1
|
Talebi F, Gregucci F, Ahmed J, Ben Chetrit N, D. Brown B, Chan TA, Chand D, Constanzo J, Demaria S, I. Gabrilovich D, Golden E, Godkin A, Guha C, P. Gupta G, Hasan A, G. Herrera F, Kaufman H, Li D, A. Melcher A, McDonald S, Merghoub T, Monjazeb AM, Paris S, Pitroda S, Sadanandam A, Schaue D, Santambrogio L, Szapary P, Sage J, W. Welsh J, Wilkins A, H. Young K, Wennerberg E, Zitvogel L, Galluzzi L, Deutsch E, C. Formenti S. Updates on radiotherapy-immunotherapy combinations: Proceedings of 8th Annual ImmunoRad Conference. Oncoimmunology 2025; 14:2507856. [PMID: 40401900 PMCID: PMC12101595 DOI: 10.1080/2162402x.2025.2507856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The annual ImmunoRad Conference has established itself as a recurrent occasion to explore the possibility of combining radiation therapy (RT) and immunotherapy (IT) for clinical cancer management. Bringing together a number of preclinical and clinical leaders in the fields of radiation oncology, immuno-oncology and IT, this annual event fosters indeed essential conversations and fruitful exchanges on how to address existing challenges to expand the therapeutic value of RT-IT combinations. The 8th edition of the ImmunoRad Conference, which has been held in October 2024 at the Weill Cornell Medical College of New York City, highlighted exciting preclinical and clinical advances at the interface between RT and IT, setting the stage for extra progress toward extended benefits for patients with an increasing variety of tumor types. Here, we critically summarize the lines of investigation that have been discussed at the occasion of the 8th Annual ImmunoRad Conference.
Collapse
Affiliation(s)
- Fereshteh Talebi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jalal Ahmed
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nir Ben Chetrit
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy A. Chan
- Department of Cancer Sciences, Global Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Case Western University School of Medicine, Cleveland, OH, USA
| | | | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Godkin
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Chandan Guha
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaorav P. Gupta
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Fernanda G. Herrera
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
- Services of Radiation Oncology and Immuno-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Donna Li
- University of Wisconsin, Madison, WI, USA
| | - Alan A. Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Sierra McDonald
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center and Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, San Diego, CA, USA
| | | | - Sean Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Julien Sage
- Departments of Genetics and Pediatrics, Stanford University, Stanford, California
| | - James W. Welsh
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Kristina H. Young
- Division of Radiation Oncology, The Oregon Clinic, Portland, OR, USA
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Eric Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Laurence Zitvogel
- Gustave Roussy, INSERM U1015, Division of Medicine, Paris-Saclay University, Center of Clinical Investigations BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, INSERM U1030, Division of Medicine, Paris-Saclay University, RHU LySAIRI “Lymphocyte-Sparing Artificial Intelligence-guided Radio-Immunotherapy”, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Joo H, Olea XD, Zhuang A, Zheng B, Kim H, Ronai ZA. Epigenetic mechanisms in melanoma development and progression. Trends Cancer 2025:S2405-8033(25)00099-8. [PMID: 40328568 DOI: 10.1016/j.trecan.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Knowledge of cancer development and progression gained over the last few decades has enabled mapping of genetic and epigenetic changes unique to different phases of tumor evolution. Here we focus on epigenetic changes that drive melanoma development and progression. We highlight the importance of epigenetic mechanisms which encompass crosstalk with melanoma microenvironment that affect metastasis and therapy resistance. This review summarizes recent advances and describes potential strategies to leverage this knowledge to devise new therapies.
Collapse
Affiliation(s)
- Hyunjeong Joo
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ximena Diaz Olea
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aojia Zhuang
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bin Zheng
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hyungsoo Kim
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ze'ev A Ronai
- Jim and Eleanor Randall Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Translational Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
3
|
Coholan LJ, Karaca C, Musenge FM, White ML, Camblin AJ, Leboeuf D, Maldini CR. Combined CLEC2d Expression and CD58 Loss Mitigate Rejection of Allogeneic T Cells. J Immunother 2025; 48:127-137. [PMID: 40171839 DOI: 10.1097/cji.0000000000000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025]
Abstract
Immunogenicity of allogeneic chimeric antigen receptor (CAR) T cell therapies may preclude durable therapeutic responses and broad clinical implementation. Although genetic knockout (KO) of beta-2-microglobulin (B2M) is commonly employed to abrogate HLA class I expression thereby preventing allorecognition by recipient T cells, this deficiency induces missing-self responses by natural killer (NK) cells. Here, we demonstrated that forced expression of a chimeric membrane-bound CLEC2d, an inhibitory ligand of CD161, and concurrent loss of CD58 (LFA-3), an adhesion ligand of CD2, substantially mitigated NK cell responses against allogeneic B2MKO T cells. This combination reduced in vitro NK cell-dependent lysis to a greater extent than either strategy alone and increased the in vivo persistence of these cells after infusion into NK cell-replete humanized mice. Collectively, these findings demonstrate that the convergence of orthogonal genome engineering approaches effectively averts NK cell-driven rejection of allogeneic T cells for immunotherapy.
Collapse
|
4
|
Han X, Zhang J, Li W, Huang X, Wang X, Wang B, Gao L, Chen H. The role of B2M in cancer immunotherapy resistance: function, resistance mechanism, and reversal strategies. Front Immunol 2025; 16:1512509. [PMID: 40191187 PMCID: PMC11968357 DOI: 10.3389/fimmu.2025.1512509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Immunotherapy has emerged as a preeminent force in the domain of cancer therapeutics and achieved remarkable breakthroughs. Nevertheless, the high resistance has become the most substantial impediment restricting its clinical efficacy. Beta-2 microglobulin (B2M), the light chain of major histocompatibility complex (MHC) class I, plays an indispensable part by presenting tumor antigens to cytotoxic T lymphocytes (CTLs) for exerting anti-tumor effects. Accumulating evidence indicates that B2M mutation/defect is one of the key mechanisms underlying tumor immunotherapy resistance. Therefore, elucidating the role played by B2M and devising effective strategies to battle against resistance are pressing issues. This review will systematically expound upon them, aiming to provide insight into the potential of B2M as a promising target in anticancer immune response.
Collapse
Affiliation(s)
- Xiaowen Han
- Lanzhou University Second Hospital, Lanzhou, China
| | - Jiayi Zhang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Weidong Li
- Lanzhou University Second Hospital, Lanzhou, China
| | | | - Xueyan Wang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Bofang Wang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, China
| |
Collapse
|
5
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
6
|
Ning B, Chiu DJ, Pfefferkorn RM, Kefella Y, Kane E, Reyes-Ortiz V, Liu G, Zhang S, Liu H, Sultan L, Green E, Constant M, Spira AE, Campbell JD, Reid ME, Varelas X, Burks EJ, Lenburg ME, Mazzilli SA, Beane JE. Epithelial miR-149-5p up-regulation is associated with immune evasion in progressive bronchial premalignant lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636307. [PMID: 39975222 PMCID: PMC11838605 DOI: 10.1101/2025.02.03.636307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The molecular drivers bronchial premalignant lesion progression to invasive lung squamous cell carcinoma are not well defined. Prior work profiling longitudinally collected bronchial premalignant lesion biopsies by RNA sequencing defined a proliferative subtype, enriched with bronchial dysplasia. We found that a gene co-expression module associated with interferon gamma signaling and antigen processing/presentation was down-regulated in progressive/persistent versus regressive lesions within the proliferative subtype, suggesting a functional impact of these genes on immune evasion. RNA from these same premalignant lesions was profiled by microRNA (miRNA) sequencing and a miRNA-gene network analysis identified hsa-miR-149-5p as a potential regulator of this antigen presentation gene co-expression module associated with lesion progression. hsa-miR-149-5p was found to be predominantly expressed in the epithelium and up-regulated in progressive/persistent versus regressive proliferative lesions while targets of this miRNA, the transcriptional coactivator of MHC-I gene expression, NLRC5 , and the genes it regulates were down-regulated. MicroRNA in situ hybridization of hsa-miR-149-5p in tissue from adjacent fixed biopsies showed that hsa-miR-149-5p was increased in areas of bronchial dysplasia in progressive/persistent versus regressive lesions. Imaging mass cytometry showed that NLRC5 protein expression was decreased in progressive/persistent versus regressive lesions within areas of hyperplasia, metaplasia, and dysplasia. Additionally, basal cells with high versus low levels of NLRC5 were found to be in close spatial proximity to CD8 T cells, suggesting that these cells exhibit increased functional MHC-I gene expression in lesions with low hsa-miR-149-5p expression. Collectively, our data suggests a functional role for hsa-miR-149-5p in bronchial premalignant lesions and may serve as a therapeutic target for PML immunomodulation. STATEMENT OF SIGNIFICANCE Integrative analysis across bronchial premalignant lesions has identified and localized a potential regulator of immune evasion in progressive/persistent lesions that could be a novel therapeutic target.
