1
|
Yuan L, Zhong L, Krummenacher C, Zhao Q, Zhang X. Epstein-Barr virus-mediated immune evasion in tumor promotion. Trends Immunol 2025; 46:386-402. [PMID: 40240193 DOI: 10.1016/j.it.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Epstein-Barr virus (EBV) was the first DNA virus identified to be tightly associated with multiple human tumors. It promotes malignant progression of tumors - including related lymphomas, nasopharyngeal carcinoma, and gastric adenocarcinoma - in part by evading surveillance and attack by the host immune system. In this article we review the main molecular mechanisms by which EBV-encoded proteins and RNAs interact with key molecules of the host immune system to inhibit Toll-like receptor (TLR)-nuclear factor κB (NF-κB), retinoic acid-inducible gene I (RIG-I), and interferon (IFN) signaling pathways, affect antigen presentation, prevent the cytotoxic effects of CD8+ effector cells, regulate the tumor microenvironment (TME) and cell metastasis and invasion, and inhibit cell apoptosis. These interactions not only contribute to the persistence of the virus but also provide potential targets for developing new immunotherapy strategies.
Collapse
Affiliation(s)
- Lie Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Tsotridou E, Hatzipantelis E. Epstein-Barr Infection, Hodgkin's Lymphoma, and the Immune System: Insights into the Molecular Mechanisms Facilitating Immune Evasion. Cancers (Basel) 2025; 17:1481. [PMID: 40361408 PMCID: PMC12071159 DOI: 10.3390/cancers17091481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Epstein-Barr virus (EBV) constitutes a very common pathogen and a well-characterized carcinogen. EBV has the ability to establish a chronic latent infection, during which only a subset of the viral genes is expressed. EBV is implicated in multiple malignancies, including Hodgkin's lymphoma (HL). HL mainly affects adolescents and young adults and has an overall favorable prognosis. However, relapsed or refractory disease still poses a therapeutic challenge. EBV does not only induce malignant transformation but also hinders the detection and clearance of the neoplastic cells by the immune system. The proteins and non-coding RNAs expressed in latency IIa, which is associated with HL, employ a variety of mechanisms to target different steps of innate and adaptive immunity, to take advantage of the immunosuppressant effect of immune checkpoints, and to shape the microenvironment to support the survival and proliferation of malignant cells. They suppress the expression or promote the degradation of pattern-recognition receptors, interfere with type I interferon and proinflammatory cytokine mediated signaling, and hinder the effector function of natural killer cells. The processing and presentation of peptides to CD4 and CD8 T cells are also hampered. EBV induces the expression of immune checkpoints, the secretion of immunosuppressive cytokines, and the efflux of regulatory T cells in the tumor microenvironment. The current review provides a comprehensive overview of the molecular mechanisms underlying this complex interplay between EBV and the immune system in HL with focus on clinical data from the pediatric population, which is the key for developing novel, effective therapeutic interventions.
Collapse
Affiliation(s)
- Eleni Tsotridou
- Children’s and Adolescents’ Hematology Oncology Unit, 2nd Department of Paediatrics, AHEPA University General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece;
| | | |
Collapse
|
3
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Wang J, Wang R, Wang M, Ge J, Wang Y, Li Y, Chen C, He J, Zheng B, Xu M, Jiang X, Liu Y, Chen M, Long J. Cutting-Edge Therapy and Immune Escape Mechanisms in EBV-Associated Tumors. Med Res Rev 2025. [PMID: 40077924 DOI: 10.1002/med.22104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, significantly influences the immune microenvironment of associated cancers. EBV-induced expression of viral antigens by tumor cells triggers immune recognition and elicits a pro-inflammatory response. While mild inflammation may help eliminate malignant cells, intense inflammation can accelerate tumor progression. Moreover, EBV can establish lifelong latency in human hosts, characterized by low immunogenicity of its proteins and noncoding RNAs. This enables tumor cells to evade immune detection and impair immune cell function, disrupting immune homeostasis. Consequently, EBV-associated malignancies pose a considerable public health challenge globally, often complicating the prognosis of cancer patients under conventional treatment. With deeper research into the oncogenic expressions and mechanisms of EBV, novel targeted therapies against EBV are gaining prominence. This review discusses recent advancements in understanding how EBV helps tumor cells evade immune surveillance and induce immune dysfunction. It also examines the clinical potential of targeting EBV-associated tumors, providing fresh perspectives on the mechanisms and therapeutic strategies for these cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Yanhan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Changan Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Jiale He
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
5
|
Poudineh M, Darweesh O, Mokhtari M, Zolfaghari O, Khaledi A, Piroozmand A. Expression of microRNAs in the detection and therapeutic roles of viral infections: Mechanisms and applications. J Virus Erad 2025; 11:100586. [PMID: 40296890 PMCID: PMC12034616 DOI: 10.1016/j.jve.2025.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 04/30/2025] Open
Abstract
In recent years, microRNAs (miRNAs) are potential diagnostic and therapeutic agents for viral infections. Here, we aimed to investigate the expression of microRNAs in the identification and treatment of viral infections. MiRNAs are non-coding molecules that control gene expression and participate in numerous biological processes, including host immunity and pathogen duplication. MiRNAs have played a role in the pathogenesis of various viral infections, such as HIV and HCV. Their presence in the tissues and serum of infected patients has been demonstrated to help predict disease progression, identify disease subtypes, and evaluate treatment responses. Research has shown that miRNAs can detect viral infections by identifying specific miRNAs in serum. For example, miRNA expression profiling was recently used to distinguish between hepatitis C and hepatitis B viral infections precisely. Furthermore, miRNAs can be used to detect the presence of multiple viral infections simultaneously by assessing the expression levels of these miRNAs. Also, miRNAs can differentiate between different genetic variants of the same virus, which is useful for identifying emerging viral strains or drug-resistant ones. MiRNAs have been identified as being a factor in treating viral infections. For example, miRNA mimics have decreased gene expression and halted viral replication in HIV, HCV, and EBV. Moreover, microRNA antagonists have been utilized to inhibit pro-inflammatory cytokines, thereby modulating the immune response and the severity of infections.
Collapse
Affiliation(s)
- Mohsen Poudineh
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Omeed Darweesh
- College of Pharmacy, Al-Kitab University, Kirkuk, 36015, Iraq
| | - Mohsen Mokhtari
- Laboratory Department, Paramedical School, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Zolfaghari
- Laboratory Department, Paramedical School, Kashan University of Medical Sciences, Kashan, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Desimio MG, Covino DA, Cancrini C, Doria M. Entry into the lytic cycle exposes EBV-infected cells to NK cell killing via upregulation of the MICB ligand for NKG2D and activation of the CD56 bright and NKG2A +KIR +CD56 dim subsets. Front Immunol 2024; 15:1467304. [PMID: 39676862 PMCID: PMC11638013 DOI: 10.3389/fimmu.2024.1467304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
The Epstein-Barr virus (EBV) is usually acquired during infancy as an asymptomatic infection and persists throughout life in a latent state under the control of the host immune system. However, EBV is associated with various malignant diseases that preferentially develop in immunodeficient individuals. Accumulating evidence suggests an important role for NK cells, though the mechanisms by which EBV evades or triggers NK cell responses are poorly understood. Here, we generated EBV-immortalized lymphoblastoid cell lines stably expressing an inducible form of the BZLF1 early lytic viral protein (LCL-Z) to challenge primary NK cells with EBV+ targets in either the latent or lytic phase of infection. We show that entry into the lytic phase results in drastic downregulation of HLA-E but not HLA-A, -B, and -C molecules and in increased expression of ligands for the activating NKG2D receptor, with MICB being upregulated at the cell membrane and released in a soluble form while ULBP2 and ULBP4 accumulate intracellularly. Furthermore, LCL-Z cells are killed by NK cells in an NKG2D-dependent manner and to a much higher extent during the lytic phase, but HLA-class I molecules constrain killing throughout the viral life cycle; unexpectedly, the antibody-mediated block of the inhibitory NKG2A receptor results in reduced lysis of lytic LCL-Z cells that are nearly devoid of the cognate HLA-E ligand. Accordingly, we show that NKG2A+ NK cell subsets, specifically CD56bright and NKG2A+KIR+CD56dim cells, are those that preferentially respond against cells with lytic EBV replication. Overall, these results shed light on NK/EBV+ cell interactions providing new information for improving NK cell-based immunotherapies to treat EBV-induced diseases.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Daniela Angela Covino
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Zhang F, Li W, Zheng X, Ren Y, Li L, Yin H. The novel immune landscape of immune-checkpoint blockade in EBV-associated malignancies. FASEB J 2024; 38:e70139. [PMID: 39520274 DOI: 10.1096/fj.202301980rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus and a class 1 carcinogen that is closely associated with a series of malignant lymphomas and epithelial cell carcinomas. Although these EBV-related cancers may exhibit different features in clinical symptoms and anatomical sites, they all have a characteristic immune-suppressed tumor immune microenvironment (TIME) that is tightly correlated with an abundance of tumor-infiltrating lymphocytes (TILs) that primarily result from the EBV infection. Overwhelming evidence indicates that an upregulation of immune-checkpoint molecules is a powerful strategy employed by the EBV to escape immune surveillance. While previous studies have mainly focused on the therapeutic effects of PD-1 and CTLA-4 blockades in treating EBV-associated tumors, several novel inhibitory receptors (e.g., CD47, LAG-3, TIM-3, VISTA, and DDR1) have recently been identified as potential targets for treating EBV-associated malignancies (EBVaMs). This review retrospectively summarizes the biological mechanisms used for immune checkpoint evasion in EBV-associated tumors. Its purpose is to update our current knowledge concerning the underlying mechanisms by which an immune checkpoint blockade triggers host antitumor immunity against EBVaMs. Additionally, this review may help investigators to more fully understand the correlation between EBV infection and tumor development and subsequently develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjing Li
- The First Class Ward 2 of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinglong Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yinlong Ren
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lijun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Chiu YF, Ponlachantra K, Sugden B. How Epstein Barr Virus Causes Lymphomas. Viruses 2024; 16:1744. [PMID: 39599857 PMCID: PMC11599019 DOI: 10.3390/v16111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Since Epstein-Barr Virus (EBV) was isolated 60 years ago, it has been studied clinically, epidemiologically, immunologically, and molecularly in the ensuing years. These combined studies allow a broad mechanistic understanding of how this ubiquitous human pathogen which infects more than 90% of adults can rarely cause multiple types of lymphomas. We survey these findings to provide a coherent description of its oncogenesis.
