1
|
Tan SN, Kotaki Y, Teng ST, Lim HC, Gao C, Lundholm N, Wolf M, Gu H, Lim PT, Leaw CP. Intraspecific genetic diversity with unrestricted gene flow in the domoic acid-producing diatom Nitzschia navis-varingica (Bacillariophyceae) from the Western Pacific. HARMFUL ALGAE 2025; 141:102769. [PMID: 39645396 DOI: 10.1016/j.hal.2024.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2). Frustule morphology of each strain was examined by TEM. The LSU rDNA phylogeny revealed a monophyletic lineage encompassing all strains, with sequence divergences of <0.9 %. Phylogenetic and population genetic analyses of ITS2 identified eight distinct clades (designated as Groups A to H) with moderate to high genetic heterogeneity (0.5-19.7 %). The low genetic differentiations between the geographically separated populations (pairwise FST of <0.03) suggested high gene flow and lack of spatial genetic structuring. Molecular clock analysis of the ITS2 phylogeny traced the evolutionary history of N. navis-varingica to the Eocene Epoch, and the split between clades likely occurred from the mid-Miocene to Pleistocene Epochs (10.8-1.2 Ma). The population dispersal in the WP were likely influenced by historical events like the Quarternary glacial cycles during the period, contributing to its homogenous distributions in the region.
Collapse
Affiliation(s)
- Suh Nih Tan
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia; China-ASEAN College of Marine Sciences, Xiamen University Malaysia 43900 Sepang, Selangor, Malaysia.
| | - Yuichi Kotaki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572 Japan
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia
| | - Hong Chang Lim
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia
| | - Chunlei Gao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland 97074 Würzburg, Germany
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya 16310 Bachok, Kelantan, Malaysia.
| |
Collapse
|
2
|
Wong ELY, Valim HF, Schmitt I. Genome-wide differentiation corresponds to climatic niches in two species of lichen-forming fungi. Environ Microbiol 2024; 26:e16703. [PMID: 39388227 DOI: 10.1111/1462-2920.16703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Lichens can withstand fluctuating environmental conditions such as hydration-desiccation cycles. Many species distribute across climate zones, suggesting population-level adaptations to conditions such as freezing and drought. Here, we aim to understand how climate affects population genomic patterns in lichenized fungi. We analysed population structure along elevational gradients in closely related Umbilicaria phaea (North American; two gradients) and Umbilicaria pustulata (European; three gradients). All gradients showed clear genomic breaks splitting populations into low-elevation (Mediterranean zone) and high-elevation (cold temperate zone). A total of 3301 SNPs in U. phaea and 138 SNPs in U. pustulata were driven to fixation between the two ends of the gradients. The difference between the species is likely due to differences in recombination rate: the sexually reproducing U. phaea has a higher recombination rate than the primarily asexually reproducing U. pustulata. Cline analysis revealed allele frequency transitions along all gradients at approximately 0°C, coinciding with the transition between the Mediterranean and cold temperate zones, suggesting freezing is a strong driver of population differentiation. Genomic scans further confirmed temperature-related selection targets. Both species showed similar differentiation patterns overall, but different selected alleles indicate convergent adaptation to freezing. Our results enrich our knowledge of fungal genomic functions related to temperature and climate, fungal population genomics, and species responses to environmental heterogeneity.
Collapse
Affiliation(s)
- Edgar L Y Wong
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Henrique F Valim
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Imke Schmitt
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
3
|
Hay Mele B, Ruggiero MV, D'Alelio D. Population bottlenecks and sexual recombination shape diatom microevolution. Ecol Evol 2024; 14:e11464. [PMID: 39091335 PMCID: PMC11289787 DOI: 10.1002/ece3.11464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 08/04/2024] Open
Abstract
Diatoms are single-celled organisms that contribute approximately 20% of the global primary production and play a crucial role in biogeochemical cycles and trophic chains. Despite their ecological importance, our knowledge of microevolution is limited. We developed a model using the SLiM evolutionary framework to address this knowledge gap. As a reference, we used the diatom Pseudo-nitzschia multistriata, which has been extensively studied in the Gulf of Naples. Our model recapitulates what we observe in natural populations, with microevolutionary processes that occur annually during a three-stage bloom phase. Interestingly, we found that non-bloom phases allow the population to maintain sex-generated diversity produced during blooms. This finding suggests that non-bloom phases are critical to counteract bloom-related pressures and mitigate genetic divergence at the species level. Moreover, our model showed that despite the consistent genetic differentiation during bloom phases, the population tends to return to pre-bloom states. While our model is limited to neutral dynamics, our study provides valuable insights into diatoms' microevolution, paving the way to explore the ecological implications of the life history dynamics of these organisms.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of BiologyUniversity of Naples “Federico II”NaplesItaly
| | | | - Domenico D'Alelio
- Stazione Zoologica Anton DohrnNaplesItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
| |
Collapse
|
4
|
Negrín Dastis JO, McGuinness B, Tadiri CP, Yargeau V, Gonzalez A. Connectivity mediates the spatial ecological impacts of a glyphosate-based herbicide in experimental metaecosystems. Oecologia 2024; 205:709-723. [PMID: 39133237 PMCID: PMC11358246 DOI: 10.1007/s00442-024-05601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Metacommunity ecology has shown that connectivity is important for the persistence of a species locally and across connected ecosystems, however we do not know if ecological effects in freshwater ecosystems exposed to biocides leaking from agriculture depend on metaecosystem connectivity. We experimentally replicated metaecosystems in the laboratory using gradostats as a model system. We tested the effects of connectivity, in terms of node distance from the pollutant-source, flow rate, and a glyphosate-based herbicide, on phytoplankton productivity, diversity and stability. Gradostats were composed of interconnected equally spaced nodes where resources and phytoplankton move directionally along a gradient of increasing distance from the source of the polluting herbicide. We hypothesised that ecological effects would be stronger in the node situated closer to the point of herbicide input, but that flow would suppress phytoplankton populations in distant nodes. Overall, RoundUp impacted phytoplankton productivity and stability by reducing algal biomass and abundances. This occurred especially in the node closest to the diluted herbicide point-source and under high flow, where species abundances were heavily suppressed by the effects of the rapidly flowing herbicide. At low flow on the other hand, distant nodes where buffered from the effects of the slow-moving herbicide. No differences in beta and gamma diversity among replicate metaecosystems was found; however, a significant loss of alpha diversity in all metaecosystems occurred through time until the end of the experiment. Together, these results point to the importance of considering aquatic connectivity in management plans for monitoring and mitigating unintended ecological consequences of agrochemical runoff.
Collapse
Affiliation(s)
- Jorge Octavio Negrín Dastis
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada.
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada.
- Fisheries and Oceans Canada, 200 Kent Street, Ottawa, ON, K1A 0E6, Canada.
| | - Brendon McGuinness
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada
| | - Christina P Tadiri
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada
- Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4058, Basel, Switzerland
| | - Viviane Yargeau
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montreal, QC, H3A 1A3, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada.
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada.
| |
Collapse
|
5
|
Ruggiero MV, Buffoli M, Wolf KKE, D'Alelio D, Di Tuccio V, Lombardi E, Manfellotto F, Vitale L, Margiotta F, Sarno D, John U, Ferrante MI, Montresor M. Multiannual patterns of genetic structure and mating type ratios highlight the complex bloom dynamics of a marine planktonic diatom. Sci Rep 2024; 14:6028. [PMID: 38472358 DOI: 10.1038/s41598-024-56292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the genetic structure of populations and the processes responsible for its spatial and temporal dynamics is vital for assessing species' adaptability and survival in changing environments. We investigate the genetic fingerprinting of blooming populations of the marine diatom Pseudo-nitzschia multistriata in the Gulf of Naples (Mediterranean Sea) from 2008 to 2020. Strains were genotyped using microsatellite fingerprinting and natural samples were also analysed with Microsatellite Pool-seq Barcoding based on Illumina sequencing of microsatellite loci. Both approaches revealed a clonal expansion event in 2013 and a more stable genetic structure during 2017-2020 compared to previous years. The identification of a mating type (MT) determination gene allowed to assign MT to strains isolated over the years. MTs were generally at equilibrium with two notable exceptions, including the clonal bloom of 2013. The populations exhibited linkage equilibrium in most blooms, indicating that sexual reproduction leads to genetic homogenization. Our findings show that P. multistriata blooms exhibit a dynamic genetic and demographic composition over time, most probably determined by deeper-layer cell inocula. Occasional clonal expansions and MT imbalances can potentially affect the persistence and ecological success of planktonic diatoms.
Collapse
Affiliation(s)
| | - Marina Buffoli
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Klara K E Wolf
- Institut für Marine Ökosystem- und Fischereiwissenschaften, Universität Hamburg, Hamburg, Germany
- Limnological Institute, Environmental Genomics, University of Konstanz, Konstanz, Germany
| | - Domenico D'Alelio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Viviana Di Tuccio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ernestina Lombardi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Francesco Manfellotto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Laura Vitale
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Francesca Margiotta
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Diana Sarno
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Uwe John
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Maria Immacolata Ferrante
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Oceanography Section, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Marina Montresor
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
6
|
Pan Y, Kang P, Zhang Y, Li X. Kalidium cuspidatum colonization changes the structure and function of salt crust microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19764-19778. [PMID: 38363505 DOI: 10.1007/s11356-024-32364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
The changes of soil moisture, salinity, and nutrients by halophyte colonization in high-salinity environment profoundly affect the assembly and structure of microbial communities. However, salt marshes in arid region have received little attention. This study was conducted in Lianhuachi Lake, a typical inland salt marsh wetland in China, to determine the physicochemical characteristics of salt crusts in [Kalidium cuspidatum (Ung.-Sternb.) Grub.] colonization areas and bulk soil, respectively, and to analyze the microbial community structure of salt crusts by high-throughput sequencing. Kalidium cuspidatum colonization significantly decreased total salinity, soil water content, and water-soluble ions of salt crusts and increased total carbon, total nitrogen, and total phosphorus content. At the same time, changes in physicochemical properties caused by Kalidium cuspidatum colonization affect the ecological processes of bacterial, fungal, and archaeal community assemblies in salt crusts. In addition, cross-kingdom network analysis showed that Kalidium cuspidatum colonization increased the complexity and stability of microbial networks in salt crust soils. Functional projections further showed that bacterial diversity had a potential driving effect on the nitrogen cycle function of salt crust. Our study further demonstrated the different ecological strategies of microorganisms for halophyte colonization in extreme environments and contributed to the understanding of restoration and management of salt marsh wetlands in arid region.
