotype and function, and UC disease activity. Results High‐dimensional analysis and filtering defined two distinct subsets of human Treg based on the presence or absence of CD49f with divergent transcriptional landscape and functional activities. CD49f negative (CD49f−) Treg are enriched for functional Treg markers and present significantly increased suppressive capacity. In contrast, CD49fhigh Treg display a pro‐inflammatory Th17‐like phenotype and accumulate in the blood of patients with UC. Dysregulation on CD49f Treg subsets in patients with UC correlate with disease activity. Conclusion Overall, our findings uncover the importance of CD49f expression on Treg in physiological immunity and in pathological autoimmunity.
Collapse
Affiliation(s)
- Harshi Weerakoon
- Precision and Systems Biomedicine Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,School of Biomedical Sciences The University of Queensland Brisbane QLD Australia.,Department of Biochemistry Faculty of Medicine and Allied Sciences Rajarata University of Sri Lanka Saliyapura Sri Lanka
| | - Jasmin Straube
- Gordon and Jessie Gilmour Leukaemia Research Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Katie Lineburg
- Translational and Human Immunology Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Leanne Cooper
- Gordon and Jessie Gilmour Leukaemia Research Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Steven Lane
- Gordon and Jessie Gilmour Leukaemia Research Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,School of Medicine University of Queensland Brisbane QLD Australia
| | - Corey Smith
- Translational and Human Immunology Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia
| | - Saleh Alabbas
- Inflammatory Bowel Diseases Research Group Mater Research Institute University of Queensland Brisbane QLD Australia
| | - Jakob Begun
- School of Medicine University of Queensland Brisbane QLD Australia.,Inflammatory Bowel Diseases Research Group Mater Research Institute University of Queensland Brisbane QLD Australia.,Mater Hospital Brisbane Brisbane QLD Australia
| | - John J Miles
- Human Immunity Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics James Cook University Cairns QLD Australia
| | - Michelle M Hill
- Precision and Systems Biomedicine Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,Centre for Clinical Research Faculty of Medicine The University of Queensland Brisbane QLD Australia
| | - Ailin Lepletier
- Human Immunity Laboratory QIMR Berghofer Medical Research Institute Herston QLD Australia.,Laboratory of Vaccines for the Developing World Institute for Glycomics Southport QLD Australia
| |
Collapse
|
25
|
Mishra S, Srinivasan S, Ma C, Zhang N. CD8 + Regulatory T Cell - A Mystery to Be Revealed. Front Immunol 2021; 12:708874. [PMID: 34484208 PMCID: PMC8416339 DOI: 10.3389/fimmu.2021.708874] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Treg) are essential to maintain immune homeostasis and prevent autoimmune disorders. While the function and molecular regulation of Foxp3+CD4+ Tregs are well established, much of CD8+ Treg biology remains to be revealed. Here, we will review the heterogenous subsets of CD8+ T cells have been named "CD8+ Treg" and mainly focus on CD122hiLy49+CD8+ Tregs present in naïve mice. CD122hiLy49+CD8+ Tregs, which depends on transcription factor Helios and homeostatic cytokine IL-15, have been established as a non-redundant regulator of germinal center (GC) reaction. Recently, we have demonstrated that TGF-β (Transforming growth factor-β) and transcription factor Eomes (Eomesodermin) are essential for the function and homeostasis of CD8+ Tregs. In addition, we will discuss several open questions regarding the differentiation, function and true identity of CD8+ Tregs as well as a brief comparison between two regulatory T cell subsets critical to control GC reaction, namely CD4+ TFR (follicular regulatory T cells) and CD8+ Tregs.
Collapse
Affiliation(s)
| | | | | | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, The Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
26
|
Mulholland M, Jakobsson G, Lei Y, Sundius L, Ljungcrantz I, Rattik S, Tietge UJF, Engelbertsen D. IL-2Rβγ signalling in lymphocytes promotes systemic inflammation and reduces plasma cholesterol in atherosclerotic mice. Atherosclerosis 2021; 326:1-10. [PMID: 33945906 DOI: 10.1016/j.atherosclerosis.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS The relationship between inflammation and lipid metabolism is complex and bidirectional. Lymphocyte-driven inflammation has been shown to modulate both atherosclerotic plaque development and cholesterol levels, but the mechanisms are incompletely understood. METHODS The cardiometabolic effects of IL-2Rβγ signalling in atherosclerotic Apoe-/- mice were investigated by treatment with an agonistic IL-2Rβγ-targeting IL-2/anti-IL-2 complex or a monoclonal anti-CD122 (IL-2Rβ) blocking antibody. RESULTS Administration of IL-2Rβγ agonistic IL-2/anti-IL-2 complexes to Apoe-/- mice augmented opposing arms of the adaptive immune system. Expansion of effector/memory T cells and increased levels of circulating pro-inflammatory cytokines were observed along with elevated levels of regulatory T cells and IL-10. Notably, IL-2/anti-IL-2 treatment did not affect plaque size but decreased levels of plasma cholesterol. The cholesterol lowering effect of IL-2Rβγ agonism was not affected by anti-CD8 or anti-NK1.1 depleting antibody treatment but was contingent on the presence of adaptive immunity. Expression of multiple liver X receptor (LXR)-related genes, including Pltp and Srebp1c in the liver, was decreased by IL-2/anti-IL-2 treatment. Although IL-2Rβγ agonism lowered cholesterol levels, blocking IL-2Rβγ signalling using an anti-CD122 monoclonal antibody did not impact cholesterol levels or plaque burden in Apoe-/- mice. CONCLUSIONS Elevated IL-2Rβγ signalling results in activation of both inflammatory and regulatory lymphocytes with a net zero effect on atherosclerosis and decreased plasma cholesterol levels. Changes in cholesterol levels were associated with reductions in hepatic LXR-related gene expression. Further studies are needed to investigate the clinical significance of IL-2 mediated modulation of hepatic LXR signalling in inflammatory disorders.