Collapse
Affiliation(s)
- Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Infectious Diseases, Department of Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236017, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Khongpon Ponlachantra
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand;
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
9
|
Li Y, Du S, Zhou K, Zhang Y, Chen X, Zhu C, Jia Y, Wang Y, Zhang D, Wei F, Tong Y, Cai Q. A small molecule that selectively inhibits the growth of Epstein-Barr virus-latently infected cancer cells. iScience 2024; 27:110581. [PMID: 39220260 PMCID: PMC11365366 DOI: 10.1016/j.isci.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Epstein-Barr virus (EBV), an oncogenic herpesvirus, is predominantly found in the latent infection form and is highly associated with many human malignancies, which mainly have poor prognoses and no effective treatments. Here, we obtained thirteen compounds from small-molecule libraries for specific inhibition of EBV-latently infected cell growth in vitro by high-throughput screening. Among them, cetrimonium bromide (CetB) was identified to selectively inhibit the growth of different EBV-infected B lymphoma cell lines. Importantly, CetB reduced EBNA1 protein stability, activated G1 arrest and early apoptosis of EBV-latently infected cells without viral lytic reactivation, which leads to dramatically inhibit colony formation and tumor growth of EBV-infected cells in vitro and in vivo, and significantly prolong the survival of tumor-bearing mice. Overall, these findings demonstrate that CetB acts as a highly selective inhibitor of the growth of EBV-infected cells and has the potential for further development of effective therapeutic strategies specific against EBV-associated cancers.
Collapse
Affiliation(s)
- Ying Li
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Kun Zhou
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yulin Zhang
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiaoting Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences, Jinan 250100, P.R. China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Daizhou Zhang
- Shandong Academy of Pharmaceutical Sciences, Jinan 250100, P.R. China
| | - Fang Wei
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yin Tong
- Division of Hematology, Shanghai First People’s Hospital, School of Medicine & ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
10
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
11
|
Ding BN, Wu YL, Zhang YY, Li YG. Association between Epstein-Barr virus infection and serum positivity rate of anti-nuclear antibodies in Chongqing, China: A cross-sectional observational study. Medicine (Baltimore) 2024; 103:e39233. [PMID: 39121295 PMCID: PMC11315546 DOI: 10.1097/md.0000000000039233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/11/2024] Open
Abstract
Epstein-Barr virus (EBV) infects over 95% of the global population and is strongly associated with various autoimmune diseases. Anti-nuclear antibodies (ANA) serve as valuable laboratory biomarkers for screening and supporting the diagnosis of various autoimmune diseases. The aim of this study was to assess the prevalence of EBV infection and its association with ANA. This retrospective study employed standard indirect immunofluorescence assay to determine ANA levels, EBV-specific immunofluorescence assay, or plasma EBV-DNA testing. Demographic data including gender and age were collected to observe variations in EBV infection status and ANA positivity rates among different populations. Incorporating 6492 hospitalized patients who underwent ANA antibody spectrum testing, it was observed that serum positivity rates gradually increased with age. The overall serum positivity rate of ANA in females (25.14%) was significantly higher than that in males (13.76%). Among hospitalized patients undergoing EBV-DNA testing, adults aged 21 to 40 years were least affected by EBV, with a positivity rate of 11.96%; however, as age increased, the positivity rate gradually increased. Among the 5225 patients undergoing EBV antibody spectrum testing, ANA-positive patients exhibited significantly higher serum positivity rates for Epstein-Barr nuclear antigen 1 immunoglobulin G, Epstein-Barr virus early antigen immunoglobulin G, Epstein-Barr virus early antigen immunoglobulin A, and Epstein-Barr virus viral capsid antigen immunoglobulin A antibodies compared to ANA-negative patients (P < .001; P < .001; P = .013; P < .001). The EBV-DNA positivity rate in ANA-positive patients was also significantly higher than in ANA-negative patients, yielding the same conclusion (P = .012). The positivity rates of ANA antibodies in patients with past EBV infection and reactivation were significantly higher than those in uninfected patients (P < .001; P = .006). The positivity rate of ANA antibodies in reactivated patients was significantly higher than that in primary infected patients and those with past infections (P < .001; P < .001). Among ANA-positive patients, the positivity rates of EBV antibody spectrum and EBV-DNA were higher compared to ANA-negative patients. The positivity rates of ANA in patients with past EBV infection and reactivation were higher than those in uninfected patients.
Collapse
Affiliation(s)
- Bei-Ning Ding
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi-Lin Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - You-Yu Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yong-Guo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Hohmann T, Hohmann U, Dehghani F, Grisk O, Jasinski-Bergner S. Analyzing the Impact of the Highest Expressed Epstein-Barr Virus-Encoded microRNAs on the Host Cell Transcriptome. Int J Mol Sci 2024; 25:7838. [PMID: 39063079 PMCID: PMC11276978 DOI: 10.3390/ijms25147838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The Epstein-Barr virus (EBV) has a very high prevalence (>90% in adults), establishes a lifelong latency after primary infection, and exerts an oncogenic potential. This dsDNA virus encodes for various molecules, including microRNAs (miRs), which can be detected in the latent and lytic phases with different expression levels and affect, among others, immune evasion and malignant transformation. In this study, the different EBV miRs are quantified in EBV-positive lymphomas, and the impact on the host cell transcriptome of the most abundant EBV miRs will be analyzed using comparative RNA sequencing analyses. The EBV miRs ebv-miR-BART1, -BART4, -BART17, and -BHRF1-1 were most highly expressed, and their selective overexpression in EBV-negative human cells resulted in a large number of statistically significantly down- and up-regulated host cell genes. Functional analyses showed that these dysregulated target genes are involved in important cellular processes, including growth factor pathways such as WNT, EGF, FGF, and PDGF, as well as cellular processes such as apoptosis regulation and inflammation. Individual differences were observed between these four analyzed EBV miRs. In particular, ebv-miR-BHRF1-1 appears to be more important for malignant transformation and immune evasion than the other EBV miRs.
Collapse
Affiliation(s)
- Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (T.H.); (U.H.); (F.D.)
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (T.H.); (U.H.); (F.D.)
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (T.H.); (U.H.); (F.D.)