Collapse
Affiliation(s)
- Yaqing Pan
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| | - Peng Kang
- School of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Yaqi Zhang
- School of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Xinrong Li
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| |
Collapse
|
7
|
Hoetzinger M, Hahn MW, Andersson LY, Buckley N, Ramsin C, Buck M, Nuy JK, Garcia SL, Puente-Sánchez F, Bertilsson S. Geographic population structure and distinct intra-population dynamics of globally abundant freshwater bacteria. THE ISME JOURNAL 2024; 18:wrae113. [PMID: 38959851 PMCID: PMC11283720 DOI: 10.1093/ismejo/wrae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/09/2024] [Indexed: 07/05/2024]
Abstract
Implications of geographic separation and temporal dynamics on the evolution of free-living bacterial species are widely unclear. However, the vast amount of metagenome sequencing data generated during the last decades from various habitats around the world provides an unprecedented opportunity for such investigations. Here, we exploited publicly available and new freshwater metagenomes in combination with the genomes of abundant freshwater bacteria to reveal geographic and temporal population structure. We focused on species that were detected across broad geographic ranges at high enough sequence coverage for meaningful population genomic analyses, associated with the predominant freshwater taxa acI, LD12, Polynucleobacter, and Candidatus Methylopumilus. Despite the broad geographic ranges, each species appeared as a sequence-discrete cluster, in contrast to abundant marine taxa, for which continuous diversity structures were reported on a global scale. Population differentiation increased significantly with spatial distance in all species, but notable dispersal barriers (e.g. oceanic) were not apparent. Yet, the different species showed contrasting rates of geographic divergence and strikingly different intra-population dynamics in time series within individual habitats. The change in an LD12 population over 7 years was minor (FST = 0.04) compared to differentiation between lakes, whereas a Polynucleobacter population displayed strong changes within merely 2 months (FST up to 0.54), similar in scale to differentiation between populations separated by thousands of kilometers. The slowly and steadily evolving LD12 population showed high strain diversity, whereas the dynamic Polynucleobacter population exhibited alternating clonal expansions of mostly two strains only. Based on the contrasting population structures, we propose distinct models of speciation.
Collapse
Affiliation(s)
- Matthias Hoetzinger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, 5310 Mondsee, Austria
| | - Linnéa Y Andersson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Nathaniel Buckley
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Chelsea Ramsin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Julia K Nuy
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, 104 05 Stockholm, Sweden
- Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, 104 05 Stockholm, Sweden
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
8
|
Zhang L, Meng L, Fang Y, Ogata H, Okazaki Y. Spatiotemporal dynamics of giant viruses within a deep freshwater lake reveal a distinct dark-water community. THE ISME JOURNAL 2024; 18:wrae182. [PMID: 39312489 PMCID: PMC11465185 DOI: 10.1093/ismejo/wrae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome-assembled genome reconstruction enhanced by long-read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 (14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial ecosystems.
Collapse
Affiliation(s)
- Liwen Zhang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Lingjie Meng
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yue Fang
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusuke Okazaki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
9
|
Power JF, Carere CR, Welford HE, Hudson DT, Lee KC, Moreau JW, Ettema TJG, Reysenbach AL, Lee CK, Colman DR, Boyd ES, Morgan XC, McDonald IR, Craig Cary S, Stott MB. A genus in the bacterial phylum Aquificota appears to be endemic to Aotearoa-New Zealand. Nat Commun 2024; 15:179. [PMID: 38167814 PMCID: PMC10762115 DOI: 10.1038/s41467-023-43960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupō Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.
Collapse
Affiliation(s)
- Jean F Power
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Carlo R Carere
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Holly E Welford
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Daniel T Hudson
- Te Tari Moromoroiti me te Ārai Mate | Department of Microbiology and Immunology, Te Whare Wānanga o Ōtākou | University of Otago, Dunedin, 9054, Aotearoa New Zealand
| | - Kevin C Lee
- Te Kura Pūtaiao | School of Science, Te Wānanga Aronui o Tāmaki Makau Rau | Auckland University of Technology, Auckland, 1010, Aotearoa New Zealand
| | - John W Moreau
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8RZ, UK
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, the Netherlands
| | | | - Charles K Lee
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Xochitl C Morgan
- Te Tari Moromoroiti me te Ārai Mate | Department of Microbiology and Immunology, Te Whare Wānanga o Ōtākou | University of Otago, Dunedin, 9054, Aotearoa New Zealand
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ian R McDonald
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - S Craig Cary
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand.
| | - Matthew B Stott
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand.
| |
Collapse
|
10
|
Li Y, Wang F, Yang H, Li H, Hu C. Balanced biogeographic and local environmental effects determine the patterns of microbial diversity in biocrusts at multi-scales. Front Microbiol 2023; 14:1284864. [PMID: 38029206 PMCID: PMC10666793 DOI: 10.3389/fmicb.2023.1284864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Biodiversity maintenance and its underlying mechanisms are central issues of ecology. However, predicting the composition turnovers of microbial communities at multiple spatial scales remains greatly challenging because they are obscured by the inconsistent impacts of climatic and local edaphic conditions on the assembly process. Methods Based on the Illumina MeSeq 16S/18S rRNA sequencing technology, we investigated soil bacterial and eukaryotic communities in biocrusts with different successional levels at a subcontinental scale of Northern China. Results Results showed that irrespective of spatial scale, bacterial α diversity increased but eukaryotic diversity decreased with the primary succession, whereas both β diversities decreased at the subcontinental scale compared with smaller scales, indicating that the biogeographic pattern of soil microorganisms was balanced by successional convergence and distance decay effect. We found that the convergence of bacterial and eukaryotic communities was attributed to the turnovers of generalist and specialist species, respectively. In this process, edaphic and climatic factors showed unique roles in the changes of diversity at local/subcontinental scales. Moreover, the taxonomic diversity tended to be more susceptible to climatic and edaphic conditions, while biotic factors (photosynthesis and pigments) were more important to phylogenetic diversity. Conclusion Taken together, our study provided comprehensive insights into understanding the pattern of microbial diversity at multiple spatial scales of drylands.
Collapse
Affiliation(s)
- Yuanlong Li
- Hunan Provincial Key Laboratory of Carbon Neutrality and Intelligent Energy, School of Resource and Environment, Hunan University of Technology and Business, Changsha, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fengdi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hua Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
Walworth NG, Espinoza JL, Argyle PA, Hinners J, Levine NM, Doblin MA, Dupont CL, Collins S. Genus-Wide Transcriptional Landscapes Reveal Correlated Gene Networks Underlying Microevolutionary Divergence in Diatoms. Mol Biol Evol 2023; 40:msad218. [PMID: 37874344 PMCID: PMC10595192 DOI: 10.1093/molbev/msad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can occur along a single major axis of variation defined by core ortholog expression comprising common metabolic pathways. Previous work has associated specific transcriptional changes in gene networks with environmental factors. Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these pathways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that capture suites of interacting transcriptional changes during diversification improve our understanding of both global patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
- J.Craig Venter Institute, La Jolla, CA 92037, USA
| | | | - Phoebe A Argyle
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jana Hinners
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | - Sinéad Collins
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
12
|
Filatov DA. How does speciation in marine plankton work? Trends Microbiol 2023; 31:989-991. [PMID: 37500364 DOI: 10.1016/j.tim.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Marine plankton species are ecologically important, yet, it remains unclear how they originate in the ocean, where few barriers are apparent to cause the most common type of speciation - divergence in isolation. Here I discuss the use of modern evolutionary genetic approaches to shed light on longstanding questions regarding their evolution.
Collapse
|
13
|
Cucchiara F, Crucitta S, Petrini I, de Miguel Perez D, Ruglioni M, Pardini E, Rolfo C, Danesi R, Del Re M. Gene-network analysis predicts clinical response to immunotherapy in patients affected by NSCLC. Lung Cancer 2023; 183:107308. [PMID: 37473500 DOI: 10.1016/j.lungcan.2023.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES Predictive biomarkers of response to immune checkpoint inhibitors (ICIs) have been extensively studied in non-small cell lung cancer (NSCLC) with controversial results. Recently, gene-network analysis emerged as a new tool to address tumor biology and behavior, representing a potential tool to evaluate response to therapies. METHODS Clinical data and genetic profiles of 644 advanced NSCLCs were retrieved from cBioPortal and the Cancer Genome Atlas (TCGA); 243 ICI-treated NSCLCs were used to identify an immunotherapy response signatures via mutated gene network analysis and K-means unsupervised clustering. Signatures predictive values were tested in an external dataset of 242 cases and assessed versus a control group of 159 NSCLCs treated with standard chemotherapy. RESULTS At least two mutations in the coding sequence of genes belonging to the chromatin remodelling pathway (A signature), and/or at least two mutations of genes involved in cell-to-cell signalling pathways (B signature), showed positive prediction in ICI-treated advanced NSCLC. Signatures performed best when combined for patients undergoing first-line immunotherapy, and for those receiving combined ICIs. CONCLUSIONS Alterations in genes related to chromatin remodelling complexes and cell-to-cell crosstalk may force dysfunctional immune evasion, explaining susceptibility to immunotherapy. Therefore, exploring mutated gene networks could be valuable for determining essential biological interactions, contributing to treatment personalization.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Cardiothoracic and Vascular Department, University of Pisa, Pisa, Italy; Unit of General Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diego de Miguel Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Pardini
- Unit of General Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
14
|
Pelletier MC, Charpentier M. Assessing the relative importance of stressors to the benthic index, M-AMBI: An example from U.S. estuaries. MARINE POLLUTION BULLETIN 2023; 186:114456. [PMID: 36502776 PMCID: PMC9813808 DOI: 10.1016/j.marpolbul.2022.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
M-AMBI, a multivariate benthic index, has been used by European and American (U.S.) authorities to assess estuarine and coastal health and has been used in scientific studies throughout the world. It has been shown to be related to multiple pressures and stressors, but the relative importance of individual stressors within a multiple stressor context has not generally been assessed. In this study, we assembled data collected between 1999 and 2015 by the U.S. Environmental Protection Agency using consistent methods. These data included sediment and water quality measures and benthic invertebrate data which were used to calculate M-AMBI. We further assembled watersheds for all US estuaries with benthic data and calculated land use metrics. Random forest (RF) was used to identify those variables most strongly related to M-AMBI. Because RF is a compilation of multiple, nonlinear models, we then assessed which of these variables had a direct relationship with M-AMBI. The resulting variables were then assessed using RF to identify the subsets of variables that produced an effective and parsimonious model. This process was conducted at the national and ecoregional scale and the variables identified as being most important to predict M-AMBI were compared with literature reports of ecological patterns in a given area. At the national scale, better condition was correlated with clearer waters, lower amounts of agriculture in the watershed, and lower carbon and metal concentrations in estuarine sediments. Other stressors were identified as being important at the ecoregional scale, although sediment metal concentrations and watershed agriculture were identified as being important in most ecoregions. Our results suggest that this technique is useful to identify the most important variables impacting M-AMBI at broad spatial scales, even when the percentage of sites in Bad or Poor condition is low. This technique also provides an initial identification of important stressors that can be used to target more intensive local studies.