Collapse
Affiliation(s)
- Megan Mulholland
- Department of Clinical Sciences, Lund University, Skåne University Hospital, 20502, Malmö, Sweden.
| | - Gabriel Jakobsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, 20502, Malmö, Sweden
| | - Yu Lei
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, S-14183, Stockholm, Sweden
| | - Lena Sundius
- Department of Clinical Sciences, Lund University, Skåne University Hospital, 20502, Malmö, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences, Lund University, Skåne University Hospital, 20502, Malmö, Sweden
| | - Sara Rattik
- Department of Clinical Sciences, Lund University, Skåne University Hospital, 20502, Malmö, Sweden
| | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, S-14183, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Daniel Engelbertsen
- Department of Clinical Sciences, Lund University, Skåne University Hospital, 20502, Malmö, Sweden.
| |
Collapse
|
27
|
Alderdice M, Craig SG, Humphries MP, Gilmore A, Johnston N, Bingham V, Coyle V, Senevirathne S, Longley D, Loughrey M, McQuaid S, James J, Salto-Tellez M, Lawler M, McArt D. Evolutionary genetic algorithm identifies IL2RB as a potential predictive biomarker for immune-checkpoint therapy in colorectal cancer. NAR Genom Bioinform 2021; 3:lqab016. [PMID: 33928242 PMCID: PMC8057496 DOI: 10.1093/nargab/lqab016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/17/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Identifying robust predictive biomarkers to stratify colorectal cancer (CRC) patients based on their response to immune-checkpoint therapy is an area of unmet clinical need. Our evolutionary algorithm Atlas Correlation Explorer (ACE) represents a novel approach for mining The Cancer Genome Atlas (TCGA) data for clinically relevant associations. We deployed ACE to identify candidate predictive biomarkers of response to immune-checkpoint therapy in CRC. We interrogated the colon adenocarcinoma (COAD) gene expression data across nine immune-checkpoints (PDL1, PDCD1, CTLA4, LAG3, TIM3, TIGIT, ICOS, IDO1 and BTLA). IL2RB was identified as the most common gene associated with immune-checkpoint genes in CRC. Using human/murine single-cell RNA-seq data, we demonstrated that IL2RB was expressed predominantly in a subset of T-cells associated with increased immune-checkpoint expression (P < 0.0001). Confirmatory IL2RB immunohistochemistry (IHC) analysis in a large MSI-H colon cancer tissue microarray (TMA; n = 115) revealed sensitive, specific staining of a subset of lymphocytes and a strong association with FOXP3+ lymphocytes (P < 0.0001). IL2RB mRNA positively correlated with three previously-published gene signatures of response to immune-checkpoint therapy (P < 0.0001). Our evolutionary algorithm has identified IL2RB to be extensively linked to immune-checkpoints in CRC; its expression should be investigated for clinical utility as a potential predictive biomarker for CRC patients receiving immune-checkpoint blockade.
Collapse
Affiliation(s)
- Matthew Alderdice
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
- Health Data Research UK Wales and Northern Ireland
| | - Stephanie G Craig
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Matthew P Humphries
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Alan Gilmore
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
| | - Nicole Johnston
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
| | - Victoria Bingham
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Vicky Coyle
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
| | - Seedevi Senevirathne
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
| | - Maurice B Loughrey
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
| | - Stephen McQuaid
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Jacqueline A James
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, BT9 7AE, Northern Ireland
| | - Mark Lawler
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, BT9 7AE, Northern Ireland
- Health Data Research UK Wales and Northern Ireland
| | - Darragh G McArt
- To whom correspondence should be addressed. Tel: +028 9097 2629;
| |
Collapse
|
28
|
Galectin-1 fosters an immunosuppressive microenvironment in colorectal cancer by reprogramming CD8 + regulatory T cells. Proc Natl Acad Sci U S A 2021; 118:2102950118. [PMID: 34006646 DOI: 10.1073/pnas.2102950118] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) represents the third most common malignancy and the second leading cause of cancer-related deaths worldwide. Although immunotherapy has taken center stage in mainstream oncology, it has shown limited clinical efficacy in CRC, generating an urgent need for discovery of new biomarkers and potential therapeutic targets. Galectin-1 (Gal-1), an endogenous glycan-binding protein, induces tolerogenic programs and contributes to tumor cell evasion of immune responses. Here, we investigated the relevance of Gal-1 in CRC and explored its modulatory activity within the CD8+ regulatory T cell (Treg) compartment. Mice lacking Gal-1 (Lgals1 -/- ) developed a lower number of tumors and showed a decreased frequency of a particular population of CD8+CD122+PD-1+ Tregs in the azoxymethane-dextran sodium sulfate model of colitis-associated CRC. Moreover, silencing of tumor-derived Gal-1 in the syngeneic CT26 CRC model resulted in reduced number and attenuated immunosuppressive capacity of CD8+CD122+PD-1+ Tregs, leading to slower tumor growth. Moreover, stromal Gal-1 also influenced the fitness of CD8+ Tregs, highlighting the contribution of both tumor and stromal-derived Gal-1 to this immunoregulatory effect. Finally, bioinformatic analysis of a colorectal adenocarcinoma from The Cancer Genome Atlas dataset revealed a particular signature characterized by high CD8+ Treg score and elevated Gal-1 expression, which delineates poor prognosis in human CRC. Our findings identify CD8+CD122+PD-1+ Tregs as a target of the immunoregulatory activity of Gal-1, suggesting a potential immunotherapeutic strategy for the treatment of CRC.