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School (MHB), Theodor Fontane, Hochstraße 29, Haus 11, 2.OG, 14770 Brandenburg an der Havel, Germany;
| | - Simon Jasinski-Bergner
- Institute of Physiology, Brandenburg Medical School (MHB), Theodor Fontane, Hochstraße 29, Haus 11, 2.OG, 14770 Brandenburg an der Havel, Germany;
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, 14770 Brandenburg an der Havel, Germany
| |
Collapse
|
13
|
Chen Y, Ouyang D, Wang Y, Pan Q, Zhao J, Chen H, Yang X, Tang Y, Wang Q, Li Y, He J, You JQ, Li Y, Xu C, Ren Y, Xie S, Li S, Lian J, Weng D, Xiang T, Xia JC. EBV promotes TCR-T-cell therapy resistance by inducing CD163+M2 macrophage polarization and MMP9 secretion. J Immunother Cancer 2024; 12:e008375. [PMID: 38886114 PMCID: PMC11184188 DOI: 10.1136/jitc-2023-008375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a double-stranded DNA oncogenic virus. Several types of solid tumors, such as nasopharyngeal carcinoma, EBV-associated gastric carcinoma, and lymphoepithelioma-like carcinoma of the lung, have been linked to EBV infection. Currently, several TCR-T-cell therapies for EBV-associated tumors are in clinical trials, but due to the suppressive immune microenvironment of solid tumors, the clinical application of TCR-T-cell therapy for EBV-associated solid tumors is limited. Figuring out the mechanism by which EBV participates in the formation of the tumor immunosuppressive microenvironment will help T cells or TCR-T cells break through the limitation and exert stronger antitumor potential. METHODS Flow cytometry was used for analyzing macrophage differentiation phenotypes induced by EBV-infected and EBV-uninfected tumors, as well as the function of T cells co-cultured with these macrophages. Xenograft model in mice was used to explore the effects of M2 macrophages, TCR-T cells, and matrix metalloprotein 9 (MMP9) inhibitors on the growth of EBV-infected tumors. RESULTS EBV-positive tumors exhibited an exhaustion profile of T cells, despite the presence of a large T-cell infiltration. EBV-infected tumors recruited a large number of mononuclear macrophages with CCL5 and induced CD163+M2 macrophages polarization through the secretion of CSF1 and the promotion of autocrine IL10 production by mononuclear macrophages. Massive secretion of MMP9 by this group of CD163+M2 macrophages induced by EBV infection was an important factor contributing to T-cell exhaustion and TCR-T-cell therapy resistance in EBV-positive tumors, and the use of MMP9 inhibitors improved the function of T cells cocultured with M2 macrophages. Finally, the combination of an MMP9 inhibitor with TCR-T cells targeting EBV-positive tumors significantly inhibited the growth of xenografts in mice. CONCLUSIONS MMP9 inhibitors improve TCR-T cell function suppressed by EBV-induced M2 macrophages. TCR-T-cell therapy combined with MMP9 inhibitors was an effective therapeutic strategy for EBV-positive solid tumors.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dijun Ouyang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Wang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiuzhong Pan
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jingjing Zhao
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinyi Yang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Tang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qijing Wang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongqiang Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jia He
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jin-Qi You
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yingzi Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chi Xu
- Knowcell Biotechnology Co., Ltd, Shenzhen, China
| | - Yan Ren
- Knowcell Biotechnology Co., Ltd, Shenzhen, China
| | - Sisi Xie
- Knowcell Biotechnology Co., Ltd, Shenzhen, China
| | - Song Li
- TCRCure Biological Technology Co., Ltd, Guangzhou, China
| | - Jiamin Lian
- TCRCure Biological Technology Co., Ltd, Guangzhou, China
| | - Desheng Weng
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jian-Chuan Xia
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Bos J, Groen-van Schooten TS, Brugman CP, Jamaludin FS, van Laarhoven HWM, Derks S. The tumor immune composition of mismatch repair deficient and Epstein-Barr virus-positive gastric cancer: A systematic review. Cancer Treat Rev 2024; 127:102737. [PMID: 38669788 DOI: 10.1016/j.ctrv.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.
Collapse
Affiliation(s)
- J Bos
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - T S Groen-van Schooten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - C P Brugman
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - F S Jamaludin
- Amsterdam UMC Location University of Amsterdam, Medical Library AMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Salnikov MY, MacNeil KM, Mymryk JS. The viral etiology of EBV-associated gastric cancers contributes to their unique pathology, clinical outcomes, treatment responses and immune landscape. Front Immunol 2024; 15:1358511. [PMID: 38596668 PMCID: PMC11002251 DOI: 10.3389/fimmu.2024.1358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Otolaryngology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
16
|
Silva JDM, Alves CEDC, Pontes GS. Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 2024; 15:1297994. [PMID: 38384471 PMCID: PMC10879370 DOI: 10.3389/fimmu.2024.1297994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous human pathogen linked to various diseases, including infectious mononucleosis and multiple types of cancer. To control and eliminate EBV, the host's immune system deploys its most potent defenses, including pattern recognition receptors, Natural Killer cells, CD8+ and CD4+ T cells, among others. The interaction between EBV and the human immune system is complex and multifaceted. EBV employs a variety of strategies to evade detection and elimination by both the innate and adaptive immune systems. This demonstrates EBV's mastery of navigating the complexities of the immunological landscape. Further investigation into these complex mechanisms is imperative to advance the development of enhanced therapeutic approaches with heightened efficacy. This review provides a comprehensive overview of various mechanisms known to date, employed by the EBV to elude the immune response, while establishing enduring latent infections or instigate its lytic replication.
Collapse
Affiliation(s)
- Jean de Melo Silva
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Gemilson Soares Pontes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus, AM, Brazil
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
17
|
Tang KW, Tian Y, Xie G, Bäckerholm A, Holmqvist I, Vracar D, Lin J, Carlsten J, Abrahamsson S, Liu Z, Huang Y, Shair K. Landscape of Epstein-Barr virus gene expression and perturbations in cancer. RESEARCH SQUARE 2024:rs.3.rs-3911441. [PMID: 38352479 PMCID: PMC10862949 DOI: 10.21203/rs.3.rs-3911441/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Epstein-Barr virus (EBV) is the causative agent for multiple neoplastic diseases of epithelial and lymphocytic origin1-3. The heterogeneity of the viral elements expressed and the mechanisms by which these coding and non-coding genes maintain cancer cell properties in vivo remain elusive4,5. Here we conducted a multi-modal transcriptomic analysis of EBV-associated neoplasms and identified that the ubiquitously expressed RPMS1 non-coding RNAs support cancer cell properties by disruption of the interferon response. Our map of EBV expression shows a variable, but pervasive expression of BNLF2 discerned from the overlapping LMP1 RNA in bulk sequencing data. Using long-read single-molecule sequencing, we identified three new viral elements within the RPMS1 gene. Furthermore, single-cell sequencing datasets allowed for the separation of cancer cells and healthy cells from the same tissue biopsy and the characterization of a microenvironment containing interferon gamma excreted by EBV-stimulated T-lymphocytes. In comparison with healthy epithelium, EBV-transformed cancer cells exhibited increased proliferation and inhibited immune response induced by the RPMS1-encoded microRNAs. Our atlas of EBV expression shows that the EBV-transformed cancer cells express high levels of non-coding RNAs originating from RPMS1 and that the oncogenic properties are maintained by RPMS1 microRNAs. Through bioinformatic disentanglement of single cells from cancer tissues we identified a positive feedback loop where EBV-activated immune cells stimulate cancer cells to proliferate, which in turn undergo viral reactivation and trigger an immune response.
Collapse
|
18
|
Leopizzi M, Mundo L, Messina E, Campolo F, Lazzi S, Angeloni A, Marchese C, Leoncini L, Giordano C, Slack F, Trivedi P, Anastasiadou E. Epstein-Barr virus-encoded EBNA2 downregulates ICOSL by inducing miR-24 in B-cell lymphoma. Blood 2024; 143:429-443. [PMID: 37847858 PMCID: PMC10862363 DOI: 10.1182/blood.2023021346] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
ABSTRACT Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.
Collapse
Affiliation(s)
- Martina Leopizzi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Frank Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
19
|
Wang WT, Yang Y, Zhang Y, Le YN, Wu YL, Liu YY, Tu YJ. EBV-microRNAs as Potential Biomarkers in EBV-related Fever: A Narrative Review. Curr Mol Med 2024; 24:2-13. [PMID: 36411555 PMCID: PMC10825793 DOI: 10.2174/1566524023666221118122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/31/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
At present, timely and accurate diagnosis and effective treatment of Epstein- Barr Virus (EBV) infection-associated fever remain a difficult challenge. EBV encodes 44 mature microRNAs (miRNAs) that inhibit viral lysis, adjust inflammatory response, regulate cellular apoptosis, promote tumor genesis and metastasis, and regulate tumor cell metabolism. Herein, we have collected the specific expression data of EBV-miRNAs in EBV-related fevers, including infectious mononucleosis (IM), EBVassociated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV infection (CAEBV), and EBV-related tumors, and proposed the potential value of EBVmiRNAs as biomarkers to assist in the identification, diagnosis, and prognosis of EBVrelated fever, as well as therapeutic targets for drug development.