Collapse
Affiliation(s)
- Marguerite C Pelletier
- Atlantic Coastal Environmental Sciences Division, US EPA, ORD, CEMM, Narragansett, RI, USA.
| | | |
Collapse
|
15
|
Le Gac M, Mary L, Metegnier G, Quéré J, Siano R, Rodríguez F, Destombe C, Sourisseau M. Strong population genomic structure of the toxic dinoflagellate Alexandrium minutum inferred from meta-transcriptome samples. Environ Microbiol 2022; 24:5966-5983. [PMID: 36302091 DOI: 10.1111/1462-2920.16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
Despite theoretical expectations, marine microeukaryote population are often highly structured and the mechanisms behind such patterns remain to be elucidated. These organisms display huge census population sizes, yet genotyping usually requires clonal strains originating from single cells, hindering proper population sampling. Estimating allelic frequency directly from population wide samples, without any isolation step, offers an interesting alternative. Here, we validate the use of meta-transcriptome environmental samples to determine the population genetic structure of the dinoflagellate Alexandrium minutum. Strain and meta-transcriptome based results both indicated a strong genetic structure for A. minutum in Western Europe, to the level expected between cryptic species. The presence of numerous private alleles, and even fixed polymorphism, would indicate ancient divergence and absence of gene flow between populations. Single nucleotide polymorphisms (SNPs) displaying strong allele frequency differences were distributed throughout the genome, which might indicate pervasive selection from standing genetic variation (soft selective sweeps). However, a few genomic regions displayed extremely low diversity that could result from the fixation of adaptive de novo mutations (hard selective sweeps) within the populations.
Collapse
Affiliation(s)
| | - Lou Mary
- Ifremer, Dyneco, Plouzané, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Nef C, Madoui MA, Pelletier É, Bowler C. Whole-genome scanning reveals environmental selection mechanisms that shape diversity in populations of the epipelagic diatom Chaetoceros. PLoS Biol 2022; 20:e3001893. [PMID: 36441816 PMCID: PMC9731442 DOI: 10.1371/journal.pbio.3001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/08/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Diatoms form a diverse and abundant group of photosynthetic protists that are essential players in marine ecosystems. However, the microevolutionary structure of their populations remains poorly understood, particularly in polar regions. Exploring how closely related diatoms adapt to different environments is essential given their short generation times, which may allow rapid adaptations, and their prevalence in marine regions dramatically impacted by climate change, such as the Arctic and Southern Oceans. Here, we address genetic diversity patterns in Chaetoceros, the most abundant diatom genus and one of the most diverse, using 11 metagenome-assembled genomes (MAGs) reconstructed from Tara Oceans metagenomes. Genome-resolved metagenomics on these MAGs confirmed a prevalent distribution of Chaetoceros in the Arctic Ocean with lower dispersal in the Pacific and Southern Oceans as well as in the Mediterranean Sea. Single-nucleotide variants identified within the different MAG populations allowed us to draw a landscape of Chaetoceros genetic diversity and revealed an elevated genetic structure in some Arctic Ocean populations. Gene flow patterns of closely related Chaetoceros populations seemed to correlate with distinct abiotic factors rather than with geographic distance. We found clear positive selection of genes involved in nutrient availability responses, in particular for iron (e.g., ISIP2a, flavodoxin), silicate, and phosphate (e.g., polyamine synthase), that were further supported by analysis of Chaetoceros transcriptomes. Altogether, these results highlight the importance of environmental selection in shaping diatom diversity patterns and provide new insights into their metapopulation genomics through the integration of metagenomic and environmental data.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Mohammed-Amin Madoui
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
| | - Éric Pelletier
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Metabolic Genomics, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, Université Evry, Université Paris Saclay, Evry, France
| | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
17
|
Bishop IW, Anderson SI, Collins S, Rynearson TA. Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming. GLOBAL CHANGE BIOLOGY 2022; 28:5755-5767. [PMID: 35785458 DOI: 10.1111/gcb.16329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Despite the potential of standing genetic variation to rescue communities and shape future adaptation to climate change, high levels of uncertainty are associated with intraspecific trait variation in marine phytoplankton. Recent model intercomparisons have pointed to an urgent need to reduce uncertainty in the projected responses of marine ecosystems to climate change, including Southern Ocean (SO) surface waters, which are among the most rapidly warming habitats on Earth. Because SO phytoplankton growth responses to warming sea surface temperature (SST) are poorly constrained, we developed a high-throughput growth assay to simultaneously examine inter- and intra-specific thermal trait variation in a group of 43 taxonomically diverse and biogeochemically important SO phytoplankton called diatoms. We found significant differential growth performance among species across thermal traits, including optimum and maximum tolerated growth temperatures. Within species, coefficients of variation ranged from 3% to 48% among strains for those same key thermal traits. Using SO SST projections for 2100, we predicted biogeographic ranges that differed by up to 97% between the least and most tolerant strains for each species, illustrating the role that strain-specific differences in temperature response can play in shaping predictions of future phytoplankton biogeography. Our findings revealed the presence and scale of thermal trait variation in SO phytoplankton and suggest these communities may already harbour the thermal trait diversity required to withstand projected 21st-century SST change in the SO even under severe climate forcing scenarios.
Collapse
Affiliation(s)
- Ian W Bishop
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Stephanie I Anderson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Sinead Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
18
|
Kenkel CD, Smith J, Hubbard KA, Chadwick C, Lorenzen N, Tatters AO, Caron DA. Reduced representation sequencing accurately quantifies relative abundance and reveals population-level variation in Pseudo-nitzschia spp. HARMFUL ALGAE 2022; 118:102314. [PMID: 36195429 PMCID: PMC9869635 DOI: 10.1016/j.hal.2022.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Certain species within the genus Pseudo-nitzschia are able to produce the neurotoxin domoic acid (DA), which can cause illness in humans, mass-mortality of marine animals, and closure of commercial and recreational shellfisheries during toxic events. Understanding and forecasting blooms of these harmful species is a primary management goal. However, accurately predicting the onset and severity of bloom events remains difficult, in part because the underlying drivers of bloom formation have not been fully resolved. Furthermore, Pseudo-nitzschia species often co-occur, and recent work suggests that the genetic composition of a Pseudo-nitzschia bloom may be a better predictor of toxicity than prevailing environmental conditions. We developed a novel next-generation sequencing assay using restriction site-associated DNA (2b-RAD) genotyping and applied it to mock Pseudo-nitzschia communities generated by mixing cultures of different species in known abundances. On average, 94% of the variance in observed species abundance was explained by the expected abundance. In addition, the false positive rate was low (0.45% on average) and unrelated to read depth, and false negatives were never observed. Application of this method to environmental DNA samples collected during natural Pseudo-nitzschia spp. bloom events in Southern California revealed that increases in DA were associated with increases in the relative abundance of P. australis. Although the absolute correlation across time-points was weak, an independent species fingerprinting assay (Automated Ribosomal Intergenic Spacer Analysis) supported this and identified other potentially toxic species. Finally, we assessed population-level genomic variation by mining SNPs from the environmental 2bRAD dataset. Consistent shifts in allele frequencies in P. pungens and P. subpacifica were detected between high and low DA years, suggesting that different intraspecific variants may be associated with prevailing environmental conditions or the presence of DA. Taken together, this method presents a potentially cost-effective and high-throughput approach for studies aiming to evaluate both population and species dynamics in mixed samples.
Collapse
Affiliation(s)
- Carly D Kenkel
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA.
| | - Jayme Smith
- Southern California Coastal Water Research Project, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA, 92626, USA
| | - Katherine A Hubbard
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute (FWC-FWRI), 100 8th Ave. SE, St. Petersburg, FL 33701, USA; Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Christina Chadwick
- Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute (FWC-FWRI), 100 8th Ave. SE, St. Petersburg, FL 33701, USA
| | - Nico Lorenzen
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Avery O Tatters
- U.S. Environmental Protection Agency, Gulf Ecosystem Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| |
Collapse
|
19
|
Sanchez-Garcia S, Wang H, Wagner-Döbler I. The microbiome of the dinoflagellate Prorocentrum cordatum in laboratory culture and its changes at higher temperatures. Front Microbiol 2022; 13:952238. [PMID: 36246277 PMCID: PMC9555710 DOI: 10.3389/fmicb.2022.952238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the ocean, phytoplankton are dependent on communities of bacteria living in the phycosphere, a hot spot of metabolic and genetic exchange. Many types of interactions between phytoplankton and phycosphere bacteria have been shown, but it is unclear if the microbial communities associated with microalgae strains in culture collections are beneficial or harmful to the host strain. Here, we studied the microbial communities associated with four strains of the dinoflagellate Prorocentrum cordatum that had been isolated from distant geographical locations and maintained in culture collection for hundreds of generations. Community composition was determined by 16S rRNA gene amplicon sequencing. The dinoflagellate host strain was the strongest parameter separating communities, while growth phase, lifestyle (particle-attached versus free-living) and temperature had only a modulating effect. Although the strains had been isolated from distant locations in the Atlantic and Pacific Ocean, 14 ASVs were shared among all strains, the most abundant ones being Gilvibacter, Marivita, uncultivated Rhodobacteraceae, Marinobacter, Hyphomonadaceae, Cupriavidus, Variovorax, and Paucibacter. Adaptation to higher temperatures resulted in specific changes in each phycosphere microbiome, including increased abundance of rare community members. We then compared the growth of the four xenic cultures to that of the axenic P. cordatum CCMP1329. At 20°C, growth of the xenic cultures was similar or slower than that of CCMP1329. At 26°C, all four xenic cultures experienced a death phase, while the axenic culture stably remained in the stationary phase. At 30°C, only two of the xenic cultures were able to grow. A shift of dinoflagellate metabolism from autotrophy to mixotrophy and competition between dinoflagellate and bacteria for limiting nutrients, including essential vitamins, may contribute to these differences in growth patterns.