Collapse
|
29
|
Niederlova V, Tsyklauri O, Chadimova T, Stepanek O. CD8 + Tregs revisited: A heterogeneous population with different phenotypes and properties. Eur J Immunol 2021; 51:512-530. [PMID: 33501647 DOI: 10.1002/eji.202048614] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Chadimova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
30
|
Kalinina AA, Khromykh LM, Kazansky DB, Deykin AV, Silaeva YY. Suppression of the Immune Response by Syngeneic Splenocytes Adoptively Transferred to Sublethally Irradiated Mice. Acta Naturae 2021; 13:116-126. [PMID: 33959391 PMCID: PMC8084293 DOI: 10.32607/actanaturae.11252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The peripheral T-cell pool consists of several, functionally distinct
populations of CD8+ T cells. CD44 and CD62L are among the major
surface markers that allow us to define T-cell populations. The expression of
these molecules depends on the functional status of a T lymphocyte. Under
lymphopenic conditions, peripheral T cells undergo homeostatic proliferation
and acquire the memory-like surface phenotype CD44hiCD62Lhi. However, the data
on the functional activity of these cells remains controversial. In this paper,
we analyzed the effects of the adoptive transfer of syngeneic splenocytes on
the recovery of CD8+ T cells in sublethally irradiated mice. Our
data demonstrate that under lymphopenia, donor lymphocytes form a population of
memory-like CD8+ T cells with the phenotype CD122+CD5+CD49dhiCXCR3+
that shares the phenotypic characteristics of true memory cells and suppressive
CD8+ T cells. Ex vivo experiments showed that after
adoptive transfer in irradiated mice, T cells lacked the functions of true
effector or memory cells; the allogeneic immune response and immune response to
pathogens were greatly suppressed in these mice.
Collapse
Affiliation(s)
- A. A. Kalinina
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - L. M. Khromykh
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - D. B. Kazansky
- Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, 115478 Russia
| | - A. V. Deykin
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Yu. Yu. Silaeva
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
31
|
Thiele D, La Gruta NL, Nguyen A, Hussain T. Hiding in Plain Sight: Virtually Unrecognizable Memory Phenotype CD8 + T cells. Int J Mol Sci 2020; 21:ijms21228626. [PMID: 33207648 PMCID: PMC7698292 DOI: 10.3390/ijms21228626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Virtual memory T (TVM) cells are a recently described population of conventional CD8+ T cells that, in spite of their antigen inexperience, express markers of T cell activation. TVM cells exhibit rapid responsiveness to both antigen-specific and innate stimuli in youth but acquire intrinsic antigen-specific response defects in the elderly. In this article, we review how the identification of TVM cells necessitates a re-evaluation of accepted paradigms for conventional memory T (TMEM) cells, the potential for heterogeneity within the TVM population, and the defining characteristics of TVM cells. Further, we highlight recent literature documenting the development of TVM cells as a distinct CD8+ T cell lineage as well their biological significance in the context of disease.
Collapse
|
32
|
Berve K, West BL, Martini R, Groh J. Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice. J Neuroinflammation 2020; 17:323. [PMID: 33115477 PMCID: PMC7594417 DOI: 10.1186/s12974-020-01996-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The neuronal ceroid lipofuscinoses (CLN diseases) are fatal lysosomal storage diseases causing neurodegeneration in the CNS. We have previously shown that neuroinflammation comprising innate and adaptive immune reactions drives axonal damage and neuron loss in the CNS of palmitoyl protein thioesterase 1-deficient (Ppt1-/-) mice, a model of the infantile form of the diseases (CLN1). Therefore, we here explore whether pharmacological targeting of innate immune cells modifies disease outcome in CLN1 mice. METHODS We applied treatment with PLX3397 (150 ppm in the chow), a potent inhibitor of the colony stimulating factor-1 receptor (CSF-1R) to target innate immune cells in CLN1 mice. Experimental long-term treatment was non-invasively monitored by longitudinal optical coherence tomography and rotarod analysis, as well as analysis of visual acuity, myoclonic jerks, and survival. Treatment effects regarding neuroinflammation, neural damage, and neurodegeneration were subsequently analyzed by histology and immunohistochemistry. RESULTS We show that PLX3397 treatment attenuates neuroinflammation in CLN1 mice by depleting pro-inflammatory microglia/macrophages. This leads to a reduction of T lymphocyte recruitment, an amelioration of axon damage and neuron loss in the retinotectal system, as well as reduced thinning of the inner retina and total brain atrophy. Accordingly, long-term treatment with the inhibitor also ameliorates clinical outcomes in CLN1 mice, such as impaired motor coordination, visual acuity, and myoclonic jerks. However, we detected a sex- and region-biased efficacy of CSF-1R inhibition, with male microglia/macrophages showing higher responsiveness toward depletion, especially in the gray matter of the CNS. This results in a better treatment outcome in male Ppt1-/- mice regarding some histopathological and clinical readouts and reflects heterogeneity of innate immune reactions in the diseased CNS. CONCLUSIONS Our results demonstrate a detrimental impact of innate immune reactions in the CNS of CLN1 mice. These findings provide insights into CLN pathogenesis and may guide in the design of immunomodulatory treatment strategies.