Collapse
Affiliation(s)
- Wei-ting Wang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yun Yang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yang Zhang
- Information Center of Science and Technology, Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-ning Le
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai (200433), China
| | - Yu-lin Wu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| | - Yi-yi Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai (200032), China
| | - Yan-jie Tu
- Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai (201203), China
| |
Collapse
|
20
|
Kimura M, Kothari S, Gohir W, Camargo JF, Husain S. MicroRNAs in infectious diseases: potential diagnostic biomarkers and therapeutic targets. Clin Microbiol Rev 2023; 36:e0001523. [PMID: 37909789 PMCID: PMC10732047 DOI: 10.1128/cmr.00015-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
MicroRNAs (miRNAs) are conserved, short, non-coding RNAs that play a crucial role in the post-transcriptional regulation of gene expression. They have been implicated in the pathogenesis of cancer and neurological, cardiovascular, and autoimmune diseases. Several recent studies have suggested that miRNAs are key players in regulating the differentiation, maturation, and activation of immune cells, thereby influencing the host immune response to infection. The resultant upregulation or downregulation of miRNAs from infection influences the protein expression of genes responsible for the immune response and can determine the risk of disease progression. Recently, miRNAs have been explored as diagnostic biomarkers and therapeutic targets in various infectious diseases. This review summarizes our current understanding of the role of miRNAs during viral, fungal, bacterial, and parasitic infections from a clinical perspective, including critical functional mechanisms and implications for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Muneyoshi Kimura
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Sagar Kothari
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Wajiha Gohir
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Jose F. Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shahid Husain
- Transplant Infectious Diseases, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Looi CK, Foong LC, Chung FFL, Khoo ASB, Loo EM, Leong CO, Mai CW. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer. Cell Biol Toxicol 2023; 39:2501-2526. [PMID: 37755585 DOI: 10.1007/s10565-023-09830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA
| | - Ee-Mun Loo
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China.
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Blümke J, Bauer M, Vaxevanis C, Wilfer A, Mandelboim O, Wickenhauser C, Seliger B, Jasinski-Bergner S. Identification and characterization of the anti-viral interferon lambda 3 as direct target of the Epstein-Barr virus microRNA-BART7-3p. Oncoimmunology 2023; 12:2284483. [PMID: 38126030 PMCID: PMC10732682 DOI: 10.1080/2162402x.2023.2284483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The human Epstein-Barr virus (EBV), as a member of the human γ herpes viruses (HHV), is known to be linked with distinct tumor types. It is a double-stranded DNA virus and its genome encodes among others for 48 different microRNAs (miRs). Current research demonstrated a strong involvement of certain EBV-miRs in molecular immune evasion mechanisms of infected cells by, e.g., the disruption of human leukocyte antigen (HLA) class Ia and NKG2D functions. To determine novel targets of EBV-miRs involved in immune surveillance, ebv-miR-BART7-3p, an EBV-encoded miR with high expression levels during the different lytic and latent EBV life cycle phases, was overexpressed in human HEK293T cells. Using a cDNA microarray-based comparative analysis, 234 (229 downregulated and 5 upregulated) deregulated human transcripts were identified in ebv-miR-BART7-3p transfectants, which were mainly involved in cellular processes and molecular binding. A statistically significant downregulation of the anti-proliferative and tumor-suppressive hsa-miR-34A and the anti-viral interferon lambda (IFNL)3 mRNA was found. The ebv-miR-BART7-3p-mediated downregulation of IFNL3 expression was due to a direct interaction with the IFNL3 3'-untranslated region (UTR) as determined by luciferase reporter gene assays including the identification of the accurate ebv-miR-BART7-3p binding site. The effect of ebv-miR-BART7-3p on the IFNL3 expression was validated both in human cell lines in vitro and in human tissue specimen with known EBV status. These results expand the current knowledge of EBV-encoded miRs and their role in immune evasion, pathogenesis and malignant transformation.
Collapse
Affiliation(s)
- Juliane Blümke
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marcus Bauer
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Christoforos Vaxevanis
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andreas Wilfer
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Krukenberg Cancer Center, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Claudia Wickenhauser
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Brandenburg an der Havel, Germany
| | - Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Brandenburg an der Havel, Germany
| |
Collapse
|
23
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
24
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
25
|
Zhou Y, Huang J, Lan J, Hu H, Yuan Z, Dong L, Deng H, Yue LA, Xiao Y, Yang X. Comparison of first-line immunotherapy efficacy between advanced lung squamous cell carcinoma and pulmonary lymphoepithelioma-like carcinoma: A propensity score matching multicenter study. J Cancer Res Ther 2023; 19:1011-1018. [PMID: 37675730 DOI: 10.4103/jcrt.jcrt_2711_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Compared with other lung squamous cell carcinomas (LUSC), pulmonary lymphoepithelioma-like carcinoma (pLELC) is closely associated with Epstein-Barr virus (EBV) infections with a unique molecular profile and immune microenvironment. This study was thus established to compare the treatment response and effectiveness of immunotherapy between pLELC and LUSC. Material and Methods We enrolled 31 patients with pLELC and 116 with LUSC receiving first-line immunotherapy at three centers in China and compared the treatment response and effectiveness of immunotherapy. Propensity score matching (PSM) was used to balance the differences in baseline data between the two groups. Results Before PSM, progression-free survival and overall survival were longer in the pLELC group than in the LUSC group (progression-free survival: hazard ratio (HR), 1.67, 95% CI: 1.05-2.63, P = 0.028; overall survival: HR, 1.90, 95% CI: 1.06-3.40, P = 0.028). This remained unchanged after PSM (progression-free survival: HR, 1.79, 95% CI: 1.02-3.15, P = 0.044; overall survival: HR, 2.20; 95% CI: 1.10-4.37, P = 0.022). Conclusion pLELC showed a clinically meaningful survival benefit compared with traditional LUSC following immunotherapy. Subsequent studies should consider the role of the EBV in the tumor immune microenvironment of pLELC.
Collapse
Affiliation(s)
- YuBin Zhou
- Department of Cardio-Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong; The University of Hongkong-ShenZhen Hospital, Shenzhen, 518000, China
| | - Jian Huang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Jun Lan
- Department of General Surgery, the People's Hospital of Gaoan City. Gaoan, Jiangxi, China
| | - Hao Hu
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Zihao Yuan
- The Second Clinical Medical College of Guangdong Medical University, Dongguan, Guangdong, China
| | - Longyan Dong
- The Second Clinical Medical College of Guangdong Medical University, Dongguan, Guangdong, China
| | - Huiyin Deng
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Chang-sha, Hunan, China
| | - Li-Ao Yue
- Huafa Community Health Service Center, Shenzhen, Zhuhai, China
| | - Yi Xiao
- Department of Cardio-Thoracic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiongwen Yang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi; School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Costa RDO, Pereira J, Lage LADPC, Baiocchi OCG. Extranodal NK-/T-cell lymphoma, nasal type: what advances have been made in the last decade? Front Oncol 2023; 13:1175545. [PMID: 37529691 PMCID: PMC10388588 DOI: 10.3389/fonc.2023.1175545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Extranodal NK-/T-cell lymphoma (ENKTCL) is a rare and highly aggressive malignancy with significant racial and geographic variations worldwide. In addition to the formerly "nasal-type" initial description, these lymphomas are predominantly extranodal in origin and typically cause vascular damage and tissue destruction, and although not fully understood, Epstein-Barr virus (EBV) has an important role in its pathogenesis. Initial assessment must include a hematopathology review of representative and viable tumor areas without necrosis for adequate immunohistochemistry studies, including EBV-encoded small RNA (EBER) in situ hybridization (ISH). Positron emission tomography with 18-fluorodeoxyglucose (18F-FDG-PET/CT) for accurate staging is essential, and most patients will have localized disease (IE/IIE) at diagnosis. Apart from other T-cell malignancies, the best treatment even for localized cases is combined modality therapy (chemotherapy plus radiotherapy) with non-anthracycline-based regimens. For advanced-stage disease, l-asparaginase-containing regimens have shown improved survival, but relapsed and refractory cases have very poor outcomes. Nowadays, even with a better understanding of pathogenic pathways, up-front therapy is completely based on chemotherapy and radiotherapy, and treatment-related mortality is not low. Future strategies targeting signaling pathways and immunotherapy are evolving, but we need to better identify those patients with dismal outcomes in a pre-emptive way. Given the rarity of the disease, international collaborations are urgently needed, and clinical trials are the way to change the future.
Collapse
Affiliation(s)
- Renata de Oliveira Costa
- Department of Hematology, Faculdade de Ciências Médicas de Santos (FCMS), Centro Universitário Lusíadas (Unilus), Santos, São Paulo, Brazil
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
| | - Juliana Pereira
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
- Department of Hematology, Hemotherapy and Cell Therapy, Faculdade de Medicina da Universidade de Sao Paulo (FM-USP), São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of Sao Paulo (USP), São Paulo, Brazil
| | - Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy and Cell Therapy, Faculdade de Medicina da Universidade de Sao Paulo (FM-USP), São Paulo, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of Sao Paulo (USP), São Paulo, Brazil
| | - Otávio César Guimarães Baiocchi
- Hospital Alemao Osvaldo Cruz (HAOC), São Paulo, Brazil
- Department of Hematology, Universidade Federal de Sao Paulo (Unifesp), São Paulo, Brazil
| |
Collapse
|
27
|
Yao Y, Kong W, Yang L, Ding Y, Cui H. Immunity and Immune Evasion Mechanisms of Epstein-Barr Virus. Viral Immunol 2023; 36:303-317. [PMID: 37285188 DOI: 10.1089/vim.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human oncogenic virus to be identified, which evades the body's immune surveillance through multiple mechanisms that allow long-term latent infection. Under certain pathological conditions, EBVs undergo a transition from the latent phase to the lytic phase and cause targeted dysregulation of the host immune system, leading to the development of EBV-related diseases. Therefore, an in-depth understanding of the mechanism of developing an immune response to EBV and the evasion of immune recognition by EBV is important for the understanding of the pathogenesis of EBV, which is of great significance for finding strategies to prevent EBV infection, and developing a therapy to treat EBV-associated diseases. In this review, we will discuss the molecular mechanisms of host immunological responses to EBV infection and the mechanisms of EBV-mediated immune evasion during chronic active infection.