Collapse
Affiliation(s)
| | | | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
20
|
Percopo I, Ruggiero MV, Sarno D, Longobardi L, Rossi R, Piredda R, Zingone A. Phenological segregation suggests speciation by time in the planktonic diatom Pseudo-nitzschia allochrona sp. nov. Ecol Evol 2022; 12:e9155. [PMID: 35949533 PMCID: PMC9352866 DOI: 10.1002/ece3.9155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
The processes leading to the emergence of new species are poorly understood in marine plankton, where weak physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here, we combine molecular and ecological information from a long-term time series and propose Pseudo-nitzschia allochrona, a new cryptic planktonic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, 28S and ITS rDNA fragments and rbcL) from its closest relatives, which are morphologically very similar or identical, and is reproductively isolated from its sibling species P. arenysensis. Data from a long-term plankton time series show P. allochrona invariably occurring in summer-autumn in the Gulf of Naples, where its closely related species P. arenysensis, P. delicatissima, and P. dolorosa are instead found in winter-spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona, which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco-evolutionary dynamics of marine microorganisms.
Collapse
Affiliation(s)
- Isabella Percopo
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | | | - Diana Sarno
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | - Lorenzo Longobardi
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
| | - Rachele Rossi
- Istituto Zooprofilattico Sperimentale del MezzogiornoPorticiItaly
| | - Roberta Piredda
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
- Present address:
Department of Veterinary MedicineUniversity of Bari Aldo MoroValenzano, BariItaly
| | - Adriana Zingone
- Research Infrastructures for Marine Biological Resources DepartmentStazione Zoologica Anton DohrnNaplesItaly
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
21
|
Cucchiara F, Petrini I, Passaro A, Attili I, Crucitta S, Pardini E, de Marinis F, Danesi R, Re MD. Gene-Networks analyses define a subgroup of Small Cell Lung Cancers with short survival. Clin Lung Cancer 2022; 23:510-521. [DOI: 10.1016/j.cllc.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/03/2022]
|
22
|
Louca S. The rates of global bacterial and archaeal dispersal. THE ISME JOURNAL 2022; 16:159-167. [PMID: 34282284 PMCID: PMC8692594 DOI: 10.1038/s41396-021-01069-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The phylogenetic resolution at which microorganisms display geographic endemism, the rates at which they disperse at global scales, and the role of humans on global microbial dispersal are largely unknown. Answering these questions is necessary for interpreting microbial biogeography, ecology, and macroevolution and for predicting the spread of emerging pathogenic strains. To resolve these questions, I analyzed the geographic and evolutionary relationships between 36,795 bacterial and archaeal ("prokaryotic") genomes from ∼7000 locations around the world. I find clear signs of continental-scale endemism, including strong correlations between phylogenetic divergence and geographic distance. However, the phylogenetic scale at which endemism generally occurs is extremely small, and most "species" (defined by an average nucleotide identity ≥ 95%) and even closely related strains (average nucleotide identity ≥ 99.9%) are globally distributed. Human-associated lineages display faster dispersal rates than other terrestrial lineages; the average net distance between any two human-associated cell lineages diverging 50 years ago is roughly 580 km. These results suggest that many previously reported global-scale microbial biogeographical patterns are likely the result of recent or current environmental filtering rather than geographic endemism. For human-associated lineages, estimated transition rates between Europe and North America are particularly high, and much higher than for non-human associated terrestrial lineages, highlighting the role that human movement plays in global microbial dispersal. Dispersal was slowest for hot spring- and terrestrial subsurface-associated lineages, indicating that these environments may act as "isolated islands" of microbial evolution.
Collapse
Affiliation(s)
- Stilianos Louca
- Department of Biology, University of Oregon, Eugene, OR, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
23
|
Host genotype structures the microbiome of a globally dispersed marine phytoplankton. Proc Natl Acad Sci U S A 2021; 118:2105207118. [PMID: 34810258 PMCID: PMC8640791 DOI: 10.1073/pnas.2105207118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Microscale interactions between marine phytoplankton and their bacterial microbiomes can influence ecosystem functioning and global biogeochemical cycling through complex exchanges of metabolites and sophisticated ecological processes. Previous investigation of the phytoplankton microbiome has not focused on the role of a host’s underlying genetic background. Through examination of a single phytoplankton species’ microbiome across the global ocean, we found that host genotype strongly influenced microbiome community composition, with associations that potentially persist across generations and ocean basins but assemble rapidly (within days). The long-term association of microbiomes with host genetic background could explain the evolution and maintenance of intricate phytoplankton–bacteria interactions. Phytoplankton support complex bacterial microbiomes that rely on phytoplankton-derived extracellular compounds and perform functions necessary for algal growth. Recent work has revealed sophisticated interactions and exchanges of molecules between specific phytoplankton–bacteria pairs, but the role of host genotype in regulating those interactions is unknown. Here, we show how phytoplankton microbiomes are shaped by intraspecific genetic variation in the host using global environmental isolates of the model phytoplankton host Thalassiosira rotula and a laboratory common garden experiment. A set of 81 environmental T. rotula genotypes from three ocean basins and eight genetically distinct populations did not reveal a core microbiome. While no single bacterial phylotype was shared across all genotypes, we found strong genotypic influence of T. rotula, with microbiomes associating more strongly with host genetic population than with environmental factors. The microbiome association with host genetic population persisted across different ocean basins, suggesting that microbiomes may be associated with host populations for decades. To isolate the impact of host genotype on microbiomes, a common garden experiment using eight genotypes from three distinct host populations again found that host genotype influenced microbial community composition, suggesting that a process we describe as genotypic filtering, analogous to environmental filtering, shapes phytoplankton microbiomes. In both the environmental and laboratory studies, microbiome variation between genotypes suggests that other factors influenced microbiome composition but did not swamp the dominant signal of host genetic background. The long-term association of microbiomes with specific host genotypes reveals a possible mechanism explaining the evolution and maintenance of complex phytoplankton–bacteria chemical exchanges.
Collapse
|
24
|
Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat Commun 2021; 12:6413. [PMID: 34741038 PMCID: PMC8571312 DOI: 10.1038/s41467-021-26651-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Marine phytoplankton generate half of global primary production, making them essential to ecosystem functioning and biogeochemical cycling. Though phytoplankton are phylogenetically diverse, studies rarely designate unique thermal traits to different taxa, resulting in coarse representations of phytoplankton thermal responses. Here we assessed phytoplankton functional responses to temperature using empirically derived thermal growth rates from four principal contributors to marine productivity: diatoms, dinoflagellates, cyanobacteria, and coccolithophores. Using modeled sea surface temperatures for 1950-1970 and 2080-2100, we explored potential alterations to each group's growth rates and geographical distribution under a future climate change scenario. Contrary to the commonly applied Eppley formulation, our data suggest phytoplankton functional types may be characterized by different temperature coefficients (Q10), growth maxima thermal dependencies, and thermal ranges which would drive dissimilar responses to each degree of temperature change. These differences, when applied in response to global simulations of future temperature, result in taxon-specific projections of growth and geographic distribution, with low-latitude coccolithophores facing considerable decreases and cyanobacteria substantial increases in growth rates. These results suggest that the singular effect of changing temperature may alter phytoplankton global community structure, owing to the significant variability in thermal response between phytoplankton functional types.
Collapse
|
25
|
Martin K, Schmidt K, Toseland A, Boulton CA, Barry K, Beszteri B, Brussaard CPD, Clum A, Daum CG, Eloe-Fadrosh E, Fong A, Foster B, Foster B, Ginzburg M, Huntemann M, Ivanova NN, Kyrpides NC, Lindquist E, Mukherjee S, Palaniappan K, Reddy TBK, Rizkallah MR, Roux S, Timmermans K, Tringe SG, van de Poll WH, Varghese N, Valentin KU, Lenton TM, Grigoriev IV, Leggett RM, Moulton V, Mock T. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat Commun 2021; 12:5483. [PMID: 34531387 PMCID: PMC8446083 DOI: 10.1038/s41467-021-25646-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change.