Collapse
Affiliation(s)
- Kristina Berve
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Present address: Theodor-Kocher-Institute, University of Bern, Bern, Switzerland
| | | | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
33
|
Zhang Q, Huang H, Zheng F, Liu H, Qiu F, Chen Y, Liang CL, Dai Z. Resveratrol exerts antitumor effects by downregulating CD8 +CD122 + Tregs in murine hepatocellular carcinoma. Oncoimmunology 2020; 9:1829346. [PMID: 33150044 PMCID: PMC7588216 DOI: 10.1080/2162402x.2020.1829346] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment restrain antitumor immunity, resulting in tumor aggression and poor survival in hepatocellular carcinoma (HCC). CD8+CD122+ Tregs have been previously shown to be more potent in immunosuppression than are CD4+Foxp3+ Tregs. Previous studies have demonstrated that resveratrol exerts its anti-cancer effects by downregulating CD4+Foxp3+ and M2-like macrophages, two key immunoregulatory cells that maintain the immunosuppressive tumor microenvironment. In this study, we found that resveratrol inhibited the tumor growth in a subcutaneous Hepa1-6 HCC model and decreased the frequency of CD8+CD122+ Tregs in the tumor as well as lymph nodes and spleen of the tumor-bearing mice. It also increased the percentage of IFN-γ-expressing CD8+ T cells in the tumor and peripheral lymphoid organs. The antitumor effects of resveratrol were partially reversed by the adoptive transfer of exogenous CD8+CD122+ Tregs into the tumor-bearing mice. Meanwhile, resveratrol treatment downregulated immunosuppressive cytokines, including TGF-β1 and interleukin-10, in the tumor while elevating antitumor cytokines, TNF-α and IFN-γ. It also inhibited the activation of STAT3 signaling in the tumor. As expected, resveratrol reduced the percentage of M2-like macrophages in the mice. Importantly, resveratrol suppressed orthotopic H22 tumor growth and decreased the frequency of CD8+CD122+ Tregs and M2-like macrophages in the tumor-bearing mice. Furthermore, our studies showed that resveratrol, at non-cytotoxic concentrations, inhibited CD8+CD122+ Treg differentiation from CD8+CD122- T cells in vitro. Thus, our studies unveiled a new immune mechanism underlying the immunosuppressive tumor microenvironment and demonstrated that resveratrol could help reverse it by diminishing CD8+CD122+ Tregs.
Collapse
Affiliation(s)
- Qunfang Zhang
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Haiding Huang
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Fang Zheng
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Feifei Qiu
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Lees JR. CD8+ T cells: The past and future of immune regulation. Cell Immunol 2020; 357:104212. [PMID: 32979764 DOI: 10.1016/j.cellimm.2020.104212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
Regulation of the adaptive immune response is critical for health. Regulatory activity can be found in multiple components of the immune system, however, the focus on particular components of the immune regulatory network has left many aspects of this critical immune component understudied. Here we review the evidence for activities of CD8+ T cells in immune homeostasis and regulation of autoimmune reactivity. The heterogeneous nature of identified CD8+ cell types are examined, and common phenotypes associated with functional activities are defined. The varying types of antigen signal crucial for CD8+ T cell regulatory activity are identified and the implications of these activation pathways for control of adaptive responses is considered. Finally, the promising capacity for transgenic antigen receptor directed cytotoxicity as a mechanism for modulation of autoimmunity is detailed.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
35
|
Shimokawa C, Kato T, Takeuchi T, Ohshima N, Furuki T, Ohtsu Y, Suzue K, Imai T, Obi S, Olia A, Izumi T, Sakurai M, Arakawa H, Ohno H, Hisaeda H. CD8 + regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat Commun 2020; 11:1922. [PMID: 32321922 PMCID: PMC7176710 DOI: 10.1038/s41467-020-15857-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing pancreatic β-cells are destroyed. Intestinal helminths can cause asymptomatic chronic and immunosuppressive infections and suppress disease in rodent models of T1D. However, the underlying regulatory mechanisms for this protection are unclear. Here, we report that CD8+ regulatory T (Treg) cells prevent the onset of streptozotocin -induced diabetes by a rodent intestinal nematode. Trehalose derived from nematodes affects the intestinal microbiota and increases the abundance of Ruminococcus spp., resulting in the induction of CD8+ Treg cells. Furthermore, trehalose has therapeutic effects on both streptozotocin-induced diabetes and in the NOD mouse model of T1D. In addition, compared with healthy volunteers, patients with T1D have fewer CD8+ Treg cells, and the abundance of intestinal Ruminococcus positively correlates with the number of CD8+ Treg cells in humans. Helminth infections are associated with a reduction in inflammatory pathology in rodent models of type 1 diabetes. Here, the authors show patient data and that trehalose (produced by H. polygyrus) can alter the microbiome of mice, inducing regulatory CD8+ T cells and reducing susceptibility to autoimmune diabetes.