Collapse
Affiliation(s)
- Yanqing Yao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Habibi MA, Nezhad Shamohammadi F, Rajaei T, Namdari H, Pashaei MR, Farajifard H, Ahmadpour S. Immunopathogenesis of viral infections in neurological autoimmune disease. BMC Neurol 2023; 23:201. [PMID: 37221459 DOI: 10.1186/s12883-023-03239-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Autoimmune diseases develop due to self-tolerance failure in recognizing self and non-self-antigens. Several factors play a role in inducing autoimmunity, including genetic and environmental elements. Several studies demonstrated the causative role of viruses; however, some studies showed the preventive effect of viruses in the development of autoimmunity. Neurological autoimmune diseases are classified based on the targets of autoantibodies, which target intracellular or extracellular antigens rather than neurons. Several theories have been hypothesized to explain the role of viruses in the pathogenesis of neuroinflammation and autoimmune diseases. This study reviewed the current data on the immunopathogenesis of viruses in autoimmunity of the nervous system.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Multiple Sclerosis Research Center, Neuroscience Institut, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran
| | | | - Taraneh Rajaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute , Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
29
|
Desimio MG, Covino DA, Rivalta B, Cancrini C, Doria M. The Role of NK Cells in EBV Infection and Related Diseases: Current Understanding and Hints for Novel Therapies. Cancers (Basel) 2023; 15:cancers15061914. [PMID: 36980798 PMCID: PMC10047181 DOI: 10.3390/cancers15061914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous herpesvirus most often transmitted during infancy and infecting the vast majority of human beings. Usually, EBV infection is nearly asymptomatic and results in life-long persistency of the virus in a latent state under the control of the host immune system. Yet EBV can cause an acute infectious mononucleosis (IM), particularly in adolescents, and is associated with several malignancies and severe diseases that pose a serious threat to individuals with specific inborn error of immunity (IEI). While there is a general consensus on the requirement for functional CD8 T cells to control EBV infection, the role of the natural killer (NK) cells of the innate arm of immunity is more enigmatic. Here we provide an overview of the interaction between EBV and NK cells in the immunocompetent host as well as in the context of primary and secondary immunodeficiencies. Moreover, we report in vitro data on the mechanisms that regulate the capacity of NK cells to recognize and kill EBV-infected cell targets and discuss the potential of recently optimized NK cell-based immunotherapies for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Maria G Desimio
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daniela A Covino
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Beatrice Rivalta
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Caterina Cancrini
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Margherita Doria
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
30
|
Sedighi S, Gholizadeh O, Yasamineh S, Akbarzadeh S, Amini P, Favakehi P, Afkhami H, Firouzi-Amandi A, Pahlevan D, Eslami M, Yousefi B, Poortahmasebi V, Dadashpour M. Comprehensive Investigations Relationship Between Viral Infections and Multiple Sclerosis Pathogenesis. Curr Microbiol 2023; 80:15. [PMID: 36459252 PMCID: PMC9716500 DOI: 10.1007/s00284-022-03112-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Compared to other types of self-limiting myelin disorders, MS compartmentalizes and maintains chronic inflammation in the CNS. Even though the exact cause of MS is unclear, it is assumed that genetic and environmental factors play an important role in susceptibility to this disease. The progression of MS is triggered by certain environmental factors, such as viral infections. The most important viruses that affect MS are Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), human endogenous retrovirus (HERV), cytomegalovirus (CMV), and varicella zoster virus (VZV). These viruses all have latent stages that allow them to escape immune detection and reactivate after exposure to various stimuli. Furthermore, their tropism for CNS and immune system cells explains their possible deleterious function in neuroinflammation. In this study, the effect of viral infections on MS disease focuses on the details of viruses that can change the risk of the disease. Paying attention to the most recent articles on the role of SARS-CoV-2 in MS disease, laboratory indicators show the interaction of the immune system with the virus. Also, strategies to prevent viruses that play a role in triggering MS are discussed, such as EBV, which is one of the most important.
Collapse
Affiliation(s)
- Somayeh Sedighi
- Department of Immunology, Faculty of Medicine, Medical Science of Mashhad, Mashhad, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Parya Amini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnia Favakehi
- Department of Microbiology, Falavargan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamed Afkhami
- Department of Bacteriology, Faculty of Medicine, Medical Science of Shahed, Tehran, Iran
| | - Akram Firouzi-Amandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Pahlevan
- Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
31
|
Ahmed N, Abusalah MAHA, Farzand A, Absar M, Yusof NY, Rabaan AA, AlSaihati H, Alshengeti A, Alwarthan S, Alsuwailem HS, Alrumaih ZA, Alsayyah A, Yean CY. Updates on Epstein-Barr Virus (EBV)-Associated Nasopharyngeal Carcinoma: Emphasis on the Latent Gene Products of EBV. Medicina (B Aires) 2022; 59:medicina59010002. [PMID: 36676626 PMCID: PMC9863520 DOI: 10.3390/medicina59010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon type of malignancy/cancer worldwide. However, NPC is an endemic disease in southeast Asia and southern China and the reasons behind the underlying for such changes are unclear. Even though the Epstein-Barr infection (EBV) has been suggested as an important reason for undistinguishable NPC, the EBV itself is not adequate to source this type of cancer. The risk factors, for example, genetic susceptibility, and environmental factors might be associated with EBV to undertake a part in the NPC carcinogenesis. Normal healthy people have a memory B cell pool where the EBV persists, and any disturbance of this connection leads to virus-associated B cell malignancies. Less is known about the relationship between EBV and epithelial cell tumors, especially the EBV-associated nasopharyngeal carcinoma (EBVaNPC) and EBV-associated gastric carcinoma (EBVaGC). Currently, it is believed that premalignant genetic changes in epithelial cells contribute to the aberrant establishment of viral latency in these tumors. The early and late phases of NPC patients' survival rates vary significantly. The presence of EBV in all tumor cells presents prospects for the development of innovative therapeutic and diagnostic techniques, despite the fact that the virus's exact involvement in the carcinogenic process is presently not very well known. EBV research continues to shed light on the carcinogenic process, which is important for a more comprehensive knowledge of tumor etiology and the development of targeted cancer therapeutics. In order to screen for NPC, EBV-related biomarkers have been widely used in a few high-incidence locations because of their close associations with the risks of NPC. The current review highlights the scientific importance of EBV and its possible association with NPC.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Anam Farzand
- Department of Allied Health Science, Superior University, Lahore 54000, Pakistan
| | - Muhammad Absar
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haifa S. Alsuwailem
- Department of Medicine, College of Medicine, Princess Norah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Zainb A. Alrumaih
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
32
|
Tse E, Fox CP, Glover A, Yoon SE, Kim WS, Kwong YL. Extranodal natural killer/T-cell lymphoma: An overview on pathology and clinical management. Semin Hematol 2022; 59:198-209. [PMID: 36805888 DOI: 10.1053/j.seminhematol.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Natural killer (NK)/T-cell lymphomas arise mainly from NK-cells and occasionally T-cells, and are universally infected with Epstein Barr virus (EBV). They are uncommon lymphomas more prevalent in Asian and Central/South American populations. NK/T-cell lymphomas are clinically aggressive and predominantly extranodal. The most commonly involved sites are the nasal cavity, followed by non-nasal sites including the skin, gastrointestinal tract and testis. The diagnosis of extranodal NK/T-cell lymphoma is established with histological and immunohistochemical examination, together with the demonstration of EBV in the tumour cells. Staging by positron emission tomography computed tomography is essential to inform the optimal management. Plasma EBV DNA quantification should be performed as it serves as a marker for prognostication and treatment response. Survival outcomes of patients with early-stage disease are good following treatment with nonanthracycline based chemotherapy, together with sequential/concurrent radiotherapy. For advanced-stage disease, asparaginase-containing regimens are mostly used and allogeneic haematopoietic stem cell transplantation should be considered for those at high risk of relapse. Salvage chemotherapy is largely ineffective for relapsed/refractory disease, which has a grave prognosis. Novel therapeutic approaches including immune check-point blockade, EBV-specific cytotoxic T-cells, and monoclonal antibodies are being investigated to improve outcomes for those with high risk and relapsed/refractory disease.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | - Alexander Glover
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Are Viral Infections Key Inducers of Autoimmune Diseases? Focus on Epstein–Barr Virus. Viruses 2022; 14:v14091900. [PMID: 36146707 PMCID: PMC9506567 DOI: 10.3390/v14091900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022] Open
Abstract
It is generally accepted that certain viral infections can trigger the development of autoimmune diseases. However, the exact mechanisms by which these viruses induce autoimmunity are still not understood. In this review, we first describe hypothetical mechanisms by which viruses induce some representative autoimmune diseases. Then, we focus on Epstein–Barr virus (EBV) and discuss its role in the pathogenesis of rheumatoid arthritis (RA). The discussion is mainly based on our own previous findings that (A) EBV DNA and its products EBV-encoded small RNA (EBER) and latent membrane protein 1 (LMP1) are present in the synovial lesions of RA, (B) mRNA expression of the signaling lymphocytic activation molecule-associated protein (SAP)/SH2D1A gene that plays a critical role in cellular immune responses to EBV is reduced in the peripheral T cells of patients with RA, and (C) EBV infection of mice reconstituted with human immune system components (humanized mice) induced erosive arthritis that is pathologically similar to RA. Additionally, environmental factors may contribute to EBV reactivation as follows: Porphyromonas gingivalis peptidylarginine deiminase (PAD), an enzyme required for citrullination, engenders antigens leading to the production of citrullinated peptides both in the gingiva and synovium. Anti-citrullinated peptides autoantibody is an important marker for diagnosis and disease activity of RA. These findings, as well as various results obtained by other researchers, strongly suggest that EBV is directly involved in the pathogenesis of RA, a typical autoimmune disease.