Collapse
Affiliation(s)
- Kara Martin
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Katrin Schmidt
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrew Toseland
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bánk Beszteri
- Department of Biology, University of Duisburg-Essen, Essen, Essen, Germany
| | | | - Alicia Clum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris G Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Emiley Eloe-Fadrosh
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Allison Fong
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Brian Foster
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bryce Foster
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Ginzburg
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N Ivanova
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Erika Lindquist
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Supratim Mukherjee
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Krishnaveni Palaniappan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T B K Reddy
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mariam R Rizkallah
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Simon Roux
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Klaas Timmermans
- Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Susannah G Tringe
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Willem H van de Poll
- Centre for Isotope Research - Oceans, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, AG Groningen, The Netherlands
| | - Neha Varghese
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Klaus U Valentin
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | | | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Plant and Microbial Biology Department, University of California, Berkeley, CA, USA
| | | | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
26
|
Sriaporn C, Campbell KA, Van Kranendonk MJ, Handley KM. Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs. MICROBIOME 2021; 9:135. [PMID: 34116726 PMCID: PMC8196465 DOI: 10.1186/s40168-021-01090-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/09/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Terrestrial hot spring settings span a broad spectrum of physicochemistries. Physicochemical parameters, such as pH and temperature, are key factors influencing differences in microbial composition across diverse geothermal areas. Nonetheless, analysis of hot spring pools from the Taupo Volcanic Zone (TVZ), New Zealand, revealed that some members of the bacterial genus, Acidithiobacillus, are prevalent across wide ranges of hot spring pHs and temperatures. To determine the genomic attributes of Acidithiobacillus that inhabit such diverse conditions, we assembled the genomes of 19 uncultivated hot spring Acidithiobacillus strains from six geothermal areas and compared these to 37 publicly available Acidithiobacillus genomes from various habitats. RESULTS Analysis of 16S rRNA gene amplicons from 138 samples revealed that Acidithiobacillus comprised on average 11.4 ± 16.8% of hot spring prokaryotic communities, with three Acidithiobacillus amplicon sequence variants (ASVs) (TVZ_G1, TVZ_G2, TVZ_G3) accounting for > 90% of Acidithiobacillus in terms of relative abundance, and occurring in 126 out of 138 samples across wide ranges of temperature (17.5-92.9 °C) and pH (1.0-7.5). We recovered 19 environmental genomes belonging to each of these three ASVs, as well as a fourth related group (TVZ_G4). Based on genome average nucleotide identities, the four groups (TVZ_G1-TVZ_G4) constitute distinct species (ANI < 96.5%) of which three are novel Acidithiobacillus species (TVZ_G2-TVZ_G4) and one belongs to Acidithiobacillus caldus (TVZ_G1). All four TVZ Acidithiobacillus groups were found in hot springs with temperatures above the previously known limit for the genus (up to 40 °C higher), likely due to significantly higher proline and GC contents than other Acidithiobacillus species, which are known to increase thermostability. Results also indicate hot spring-associated Acidithiobacillus have undergone genome streamlining, likely due to thermal adaptation. Moreover, our data suggest that Acidithiobacillus prevalence across varied hot spring pHs is supported by distinct strategies, whereby TVZ_G2-TVZ_G4 regulate pH homeostasis mostly through Na+/H+ antiporters and proton-efflux ATPases, whereas TVZ_G1 mainly relies on amino acid decarboxylases. CONCLUSIONS This study provides insights into the distribution of Acidithiobacillus species across diverse hot spring physichochemistries and determines genomic features and adaptations that potentially enable Acidithiobacillus species to colonize a broad range of temperatures and pHs in geothermal environments. Video Abstract.
Collapse
Affiliation(s)
- Chanenath Sriaporn
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathleen A. Campbell
- School of Environment & Te Ao Mārama – Centre for Fundamental Inquiry, The University of Auckland, Auckland, New Zealand
| | - Martin J. Van Kranendonk
- Australian Centre for Astrobiology & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Walworth NG, Lee MD, Dolzhenko E, Fu FX, Smith AD, Webb EA, Hutchins DA. Long-Term m5C Methylome Dynamics Parallel Phenotypic Adaptation in the Cyanobacterium Trichodesmium. Mol Biol Evol 2021; 38:927-939. [PMID: 33022053 PMCID: PMC7947765 DOI: 10.1093/molbev/msaa256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in nonmodel, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1,000+ generations) with the biogeochemically important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael D Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Egor Dolzhenko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrew D Smith
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Eric A Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Hoetzinger M, Pitt A, Huemer A, Hahn MW. Continental-Scale Gene Flow Prevents Allopatric Divergence of Pelagic Freshwater Bacteria. Genome Biol Evol 2021; 13:6126423. [PMID: 33674852 PMCID: PMC7936036 DOI: 10.1093/gbe/evab019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Allopatric divergence is one of the principal mechanisms for speciation of macro-organisms. Microbes by comparison are assumed to disperse more freely and to be less limited by dispersal barriers. However, thermophilic prokaryotes restricted to geothermal springs have shown clear signals of geographic isolation, but robust studies on this topic for microbes with less strict habitat requirements are scarce. Furthermore, it has only recently been recognized that homologous recombination among conspecific individuals provides species coherence in a wide range of prokaryotes. Recombination barriers thus may define prokaryotic species boundaries, yet, the extent to which geographic distance between populations gives rise to such barriers is an open question. Here, we investigated gene flow and population structure in a widespread species of pelagic freshwater bacteria, Polynucleobacter paneuropaeus. Through comparative genomics of 113 conspecific strains isolated from freshwater lakes and ponds located across a North–South range of more than 3,000 km, we were able to reconstruct past gene flow events. The species turned out to be highly recombinogenic as indicated by significant signs of gene transfer and extensive genome mosaicism. Although genomic differences increased with spatial distance on a regional scale (<170 km), such correlations were mostly absent on larger scales up to 3,400 km. We conclude that allopatric divergence in European P. paneuropaeus is minor, and that effective gene flow across the sampled geographic range in combination with a high recombination efficacy maintains species coherence.
Collapse
Affiliation(s)
- Matthias Hoetzinger
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75651, Sweden
| | - Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Andrea Huemer
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| |
Collapse
|
29
|
Choo LQ, Bal TMP, Goetze E, Peijnenburg KTCA. Oceanic dispersal barriers in a holoplanktonic gastropod. J Evol Biol 2021; 34:224-240. [PMID: 33150701 PMCID: PMC7894488 DOI: 10.1111/jeb.13735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Pteropods, a group of holoplanktonic gastropods, are regarded as bioindicators of the effects of ocean acidification on open ocean ecosystems, because their thin aragonitic shells are susceptible to dissolution. While there have been recent efforts to address their capacity for physiological acclimation, it is also important to gain predictive understanding of their ability to adapt to future ocean conditions. However, little is known about the levels of genetic variation and large-scale population structuring of pteropods, key characteristics enabling local adaptation. We examined the spatial distribution of genetic diversity in the mitochondrial cytochrome c oxidase I (COI) and nuclear 28S gene fragments, as well as shell shape variation, across a latitudinal transect in the Atlantic Ocean (35°N-36°S) for the pteropod Limacina bulimoides. We observed high levels of genetic variability (COI π = 0.034, 28S π = 0.0021) and strong spatial structuring (COI ΦST = 0.230, 28S ΦST = 0.255) across this transect. Based on the congruence of mitochondrial and nuclear differentiation, as well as differences in shell shape, we identified a primary dispersal barrier in the southern Atlantic subtropical gyre (15-18°S). This barrier is maintained despite the presence of expatriates, a gyral current system, and in the absence of any distinct oceanographic gradients in this region, suggesting that reproductive isolation between these populations must be strong. A secondary dispersal barrier supported only by 28S pairwise ΦST comparisons was identified in the equatorial upwelling region (between 15°N and 4°S), which is concordant with barriers observed in other zooplankton species. Both oceanic dispersal barriers were congruent with regions of low abundance reported for a similar basin-scale transect that was sampled 2 years later. Our finding supports the hypothesis that low abundance indicates areas of suboptimal habitat that result in barriers to gene flow in widely distributed zooplankton species. Such species may in fact consist of several populations or (sub)species that are adapted to local environmental conditions, limiting their potential for adaptive responses to ocean changes. Future analyses of genome-wide diversity in pteropods could provide further insight into the strength, formation and maintenance of oceanic dispersal barriers.
Collapse
Affiliation(s)
- Le Qin Choo
- Plankton Diversity and EvolutionNaturalis Biodiversity CenterLeidenThe Netherlands
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Thijs M. P. Bal
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Erica Goetze
- Department of OceanographyUniversity of Hawaiʻi at MānoaHonoluluUSA
| | - Katja T. C. A. Peijnenburg
- Plankton Diversity and EvolutionNaturalis Biodiversity CenterLeidenThe Netherlands
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
30
|
Mestre M, Höfer J. The Microbial Conveyor Belt: Connecting the Globe through Dispersion and Dormancy. Trends Microbiol 2020; 29:482-492. [PMID: 33281016 DOI: 10.1016/j.tim.2020.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Despite the recent increase in knowledge concerning microorganisms, the processes determining their global distribution and functioning have not been disentangled. Microbial dormant stages are adapted to endure specific adverse conditions related to their dispersion path, suggesting that dispersion is not entirely a stochastic process. Long-term dormancy enhances microbial dispersion, promoting the ubiquity of microorganisms. The evidence leads us to propose that there is a global, recurrent, and spatially cyclical dispersion of microorganisms that we have called the Microbial Conveyor Belt. These dispersion cycles directly influence the distribution of microorganisms, the global cycling of inorganic and organic matter, and thus the Earth system's functioning.
Collapse
Affiliation(s)
- Mireia Mestre
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile; Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Juan Höfer
- Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Centro de Investigación y Formación San Ignacio de Huinay, Huinay, Chile.
| |
Collapse
|
31
|
Ajani PA, Petrou K, Larsson ME, Nielsen DA, Burke J, Murray SA. Phenotypic trait variability as an indication of adaptive capacity in a cosmopolitan marine diatom. Environ Microbiol 2020; 23:207-223. [PMID: 33118307 DOI: 10.1111/1462-2920.15294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023]
Abstract
Determining the adaptive capacity of marine phytoplankton is important in predicting changes in phytoplankton responses to ocean warming. Phytoplankton may consist of high levels of standing phenotypic and genetic variability, the basis of rapid evolution; however, few studies have quantified trait variability within and amongst closely related diatom species. Using 35 clonal cultures of the ubiquitous marine diatom Leptocylindrus isolated from six locations, spanning 2000 km of the south-eastern Australian coastline, we found evidence of significant intraspecific morphological and metabolic trait variability, which for 8 of 9 traits (growth rate, biovolume, C:N, silica deposition, silica incorporation rate, chl-a, and photosynthetic efficiency under dark adapted, growth irradiance, and high-light adaptation) were greater within a species than between species. Moreover, only two traits revealed a latitudinal trend with strains isolated from lower latitudes showing significantly higher silicification rates and protein:lipid content compared to their higher latitude counterparts. These data mirror recent studies on diatom intraspecific genetic diversity, which has found comparable levels of genetic diversity at a single site to those thousands of kilometres apart, and provide evidence of a functional role of diatom diversity that will allow for rapid adaptation via ecological selection on standing variation in response to changing conditions.