Collapse
|
7
|
Tolu SS, Viny AD, Amengual JE, Pro B, Bates SE. Getting the right combination to break the epigenetic code. Nat Rev Clin Oncol 2025; 22:117-133. [PMID: 39623073 DOI: 10.1038/s41571-024-00972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 01/26/2025]
Abstract
Rapid advances in the field of epigenetics have facilitated the development of novel therapeutics targeting epigenetic mechanisms that are hijacked by cancer cells to support tumour growth and progression. Several epigenetic agents have been approved by the FDA for the treatment of cancer; however, the efficacy of these drugs is dependent on the underlying biology and drivers of the disease, with inherent differences between solid tumours and haematological malignancies. The efficacy of epigenetic drugs as single agents remains limited across most cancer types, which has spurred the clinical development of combination therapies, with the hope of attaining synergistic activity and/or overcoming treatment resistance. In this Review we discuss clinical advances that have been achieved with the use of epigenetic agents in combination with chemotherapies, immunotherapies or other targeted agents, including epigenetic-epigenetic combinations, as well as limitations and challenges associated with these combinatorial strategies. So far, the success of combination therapies targeting epigenetic mechanisms has generally been confined to haematological malignancies, with limited efficacy observed in patients with solid tumours. Nevertheless, this Review captures the field of epigenetic combination therapies across the spectra of haematology and oncology, highlighting opportunities for precision therapy to effectively harness the potential of epigenetic agents and produce meaningful improvements in clinical outcomes.
Collapse
Affiliation(s)
- Seda S Tolu
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Aaron D Viny
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jennifer E Amengual
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Barbara Pro
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Susan E Bates
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Liang J, Vitale T, Zhang X, Jackson TD, Yu D, Jedrychowski M, Gygi SP, Widlund HR, Wucherpfennig KW, Puigserver P. Selective deficiency of mitochondrial respiratory complex I subunits Ndufs4/6 causes tumor immunogenicity. NATURE CANCER 2025; 6:323-337. [PMID: 39824999 DOI: 10.1038/s43018-024-00895-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models. We show that deletion of Ndufs4 induces expression of the major histocompatibility complex (MHC) class I co-activator Nlrc5 and antigen presentation machinery components, most notably H2-K1. This induction of MHC-related genes is driven by a pyruvate dehydrogenase-dependent accumulation of mitochondrial acetyl-CoA, which leads to an increase in histone H3K27 acetylation within the Nlrc5 and H2-K1 promoters. Taken together, this work shows that selective CI inhibition restricts tumor growth and that specific targeting of Ndufs4 or Ndufs6 increases T cell surveillance and ICB responsiveness.
Collapse
Affiliation(s)
- Jiaxin Liang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tevis Vitale
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xixi Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas D Jackson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deyang Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hans R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
9
|
Zhu H, Xiao C, Chen J, Guo B, Wang W, Tang Z, Cao Y, Zhan L, Zhang JH. New insights into the structure domain and function of NLR family CARD domain containing 5. Cell Commun Signal 2025; 23:42. [PMID: 39849460 PMCID: PMC11755879 DOI: 10.1186/s12964-024-02012-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/22/2024] [Indexed: 01/25/2025] Open
Abstract
NOD-like receptor family CARD domain-containing 5 (NLRC5) is a major transcriptional coactivator of MHC class I genes. NLRC5 is the largest member of the NLR family and contains three domains: an untypical caspase recruitment domain (uCARD), a central nucleotide-binding and oligomerization domain (NOD or NACHT), and a leucine-rich repeat (LRR) domain. The functional variability of NLRC5 has been attributed to its different domain interactions with specific ligands in different cell types. In this review, we address the molecular mechanisms and their implications in multiple microenvironments based on the different functional domains of NLRC5.
Collapse
Affiliation(s)
- Haiqing Zhu
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Chengwei Xiao
- The Second Affiliated Hospital of Bengbu Medical University, No. 663 Longhua Road, Bengbu, Anhui, 233040, China
| | - Jiahua Chen
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Bao Guo
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wenyan Wang
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China
| | - Zhenhai Tang
- Center for Scientific Research of Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230022, China
| | - Yunxia Cao
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Lei Zhan
- The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Jun-Hui Zhang
- The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
10
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
11
|
Lind HT, Hall SC, Strait AA, Goon JB, Aleman JD, Chen SMY, Karam SD, Young CD, Wang JH, Wang XJ. MHC class I upregulation contributes to the therapeutic response to radiotherapy in combination with anti-PD-L1/anti-TGF-β in squamous cell carcinomas with enhanced CD8 T cell memory-driven response. Cancer Lett 2025; 608:217347. [PMID: 39580046 PMCID: PMC11875078 DOI: 10.1016/j.canlet.2024.217347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Radiation therapy (RT), a mainstay treatment for head and neck squamous cell carcinoma (HNSCC), kills cancer cells and modulates the tumor immune microenvironment. We sought to assess the effect of RT in combination with PD-L1/TGF-β dual blockade in squamous cell carcinomas (SCC) and analyze the underlying mechanisms. We transplanted mouse SCC cells derived from keratin-15 (K15) stem cells harboring KrasG12D/Smad4-/- mutations into syngeneic recipients and irradiated tumors followed by PD-L1/TGF-β dual blockade. We identified a responder line and a non-responder line to this combination therapy. Responder hosts eradicated SCCs by the combined therapy and rejected re-transplanted SCC cells 6 months post tumor eradication, which correlated with clonotype expansions of splenic CD8 T cells and effector memory gene expression identified by single cell sequencing of TCR and transcriptomes, respectively. Mechanistically, RT upregulated MHC-I (major histocompatibility complex I) and its transcriptional regulators including NLRC5, in SCCs of the responders but not non-responders. These data are consistent with the TCGA HNSCC database in which NLRC5 correlated to MHC-I genes and CD8 T cell gene expression. Functional contribution of MHC-I to PD-L1/TGF-β blockade response was confirmed by knocking out beta-2-microglobulin in responder cells that attenuated the response to the same therapy. Thus, the therapeutic effectiveness appeared to largely depend on cancer-cell MHC-I expression, triggering CD8 T cell effector memory-driven responses against tumor cell antigens. Identifying the differential RT response to MHC-I induction may serve as a predictive marker for stratifying patients that are most likely to benefit from this combination therapy.