Collapse
|
34
|
Jiang J, Ying H. Revealing the crosstalk between nasopharyngeal carcinoma and immune cells in the tumor microenvironment. J Exp Clin Cancer Res 2022; 41:244. [PMID: 35964134 PMCID: PMC9375932 DOI: 10.1186/s13046-022-02457-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelial cells located in the nasopharynx and has a distinct geographic distribution. Chronic Epstein-Barr virus (EBV) infection, as its most common causative agents, can be detected in 100% of NPC types. In-depth studies of the cellular and molecular events leading to immunosuppression in NPC have revealed new therapeutic targets and diverse combinations that promise to benefit patients with highly refractory, advanced and metastatic NPC. This paper reviews the mechanisms by which NPC cells to circumvent immune surveillance and approaches being attempted to restore immunity. We integrate existing insights into anti-NPC immunity and molecular signaling pathways as well as targeting therapies in anticipation of broader applicability and effectiveness in advanced metastatic NPC.
Collapse
|
35
|
Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front Microbiol 2022; 13:955603. [PMID: 35935191 PMCID: PMC9355577 DOI: 10.3389/fmicb.2022.955603] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients. The early phase of viral infection is crucial for EBV to establish latency, but different viral components are sensed by cellular sensors called pattern recognition receptors (PRRs) as the first line of host defense. The efficacy of innate immunity, in particular the interferon-mediated response, is critical to control viral infection initially and to trigger a broad spectrum of specific adaptive immune responses against EBV later. Despite these restrictions, the virus has developed various strategies to evade the immune reaction of its host and to establish its lifelong latency. In its different phases of infection, EBV expresses up to 44 different viral miRNAs. Some act as viral immunoevasins because they have been shown to counteract innate as well as adaptive immune responses. Similarly, certain virally encoded proteins also control antiviral immunity. In this review, we discuss how the virus governs innate immune responses of its host and exploits them to its advantage.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
- Istituto Nazionale di Genetica Molecolare, “Romeo ed Enrica Invernizzi,” Milan, Italy
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
36
|
MicroRNA Regulation of Human Herpesvirus Latency. Viruses 2022; 14:v14061215. [PMID: 35746686 PMCID: PMC9231095 DOI: 10.3390/v14061215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Herpesviruses are ubiquitous human pathogens. After productive (lytic) infection, all human herpesviruses are able to establish life-long latent infection and reactivate from it. Latent infection entails suppression of viral replication, maintenance of the viral genome in infected cells, and the ability to reactivate. Most human herpesviruses encode microRNAs (miRNAs) that regulate these processes during latency. Meanwhile, cellular miRNAs are hijacked by herpesviruses to participate in these processes. The viral or cellular miRNAs either directly target viral transcripts or indirectly affect viral infection through host pathways. These findings shed light on the molecular determinants that control the lytic-latent switch and may lead to novel therapeutics targeting latent infection. We discuss the multiple mechanisms by which miRNAs regulate herpesvirus latency, focusing on the patterns in these mechanisms.
Collapse
|
37
|
Xu JY, Wei XL, Wang YQ, Wang FH. Current status and advances of immunotherapy in nasopharyngeal carcinoma. Ther Adv Med Oncol 2022; 14:17588359221096214. [PMID: 35547095 PMCID: PMC9083041 DOI: 10.1177/17588359221096214] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The general immune landscape of nasopharyngeal carcinoma (NPC) renders immunotherapy suitable for patients with NPC. Immune checkpoint inhibitors (ICIs) based on programmed death-1/programmed death ligand-1 (PD-1/PD-L1) blockade have made a breakthrough with the approval of PD-1 inhibitor for refractory recurrence and/or metastatic (R/M NPC) and the approval of PD-1 inhibitor in combination with gemcitabine and cisplatin as first line for R/M NPC in 2021 in China. The incorporation of ICIs into the treatment paradigms of NPC has become a clinical hot spot and many prospective clinical studies are ongoing. In this review, we provide a comprehensive overview of the rationale for immunotherapy in NPC and current status, advances and challenges of immunotherapy in NPC based on published clinical data, and ongoing trials. We focus on the clinical application and advances of PD-1 inhibitor monotherapy and its combination with chemotherapy and summarize the clinical explorations of other immunotherapy approaches, for example, combination of PD-1/PD-L1 inhibitors with antiangiogenic inhibitor with molecular targeted agents, cancer vaccines, adaptive immunotherapy, and new ICI agents beyond PD-1/PD-L1 inhibitors in R/M NPC. We also describe the clinical studies’ status and challenges of ICIs-based immunomodulatory strategies in local advanced NPC and pay attention to the biomarker application for personalized immunotherapy of NPC in the hope to provide insights for clinical practice and future clinical studies.
Collapse
Affiliation(s)
- Jian-Ying Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao-Li Wei
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yi-Qin Wang
- Department of Clinical Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dong Feng Road East, Guangzhou 510060, Guangdong, P.R. China
| |
Collapse
|
38
|
Jasinski-Bergner S, Blümke J, Bauer M, Skiebe SL, Mandelboim O, Wickenhauser C, Seliger B. Novel approach to identify putative Epstein-Barr-virus microRNAs regulating host cell genes with relevance in tumor biology and immunology. Oncoimmunology 2022; 11:2070338. [PMID: 35529676 PMCID: PMC9067544 DOI: 10.1080/2162402x.2022.2070338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022] Open
Abstract
The human Epstein-Barr virus is associated with several human solid and hematopoietic malignancies. However, the underlying molecular mechanisms including virus-encoded microRNAs (miRs), which lead to the malignant transformation of infected cells and immune evasion of EBV-associated tumors, have not yet been characterized. The expression levels of numerous known EBV-specific miRs and their suitability as diagnostic and/or prognostic markers were determined in different human EBV-positive tissues followed by in silico analyses to identify putative EBV-miR-regulated target genes, thereby offering a suitable screening strategy to overcome the limited available data sets of EBV-miRs and their targeted gene networks. Analysis of microarray data sets from healthy human B cells and malignant-transformed EBV-positive B cells of patients with Burkitt's lymphoma revealed statistically significant (p < 0.05) deregulated genes with known functions in oncogenic properties, immune escape and anti-tumoral immune responses. Alignments of in vivo and in silico data resulted in the prediction of putative candidate EBV-miRs and their target genes. Thus, a combinatorial approach of bioinformatics, transcriptomics and in situ expression analyses is a promising tool for the identification of EBV-miRs and their potential targets as well as their eligibility as markers for EBV detection in different EBV-associated human tissue.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Juliane Blümke
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Marcus Bauer
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Saskia Luise Skiebe
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, En Kerem, P.O. Box 12271, Jerusalem91120, Israel
| | - Claudia Wickenhauser
- Institute for Pathology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
39
|
The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life (Basel) 2022; 12:life12010073. [PMID: 35054466 PMCID: PMC8781285 DOI: 10.3390/life12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Extranodal NK/T-cell lymphoma is a neoplasm of NK cells or cytotoxic T cells presenting in extranodal sites, most often in the nasal cavity. The typical immunophenotypes are cCD3+, sCD3-, CD4-, CD5-, CD8-, CD16-, and CD56+ with the expression of cytotoxic molecules. Tumor subsets express NK cell receptors, CD95/CD95L, CD30, MYC, and PDL1. Virtually all the tumor cells harbor the EBV genome, which plays a key role in lymphomagenesis as an epigenetic driver. EBV-encoded oncoproteins modulate the host-cell epigenetic machinery, reprogramming the viral and host epigenomes using host epigenetic modifiers. NGS analysis revealed the mutational landscape of ENKTL, predominantly involving the JAK-STAT pathway, epigenetic modifications, the RNA helicase family, the RAS/MAP kinase pathway, and tumor suppressors, which indicate an important role of these pathways and this group of genes in the lymphomagenesis of ENKTL. Recently, three molecular subtypes were proposed, the tumor-suppressor/immune-modulator (TSIM), MGA-BRDT (MB), and HDAC9-EP300-ARID1A (HEA) subtypes, and they are well-correlated with the cell of origin, EBV pattern, genomic alterations, and clinical outcomes. A future investigation into the function and interaction of discovered genes would be very helpful for better understanding the molecular pathogenesis of ENKTL and establishing better treatment strategies.