Collapse
Affiliation(s)
- Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan. .,Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan. .,Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Immunobiolgy Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Grauduate School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Yoshiaki Ohtsu
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Takashi Imai
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Seiji Obi
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Alex Olia
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan.,Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Hirokazu Arakawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Immunobiolgy Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan. .,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Ebina, 243-0435, Japan.
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan. .,Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan.
| |
Collapse
|
36
|
van Duijn J, Kritikou E, Benne N, van der Heijden T, van Puijvelde GH, Kröner MJ, Schaftenaar FH, Foks AC, Wezel A, Smeets H, Yagita H, Bot I, Jiskoot W, Kuiper J, Slütter B. CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovasc Res 2020; 115:729-738. [PMID: 30335148 DOI: 10.1093/cvr/cvy261] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/07/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
AIMS T lymphocytes play an important role in atherosclerosis development, but the role of the CD8+ T-cell remains debated, especially in the clinically relevant advanced stages of atherosclerosis development. Here, we set out to determine the role of CD8+ T-cells in advanced atherosclerosis. METHODS AND RESULTS Human endarterectomy samples analysed by flow cytometry showed a negative correlation between the percentage of CD8+ T-cells and macrophages, suggesting a possible protective role for these cells in lesion development. To further test this hypothesis, LDLr-/- mice were fed a western-type diet (WTD) for 10 weeks to induce atherosclerosis, after which they received CD8α-depleting or isotype control antibody for 6 weeks. Depletion of CD8+ T-cells in advanced atherosclerosis resulted in less stable lesions, with significantly reduced collagen content in the trivalve area, increased macrophage content and increased necrotic core area compared with controls. Mechanistically, we observed that CD8 depletion specifically increased the fraction of Th1 CD4+ T-cells in the lesions. Treatment of WTD-fed LDLr-/- mice with a FasL-neutralizing antibody resulted in similar changes in macrophages and CD4+ T-cell skewing as CD8+ T-cell depletion. CONCLUSION These findings demonstrate for the first time a local, protective role for CD8+ T-cells in advanced atherosclerosis, through limiting accumulation of Th1 cells and macrophages, identifying a novel regulatory mechanism for these cells in atherosclerosis.
Collapse
Affiliation(s)
- Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Eva Kritikou
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Naomi Benne
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Thomas van der Heijden
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Gijs H van Puijvelde
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Mara J Kröner
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Frank H Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | | | | | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, the Netherlands
| |
Collapse
|
37
|
Fan L, Zhang CJ, Zhu L, Chen J, Zhang Z, Liu P, Cao X, Meng H, Xu Y. FasL-PDPK1 Pathway Promotes the Cytotoxicity of CD8 + T Cells During Ischemic Stroke. Transl Stroke Res 2020; 11:747-761. [PMID: 32036560 DOI: 10.1007/s12975-019-00749-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
CD8+ T cells are recognized as key players in exacerbation of ischemic stroke; however, the underlying mechanism in modulating the function of CD8+ T cells has not been completely elucidated. Here, we uncovered that FasL enhanced the cytotoxicity of CD8+ T cells to neurons after ischemic stroke. Inactivation of FasL specific on CD8+ T cells protected against brain damage and neuron loss. Proteomic analysis identified that PDPK1 functioned downstream of FasL signaling and inhibition of PDPK1 effectively reduced cytotoxicity of CD8+ T cells and improved ischemic neurological deficits. Taken together, these results highlight an intrinsic FasL-PDPK1 pathway regulating the cytotoxicity of CD8+ T cells in ischemic stroke.
Collapse
Affiliation(s)
- Lizhen Fan
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Cun-Jin Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Liwen Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Hailan Meng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China. .,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China. .,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China. .,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
38
|
Flippe L, Bézie S, Anegon I, Guillonneau C. Future prospects for CD8 + regulatory T cells in immune tolerance. Immunol Rev 2019; 292:209-224. [PMID: 31593314 PMCID: PMC7027528 DOI: 10.1111/imr.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD8+ Tregs have been long described and significant progresses have been made about their phenotype, their functional mechanisms, and their suppressive ability compared to conventional CD4+ Tregs. They are now at the dawn of their clinical use. In this review, we will summarize their phenotypic characteristics, their mechanisms of action, the similarities, differences and synergies between CD8+ and CD4+ Tregs, and we will discuss the biology, development and induction of CD8+ Tregs, their manufacturing for clinical use, considering open questions/uncertainties and future technically accessible improvements notably through genetic modifications.