Collapse
Affiliation(s)
- Hanne T Lind
- Department of Pathology, University of California, Davis, CA, USA
| | - Spencer C Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander A Strait
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jack B Goon
- Department of Pathology, University of California, Davis, CA, USA
| | - John D Aleman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha M Y Chen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, MO, USA
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, Department of Immunology, University of Pittsburg, Pittsburgh, PA, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of California, Davis, CA, USA; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; VA Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
12
|
Ma X, Ning S, Sun T, Liu M, Liu J. Expression and clinical significance of NLRC5 in hepatocellular carcinoma. Cancer Biol Ther 2024; 25:2390205. [PMID: 39132868 PMCID: PMC11321415 DOI: 10.1080/15384047.2024.2390205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
NLRC5, the largest member of the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family, has been reported to participate in the regulation of immune function and is associated with chronic inflammatory diseases. However, the biological function of NLRC5 in hepatocellular carcinoma (HCC) has not been fully demonstrated. The aim of this study is to evaluate NLRC5 expression in the tumor tissues of HCC patients undergoing surgical treatment, assess its prognostic value, and explore its relationship with critical immune-related molecules within the tumor microenvironment. A total of 100 patients with hepatitis B virus-associated HCC receiving surgical treatment were enrolled in the study. Immunohistochemical results were obtained by scoring the intensity of cellular staining and the percentage of positive cells in the tissue sections. The association between NLRC5 expression levels and the main clinicopathological factors was analyzed by Chi-square test method. The prognostic values were analyzed by COX regression model and the Kaplan-Meier survival curve. Receiver operating characteristic (ROC) curve analysis was performed to assess the predictive performance of NLRC5 in postoperative patients with HCC. IHC showed that high expression of NLRC5 was observed in 67% of HCC tissue samples. Chi-square test showed that NLRC5 was a risk factor associated with tumor number, satellite nodule, and envelope invasion. Kaplan-Meier survival curves and COX survival analysis showed that high expression of NLRC5 was significantly associated with decreased overall survival (OS) in HCC patients (HR = 1.79, 95% CI 1.03-3.12, p = .041). However, univariate logistic regression analysis revealed that NLRC5 showed positive relationship with GZMB and CD8α suggesting its role in immune escape of HCC. ROC curve analysis showed that the combination of tumor number, envelope invasion, and NLRC5 expression (area under the curve = 0.824, sensitivity = 77.30%, specificity = 82.4%) can more accurately evaluate the prognosis of HCC patients compared to the combination of only tumor number and envelope invasion (area under the curve = 0.690, sensitivity = 43.9%, specificity = 94.1%).NLRC5 plays a crucial role in progression of HCC and can be considered as a potential prognostic and predictive biomarker. Targeting NLRC5 may provide an attractive therapeutic approach for HCC.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Interventional Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shangkun Ning
- Department of Interventional Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tong Sun
- Department of Interventional Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jibing Liu
- Department of Interventional Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
13
|
Orehek S, Ramuta TŽ, Lainšček D, Malenšek Š, Šala M, Benčina M, Jerala R, Hafner-Bratkovič I. Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors. Nat Commun 2024; 15:10801. [PMID: 39737979 PMCID: PMC11686184 DOI: 10.1038/s41467-024-55083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers. We demonstrate that the electrogenic transfer of ICD effector-encoding plasmids into mouse melanoma tumors when combined with intratumoral expression of cytokines IL-1β, IL-12, or IL-18, enhanced anti-tumor immune responses. Careful selection of immunostimulatory molecules is, however, imperative as a combination of IL-1β and IL-18 antagonized the protective effect of pyroptosis by IFNγ-mediated upregulation of several immunosuppressive pathways. Additionally, we show that the intratumoral introduction of armed pyroptosis provides protection against distant tumors and proves effective across various tumor types without inducing systemic inflammation. Deconstructed inflammasomes thus serve as a powerful, tunable, and tumor-agnostic strategy to enhance antitumor response, even against the most resilient types of tumors.
Collapse
Affiliation(s)
- Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Kong S, Zhang J, Wang L, Li W, Guo H, He Q, Lou H, Ding L, Yang B. Mechanisms of Low MHC I Expression and Strategies for Targeting MHC I with Small Molecules in Cancer Immunotherapy. Cancer Lett 2024:217432. [PMID: 39730087 DOI: 10.1016/j.canlet.2024.217432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Major histocompatibility complex (MHC) class I load antigens and present them on the cell surface, which transduces the tumor-associated antigens to CD8+ T cells, activating the acquired immune system. However, many tumors downregulate MHC I expression to evade immune surveillance. The low expression of MHC I not only reduce recognition by- and cytotoxicity of CD8+ T cells, but also seriously weakens the anti-tumor effect of immunotherapy by restoring CD8+ T cells, such as immune checkpoint inhibitors (ICIs). Accumulated evidence suggested that restoring MHC I expression is an effective strategy for enhancing tumor immunotherapy. This review focuses on mechanisms underlying MHC I downregulation include gene deletion and mutation, transcriptional inhibition, reduced mRNA stability, increased protein degradation, and disruption of endocytic trafficking. We also provide a comprehensive review of small molecules that restore or upregulate MHC I expression, as well as clinical trials involving the combination of ICIs and these small molecule drugs.
Collapse
Affiliation(s)
- Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Honggang Lou
- Center of Clinical Pharmacology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Khalil MI, Wang J, Yang C, Vu L, Yin C, Chadha S, Nabors H, Vocelle D, May DG, Chrisopolus RJ, Zhou L, Roux KJ, Bernard MP, Mi QS, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 promotes cancer immune evasion by degrading MHC class I proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626106. [PMID: 39677690 PMCID: PMC11642734 DOI: 10.1101/2024.11.29.626106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The loss of major histocompatibility complex class I (MHC-I) molecules has been proposed as a mechanism by which cancer cells evade tumor-specific T cells in immune checkpoint inhibitor (ICI)-refractory patients. Nevertheless, the mechanism by which cancer cells downregulate MHC-I is poorly understood. We report here that membrane-associated RING-CH-type finger 8 (MARCHF8), upregulated by human papillomavirus (HPV), ubiquitinates and degrades MHC-I proteins in HPV-positive head and neck cancer (HPV+ HNC). MARCHF8 knockdown restores MHC-I levels on HPV+ HNC cells. We further reveal that Marchf8 knockout significantly suppresses tumor growth and increases the infiltration of natural killer (NK) and T cells in the tumor microenvironment (TME). Furthermore, Marchf8 knockout markedly increases crosstalk between the cytotoxic NK cells and CD8 + T cells with macrophages and enhances the tumor cell-killing activity of CD8 + T cells. CD8 + T cell depletion in mice abrogates Marchf8 knockout-driven tumor suppression and T cell infiltration. Interestingly, Marchf8 knockout, in combination with anti-PD-1 treatment, synergistically suppresses tumor growth in mice bearing ICI-refractory tumors. Taken together, our finding suggests that MARCHF8 could be a promising target for novel immunotherapy for HPV+ HNC patients. One Sentence Summary Targeting MARCHF8 restores MHC-I proteins, induces antitumor CD8 + T cell activity, and suppresses the growth of ICI-refractory tumors.
Collapse
|
16
|
Gestal-Mato U, Herhaus L. Autophagy-dependent regulation of MHC-I molecule presentation. J Cell Biochem 2024; 125:e30416. [PMID: 37126231 DOI: 10.1002/jcb.30416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
The major histocompatibility complex (MHC) class I molecules present peptide antigens to MHC class I-restricted CD8+ T lymphocytes to elicit an effective immune response. The conventional antigen-processing pathway for MHC-I presentation depends on proteasome-mediated peptide generation and peptide loading in the endoplasmic reticulum by members of the peptide loading complex. Recent discoveries in this field highlight the role of alternative MHC-I peptide loading and presentation pathways, one of them being autophagy. Autophagy is a cell-intrinsic degradative pathway that ensures cellular homoeostasis and plays critical roles in cellular immunity. In this review article, we discuss the role of autophagy in MHC class I-restricted antigen presentation, elucidating new findings on the crosstalk of autophagy and ER-mediated MHC-I peptide presentation, dendritic cell-mediated cross-presentation and also mechanisms governing immune evasion. A detailed molecular understanding of the key drivers of autophagy-mediated MHC-I modulation holds promising targets to devise effective measures to improve T cell immunotherapies.
Collapse
Affiliation(s)
- Uxia Gestal-Mato
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Lina Herhaus
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Kulig P, Łuczkowska K, Machaliński B, Baumert B. Deep hematologic response to RD treatment in patients with multiple myeloma is associated with overexpression of IL-17R in CD138+ plasma cells. Sci Rep 2024; 14:23559. [PMID: 39384864 PMCID: PMC11464892 DOI: 10.1038/s41598-024-74558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
Lenalidomide (LEN) is widely used immunomodulatory drug (IMiD). Nonetheless, despite its efficacy, over time patients become resistant to LEN and relapse. Due to high clinical relevance, drug resistance in MM is being thoroughly investigated. However, less is known about predictors of good response to LEN-based treatment. The aim of this study was to identify molecular pathways associated with good and long response to LEN. The study included newly diagnosed MM patients (NDMM) and MM patients treated with first-line LEN and dexamethasone (RD) who achieved and least very good partial remission (VGPR). RNA was isolated from MM cells and new-generation sequencing was performed. Obtained results were validated with qRT-PCR. A global increase in gene expression was found in the RD group compared to NDMM, suggesting the involvement of epigenetic mechanisms. Moreover, upregulation of genes controlling the interaction within MM niche was detected. Next, genes controlling immune response were upregulated. In particular, the gene encoding the IL-17 receptor was overexpressed in the RD group which is a novel finding. This should be emphasized because IL-17-related signaling can potentially be targeted, providing the rationale for future research. Establishing the molecular background associated with long-lasting and profound response to LEN may improve LEN-based chemotherapy regimens and facilitate the development of adjuvant therapies to enhance its anti-MM activity.
Collapse
Affiliation(s)
- Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111, Szczecin, Poland
- Pharmaceutical Facility of Pomeranian Medical University, 71-899, Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111, Szczecin, Poland.