Collapse
|
40
|
Rang X, Liu Y, Wang J, Wang Y, Xu C, Fu J. Identification of multiple sclerosis-related genes regulated by EBV-encoded microRNAs in B cells. Mult Scler Relat Disord 2022; 59:103563. [DOI: 10.1016/j.msard.2022.103563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 01/09/2023]
|
41
|
Albanese M, Ruhle A, Mittermaier J, Mejías-Pérez E, Gapp M, Linder A, Schmacke NA, Hofmann K, Hennrich AA, Levy DN, Humpe A, Conzelmann KK, Hornung V, Fackler OT, Keppler OT. Rapid, efficient and activation-neutral gene editing of polyclonal primary human resting CD4 + T cells allows complex functional analyses. Nat Methods 2022; 19:81-89. [PMID: 34949807 PMCID: PMC8748193 DOI: 10.1038/s41592-021-01328-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022]
Abstract
CD4+ T cells are central mediators of adaptive and innate immune responses and constitute a major reservoir for human immunodeficiency virus (HIV) in vivo. Detailed investigations of resting human CD4+ T cells have been precluded by the absence of efficient approaches for genetic manipulation limiting our understanding of HIV replication and restricting efforts to find a cure. Here we report a method for rapid, efficient, activation-neutral gene editing of resting, polyclonal human CD4+ T cells using optimized cell cultivation and nucleofection conditions of Cas9-guide RNA ribonucleoprotein complexes. Up to six genes, including HIV dependency and restriction factors, were knocked out individually or simultaneously and functionally characterized. Moreover, we demonstrate the knock in of double-stranded DNA donor templates into different endogenous loci, enabling the study of the physiological interplay of cellular and viral components at single-cell resolution. Together, this technique allows improved molecular and functional characterizations of HIV biology and general immune functions in resting CD4+ T cells.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany.
- Istituto Nazionale di Genetica Molecolare, INGM, "Romeo ed Enrica Invernizzi", Milan, Italy.
| | - Adrian Ruhle
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Jennifer Mittermaier
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Ernesto Mejías-Pérez
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Madeleine Gapp
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Andreas Linder
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
- Department of Medicine II, University Hospital, LMU München, Munich, Germany
| | - Niklas A Schmacke
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Katharina Hofmann
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Alexandru A Hennrich
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - David N Levy
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics, and Hemostaseology, Department of Anesthesiology, University Hospital Munich, Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany.
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
42
|
Eng GWL, Zheng Y, Yap DWT, Teo AYT, Cheong JK. Autophagy and ncRNAs: Dangerous Liaisons in the Crosstalk between the Tumor and Its Microenvironment. Cancers (Basel) 2021; 14:cancers14010020. [PMID: 35008183 PMCID: PMC8750064 DOI: 10.3390/cancers14010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumor cells communicate with the stromal cells within the tumor microenvironment (TME) to create a conducive environment for tumor growth. One major avenue for mediating crosstalk between various cell types in the TME involves exchanges of molecular payloads in the form of extracellular vesicles/exosomes. Autophagy is a fundamental mechanism to maintain intracellular homeostasis but recent reports suggest that secretory autophagy plays an important role in promoting secretion of exosomes that are packaged with non-coding RNAs (ncRNAs) and other biomolecules from the donor cell. Uptake of exosomal autophagy-modulating ncRNAs by recipient cells may further perpetuate tumor progression. Abstract Autophagy is a fundamental cellular homeostasis mechanism known to play multifaceted roles in the natural history of cancers over time. It has recently been shown that autophagy also mediates the crosstalk between the tumor and its microenvironment by promoting the export of molecular payloads such as non-coding RNA (ncRNAs) via LC3-dependent Extracellular Vesicle loading and secretion (LDELS). In turn, the dynamic exchange of exosomal ncRNAs regulate autophagic responses in the recipient cells within the tumor microenvironment (TME), for both tumor and stromal cells. Autophagy-dependent phenotypic changes in the recipient cells further enhance tumor growth and metastasis, through diverse biological processes, including nutrient supplementation, immune evasion, angiogenesis, and therapeutic resistance. In this review, we discuss how the feedforward autophagy-ncRNA axis orchestrates vital communications between various cell types within the TME ecosystem to promote cancer progression.
Collapse
Affiliation(s)
- Gracie Wee Ling Eng
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Yilong Zheng
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Dominic Wei Ting Yap
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Andrea York Tiang Teo
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Jit Kong Cheong
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
- NUS Centre for Cancer Research, National University of Singapore, 14 Medical Dr, Centre for Translational Medicine #12-01, Singapore 117599, Singapore
- Department of Biochemistry, YLLSoM, National University of Singapore, 8 Medical Drive, MD7 #03-09, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-66016388
| |
Collapse
|
43
|
Han S, Tay JK, Loh CJL, Chu AJM, Yeong JPS, Lim CM, Toh HC. Epstein–Barr Virus Epithelial Cancers—A Comprehensive Understanding to Drive Novel Therapies. Front Immunol 2021; 12:734293. [PMID: 34956172 PMCID: PMC8702733 DOI: 10.3389/fimmu.2021.734293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous oncovirus associated with specific epithelial and lymphoid cancers. Among the epithelial cancers, nasopharyngeal carcinoma (NPC), lymphoepithelioma-like carcinoma (LELC), and EBV-associated gastric cancers (EBVaGC) are the most common. The role of EBV in the pathogenesis of NPC and in the modulation of its tumour immune microenvironment (TIME) has been increasingly well described. Much less is known about the pathogenesis and tumour–microenvironment interactions in other EBV-associated epithelial cancers. Despite the expression of EBV-related viral oncoproteins and a generally immune-inflamed cancer subtype, EBV-associated epithelial cancers have limited systemic therapeutic options beyond conventional chemotherapy. Immune checkpoint inhibitors are effective only in a minority of these patients and even less efficacious with molecular targeting drugs. Here, we examine the key similarities and differences of NPC, LELC, and EBVaGC and comprehensively describe the clinical, pathological, and molecular characteristics of these cancers. A deeper comparative understanding of these EBV-driven cancers can potentially uncover targets in the tumour, TIME, and stroma, which may guide future drug development and cast light on resistance to immunotherapy.
Collapse
Affiliation(s)
- Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joshua K. Tay
- Department of Otolaryngology—Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | | | | | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Chwee Ming Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- *Correspondence: Han Chong Toh,
| |
Collapse
|
44
|
Epstein-Barr virus miR-BHRF1-3 targets the BZLF1 3'UTR and regulates the lytic cycle. J Virol 2021; 96:e0149521. [PMID: 34878852 DOI: 10.1128/jvi.01495-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Suppression of lytic viral gene expression is a key aspect of the Epstein-Barr virus (EBV) life cycle to facilitate the establishment of latent infection. Molecular mechanisms regulating transitions between EBV lytic replication and latency are not fully understood. Here, we investigated the impact of viral microRNAs on the EBV lytic cycle. Through functional assays, we found that miR-BHRF1-3 attenuates EBV lytic gene expression following reactivation. To understand the miRNA targets contributing to this activity, we performed Ago PAR-CLIP analysis on EBV-positive, reactivated Burkitt's lymphoma cells and identified multiple miR-BHRF1-3 interactions with viral transcripts. Using luciferase reporter assays, we confirmed a miRNA interaction site within the 3'UTR of BZLF1 which encodes the essential immediate early (IE) transactivator Zta. Comparison of >850 published EBV genomes identified sequence polymorphisms within the miR-BHRF1-3 locus that deleteriously affect miRNA expression and function. Molecular interactions between the homologous viral miRNA, miR-rL1-17, and IE transcripts encoded by rhesus lymphocryptovirus were further identified. Our data demonstrate that regulation of IE gene expression by a BHRF1 miRNA is conserved amongst lymphocryptoviruses, and further reveal virally-encoded genetic elements that orchestrate viral antigen expression during the lytic cycle. Importance Epstein-Barr virus infection is predominantly latent in healthy individuals, while periodic cycles of reactivation are thought to facilitate persistent lifelong infection. Lytic infection has been linked to development of certain EBV-associated diseases. Here, we demonstrate that EBV miR-BHRF1-3 can suppress lytic replication by directly inhibiting Zta expression. Moreover, we identify nucleotide variants that impact the function of miR-BHRF1-3, which may contribute to specific EBV pathologies.