Collapse
Affiliation(s)
- Léa Flippe
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Bézie
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
39
|
Wasnik S, Baylink DJ, Leavenworth J, Liu C, Bi H, Tang X. Towards Clinical Translation of CD8 + Regulatory T Cells Restricted by Non-Classical Major Histocompatibility Complex Ib Molecules. Int J Mol Sci 2019; 20:E4829. [PMID: 31569411 PMCID: PMC6801908 DOI: 10.3390/ijms20194829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022] Open
Abstract
In central lymphoid tissues, mature lymphocytes are generated and pathogenic autoreactive lymphocytes are deleted. However, it is currently known that a significant number of potentially pathogenic autoreactive lymphocytes escape the deletion and populate peripheral lymphoid tissues. Therefore, peripheral mechanisms are present to prevent these potentially pathogenic autoreactive lymphocytes from harming one's own tissues. One such mechanism is dictated by regulatory T (Treg) cells. So far, the most extensively studied Treg cells are CD4+Foxp3+ Treg cells. However, recent clinical trials for the treatment of immune-mediated diseases using CD4+ Foxp3+ Treg cells met with limited success. Accordingly, it is necessary to explore the potential importance of other Treg cells such as CD8+ Treg cells. In this regard, one extensively studied CD8+ Treg cell subset is Qa-1(HLA-E in human)-restricted CD8+ Treg cells, in which Qa-1(HLA-E) molecules belong to a group of non-classical major histocompatibility complex Ib molecules. This review will first summarize the evidence for the presence of Qa-1-restricted CD8+ Treg cells and their regulatory mechanisms. Major discussions will then focus on the potential clinical translation of Qa-1-restricted CD8+ Treg cells. At the end, we will briefly discuss the current status of human studies on HLA-E-restricted CD8+ Treg cells as well as potential future directions.
Collapse
Affiliation(s)
- Samiksha Wasnik
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - David J Baylink
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Jianmei Leavenworth
- Department of Neurosurgery, the University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Department of Microbiology, the University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Chenfan Liu
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Hongzheng Bi
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Xiaolei Tang
- Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA.
| |
Collapse
|
40
|
Zhu W, He X, Cheng K, Zhang L, Chen D, Wang X, Qiu G, Cao X, Weng X. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res 2019; 7:22. [PMID: 31666997 PMCID: PMC6804882 DOI: 10.1038/s41413-019-0057-8] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Ankylosing spondylitis (AS), a common type of spondyloarthropathy, is a chronic inflammatory autoimmune disease that mainly affects spine joints, causing severe, chronic pain; additionally, in more advanced cases, it can cause spine fusion. Significant progress in its pathophysiology and treatment has been achieved in the last decade. Immune cells and innate cytokines have been suggested to be crucial in the pathogenesis of AS, especially human leukocyte antigen (HLA)‑B27 and the interleukin‑23/17 axis. However, the pathogenesis of AS remains unclear. The current study reviewed the etiology and pathogenesis of AS, including genome-wide association studies and cytokine pathways. This study also summarized the current pharmaceutical and surgical treatment with a discussion of future potential therapies.
Collapse
Affiliation(s)
- Wei Zhu
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xuxia He
- 2Department of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Kaiyuan Cheng
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Linjie Zhang
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Di Chen
- 3Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Xiao Wang
- 4Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Guixing Qiu
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xu Cao
- 4Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Xisheng Weng
- 1Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| |
Collapse
|
41
|
T-cell and B-cell perturbations identify distinct differences in HIV-2 compared with HIV-1-induced immunodeficiency. AIDS 2019; 33:1131-1141. [PMID: 30845070 DOI: 10.1097/qad.0000000000002184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND For unknown reasons, HIV-2 is less pathogenic than HIV-1, and HIV-2-induced immunodeficiency may be different from that caused by HIV-1. Previous immunological studies have hinted at possible shifts in both T-cell and B-cell subsets, which we aimed to characterize further. METHODS From an HIV clinic in Guinea-Bissau, 63 HIV-2, 83 HIV-1, and 26 HIV-negative participants were included. All HIV-infected participants were ART-naive. The following cell subsets were analysed by flow cytometry; T cells (maturation and activation), regulatory T cells, and B cells (maturation and activation). RESULTS After standardizing for sex, age, and CD4 T-cell count HIV-2 had 0.938 log10 copies/ml lower HIV RNA levels than the HIV-1-infected patients. Whereas T-cell maturation and regulatory T-cell profiles were similar between patients, HIV-2-infected patients had higher proportions of CD8CD28 and lower proportions of CD8PD-1+ T cells than HIV-1-infected patients. This finding was independent of HIV RNA levels. HIV-2 was also associated with a more preserved proportion of naive B cells. CONCLUSION HIV-2 is characterized by lower viral load, and lower T-cell activation, which may account for the slower disease progression.
Collapse
|
42
|
Abstract
Although cluster of differentiation (CD)8 regulatory T (Treg) cells have been in the last 20 years more studied since evidences of their role in tolerance as been demonstrated in transplantation, autoimmune diseases and cancer, their characteristics are still controversial. In this review, we will focus on recent advances on CD8 Treg cells and description of a role for CD8 Treg cells in tolerance in both solid organ transplantation and graft-versus-host disease and their potential for clinical trials.
Collapse
|
43
|
Combination of eribulin plus AKT inhibitor evokes synergistic cytotoxicity in soft tissue sarcoma cells. Sci Rep 2019; 9:5759. [PMID: 30962488 PMCID: PMC6453888 DOI: 10.1038/s41598-019-42300-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
An activated AKT pathway underlies the pathogenesis of soft tissue sarcoma (STS), with over-expressed phosphorylated AKT (p-AKT) correlating with a poor prognosis in a subset of STS cases. Recently, eribulin, a microtubule dynamics inhibitor, has demonstrated efficacy and is approved in patients with advanced/metastatic liposarcoma and breast cancer. However, mechanisms of eribulin resistance and/or insensitivity remain largely unknown. In this study, we demonstrated that an increased p-AKT level was associated with eribulin resistance in STS cells. We found a combination of eribulin with the AKT inhibitor, MK-2206, synergistically inhibited STS cell growth in vivo as well as in vitro. Mechanistically, eribulin plus MK-2206 induced G1 or G2/M arrest by down-regulating cyclin-dependent kinases, cyclins and cdc2, followed by caspase-dependent apoptosis in STS cells. Our findings demonstrate the significance of p-AKT signaling for eribulin-resistance in STS cells and provide a rationale for the development of an AKT inhibitor in combination with eribulin to treat patients with STS.