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252, Szczecin, Poland.
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252, Szczecin, Poland.
| |
Collapse
|
18
|
Grabiec M, Sobstyl M, Skirecki T. Nod-like receptors: The relevant elements of glioblastoma`s prognostic puzzle. Pharmacol Res 2024; 208:107411. [PMID: 39270948 DOI: 10.1016/j.phrs.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Despite considerable improvements in understanding the biology of glioblastoma (GB), it still remains the most lethal type of brain tumor in adults. The role of innate immune cells in the development of GB was recently described. In particular, the tumor-immune cell interactions are thought to be critical in enabling tumor tolerance and even protection against therapeutics. Interestingly, the GB cells express proteins belonging to the family of intracellular pattern-recognition receptors, namely the NOD-like receptors (NLRs). Their activation may trigger the formation of the inflammasome complex leading to the secretion of mature IL-1β and IL-18 and thus resulting in cell death. Intrudingly, the expression of most NLRs was found to be correlated with tumor progression and poor prognosis. We speculate that recognizing the role of NOD-like receptors in GB has the potential to improve the effectiveness of diagnostic tools and prognosis, while also encouraging the development of novel precision medicine-based therapies.
Collapse
Affiliation(s)
- Marta Grabiec
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
19
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Xanthopoulou E, Lamprou I, Mitrakas AG, Michos GD, Zois CE, Giatromanolaki A, Harris AL, Koukourakis MI. Autophagy Blockage Up-Regulates HLA-Class-I Molecule Expression in Lung Cancer and Enhances Anti-PD-L1 Immunotherapy Efficacy. Cancers (Basel) 2024; 16:3272. [PMID: 39409895 PMCID: PMC11476265 DOI: 10.3390/cancers16193272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Immune checkpoint inhibitors have an established role in non-small cell lung cancer (NSCLC) therapy. The loss of HLA-class-I expression allows cancer cell evasion from immune surveillance, disease progression, and failure of immunotherapy. The restoration of HLA-class-I expression may prove to be a game-changer in current immunotherapy strategies. Autophagic activity has been recently postulated to repress HLA-class-I expression in cancer cells. METHODS NSCLC cell lines (A549 and H1299) underwent late-stage (chloroquine and bafilomycin) and early-stage autophagy blockage (ULK1 inhibitors and MAP1LC3A silencing). The HLA-class-I expression was assessed with flow cytometry, a Western blot, and RT-PCR. NSCLC tissues were examined for MAP1LC3A and HLA-class-I expression using double immunohistochemistry. CD8+ T-cell cytotoxicity was examined in cancer cells pre-incubated with chloroquine and anti-PD-L1 monoclonal antibodies (Moabs); Results: A striking increase in HLA-class-I expression following incubation with chloroquine, bafilomycin, and IFNγ was noted in A549 and H1299 cancer cells, respectively. This effect was further confirmed in CD133+ cancer stem cells. HLA-class-I, β2-microglobulin, and TAP1 mRNA levels remained stable. Prolonged exposure to chloroquine further enhanced HLA-class-I expression. Similar results were noted following exposure to a ULK1 and a PIKfyve inhibitor. Permanent silencing of the MAP1LC3A gene resulted in enhanced HLA-class-I expression. In immunohistochemistry experiments, double LC3A+/HLA-class-I expression was seldom. Pre-incubation of H1299 cancer cells with chloroquine and anti-PD-L1 MoAbs increased the mean % of apoptotic/necrotic cells from 2.5% to 18.4%; Conclusions: Autophagy blockers acting either at late or early stages of the autophagic process may restore HLA-class-I-mediated antigen presentation, eventually leading to enhanced immunotherapy efficacy.
Collapse
Affiliation(s)
- Erasmia Xanthopoulou
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Ioannis Lamprou
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Achilleas G. Mitrakas
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Georgios D. Michos
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Christos E. Zois
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Adrian L. Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| |
Collapse
|
21
|
Adcox HE, Hunt JR, Allen PE, Siff TE, Rodino KG, Ottens AK, Carlyon JA. Orientia tsutsugamushi Ank5 promotes NLRC5 cytoplasmic retention and degradation to inhibit MHC class I expression. Nat Commun 2024; 15:8069. [PMID: 39277599 PMCID: PMC11401901 DOI: 10.1038/s41467-024-52119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
How intracellular bacteria subvert the major histocompatibility complex (MHC) class I pathway is poorly understood. Here, we show that the obligate intracellular bacterium Orientia tsutsugamushi uses its effector protein, Ank5, to inhibit nuclear translocation of the MHC class I gene transactivator, NLRC5, and orchestrate its proteasomal degradation. Ank5 uses a tyrosine in its fourth ankyrin repeat to bind the NLRC5 N-terminus while its F-box directs host SCF complex ubiquitination of NLRC5 in the leucine-rich repeat region that dictates susceptibility to Orientia- and Ank5-mediated degradation. The ability of O. tsutsugamushi strains to degrade NLRC5 correlates with ank5 genomic carriage. Ectopically expressed Ank5 that can bind but not degrade NLRC5 protects the transactivator during Orientia infection. Thus, Ank5 is an immunoevasin that uses its bipartite architecture to rid host cells of NLRC5 and reduce surface MHC class I molecules. This study offers insight into how intracellular pathogens can impair MHC class I expression.
Collapse
Affiliation(s)
- Haley E Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Thomas E Siff
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
22
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
23
|
Eshraghi R, Sadati S, Bahrami A, Mirjalili SR, Farrokhian A, Mahjoubin-Tehran M, Mirzaei H. Unveiling the role of long non-coding RNA MALAT1: a comprehensive review on myocardial infarction. Front Cardiovasc Med 2024; 11:1429858. [PMID: 39171328 PMCID: PMC11335503 DOI: 10.3389/fcvm.2024.1429858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Myocardial infarction (MI) stands at top global causes of death in developed countries, owing mostly to atherosclerotic plaque growth and endothelial injury-induced reduction in coronary blood flow. While early reperfusion techniques have improved outcomes, long-term treatment continues to be difficult. The function of lncRNAs extends to regulating gene expression in various conditions, both physiological and pathological, such as cardiovascular diseases. The objective of this research is to extensively evaluate the significance of the lncRNA called Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in the development and management of MI. According to research, MALAT1 is implicated in processes such as autophagy, apoptosis, cell proliferation, and inflammation in the cardiovascular system. This investigation examines recent research examining the effects of MALAT1 on heart function and its potential as a mean of diagnosis and treatment for post- MI complications and ischemic reperfusion injury.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Reza Mirjalili
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Farrokhian
- Department of Cardiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
24
|
Sundaram B, Pandian N, Kim HJ, Abdelaal HM, Mall R, Indari O, Sarkar R, Tweedell RE, Alonzo EQ, Klein J, Pruett-Miller SM, Vogel P, Kanneganti TD. NLRC5 senses NAD + depletion, forming a PANoptosome and driving PANoptosis and inflammation. Cell 2024; 187:4061-4077.e17. [PMID: 38878777 PMCID: PMC11283362 DOI: 10.1016/j.cell.2024.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 07/28/2024]
Abstract
NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nagakannan Pandian
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hee Jin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hadia M Abdelaal
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Omkar Indari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Roman Sarkar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily Q Alonzo
- Department of Research and Development, Cell Signaling Technology, Danvers, MA 01915, USA
| | - Jonathon Klein
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
25
|
Chen G, Wang Y, Mo L, Xu X, Zhang X, Yang S, Huang R, Li R, Zhang L, Zhang B. Ultrasound-Activatable In Situ Vaccine for Enhanced Antigen Self- and Cross-Presentation to Overcome Cancer Immunotherapy Resistance. ACS NANO 2024. [PMID: 39051505 DOI: 10.1021/acsnano.4c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Insufficient antigen self-presentation of tumor cells and ineffective antigen cross-presentation by dendritic cells (DCs) contribute to diminished immune recognition and activation, which cause resistance to immunotherapies. Herein, we present an ultrasound-activatable in situ vaccine by utilizing a hybrid nanovesicle composed of a thylakoid (TK)/platelet (PLT) membrane and a liposome encapsulating DNA methyltransferase inhibitor zebularine (Zeb) and sonosensitizer hematoporphyrin monomethyl ether (HMME). Upon local exposure to ultrasound, reactive oxygen species (ROS) are generated and induce the sequential release of the payloads. Zeb can efficiently inhibit tumor DNA hypermethylation, promoting major histocompatibility complex class I (MHC-I) molecules-mediated antigen self-presentation to improve immune recognition. Meanwhile, the catalase on the TK membrane can decompose the tumoral overexpressed H2O2 into O2, which boosts the generation of ROS and the destruction of tumor cells, resulting in the in situ antigen release and cross-presentation of tumor antigens by DCs. This in situ vaccine simultaneously promotes antigen self-presentation and cross-presentation, resulting in heightened antitumor immunity to overcome resistance.