Collapse
|
45
|
Albanese M, Chen YFA, Hüls C, Gärtner K, Tagawa T, Mejias-Perez E, Keppler OT, Göbel C, Zeidler R, Shein M, Schütz AK, Hammerschmidt W. MicroRNAs are minor constituents of extracellular vesicles that are rarely delivered to target cells. PLoS Genet 2021; 17:e1009951. [PMID: 34871319 PMCID: PMC8675925 DOI: 10.1371/journal.pgen.1009951] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mammalian cells release different types of vesicles, collectively termed extracellular vesicles (EVs). EVs contain cellular microRNAs (miRNAs) with an apparent potential to deliver their miRNA cargo to recipient cells to affect the stability of individual mRNAs and the cells’ transcriptome. The extent to which miRNAs are exported via the EV route and whether they contribute to cell-cell communication are controversial. To address these issues, we defined multiple properties of EVs and analyzed their capacity to deliver packaged miRNAs into target cells to exert biological functions. We applied well-defined approaches to produce and characterize purified EVs with or without specific viral miRNAs. We found that only a small fraction of EVs carried miRNAs. EVs readily bound to different target cell types, but EVs did not fuse detectably with cellular membranes to deliver their cargo. We engineered EVs to be fusogenic and document their capacity to deliver functional messenger RNAs. Engineered fusogenic EVs, however, did not detectably alter the functionality of cells exposed to miRNA-carrying EVs. These results suggest that EV-borne miRNAs do not act as effectors of cell-to-cell communication. The majority of metazoan cells release vesicles of different types and origins, such as exosomes and microvesicles, now collectively termed extracellular vesicles (EVs). EVs have gained much attention because they contain microRNAs (miRNAs) and thus could regulate their specific mRNA targets in recipient or acceptor cells that take up EVs. Using a novel fusion assay with superior sensitivity and specificity, we revisited this claim but found no convincing evidence for an efficient functional uptake of EVs in many different cell lines and primary human blood cells. Even EVs engineered to fuse and deliver their miRNA cargo to recipient cells had no measurable effect on target mRNAs in very carefully controlled, quantitative experiments. Our negative results clearly indicate that EVs do not act as vehicles for miRNA-based cell-to-cell communication.
Collapse
Affiliation(s)
- Manuel Albanese
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- * E-mail: (MA); (WH)
| | - Yen-Fu Adam Chen
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Corinna Hüls
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Kathrin Gärtner
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Ernesto Mejias-Perez
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Oliver T. Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Reinhard Zeidler
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- Department of Otorhinolaryngology, Klinikum der Universität München, Munich, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Anne K. Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- * E-mail: (MA); (WH)
| |
Collapse
|
46
|
Bauer M, Jasinski-Bergner S, Mandelboim O, Wickenhauser C, Seliger B. Epstein-Barr Virus-Associated Malignancies and Immune Escape: The Role of the Tumor Microenvironment and Tumor Cell Evasion Strategies. Cancers (Basel) 2021; 13:cancers13205189. [PMID: 34680337 PMCID: PMC8533749 DOI: 10.3390/cancers13205189] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The Epstein–Barr virus, also termed human herpes virus 4, is a human pathogenic double-stranded DNA virus. It is highly prevalent and has been linked to the development of 1–2% of cancers worldwide. EBV-associated malignancies encompass various structural and epigenetic alterations. In addition, EBV-encoded gene products and microRNAs interfere with innate and adaptive immunity and modulate the tumor microenvironment. This review provides an overview of the characteristic features of EBV with a focus on the intrinsic and extrinsic immune evasion strategies, which contribute to EBV-associated malignancies. Abstract The detailed mechanisms of Epstein–Barr virus (EBV) infection in the initiation and progression of EBV-associated malignancies are not yet completely understood. During the last years, new insights into the mechanisms of malignant transformation of EBV-infected cells including somatic mutations and epigenetic modifications, their impact on the microenvironment and resulting unique immune signatures related to immune system functional status and immune escape strategies have been reported. In this context, there exists increasing evidence that EBV-infected tumor cells can influence the tumor microenvironment to their own benefit by establishing an immune-suppressive surrounding. The identified mechanisms include EBV gene integration and latent expression of EBV-infection-triggered cytokines by tumor and/or bystander cells, e.g., cancer-associated fibroblasts with effects on the composition and spatial distribution of the immune cell subpopulations next to the infected cells, stroma constituents and extracellular vesicles. This review summarizes (i) the typical stages of the viral life cycle and EBV-associated transformation, (ii) strategies to detect EBV genome and activity and to differentiate various latency types, (iii) the role of the tumor microenvironment in EBV-associated malignancies, (iv) the different immune escape mechanisms and (v) their clinical relevance. This gained information will enhance the development of therapies against EBV-mediated diseases to improve patient outcome.
Collapse
Affiliation(s)
- Marcus Bauer
- Department of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany; (M.B.); (C.W.)
| | - Simon Jasinski-Bergner
- Department of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany;
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, En Kerem, P.O. Box 12271, Jerusalem 91120, Israel;
| | - Claudia Wickenhauser
- Department of Pathology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 14, 06112 Halle (Saale), Germany; (M.B.); (C.W.)
| | - Barbara Seliger
- Department of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-(345)-557-1357
| |
Collapse
|
47
|
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer 2021; 8:jitc-2020-000841. [PMID: 32616556 PMCID: PMC7333871 DOI: 10.1136/jitc-2020-000841] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several human herpes viruses (HHVs) exert oncogenic potential leading to malignant transformation of infected cells and/or tissues. The molecular processes induced by viral-encoded molecules including microRNAs, peptides, and proteins contributing to immune evasion of the infected host cells are equal to the molecular processes of immune evasion mediated by tumor cells independently of viral infections. Such major immune evasion strategies include (1) the downregulation of proinflammatory cytokines/chemokines as well as the induction of anti-inflammatory cytokines/chemokines, (2) the downregulation of major histocompatibility complex (MHC) class Ia directly as well as indirectly by downregulation of the components involved in the antigen processing, and (3) the downregulation of stress-induced ligands for activating receptors on immune effector cells with NKG2D leading the way. Furthermore, (4) immune modulatory molecules like MHC class Ib molecules and programmed cell death1 ligand 1 can be upregulated on infections with certain herpes viruses. This review article focuses on the known molecular mechanisms of HHVs modulating the above-mentioned possibilities for immune surveillance and even postulates a temporal order linking regular tumor immunology with basic virology and offering putatively novel insights for targeting HHVs.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Ofer Mandelboim
- Immunology & Cancer Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
48
|
MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers (Basel) 2021; 13:cancers13153909. [PMID: 34359809 PMCID: PMC8345394 DOI: 10.3390/cancers13153909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration, and immune evasion. The EBV latency program is required for the immortalization of infected B cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to the development of EBV-associated cancers. In this review, we discuss the function and potential clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.
Collapse
|
49
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
50
|
Kimura H, Okuno Y, Sato Y, Watanabe T, Murata T. Deletion of Viral microRNAs in the Oncogenesis of Epstein-Barr Virus-Associated Lymphoma. Front Microbiol 2021; 12:667968. [PMID: 34305835 PMCID: PMC8297563 DOI: 10.3389/fmicb.2021.667968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Epstein–Barr virus (EBV), which encodes >80 genes and nearly 50 non-coding RNAs, is a double-stranded DNA virus. EBV is associated with various types of lymphomas and lymphoproliferative disorders not only of B-cell but also T/NK-cell origin. However, the oncogenic mechanism remains poorly understood, including the EBV receptors expressed on T/NK cells, relationship of EBV with host genes, and epigenetic regulation of EBV and host genes. The roles of host and viral non-coding RNAs during tumorigenesis have been elucidated. EBV encodes at least 49 mature microRNAs (miRNAs), of which 44 are located in BamHI-A rightward transcripts (BARTs) region, and the remaining five are located in BamHI-H rightward fragment 1. BART miRNAs modulate cell differentiation, proliferation, apoptosis, and the cell cycle, and they are considered positive regulators of oncogenesis. We and others have recently reported that EBV-positive lymphomas frequently possess large deletions in BART miRNA clusters, suggesting that some viral miRNAs have suppressive effects on oncogenesis, and that deletion of these miRNAs may aid lymphoma formation.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|