Collapse
|
44
|
The relationship between Fas and Fas ligand gene polymorphism and preeclampsia risk. Biosci Rep 2019; 39:BSR20181901. [PMID: 30718366 PMCID: PMC6379228 DOI: 10.1042/bsr20181901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 01/11/2023] Open
Abstract
Preeclampsia is an idiopathic multisystem disorder with partial genetic and immunological etiology. Several studies investigated the association between various single-nucleotide polymorphisms (SNPs) in Fas and Fas ligand (FasL) genes and the risk of preeclampsia. However, they achieved inconsistent results. Therefore, we conducted a meta-analysis by systematically searching the Cochrane Library, PubMed and Embase databases and assessed this association by calculating pooled odds ratios with 95% confidence interval to reach a more trustworthy conclusion. Subgroup analyses by genotype methods and source of controls (SOC) were also conducted. Seven citations containing nine studies were included for four SNPs (Fas -670 A/G, FasL 124A/G, FasL -844C/T, Fas -1377 G/A) in this meta-analysis. Our data suggested the G allele and genotype GG of the Fas -670 A/G polymorphism, GG genotype of the FasL 124A/G polymorphism, and TT genotype of the FasL -844C/T polymorphism increased the risk of preeclampsia. Stratification analyses by genotype methods and SOC also indicated that Fas -670 A/G polymorphism was related to increased risk for preeclampsia. In conclusion, Fas and FasL gene polymorphisms play important roles in the development of preeclampsia. Further well-designed studies in other races are needed to confirm the findings of this meta-analysis.
Collapse
|
45
|
Abstract
Regulatory T cells are central mediators of immune regulation and play an essential role in the maintenance of immune homeostasis in the steady state and under pathophysiological conditions. Disruption of CD8 Treg-dependent recognition of Qa-1-restricted self-antigens can result in dysregulated immune responses, tissue damage, autoimmune disease and cancer. Recent progress in studies on regulatory T cells of the CD8 lineage has provided new biological insight into this specialized regulatory T cell subpopulation. Identification of the Helios transcription factor as an essential control element for the differentiation and function of CD8 regulatory T cells has led to a better understanding of the unique genetic program of these cells. Recent analyses of T-cell receptor usage and antigen recognition by Qa-1-restricted CD8 Treg have provided additional insight into the unusual biological function of this regulatory CD8 lineage. Here we summarize recent advances in our understanding of CD8 regulatory T cells with emphasis on lineage commitment, differentiation and stability.
Collapse
Affiliation(s)
- Hidetoshi Nakagawa
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Lei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States.
| | - Hye-Jung Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Immunology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer 2018; 6:88. [PMID: 30208943 PMCID: PMC6134794 DOI: 10.1186/s40425-018-0401-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background Current checkpoint immunotherapy has shown potential to control cancer by restoring or activating the immune system. Nevertheless, multiple mechanisms are involved in immunotherapy resistance which limits the clinical benefit of checkpoint inhibitors. An immunosuppressive microenvironment is an important factor mediating the original resistance of tumors to immunotherapy. A previous report by our group has demonstrated that local angiotensin II (AngII) predominantly exists in a tumor hypoxic microenvironment where hypoxic tumour cells produced AngII by a hypoxia-lactate-chymase-dependent mechanism. Results Here, using 4T1 and CT26 syngeneic mouse tumor models, we found that local AngII in the tumor microenvironment was involved in immune escape of tumour cells and an AngII signaling blockage sensitized tumours to checkpoint immunotherapy. Furthermore, an AngII signaling blockage reversed the tumor immunosuppressive microenvironment, and inhibition of angiotensinogen (AGT, a precursor of AngII) expression strongly triggered an immune-activating cytokine profile in hypoxic mouse cancer cells. More importantly, AGT silencing combined with a checkpoint blockage generated an abscopal effect in resistant tumors. Conclusion Our study demonstrated an important role of local AngII in the formation of a tumor immunosuppressive microenvironment and its blockage may enhance tumor sensitivity to checkpoint immunotherapy. The combination of an AngII signaling blocker and an immune-checkpoint blockage could be a promising strategy to improve tumors responses to current checkpoint immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-018-0401-3) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Hu X, Leak RK, Thomson AW, Yu F, Xia Y, Wechsler LR, Chen J. Promises and limitations of immune cell-based therapies in neurological disorders. Nat Rev Neurol 2018; 14:559-568. [PMID: 29925925 PMCID: PMC6237550 DOI: 10.1038/s41582-018-0028-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The healthy immune system has natural checkpoints that temper pernicious inflammation. Cells mediating these checkpoints include regulatory T cells, regulatory B cells, regulatory dendritic cells, microglia, macrophages and monocytes. Here, we highlight discoveries on the beneficial functions of regulatory immune cells and their mechanisms of action and evaluate their potential use as novel cell-based therapies for brain disorders. Regulatory immune cell therapies have the potential not only to mitigate the exacerbation of brain injury by inflammation but also to promote an active post-injury brain repair programme. By harnessing the reparative properties of these cells, we can reduce over-reliance on medications that mask clinical symptoms but fail to impede or reverse the progression of brain disorders. Although these discoveries encourage further testing and genetic engineering of regulatory immune cells for the clinical management of neurological disorders, a number of challenges must be surmounted to improve their safety and efficacy in humans.