Collapse
Affiliation(s)
- Ge Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yongchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lianfeng Mo
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxia Xu
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Xu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Siyi Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Rong Huang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Ruifang Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lianzhong Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Beibei Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
26
|
Brunschwiler F, Nakka S, Guerra J, Guarda G. A Ménage à trois: NLRC5, immunity, and metabolism. Front Immunol 2024; 15:1426620. [PMID: 39035010 PMCID: PMC11257985 DOI: 10.3389/fimmu.2024.1426620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
The nucleotide-binding and oligomerization domain-like receptors (NLRs) NLR family CARD domain-containing protein 5 (NLRC5) and Class II Major Histocompatibility Complex Transactivator (CIITA) are transcriptional regulators of major histocompatibility complex (MHC) class I and class II genes, respectively. MHC molecules are central players in our immune system, allowing the detection of hazardous 'non-self' antigens and, thus, the recognition and elimination of infected or transformed cells from the organism. Recently, CIITA and NLRC5 have emerged as regulators of selected genes of the butyrophilin (BTN) family that interestingly are located in the extended MHC locus. BTNs are transmembrane proteins exhibiting structural similarities to B7 family co-modulatory molecules. The family member BTN2A2, which indeed contributes to the control of T cell activation, was found to be transcriptionally regulated by CIITA. NLRC5 emerged instead as an important regulator of the BTN3A1, BTN3A2, and BTN3A3 genes. Together with BTN2A1, BTN3As regulate non-conventional Vγ9Vδ2 T cell responses triggered by selected metabolites of microbial origin or accumulating in hematologic cancer cells. Even if endogenous metabolites conform to the canonical definition of 'self', metabolically abnormal cells can represent a danger for the organism and should be recognized and controlled by immune system cells. Collectively, new data on the role of NLRC5 in the expression of BTN3As link the mechanisms regulating canonical 'non-self' presentation and those marking cells with abnormal metabolic configurations for immune recognition, an evolutionary parallel that we discuss in this perspective review.
Collapse
Affiliation(s)
| | | | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
27
|
Ling L, Chen J, Zhan L, Fu J, He R, Wang W, Wei B, Ma X, Cao Y. NLRC5 promotes tumorigenesis by regulating the PI3K/AKT signaling pathway in cervical cancer. Sci Rep 2024; 14:15353. [PMID: 38961101 PMCID: PMC11222428 DOI: 10.1038/s41598-024-66153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer among women worldwide. NLR Family CARD Domain Containing 5 (NLRC5) plays an important role in tumorigenesis. However, its effect and mechanism in CC remains unclear. In this study, we aimed to investigate the function of NLRC5 in CC. NLRC5 was found to be down-regulated in CC tissues compared with normal cervical tissues. However, patients with higher NLRC5 expression had better prognosis, patients with higher age, HPV infection, lymph node metastasis, recurrence and histological grade had worse prognosis. Univariate and multivariate analyses showed NLRC5 to be a potential prognostic indicator for CC. Pearson correlation analysis showed that NLRC5 might exert its function in CC through autophagy related proteins, especially LC3. In vitro experiments demonstrated that NLRC5 inhibited LC3 levels and promoted the proliferation, migration, and invasion of CC cells by activating the PI3K/AKT signaling pathway. Treatment with LY294002 reversed the above phenotype. Taken together, our finding suggested that NLRC5 would participate in cervical tumorigenesis and progression by regulating PI3K/AKT signaling pathway. In addition, NLRC5 and LC3 combined as possible predictors in CC.
Collapse
Affiliation(s)
- Lin Ling
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Juanjuan Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Runhua He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
28
|
Liu X, Zhu H, Guo B, Chen J, Zhang J, Wang T, Zhang J, Shan W, Zou J, Cao Y, Wei B, Zhan L. NLRC5 promotes endometrial carcinoma progression by regulating NF-κB pathway-mediated mismatch repair gene deficiency. Sci Rep 2024; 14:12447. [PMID: 38822039 PMCID: PMC11143240 DOI: 10.1038/s41598-024-63457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
The innate immune molecule NLR family CARD domain-containing 5 (NLRC5) plays a significant role in endometrial carcinoma (EC) immunosurveillance. However, NLRC5 also plays a protumor role in EC cells. Mismatch repair gene deficiency (dMMR) can enable tumors to grow faster and also can exhibit high sensitivity to immune checkpoint inhibitors. In this study, we attempted to determine whether NLRC5-mediated protumor role in EC is via the regulation of dMMR. Our findings revealed that NLRC5 promoted the proliferation, migration, and invasion abilities of EC cells and induced the dMMR status of EC in vivo and in vitro. Furthermore, the mechanism underlying NLRC5 regulated dMMR was also verified. We first found NLRC5 could suppress nuclear factor-kappaB (NF-κB) pathway in EC cells. Then we validated that the positive effect of NLRC5 in dMMR was restricted when NF-κB was activated by lipopolysaccharides in NLRC5-overexpression EC cell lines. In conclusion, our present study confirmed the novel NLRC5/NF-κB/MMR regulatory mechanism of the protumor effect of NLRC5 on EC cells, thereby suggesting that the NLRC5-mediated protumor in EC was depend on the function of MMR.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Haiqing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Junhui Zhang
- Department of Obstetrics and Gynecology, The Frist Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Wang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Wenjun Shan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Junchi Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The Frist Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
29
|
Kubo T, Asano S, Sasaki K, Murata K, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T. Assessment of cancer cell-expressed HLA class I molecules and their immunopathological implications. HLA 2024; 103:e15472. [PMID: 38699870 DOI: 10.1111/tan.15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has shown superior efficacy compared with conventional chemotherapy in certain cancer types, establishing immunotherapy as the fourth standard treatment alongside surgical intervention, chemotherapy, and radiotherapy. In cancer immunotherapy employing ICIs, CD8-positive cytotoxic T lymphocytes are recognized as the primary effector cells. For effective clinical outcomes, it is essential that the targeted cancer cells express HLA class I molecules to present antigenic peptides derived from the tumor. However, cancer cells utilize various mechanisms to downregulate or lose HLA class I molecules from their surface, resulting in evasion from immune surveillance. Correlations between prognosis and the integrity of HLA class I molecules expressed by cancer cells have been consistently found across different types of cancer. This paper provides an overview of the regulatory mechanisms of HLA class I molecules and their role in cancer immunotherapy, with a particular emphasis on the significance of utilizing pathological tissues to evaluate HLA class I molecules expressed in cancer cells.
Collapse
Affiliation(s)
- Terufumi Kubo
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shiori Asano
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenta Sasaki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
30
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
31
|
Peng L, Zhou L, Li H, Zhang X, Li S, Wang K, Yang M, Ma X, Zhang D, Xiang S, Duan Y, Wang T, Sun C, Wang C, Lu D, Qian M, Wang Z. Hippo-signaling-controlled MHC class I antigen processing and presentation pathway potentiates antitumor immunity. Cell Rep 2024; 43:114003. [PMID: 38527062 DOI: 10.1016/j.celrep.2024.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
The major histocompatibility complex class I (MHC class I)-mediated tumor antigen processing and presentation (APP) pathway is essential for the recruitment and activation of cytotoxic CD8+ T lymphocytes (CD8+ CTLs). However, this pathway is frequently dysregulated in many cancers, thus leading to a failure of immunotherapy. Here, we report that activation of the tumor-intrinsic Hippo pathway positively correlates with the expression of MHC class I APP genes and the abundance of CD8+ CTLs in mouse tumors and patients. Blocking the Hippo pathway effector Yes-associated protein/transcriptional enhanced associate domain (YAP/TEAD) potently improves antitumor immunity. Mechanistically, the YAP/TEAD complex cooperates with the nucleosome remodeling and deacetylase complex to repress NLRC5 transcription. The upregulation of NLRC5 by YAP/TEAD depletion or pharmacological inhibition increases the expression of MHC class I APP genes and enhances CD8+ CTL-mediated killing of cancer cells. Collectively, our results suggest a crucial tumor-promoting function of YAP depending on NLRC5 to impair the MHC class I APP pathway and provide a rationale for inhibiting YAP activity in immunotherapy for cancer.