Collapse
Affiliation(s)
- Penelope A Ajani
- Climate Change Cluster (C3), University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Katherina Petrou
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Michaela E Larsson
- Climate Change Cluster (C3), University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Daniel A Nielsen
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Joel Burke
- Climate Change Cluster (C3), University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster (C3), University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
32
|
AbdulJabbar K, Raza SEA, Rosenthal R, Jamal-Hanjani M, Veeriah S, Akarca A, Lund T, Moore DA, Salgado R, Al Bakir M, Zapata L, Hiley CT, Officer L, Sereno M, Smith CR, Loi S, Hackshaw A, Marafioti T, Quezada SA, McGranahan N, Le Quesne J, Swanton C, Yuan Y. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat Med 2020; 26:1054-1062. [PMID: 32461698 PMCID: PMC7610840 DOI: 10.1038/s41591-020-0900-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
Remarkable progress in molecular analyses has improved our understanding of the evolution of cancer cells toward immune escape1-5. However, the spatial configurations of immune and stromal cells, which may shed light on the evolution of immune escape across tumor geographical locations, remain unaddressed. We integrated multiregion exome and RNA-sequencing (RNA-seq) data with spatial histology mapped by deep learning in 100 patients with non-small cell lung cancer from the TRACERx cohort6. Cancer subclones derived from immune cold regions were more closely related in mutation space, diversifying more recently than subclones from immune hot regions. In TRACERx and in an independent multisample cohort of 970 patients with lung adenocarcinoma, tumors with more than one immune cold region had a higher risk of relapse, independently of tumor size, stage and number of samples per patient. In lung adenocarcinoma, but not lung squamous cell carcinoma, geometrical irregularity and complexity of the cancer-stromal cell interface significantly increased in tumor regions without disruption of antigen presentation. Decreased lymphocyte accumulation in adjacent stroma was observed in tumors with low clonal neoantigen burden. Collectively, immune geospatial variability elucidates tumor ecological constraints that may shape the emergence of immune-evading subclones and aggressive clinical phenotypes.
Collapse
Affiliation(s)
- Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Shan E Ahmed Raza
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Rachel Rosenthal
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ayse Akarca
- Department of Cellular Pathology, University College London, University College Hospital, London, UK
| | - Tom Lund
- Translational Immune Oncology Group, Centre for Molecular Medicine, Royal Marsden Hospital NHS Trust, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London, University College Hospital, London, UK
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA-Ziekenhuizen, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Crispin T Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Leah Officer
- MRC Toxicology Unit, University of Cambridge, Leicester, UK
| | - Marco Sereno
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Allan Hackshaw
- Cancer Research UK & University College London Cancer Trials Centre, University College London, London, UK
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London, University College Hospital, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | - John Le Quesne
- MRC Toxicology Unit, University of Cambridge, Leicester, UK.
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- Glenfield Hospital, University Hospitals Leicester NHS Trust, Leicester, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
33
|
Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, Rubinat-Ripoll L, Mestre M, Salazar G, Ruiz-González C, Sebastián M, de Vargas C, Acinas SG, Duarte CM, Gasol JM, Massana R. Disentangling the mechanisms shaping the surface ocean microbiota. MICROBIOME 2020; 8:55. [PMID: 32312331 PMCID: PMC7171866 DOI: 10.1186/s40168-020-00827-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/13/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tropical and subtropical surface-ocean microbiota: prokaryotes and minute eukaryotes (picoeukaryotes). Furthermore, we investigate the agents exerting abiotic selection on this assemblage as well as the spatial patterns emerging from the action of ecological mechanisms. To explore this, we analysed the composition of surface-ocean prokaryotic and picoeukaryotic communities using DNA-sequence data (16S- and 18S-rRNA genes) collected during the circumglobal expeditions Malaspina-2010 and TARA-Oceans. RESULTS We found that the two main components of the tropical and subtropical surface-ocean microbiota, prokaryotes and picoeukaryotes, appear to be structured by different ecological mechanisms. Picoeukaryotic communities were predominantly structured by dispersal-limitation, while prokaryotic counterparts appeared to be shaped by the combined action of dispersal-limitation, selection and drift. Temperature-driven selection appeared as a major factor, out of a few selected factors, influencing species co-occurrence networks in prokaryotes but not in picoeukaryotes, indicating that association patterns may contribute to understand ocean microbiota structure and response to selection. Other measured abiotic variables seemed to have limited selective effects on community structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher spatial differentiation between communities and a higher distance decay when compared to prokaryotes, consistent with a scenario of higher dispersal limitation in the former after considering environmental heterogeneity. Lastly, random dynamics or drift seemed to have a more important role in structuring prokaryotic communities than picoeukaryotic counterparts. CONCLUSIONS The differential action of ecological mechanisms seems to cause contrasting biogeography, in the tropical and subtropical ocean, among the smallest surface plankton, prokaryotes and picoeukaryotes. This suggests that the idiosyncrasy of the main constituents of the ocean microbiota should be considered in order to understand its current and future configuration, which is especially relevant in a context of global change, where the reaction of surface ocean plankton to temperature increase is still unclear. Video Abstract.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, 0316 Oslo, Norway
| | - Ina M. Deutschmann
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| | - Pedro C. Junger
- Laboratory of Microbial Processes & Biodiversity (LMPB), Department of Hydrobiology (DHB), Universidade Federal de São Carlos (UFSCar), São Carlos, 13565-905 SP Brazil
| | - Caterina R. Giner
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Anders K. Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, 0316 Oslo, Norway
| | - Thomas S. B. Schmidt
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Laura Rubinat-Ripoll
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe EPEP, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Mireia Mestre
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Guillem Salazar
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Marta Sebastián
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Oceanography and Global Change Institute, IOCAG, University of Las Palmas de Gran Canaria, ULPGC, 35214 Gran Canaria, Spain
| | - Colomban de Vargas
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe EPEP, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Silvia G. Acinas
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| | - Carlos M. Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Josep M. Gasol
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA Australia
| | - Ramon Massana
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| |
Collapse
|
34
|
Annenkova NV, Giner CR, Logares R. Tracing the Origin of Planktonic Protists in an Ancient Lake. Microorganisms 2020; 8:microorganisms8040543. [PMID: 32283732 PMCID: PMC7232311 DOI: 10.3390/microorganisms8040543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/28/2022] Open
Abstract
Ancient lakes are among the most interesting models for evolution studies because their biodiversity is the result of a complex combination of migration and speciation. Here, we investigate the origin of single celled planktonic eukaryotes from the oldest lake in the world—Lake Baikal (Russia). By using 18S rDNA metabarcoding, we recovered 1414 Operational Taxonomic Units (OTUs) belonging to protists populating surface waters (1–50 m) and representing pico/nano-sized cells. The recovered communities resembled other lacustrine freshwater assemblages found elsewhere, especially the taxonomically unclassified protists. However, our results suggest that a fraction of Baikal protists could belong to glacial relicts and have close relationships with marine/brackish species. Moreover, our results suggest that rapid radiation may have occurred among some protist taxa, partially mirroring what was already shown for multicellular organisms in Lake Baikal. We found 16% of the OTUs belonging to potential species flocks in Stramenopiles, Alveolata, Opisthokonta, Archaeplastida, Rhizaria, and Hacrobia. Putative flocks predominated in Chrysophytes, which are highly diverse in Lake Baikal. Also, the 18S rDNA of a number of species (7% of the total) differed >10% from other known sequences. These taxa as well as those belonging to the flocks may be endemic to Lake Baikal. Overall, our study points to novel diversity of planktonic protists in Lake Baikal, some of which may have emerged in situ after evolutionary diversification.
Collapse
Affiliation(s)
- Nataliia V. Annenkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences 3, Ulan-Batorskaya St., 664033 Irkutsk, Russia
- Correspondence: (N.V.A.); (R.L.)
| | - Caterina R. Giner
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, ES08003 Barcelona, Spain;
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, ES08003 Barcelona, Spain;
- Correspondence: (N.V.A.); (R.L.)
| |
Collapse
|
35
|
Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM. Microbial evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci U S A 2020; 117:5943-5948. [PMID: 32123112 PMCID: PMC7084144 DOI: 10.1073/pnas.1919332117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Marine microbes form the base of ocean food webs and drive ocean biogeochemical cycling. Yet little is known about the ability of microbial populations to adapt as they are advected through changing conditions. Here, we investigated the interplay between physical and biological timescales using a model of adaptation and an eddy-resolving ocean circulation climate model. Two criteria were identified that relate the timing and nature of adaptation to the ratio of physical to biological timescales. Genetic adaptation was impeded in highly variable regimes by nongenetic modifications but was promoted in more stable environments. An evolutionary trade-off emerged where greater short-term nongenetic transgenerational effects (low-γ strategy) enabled rapid responses to environmental fluctuations but delayed genetic adaptation, while fewer short-term transgenerational effects (high-γ strategy) allowed faster genetic adaptation but inhibited short-term responses. Our results demonstrate that the selective pressures for organisms within a single water mass vary based on differences in generation timescales resulting in different evolutionary strategies being favored. Organisms that experience more variable environments should favor a low-γ strategy. Furthermore, faster cell division rates should be a key factor in genetic adaptation in a changing ocean. Understanding and quantifying the relationship between evolutionary and physical timescales is critical for robust predictions of future microbial dynamics.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 91011
| | - Emily J Zakem
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 91011
| | - John P Dunne
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ 08540
| | - Sinéad Collins
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 91011;
| |
Collapse
|
36
|
Rastogi A, Vieira FRJ, Deton-Cabanillas AF, Veluchamy A, Cantrel C, Wang G, Vanormelingen P, Bowler C, Piganeau G, Hu H, Tirichine L. A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom Phaeodactylum tricornutum. THE ISME JOURNAL 2020; 14:347-363. [PMID: 31624346 PMCID: PMC6976637 DOI: 10.1038/s41396-019-0528-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022]
Abstract
Diatoms emerged in the Mesozoic period and presently constitute one of the main primary producers in the world's ocean and are of a major economic importance. In the current study, using whole genome sequencing of ten accessions of the model diatom Phaeodactylum tricornutum, sampled at broad geospatial and temporal scales, we draw a comprehensive landscape of the genomic diversity within the species. We describe strong genetic subdivisions of the accessions into four genetic clades (A-D) with constituent populations of each clade possessing a conserved genetic and functional makeup, likely a consequence of the limited dispersal of P. tricornutum in the open ocean. We further suggest dominance of asexual reproduction across all the populations, as implied by high linkage disequilibrium. Finally, we show limited yet compelling signatures of genetic and functional convergence inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success and impact on aquatic ecosystems where they play a major role. Our work provides valuable resources for functional genomics and for exploiting the biotechnological potential of this model diatom species.