Collapse
Affiliation(s)
- Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuguo Xia
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lawrence R Wechsler
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Description of CD8 + Regulatory T Lymphocytes and Their Specific Intervention in Graft-versus-Host and Infectious Diseases, Autoimmunity, and Cancer. J Immunol Res 2018; 2018:3758713. [PMID: 30155493 PMCID: PMC6098849 DOI: 10.1155/2018/3758713] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Gershon and Kondo described CD8+ Treg lymphocytes as the first ones with regulating activity due to their tolerance ability to foreign antigens and their capacity to inhibit the proliferation of other lymphocytes. Regardless, CD8+ Treg lymphocytes have not been fully described-unlike CD4+ Treg lymphocytes-because of their low numbers in blood and the lack of specific and accurate population markers. Still, these lymphocytes have been studied for the past 30 years, even after finding difficulties during investigations. As a result, studies have identified markers that define their subpopulations. This review is focused on the expression of cell membrane markers as CD25, CD122, CD103, CTLA-4, CD39, CD73, LAG-3, and FasL as well as soluble molecules such as FoxP3, IFN-γ, IL-10, TGF-β, IL-34, and IL-35, in addition to the lack of expression of cell activation markers such as CD28, CD127 CD45RC, and CD49d. This work also underlines the importance of identifying some of these markers in infections with several pathogens, autoimmunity, cancer, and graft-versus-host disease as a strategy in their prevention, monitoring, and cure.
Collapse
|
49
|
Groh J, Hörner M, Martini R. Teriflunomide attenuates neuroinflammation-related neural damage in mice carrying human PLP1 mutations. J Neuroinflammation 2018; 15:194. [PMID: 29970109 PMCID: PMC6031103 DOI: 10.1186/s12974-018-1228-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetically caused neurological disorders of the central nervous system (CNS) are mostly characterized by poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with low-grade, disease-promoting inflammation, another feature shared by progressive forms of multiple sclerosis (PMS). We previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients diagnosed with MS. These mutations cause a loss of PLP function leading to a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation promotes disease progression in these models, suggesting that pharmacological modulation of inflammation might ameliorate disease outcome. METHODS We applied teriflunomide, an approved medication for relapsing-remitting MS targeting activated T-lymphocytes, in the drinking water (10 mg/kg body weight/day). Experimental long-term treatment of PLP mutant mice was non-invasively monitored by longitudinal optical coherence tomography and by rotarod analysis. Immunomodulatory effects were subsequently analyzed by flow cytometry and immunohistochemistry and treatment effects regarding neural damage, and neurodegeneration were assessed by histology and immunohistochemistry. RESULTS Preventive treatment with teriflunomide attenuated the increase in number of CD8+ cytotoxic effector T cells and fostered the proliferation of CD8+ CD122+ PD-1+ regulatory T cells in the CNS. This led to an amelioration of axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the innermost retinal composite layer in longitudinal studies and ameliorated clinical outcome upon preventive long-term treatment. Treatment of immune-incompetent PLP mutants did not provide evidence for a direct, neuroprotective effect of the medication. When treatment was terminated, no rebound of neuroinflammation occurred and histopathological improvement was preserved for at least 75 days without treatment. After disease onset, teriflunomide halted ongoing axonal perturbation and enabled a recovery of dendritic arborization by surviving ganglion cells. However, neither neuron loss nor clinical features were ameliorated, likely due to already advanced neurodegeneration before treatment onset. CONCLUSIONS We identify teriflunomide as a possible medication not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany.
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany.
| |
Collapse
|
50
|
Ratajczak W, Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W. Immunological memory cells. Cent Eur J Immunol 2018; 43:194-203. [PMID: 30135633 PMCID: PMC6102609 DOI: 10.5114/ceji.2018.77390] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/16/2018] [Indexed: 02/03/2023] Open
Abstract
This article reviews immunological memory cells, currently represented by T and B lymphocytes and natural killer (NK) cells, which determine a rapid and effective response against a second encounter with the same antigen. Among T lymphocytes, functions of memory cells are provided by their subsets: central memory, effector memory, tissue-resident memory, regulatory memory and stem memory T cells. Memory T and B lymphocytes have an essential role in the immunity against microbial pathogens but are also involved in autoimmunity and maternal-fetal tolerance. Furthermore, the evidence of immunological memory has been established for NK cells. NK cells can respond to haptens or viruses, which results in generation of antigen-specific memory cells. T, B and NK cells, which have a role in immunological memory, have been characterized phenotypically and functionally. During the secondary immune response, these cells are involved in the reaction against foreign antigens, including pathogens, and take part in autoimmune diseases, but also are crucial to immunological tolerance and vaccine therapy.
Collapse
Affiliation(s)
- Weronika Ratajczak
- Scientific Circle of Microbiologists, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | | | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|