Collapse
Affiliation(s)
- Linyuan Peng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Liang Zhou
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Cancer Research Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Cancer Research Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Su Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Mei Yang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyu Ma
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Danlan Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Cancer Research Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Siliang Xiang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yajun Duan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Tianzhi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Cancer Research Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen 518055, China.
| | - Minxian Qian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhongyuan Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
32
|
Sundaram B, Tweedell RE, Prasanth Kumar S, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity 2024; 57:674-699. [PMID: 38599165 PMCID: PMC11112261 DOI: 10.1016/j.immuni.2024.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
33
|
Zhu B, Ouda R, Kasuga Y, de Figueiredo P, Kobayashi KS. NLRC5/MHC class I transactivator: A key target for immune escape by SARS-CoV-2. Bioessays 2024; 46:e2300109. [PMID: 38461519 DOI: 10.1002/bies.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Antigen presentation to CD8+ T cells by MHC class I molecules is essential for host defense against viral infections. Various mechanisms have evolved in multiple viruses to escape immune surveillance and defense to support viral proliferation in host cells. Through in vitro SARS-CoV-2 infection studies and analysis of COVID-19 patient samples, we found that SARS-CoV-2 suppresses the induction of the MHC class I pathway by inhibiting the expression and function of NLRC5, a major transcriptional regulator of MHC class I genes. In this review, we discuss the molecular mechanisms for suppression of the MHC class I pathway and clinical implications for COVID-19.
Collapse
Affiliation(s)
- Baohui Zhu
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ryota Ouda
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yusuke Kasuga
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Paul de Figueiredo
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| |
Collapse
|
34
|
Cho H, Kim K. Multi-functional nanomedicines for combinational cancer immunotherapy that transform cold tumors to hot tumors. Expert Opin Drug Deliv 2024; 21:627-638. [PMID: 38682272 DOI: 10.1080/17425247.2024.2348656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Currently, cancer immunotherapy is widely used as a groundbreaking method that can completely cure advanced cancers. However, this new immunotherapy has the challenge of low patient response, which is often due to many patients' tumors having an immunosuppressive environment, known as cold tumors. AREAS COVERED This review aims to introduce various nanomedicine-derived combinational cancer immunotherapy that can transform cold tumor into hot tumors. Initially, we discuss new technologies for combinational immunotherapy based on multifunctional nanomedicines that can deliver combinational immunogenic cell death (ICD) inducers, immune checkpoint blockades (ICBs) and immune modulators (IMs) to targeted tumor tissues at the same time. Ultimately, we highlight how multifunctional nanomedicines for combinational cancer immunotherapy can be used to transform cold tumor into hot tumors against advanced cancers. EXPERT OPINION Nanomedicine-derived combinational cancer immunotherapy for delivering multiple ICD inducers, ICBs, and IMs at the same time is recognized as a new potential technology that can activate tumor immunity and simultaneously increase the therapeutic efficacy of immune cells that can transform effectively the cold tumors into hot tumors. Finally, nanomedicine-derived combinational cancer immunotherapy can solve the serious problems of low therapeutic efficacy that occurs when treating single drug or simple combinational drugs in cancer immunotherapy.
Collapse
Affiliation(s)
- Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman's University, Seoul, Republic of Korea
| | | |
Collapse
|
35
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
36
|
Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:223-247. [PMID: 38782500 DOI: 10.1016/bs.ircmb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
37
|
Sun X, Watanabe T, Oda Y, Shen W, Ahmad A, Ouda R, de Figueiredo P, Kitamura H, Tanaka S, Kobayashi KS. Targeted demethylation and activation of NLRC5 augment cancer immunogenicity through MHC class I. Proc Natl Acad Sci U S A 2024; 121:e2310821121. [PMID: 38300873 PMCID: PMC10861931 DOI: 10.1073/pnas.2310821121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 02/03/2024] Open
Abstract
Impaired expression of MHC (major histocompatibility complex) class I in cancers constitutes a major mechanism of immune evasion. It has been well documented that the low level of MHC class I is associated with poor prognosis and resistance to checkpoint blockade therapies. However, there is lmited approaches to specifically induce MHC class I to date. Here, we show an approach for robust and specific induction of MHC class I by targeting an MHC class I transactivator (CITA)/NLRC5, using a CRISPR/Cas9-based gene-specific system, designated TRED-I (Targeted reactivation and demethylation for MHC-I). The TRED-I system specifically recruits a demethylating enzyme and transcriptional activators on the NLRC5 promoter, driving increased MHC class I antigen presentation and accelerated CD8+ T cell activation. Introduction of the TRED-I system in an animal cancer model exhibited tumor-suppressive effects accompanied with increased infiltration and activation of CD8+ T cells. Moreover, this approach boosted the efficacy of checkpoint blockade therapy using anti-PD1 (programmed cell death protein) antibody. Therefore, targeting NLRC5 by this strategy provides an attractive therapeutic approach for cancer.
Collapse
Affiliation(s)
- Xin Sun
- Department of Immunology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Toshiyuki Watanabe
- Department of Immunology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Sapporo060-8638, Japan
| | - Weidong Shen
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Alaa Ahmad
- Department of Immunology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Ryota Ouda
- Department of Immunology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX77807
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211
- Department of Veterinary Pathobiology, University of MissouriSchool of Veterinary Medicine, Columbia, MO65211
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo060-8638, Japan
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, Kawagoe350-8585, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Sapporo060-8638, Japan
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
| | - Koichi S. Kobayashi
- Department of Immunology, Graduate School of Medicine, Hokkaido University, Sapporo060-8638, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX77807
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo060-8638, Japan
| |
Collapse
|
38
|
Tsankov BK, Luchak A, Carr C, Philpott DJ. The effects of NOD-like receptors on adaptive immune responses. Biomed J 2024; 47:100637. [PMID: 37541620 PMCID: PMC10796267 DOI: 10.1016/j.bj.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
It has long been appreciated that cues from the innate immune system orchestrate downstream adaptive immune responses. Although previous work has focused on the roles of Toll-like receptors in this regard, relatively little is known about how Nod-like receptors instruct adaptive immunity. Here we review the functions of different members of the Nod-like receptor family in orchestrating effector and anamnestic adaptive immune responses. In particular, we address the ways in which inflammasome and non-inflammasome members of this family affect adaptive immunity under various infectious and environmental contexts. Furthermore, we identify several key mechanistic questions that studies in this field have left unaddressed. Our aim is to provide a framework through which immunologists in the adaptive immune field may view their questions through an innate-immune lens and vice-versa.
Collapse
Affiliation(s)
- Boyan K Tsankov
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Alexander Luchak
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Charles Carr
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Hu X, Hu Z, Zhang H, Zhang N, Feng H, Jia X, Zhang C, Cheng Q. Deciphering the tumor-suppressive role of PSMB9 in melanoma through multi-omics and single-cell transcriptome analyses. Cancer Lett 2024; 581:216466. [PMID: 37944578 DOI: 10.1016/j.canlet.2023.216466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Skin cutaneous melanoma (SKCM) poses a significant challenge in skin cancers. Recent immunotherapy breakthroughs have revolutionized melanoma treamtment, yet tumor heterogeneity persists as an obstacle. Epigenetic modifications orchestrated by DNA methylation contributed to tumorigenesis, thus potentially unveiling melanoma prognosis. Here, we identified an interferon-gamma (IFN-g) sensitive subtype, which possesses favorable outcomes, robust infiltration CD8+T cells, and IFN-g score in bulk RNA-seq profile. Subsequently, we established an IFN-g sensitivity signature based on machine learning. We validated that PSMB9 is strongly correlated with immunotherapy response in both methylation and expression cohorts in this 10-probe signature. We assumed that PSMB9 acts as a putative melanoma suppressor, for its activation of CD8+T cell; capacity to modulate IFN-γ secretion; and dynamics altering IFN-g receptors in bulk tissue. We performed single-cell RNA-seq on immunotherapy patients' tissue to uncover the nuanced role of PSMB9 in activating CD8T + cells, enhancing IFN-g, and influencing malignant cells receptors and transcriptional factors. Overexpress PSMB9 in two SKCM cell lines to mimic the hypomethylated state to approve our conjecture. Strong cell proliferation and migration inhibition were detected on both cells, indicating that PSMB9 is present in tumor cells and that high expression is detrimental to tumor growth and migration. Overall, comprehensive integrated analysis shows that PSMB9 emerges as a vital prognostic marker, acting predictive potential regarding immunotherapy in melanoma. This evidence not only reveals the multifaceted impact of PSMB9 on both malignant and immune cells but also serves as a prospective target for undergoing immunotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Xing Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Zhengang Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Nan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region, 850001, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
40
|
Kinney BLC, Gunti S, Kansal V, Parrish CJ, Saba NF, Teng Y, Henry MK, Su FY, Kwong GA, Schmitt NC. Rescue of NLRC5 expression restores antigen processing machinery in head and neck cancer cells lacking functional STAT1 and p53. Cancer Immunol Immunother 2024; 73:10. [PMID: 38231444 PMCID: PMC10794329 DOI: 10.1007/s00262-023-03589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
The antigen processing machinery (APM) components needed for a tumor cell to present an antigen to a T cell are expressed at low levels in solid tumors, constituting an important mechanism of immune escape. More than most other solid tumors, head and neck squamous cell carcinoma (HNSCC) cells tend to have low APM expression, rendering them insensitive to immune checkpoint blockade and most other forms of immunotherapy. In HNSCC, this APM deficiency is largely driven by high levels of EGFR and SHP2, leading to low expression and activation of STAT1; however, recent studies suggest that p53, which is often mutated in HNSCCs, may also play a role. In the current study, we aimed to investigate the extent to which STAT1 and p53 individually regulate APM component expression in HNSCC cells. We found that in cells lacking functional p53, APM expression could still be induced by interferon-gamma or DNA-damaging chemotherapy (cisplatin) as long as STAT1 expression remained intact; when both transcription factors were knocked down, APM component expression was abolished. When we bypassed these deficient pathways by rescuing the expression of NLRC5, APM expression was also restored. These results suggest that dual loss of functional STAT1 and p53 may render HNSCC cells incapable of processing and presenting antigens, but rescue of downstream NLRC5 expression may be an attractive strategy for restoring sensitivity to T cell-based immunotherapy.