Collapse
Affiliation(s)
- Achal Rastogi
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Corteva Agriscience™, The V Ascendas, Atria Block, 12th Floor, Madhapur, Hyderabad, 500081, India
| | - Fabio Rocha Jimenez Vieira
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Alaguraj Veluchamy
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Biological and Environmental Sciences and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Catherine Cantrel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Pieter Vanormelingen
- Department of Biology, Research Group Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281/S8 9000, Gent, Belgium
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Gwenael Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.
| | - Leila Tirichine
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France.
- Université de Nantes, CNRS, UFIP, UMR 6286, F-44000, Nantes, France.
| |
Collapse
|
37
|
Craig RJ, Böndel KB, Arakawa K, Nakada T, Ito T, Bell G, Colegrave N, Keightley PD, Ness RW. Patterns of population structure and complex haplotype sharing among field isolates of the green algaChlamydomonas reinhardtii. Mol Ecol 2019; 28:3977-3993. [DOI: 10.1111/mec.15193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Rory J. Craig
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | - Katharina B. Böndel
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
- Institute of Plant Breeding, Seed Science and Population Genetics University of Hohenheim Stuttgart Germany
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
| | - Takashi Nakada
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
- Faculty of Environment and Information Sciences Yokohama National University Yokohama Japan
| | - Takuro Ito
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
- Systems Biology Program Graduate School of Media and Governance Keio University Fujisawa Japan
| | - Graham Bell
- Department of Biology McGill University Montreal QC Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Peter D. Keightley
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Rob W. Ness
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| |
Collapse
|
38
|
Nakov T, Beaulieu JM, Alverson AJ. Diatoms diversify and turn over faster in freshwater than marine environments*. Evolution 2019; 73:2497-2511. [DOI: 10.1111/evo.13832] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Teofil Nakov
- Department of Biological Sciences University of Arkansas Fayetteville 1 University of Arkansas, SCEN 601 Fayetteville AR 72701
| | - Jeremy M. Beaulieu
- Department of Biological Sciences University of Arkansas Fayetteville 1 University of Arkansas, SCEN 601 Fayetteville AR 72701
| | - Andrew J. Alverson
- Department of Biological Sciences University of Arkansas Fayetteville 1 University of Arkansas, SCEN 601 Fayetteville AR 72701
| |
Collapse
|
39
|
Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappé MS, Giovannoni S, Eren AM. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 2019; 8:46497. [PMID: 31478833 PMCID: PMC6721796 DOI: 10.7554/elife.46497] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Members of the SAR11 order Pelagibacterales dominate the surface oceans. Their extensive diversity challenges emerging operational boundaries defined for microbial 'species' and complicates efforts of population genetics to study their evolution. Here, we employed single-amino acid variants (SAAVs) to investigate ecological and evolutionary forces that maintain the genomic heterogeneity within ubiquitous SAR11 populations we accessed through metagenomic read recruitment using a single isolate genome. Integrating amino acid and protein biochemistry with metagenomics revealed that systematic purifying selection against deleterious variants governs non-synonymous variation among very closely related populations of SAR11. SAAVs partitioned metagenomes into two main groups matching large-scale oceanic current temperatures, and six finer proteotypes that connect distant oceanic regions. These findings suggest that environmentally-mediated selection plays a critical role in the journey of cosmopolitan surface ocean microbial populations, and the idea 'everything is everywhere but the environment selects' has credence even at the finest resolutions.
Collapse
Affiliation(s)
- Tom O Delmont
- Department of Medicine, The University of Chicago, Chicago, United States
| | - Evan Kiefl
- Department of Medicine, The University of Chicago, Chicago, United States.,Graduate Program in Biophysical Sciences, University of Chicago, Chicago, United States
| | - Ozsel Kilinc
- Department of Electrical Engineering, University of South Florida, Tampa, United States
| | - Ozcan C Esen
- Department of Medicine, The University of Chicago, Chicago, United States
| | - Ismail Uysal
- Department of Electrical Engineering, University of South Florida, Tampa, United States
| | - Michael S Rappé
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, United States
| | - Steven Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, United States
| | - A Murat Eren
- Department of Medicine, The University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
40
|
Pérez-Carrascal OM, Terrat Y, Giani A, Fortin N, Greer CW, Tromas N, Shapiro BJ. Coherence of Microcystis species revealed through population genomics. ISME JOURNAL 2019; 13:2887-2900. [PMID: 31363173 DOI: 10.1038/s41396-019-0481-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022]
Abstract
Microcystis is a genus of freshwater cyanobacteria, which causes harmful blooms in ecosystems worldwide. Some Microcystis strains produce harmful toxins such as microcystin, impacting drinking water quality. Microcystis colony morphology, rather than genetic similarity, is often used to classify Microcystis into morphospecies. Yet colony morphology is a plastic trait, which can change depending on environmental and laboratory culture conditions, and is thus an inadequate criterion for species delineation. Furthermore, Microcystis populations are thought to disperse globally and constitute a homogeneous gene pool. However, this assertion is based on relatively incomplete characterization of Microcystis genomic diversity. To better understand these issues, we performed a population genomic analysis of 33 newly sequenced genomes mainly from Canada and Brazil. We identified 17 Microcystis clusters of genomic similarity, five of which correspond to monophyletic clades containing at least three newly sequenced genomes. Four out of these five clades match to named morphospecies. Notably, M. aeruginosa is paraphyletic, distributed across 12 genomic clusters, suggesting it is not a coherent species. A few clades of closely related isolates are specific to a unique geographic location, suggesting biogeographic structure over relatively short evolutionary time scales. Higher homologous recombination rates within than between clades further suggest that monophyletic groups might adhere to a Biological Species-like concept, in which barriers to gene flow maintain species distinctness. However, certain genes-including some involved in microcystin and micropeptin biosynthesis-are recombined between monophyletic groups in the same geographic location, suggesting local adaptation.
Collapse
Affiliation(s)
| | - Yves Terrat
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Alessandra Giani
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Nicolas Tromas
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.
| | - B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
41
|
High dispersal levels and lake warming are emergent drivers of cyanobacterial community assembly in peri-Alpine lakes. Sci Rep 2019; 9:7366. [PMID: 31089175 PMCID: PMC6517590 DOI: 10.1038/s41598-019-43814-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
Disentangling the relative importance of deterministic and stochastic processes in shaping natural communities is central to ecology. Studies about community assembly over broad temporal and spatial scales in aquatic microorganisms are scarce. Here, we used 16S rDNA sequence data from lake sediments to test for community assembly patterns in cyanobacterial phylogenies across ten European peri-Alpine lakes and over a century of eutrophication and climate warming. We studied phylogenetic similarity in cyanobacterial assemblages over spatial and temporal distance, and over environmental gradients, comparing detected patterns with theoretical expectations from deterministic and stochastic processes. We found limited evidence for deviation of lake communities from a random assembly model and no significant effects of geographic distance on phylogenetic similarity, suggesting no dispersal limitation and high levels of stochastic assembly. We detected a weak influence of phosphorus, but no significant effect of nitrogen levels on deviation of community phylogenies from random. We found however a significant decay of phylogenetic similarity for non-random communities over a gradient of air temperature and water column stability. We show how phylogenetic data from sedimentary archives can improve our understanding of microbial community assembly processes, and support previous evidence that climate warming has been the strongest environmental driver of cyanobacterial community assembly over the past century.
Collapse
|
42
|
Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. SCIENCE ADVANCES 2019; 5:eaau6253. [PMID: 31106265 PMCID: PMC6520023 DOI: 10.1126/sciadv.aau6253] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 04/02/2019] [Indexed: 05/21/2023]
Abstract
Despite their importance to ocean productivity, global patterns of marine phytoplankton diversity remain poorly characterized. Although temperature is considered a key driver of general marine biodiversity, its specific role in phytoplankton diversity has remained unclear. We determined monthly phytoplankton species richness by using niche modeling and >540,000 global phytoplankton observations to predict biogeographic patterns of 536 phytoplankton species. Consistent with metabolic theory, phytoplankton richness in the tropics is about three times that in higher latitudes, with temperature being the most important driver. However, below 19°C, richness is lower than expected, with ~8°- 14°C waters (~35° to 60° latitude) showing the greatest divergence from theoretical predictions. Regions of reduced richness are characterized by maximal species turnover and environmental variability, suggesting that the latter reduces species richness directly, or through enhancing competitive exclusion. The nonmonotonic relationship between phytoplankton richness and temperature suggests unanticipated complexity in responses of marine biodiversity to ocean warming.
Collapse
Affiliation(s)
- Damiano Righetti
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- Corresponding author.
| | - Meike Vogt
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Nicolas Gruber
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Achilleas Psomas
- Dynamic Macroecology, Landscape Dynamics, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | - Niklaus E. Zimmermann
- Dynamic Macroecology, Landscape Dynamics, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
43
|
Phair NL, Toonen RJ, Knapp I, von der Heyden S. Shared genomic outliers across two divergent population clusters of a highly threatened seagrass. PeerJ 2019; 7:e6806. [PMID: 31106053 PMCID: PMC6497040 DOI: 10.7717/peerj.6806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The seagrass, Zostera capensis, occurs across a broad stretch of coastline and wide environmental gradients in estuaries and sheltered bays in southern and eastern Africa. Throughout its distribution, habitats are highly threatened and poorly protected, increasing the urgency of assessing the genomic variability of this keystone species. A pooled genomic approach was employed to obtain SNP data and examine neutral genomic variation and to identify potential outlier loci to assess differentiation across 12 populations across the ∼9,600 km distribution of Z. capensis. Results indicate high clonality and low genomic diversity within meadows, which combined with poor protection throughout its range, increases the vulnerability of this seagrass to further declines or local extinction. Shared variation at outlier loci potentially indicates local adaptation to temperature and precipitation gradients, with Isolation-by-Environment significantly contributing towards shaping spatial variation in Z. capensis. Our results indicate the presence of two population clusters, broadly corresponding to populations on the west and east coasts, with the two lineages shaped only by frequency differences of outlier loci. Notably, ensemble modelling of suitable seagrass habitat provides evidence that the clusters are linked to historical climate refugia around the Last Glacial Maxi-mum. Our work suggests a complex evolutionary history of Z. capensis in southern and eastern Africa that will require more effective protection in order to safeguard this important ecosystem engineer into the future.
Collapse
Affiliation(s)
- Nikki Leanne Phair
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Robert John Toonen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Ingrid Knapp
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Sophie von der Heyden
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
44
|
Balmonte JP, Buckley A, Hoarfrost A, Ghobrial S, Ziervogel K, Teske A, Arnosti C. Community structural differences shape microbial responses to high molecular weight organic matter. Environ Microbiol 2018; 21:557-571. [PMID: 30452115 DOI: 10.1111/1462-2920.14485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/26/2022]
Abstract
The extent to which differences in microbial community structure result in variations in organic matter (OM) degradation is not well understood. Here, we tested the hypothesis that distinct marine microbial communities from North Atlantic surface and bottom waters would exhibit varying compositional succession and functional shifts in response to the same pool of complex high molecular weight (HMW-OM). We also hypothesized that microbial communities would produce a broader spectrum of enzymes upon exposure to HMW-OM, indicating a greater potential to degrade these compounds than reflected by initial enzymatic activities. Our results show that community succession in amended mesocosms was congruent with cell growth, increased bacterial production and most notably, with substantial shifts in enzymatic activities. In all amended mesocosms, closely related taxa that were initially rare became dominant at time frames during which a broader spectrum of active enzymes were detected compared to initial timepoints, indicating a similar response among different communities. However, succession on the whole-community level, and the rates, spectra and progression of enzymatic activities, reveal robust differences among distinct communities from discrete water masses. These results underscore the crucial role of rare bacterial taxa in ocean carbon cycling and the importance of bacterial community structure for HMW-OM degradation.
Collapse
Affiliation(s)
- John Paul Balmonte
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew Buckley
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrienne Hoarfrost
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sherif Ghobrial
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kai Ziervogel
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824, USA
| | - Andreas Teske
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Carol Arnosti
- Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
45
|
Godhe A, Rynearson T. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0399. [PMID: 28717025 DOI: 10.1098/rstb.2016.0399] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 01/27/2023] Open
Abstract
Intraspecific variation in diatoms has been shown to play a key role in species' responses to several important environmental factors such as light, salinity, temperature and nutrients. Furthermore, modelling efforts indicate that this variation within species extends bloom periods, and likely provides sufficient variability in competitive interactions between species under hydrographically variable conditions. The intraspecific variation most likely corresponds to optimal fitness in temporary microhabitats and may help to explain the paradox of the plankton. Here, we examine the implications of intraspecific variation for the ecology and success of diatoms in general and emphasize the potential implications for our understanding of carbon metabolism in these important organisms. Additionally, data from palaeoecological studies have the potential for evaluating genetic variation through past climate changes, going thousands of years back in time. We suggest pathways for future research including the adoption of multiple strains of individual species into studies of diatom carbon metabolism, to refine our understanding of the variation within and between species, and the inclusion of experimental evolution as a tool for understanding potential evolutionary responses of diatom carbon metabolism to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Tatiana Rynearson
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI 02882, USA
| |
Collapse
|
46
|
Mejdandžić M, Bosak S, Nakov T, Ruck E, Orlić S, Gligora Udovič M, Peharec Štefanić P, Špoljarić I, Mršić G, Ljubešić Z. Morphological diversity and phylogeny of the diatom genus Entomoneis (Bacillariophyta) in marine plankton: six new species from the Adriatic Sea. JOURNAL OF PHYCOLOGY 2018; 54:275-298. [PMID: 29419886 DOI: 10.1111/jpy.12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
The diatom genus Entomoneis is known from the benthos and plankton of marine, brackish, and freshwaters. Entomoneis includes diatoms with a bilobate keel elevated above the valve surface, a sigmoid canal raphe, and numerous girdle bands. Owing mostly to the scarcity of molecular data for a diverse set of species, the phylogeny of Entomoneis has not been investigated in depth. The few previous studies that included Entomoneis were focused on broader questions and the available data were from a small number of either unidentified Entomoneis or well-known species (e.g., E. paludosa). Since the first description of new species combining both molecular and morphological characters (E. tenera), we have continued to cultivate and investigate Entomoneis in the plankton of the Adriatic Sea. Combined multigene phylogeny (SSU rDNA sequences, rbcL, and psbC genes) and morphological observations (LM, SEM and TEM) revealed six new Entomoneis species supported by phylogenetic and morphological data: E. pusilla, E. gracilis, E. vilicicii, E. infula, E. adriatica, and E. umbratica. The most important morphological features for species delineation were cell shape, the degree and mode of torsion, valve apices, the appearance and structure of the transition between keel and valve body, the ultrastructure and the shape of the girdle bands, and the arrangement and density of perforations along the valve and valvocopulae. Our results highlight the underappreciated diversity of Entomoneis and call for a more in-depth morphological and molecular investigation of this genus especially in planktonic habitats.
Collapse
Affiliation(s)
- Maja Mejdandžić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Teofil Nakov
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, SCEN 601, Fayetteville, Arkansas, 72701, USA
| | - Elizabeth Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, SCEN 601, Fayetteville, Arkansas, 72701, USA
| | - Sandi Orlić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
- Microbial Ecology, Center of Excellence for Science and Technology Integrating Mediterranean Region, Bijenička 54, 10000, Zagreb, Croatia
| | - Marija Gligora Udovič
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Igor Špoljarić
- Forensic Science Office, University of Zagreb, Ilica 335, 10000, Zagreb, Croatia
- Forensic Science Center "Ivan Vučetić" Zagreb, Ilica 335, 10000, Zagreb, Croatia
| | - Gordan Mršić
- Forensic Science Office, University of Zagreb, Ilica 335, 10000, Zagreb, Croatia
- Forensic Science Center "Ivan Vučetić" Zagreb, Ilica 335, 10000, Zagreb, Croatia
| | - Zrinka Ljubešić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| |
Collapse
|
47
|
Kubyshkin V, Acevedo-Rocha CG, Budisa N. On universal coding events in protein biogenesis. Biosystems 2018; 164:16-25. [DOI: 10.1016/j.biosystems.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
|
48
|
Pratama AA, van Elsas JD. The 'Neglected' Soil Virome - Potential Role and Impact. Trends Microbiol 2018; 26:649-662. [PMID: 29306554 DOI: 10.1016/j.tim.2017.12.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 12/29/2022]
Abstract
Bacteriophages are among the most abundant and diverse biological units in the biosphere. They have contributed to our understanding of the central dogma of biology and have been instrumental in the evolutionary success of bacterial pathogens. In contrast to our current understanding of marine viral communities, the soil virome and its function in terrestrial ecosystems has remained relatively understudied. Here, we examine, in a comparative fashion, the knowledge gathered from studies performed in soil versus marine settings. We address the information with respect to the abundance, diversity, ecological significance, and effects of, in particular, bacteriophages on their host's evolutionary trajectories. We also identify the main challenges that soil virology faces and the studies that are required to accompany the current developments in marine settings.
Collapse
Affiliation(s)
- Akbar Adjie Pratama
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Microbial Ecology - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
49
|
Luo Z, Yang W, Leaw CP, Pospelova V, Bilien G, Liow GR, Lim PT, Gu H. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. HARMFUL ALGAE 2017; 66:88-96. [PMID: 28602257 DOI: 10.1016/j.hal.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Blooms of the harmful dinoflagellate Akashiwo sanguinea are responsible for the mass mortality of fish and invertebrates in coastal waters. This cosmopolitan species includes several genetically differentiated clades. Four clonal cultures were established by isolating single cells from Xiamen Harbour (the East China Sea) for morphological and genetic analyses. The cultures displayed identical morphology but were genetically different, thus revealing presence of cryptic diversity in the study area. New details of the apical structure complex of Akashiwo sanguinea were also found. To investigate whether the observed cryptic diversity was related to environmental differentiation, 634 cells were obtained from seasonal water samples collected from 2008 to 2012. These cells were sequenced by single-cell PCR. For comparison with Chinese material, additional large subunit ribosomal DNA sequences were obtained for three established strains from Malaysian and French waters. To examine potential ecological differentiation of the distinct genotypes, growth responses of the studied strains were tested under laboratory conditions at temperatures of 12°C to 33°C. These experiments showed four distinct ribotypes of A. sanguinea globally, with the ribotypes A and B co-occuring in Xiamen Harbour. Ribotype A of A. sanguinea was present year-round in Xiamen Harbour, but it only bloomed in the winter and spring, thus corresponding to the winter type. In contrast, A. sanguinea ribotype B bloomed only in the summer, corresponding to the summer type. This differentiation supports the temperature optimum conditions that were established for these two ribotypes in the laboratory. Ribotype A grew better at lower temperatures compared to ribotype B which preferred higher temperatures. These findings support the idea that various ribotypes of A. sanguinea correspond to distinct ecotypes and allopatric speciation occurred in different climatic regions followed by dispersal.
Collapse
Affiliation(s)
- Zhaohe Luo
- Third Institute of Oceanography, SOA, Xiamen, 361005, China
| | - Weidong Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Vera Pospelova
- School of Earth and Ocean Sciences, University of Victoria, OEASB A405, P. O. Box 1700 16 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - Gwenael Bilien
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau Cedex, France
| | - Guat Ru Liow
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Haifeng Gu
- Third Institute of Oceanography, SOA, Xiamen, 361005, China.
| |
Collapse
|