Collapse
Affiliation(s)
- Brendan L C Kinney
- Department of Otolaryngology - Head and Neck Surgery, Head and Neck Cancer Program, Winship Cancer Institute, Emory University School of Medicine, 550 Peachtree Street NE, 11Th Floor Otolaryngology, Atlanta, GA, 30308, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sreenivasulu Gunti
- National Institute of Deafness and Communication Disorders, NIH, Bethesda, MD, USA
| | - Vikash Kansal
- Department of Otolaryngology - Head and Neck Surgery, Head and Neck Cancer Program, Winship Cancer Institute, Emory University School of Medicine, 550 Peachtree Street NE, 11Th Floor Otolaryngology, Atlanta, GA, 30308, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Nabil F Saba
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Teng
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | | | - Fang-Yi Su
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Gabriel A Kwong
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Nicole C Schmitt
- Department of Otolaryngology - Head and Neck Surgery, Head and Neck Cancer Program, Winship Cancer Institute, Emory University School of Medicine, 550 Peachtree Street NE, 11Th Floor Otolaryngology, Atlanta, GA, 30308, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
41
|
Rodriguez GM, Yakubovich E, Murshed H, Maranda V, Galpin KJ, Cudmore A, Hanna AMR, Macdonald E, Ramesh S, Garson K, Vanderhyden BC. NLRC5 overexpression in ovarian tumors remodels the tumor microenvironment and increases T-cell reactivity toward autologous tumor-associated antigens. Front Immunol 2024; 14:1295208. [PMID: 38235131 PMCID: PMC10791902 DOI: 10.3389/fimmu.2023.1295208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Epithelial ovarian cancer (OC) stands as one of the deadliest gynecologic malignancies, urgently necessitating novel therapeutic strategies. Approximately 60% of ovarian tumors exhibit reduced expression of major histocompatibility complex class I (MHC I), intensifying immune evasion mechanisms and rendering immunotherapies ineffective. NOD-like receptor CARD domain containing 5 (NLRC5) transcriptionally regulates MHC I genes and many antigen presentation machinery components. We therefore explored the therapeutic potential of NLRC5 in OC. Methods We generated OC cells overexpressing NLRC5 to rescue MHC I expression and antigen presentation and then assessed their capability to respond to PD-L1 blockade and an infected cell vaccine. Results Analysis of microarray datasets revealed a correlation between elevated NLRC5 expression and extended survival in OC patients; however, NLRC5 was scarcely detected in the OC tumor microenvironment. OC cells overexpressing NLRC5 exhibited slower tumor growth and resulted in higher recruitment of leukocytes in the TME with lower CD4/CD8 T-cell ratios and increased activation of T cells. Immune cells from peripheral blood, spleen, and ascites from these mice displayed heightened activation and interferon-gamma production when exposed to autologous tumor-associated antigens. Finally, as a proof of concept, NLRC5 overexpression within an infected cell vaccine platform enhanced responses and prolonged survival in comparison with control groups when challenged with parental tumors. Discussion These findings provide a compelling rationale for utilizing NLRC5 overexpression in "cold" tumor models to enhance tumor susceptibility to T-cell recognition and elimination by boosting the presentation of endogenous tumor antigens. This approach holds promise for improving antitumoral immune responses in OC.
Collapse
Affiliation(s)
- Galaxia M. Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Edward Yakubovich
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kristianne J.C. Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alison Cudmore
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrew M. R. Hanna
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shashankan Ramesh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kenneth Garson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
42
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
43
|
Manfredi GF, Celsa C, John C, Jones C, Acuti N, Scheiner B, Fulgenzi CAM, Korolewicz J, Pinter M, Gennari A, Mauri FA, Pirisi M, Minisini R, Vincenzi F, Burlone M, Rigamonti C, Donadon M, Cabibbo G, D’Alessio A, Pinato DJ. Mechanisms of Resistance to Immunotherapy in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1955-1971. [PMID: 37941812 PMCID: PMC10629523 DOI: 10.2147/jhc.s291553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Systemic treatment for advanced hepatocellular carcinoma (HCC) has been revolutionized over the last few years following the approval of immune checkpoint inhibitors (ICI). Despite the promising survival extension seen with ICI combination regimens, responses are not universally seen and the optimal partner for programmed cell death 1 pathway inhibitors remains to be identified. Even fewer encouraging results have been demonstrated with ICI used for monotherapy. Several mechanisms of resistance have been described so far, involving characteristics of cancer cells (intrinsic mechanisms) and of the surrounding tumor microenvironment (extrinsic mechanisms). Factors related to therapy may also contribute to the development of resistance. Increasing research efforts are being dedicated to the discovery of novel approaches and targets to overcome resistance, some of which may be introduced into clinic in the future. Herein we describe a selection of resistance mechanisms that have been involved in impairing response to ICI and propose potential therapeutic approaches to overcome resistance.
Collapse
Affiliation(s)
- Giulia Francesca Manfredi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Ciro Celsa
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Section of Gastroenterology & Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
- Department of Surgical, Oncological and Oral Sciences (Di.chir.on.s.), University of Palermo, Palermo, Italy
| | - Chloe John
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Charlotte Jones
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Nicole Acuti
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia Angela Maria Fulgenzi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - James Korolewicz
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco A Mauri
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Mario Pirisi
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Michela Burlone
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Cristina Rigamonti
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Matteo Donadon
- Department of Health Science, Università Del Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Giuseppe Cabibbo
- Section of Gastroenterology & Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Antonio D’Alessio
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - David James Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
44
|
Wang Y, Fenyö D. Proteogenomics Reveal the Overexpression of HLA-I in Cancer. J Proteome Res 2023; 22:3625-3639. [PMID: 37857377 PMCID: PMC10629274 DOI: 10.1021/acs.jproteome.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Indexed: 10/21/2023]
Abstract
An accurate quantification of HLA class I gene expression is important in understanding the interplay with the tumor microenvironment of antitumor cytotoxic T cell activities. Because HLA-I sequences are highly variable, standard RNAseq and mass spectrometry-based quantification workflows using common genome and protein sequence references do not provide HLA-I allele specific quantifications. Here, we used personalized HLA-I nucleotide and protein reference sequences based on the subjects' HLA-I genotypes and surveyed tumor and adjacent normal samples from patients across nine cancer types. Mass spectrometry using data dependent acquisition data was validated to be sufficient to estimate HLA-A protein expression at the allele level. We found that HLA-I proteins were present in significantly higher levels in tumors compared to adjacent normal tissues from 41 to 63% of head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, and clear cell renal cell carcinoma patients, and this was driven by increased levels of HLA-I gene transcripts. Most immune cell types are universally enriched in HLA-I high tumors, while endothelial and neuronal cells showed divergent relationships with HLA-I. Pathway analysis revealed that tumor senescence and autophagy activity influence the level of HLA-I proteins in glioblastoma. Genes correlated to HLA-I protein expression are mostly the ones directly involved in HLA-I function in immune response and cell death, while glycosylation genes are exclusively co-expressed with HLA-I at the protein level.
Collapse
Affiliation(s)
- Ying Wang
- Institute
for Systems Genetics, NYU Grossman School
of Medicine, New York, New York 10016, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - David Fenyö
- Institute
for Systems Genetics, NYU Grossman School
of Medicine, New York, New York 10016, United States
- Department
of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York 10016, United States
| |
Collapse
|
45
|
Wu M, Zhou S. Harnessing tumor immunogenomics: Tumor neoantigens in ovarian cancer and beyond. Biochim Biophys Acta Rev Cancer 2023; 1878:189017. [PMID: 37935309 DOI: 10.1016/j.bbcan.2023.189017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Ovarian cancer is a major cause of death among gynecological cancers due to its highly aggressive nature. Immunotherapy has emerged as a promising avenue for ovarian cancer treatment, offering targeted approaches with reduced off-target effects. With the advent of next-generation sequencing, it has become possible to identify genomic alterations that can serve as potential targets for immunotherapy. Furthermore, immunogenomics research has revealed the importance of genetic alterations in shaping the cancer immune responses. However, the heterogeneity of immunogenicity and the low tumor mutation burden pose challenges for neoantigen-based immunotherapies. Further research is needed to identify neoantigen-specific tumor-infiltrating lymphocytes (TIL) and establish guidelines for patient inclusion criteria in TIL-based therapy. The study of neoantigens and their implications in ovarian cancer immunotherapy holds great promise, and efforts focused on personalized treatment strategies, refined neoantigen selection, and optimized therapeutic combinations will contribute to improving patient outcomes in the future.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
46
|
Malviya M, Aretz Z, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Challenges and solutions for therapeutic TCR-based agents. Immunol Rev 2023; 320:58-82. [PMID: 37455333 PMCID: PMC11141734 DOI: 10.1111/imr.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.
Collapse
Affiliation(s)
- Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zita Aretz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Zaki Molvi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Jayop Lee
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Tri-Institutional Medical Scientist Program, 1300 York Avenue, New York, NY 10021
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| |
Collapse
|
47
|
Perales-Linares R, Leli NM, Mohei H, Beghi S, Rivera OD, Kostopoulos N, Giglio A, George SS, Uribe-Herranz M, Costabile F, Pierini S, Pustylnikov S, Skoufos G, Barash Y, Hatzigeorgiou AG, Koumenis C, Maity A, Lotze MT, Facciabene A. Parkin Deficiency Suppresses Antigen Presentation to Promote Tumor Immune Evasion and Immunotherapy Resistance. Cancer Res 2023; 83:3562-3576. [PMID: 37578274 PMCID: PMC10618737 DOI: 10.1158/0008-5472.can-22-2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Parkin is an E3 ubiquitin ligase, which plays a key role in the development of Parkinson disease. Parkin defects also occur in numerous cancers, and a growing body of evidence indicates that Parkin functions as a tumor suppressor that impedes a number of cellular processes involved in tumorigenesis. Here, we generated murine and human models that closely mimic the advanced-stage tumors where Parkin deficiencies are found to provide deeper insights into the tumor suppressive functions of Parkin. Loss of Parkin expression led to aggressive tumor growth, which was associated with poor tumor antigen presentation and limited antitumor CD8+ T-cell infiltration and activation. The effect of Parkin deficiency on tumor growth was lost following depletion of CD8+ T cells. In line with previous findings, Parkin deficiency was linked with mitochondria-associated metabolic stress, PTEN degradation, and enhanced Akt activation. Increased Akt signaling led to dysregulation of antigen presentation, and treatment with the Akt inhibitor MK2206-2HCl restored antigen presentation in Parkin-deficient tumors. Analysis of data from patients with clear cell renal cell carcinoma indicated that Parkin expression was downregulated in tumors and that low expression correlated with reduced overall survival. Furthermore, low Parkin expression correlated with reduced patient response to immunotherapy. Overall, these results identify a role for Parkin deficiency in promoting tumor immune evasion that may explain the poor prognosis associated with loss of Parkin across multiple types of cancer. SIGNIFICANCE Parkin prevents immune evasion by regulating tumor antigen processing and presentation through the PTEN/Akt network, which has important implications for immunotherapy treatments in patients with Parkin-deficient tumors.
Collapse
Affiliation(s)
- Renzo Perales-Linares
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hesham Mohei
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Silvia Beghi
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Osvaldo D. Rivera
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nektarios Kostopoulos
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrea Giglio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Subin S. George
- Penn Bioinformatics Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Francesca Costabile
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Stefano Pierini
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sergei Pustylnikov
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Giorgos Skoufos
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Yoseph Barash
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artemis G. Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
49
|
Liang J, Vitale T, Zhang X, Jackson TD, Yu D, Jedrychowski M, Gygi SP, Widlund HR, Wucherpfennig KW, Puigserver P. Selective Mitochondrial Respiratory Complex I Subunit Deficiency Causes Tumor Immunogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560316. [PMID: 37873273 PMCID: PMC10592908 DOI: 10.1101/2023.10.02.560316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Targeting of specific metabolic pathways in tumor cells has the potential to sensitize them to immune-mediated attack. Here we provide evidence for a specific means of mitochondrial respiratory Complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of the CI subunits Ndufs4 and Ndufs6 , but not other subunits, induces an immune-dependent tumor growth attenuation in mouse melanoma models. We show that deletion of Ndufs4 induces expression of the transcription factor Nlrc5 and genes in the MHC class I antigen presentation and processing pathway. This induction of MHC-related genes is driven by an accumulation of pyruvate dehydrogenase-dependent mitochondrial acetyl-CoA downstream of CI subunit deletion. This work provides a novel functional modality by which selective CI inhibition restricts tumor growth, suggesting that specific targeting of Ndufs4 , or related CI subunits, increases T-cell mediated immunity and sensitivity to ICB.
Collapse
|
50
|
Zhang J, Guo B, Chen JH, Liu XJ, Zhang JH, Zhu HQ, Wang WY, Tang ZH, Wei B, Cao YX, Zhan L. NLRC5 potentiates anti-tumor CD8 + T cells responses by activating interferon-β in endometrial cancer. Transl Oncol 2023; 36:101742. [PMID: 37531863 PMCID: PMC10407819 DOI: 10.1016/j.tranon.2023.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVES NLR family CARD domain containing 5 (NLRC5) could promote major histocompatibility complex class I (MHC-I)-dependent CD8+ T cell-mediated anticancer immunity. In this study, the immunosurveillance role and underlying mechanisms of NLRC5 in endometrial cancer (EC) were characterized. METHODS CD8+ T cells were separated from healthy women's peripheral blood by using magnetic beads. The effect of NLRC5 and interferon-β (IFN-β) on immunosurveillance of EC were examined through a mouse tumor model and a CD8+ T cell-EC cell coculture system after NLRC5 overexpression and IFN-β overexpression or depletion. The effect of NLRC5 on IFN-β expression was examined with gain- and loss-of-function experiments. RESULTS NLRC5 overexpression in the EC cell and CD8+ T cell coculture system inhibited EC cell proliferation and migration and promoted EC cell apoptosis and CD8+ T cell proliferation. In vivo, NLRC5 overexpression increased the proportion of CD8+ T cells and inhibited EC progression. Furthermore, IFN-β overexpression in the EC cell and CD8+ T cell coculture system activated CD8+ T cell proliferation; however, genetic depletion of IFN-β exerted the opposite effects. In addition, NLRC5 could negatively regulate IFN-β expression in EC cells. Mechanistically, NLRC5 potentiated the antitumor responses of CD8+ T cells to EC by activating IFN-β. CONCLUSIONS Taken together, our findings demonstrated that NLRC5 potentiates anti-tumor CD8+ T cells responses by activating interferon-β in EC, suggesting that genetically escalated NLRC5 and IFN-β may act as potential candidates for the clinical translation of adjuvant immunotherapies to patients with EC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Jia-Hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Xiao-Jing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Jun-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
| | - Hai-Qing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Wen-Yan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Zhen-Hai Tang
- Center for Scientific Research of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China.
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China.
| |
Collapse
|