1
|
Wu X, Ye Z. Mechanoimmunology of T-Cell Activation. Scand J Immunol 2025; 101:e70009. [PMID: 39973081 DOI: 10.1111/sji.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
T-cell activation, a pivotal process in the adaptive immune response, is initiated when the T cell receptor (TCR) recognises and binds to antigenic peptide-major histocompatibility complex (pMHC) molecules on the cell membrane. Emerging evidence indicates that mechanical cues regulate T-cell activation by modulating TCR signalling and mechanotransduction pathways, although the precise underlying mechanisms remain elusive. This review highlights recent findings suggesting that the TCR functions as a mechanosensor, capable of sensing and transmitting mechanical forces through conformational changes. Key steps in T-cell mechanotransduction are discussed, including the roles of the cytoskeleton, mechanosensitive channels such as Piezo 1 and microvilli in facilitating activation. Additionally, we analyse the mechanical responses of chimeric antigen receptor T cells. Understanding the mechanobiological mechanisms underlying T-cell activation offers novel insights and potential strategies for advancing immunotherapies and treating immune-related disorders.
Collapse
Affiliation(s)
- Xuelan Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| |
Collapse
|
2
|
Karunasagara S, Taghizadeh A, Kim SH, Kim SJ, Kim YJ, Taghizadeh M, Kim MY, Oh KY, Lee JH, Kim HS, Hyun J, Kim HW. Tissue Mechanics and Hedgehog Signaling Crosstalk as a Key Epithelial-Stromal Interplay in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400063. [PMID: 38976559 PMCID: PMC11425211 DOI: 10.1002/advs.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Epithelial-stromal interplay through chemomechanical cues from cells and matrix propels cancer progression. Elevated tissue stiffness in potentially malignant tissues suggests a link between matrix stiffness and enhanced tumor growth. In this study, employing chronic oral/esophageal injury and cancer models, it is demonstrated that epithelial-stromal interplay through matrix stiffness and Hedgehog (Hh) signaling is key in compounding cancer development. Epithelial cells actively interact with fibroblasts, exchanging mechanoresponsive signals during the precancerous stage. Specifically, epithelial cells release Sonic Hh, activating fibroblasts to produce matrix proteins and remodeling enzymes, resulting in tissue stiffening. Subsequently, basal epithelial cells adjacent to the stiffened tissue become proliferative and undergo epithelial-to-mesenchymal transition, acquiring migratory and invasive properties, thereby promoting invasive tumor growth. Notably, transcriptomic programs of oncogenic GLI2, mechano-activated by actin cytoskeletal tension, govern this process, elucidating the crucial role of non-canonical GLI2 activation in orchestrating the proliferation and mesenchymal transition of epithelial cells. Furthermore, pharmacological intervention targeting tissue stiffening proves highly effective in slowing cancer progression. These findings underscore the impact of epithelial-stromal interplay through chemo-mechanical (Hh-stiffness) signaling in cancer development, and suggest that targeting tissue stiffness holds promise as a strategy to disrupt chemo-mechanical feedback, enabling effective cancer treatment.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
3
|
Pathni A, Wagh K, Rey-Suarez I, Upadhyaya A. Mechanical regulation of lymphocyte activation and function. J Cell Sci 2024; 137:jcs219030. [PMID: 38995113 PMCID: PMC11267459 DOI: 10.1242/jcs.219030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Kaustubh Wagh
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Rey-Suarez
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Microcore, Universidad de Los Andes, Bogota, DC 111711, USA
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Zhuang C, Gould JE, Enninful A, Shao S, Mak M. Biophysical and mechanobiological considerations for T-cell-based immunotherapy. Trends Pharmacol Sci 2023; 44:366-378. [PMID: 37172572 PMCID: PMC10188210 DOI: 10.1016/j.tips.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/15/2023]
Abstract
Immunotherapies modulate the body's defense system to treat cancer. While these therapies have shown efficacy against multiple types of cancer, patient response rates are limited, and the off-target effects can be severe. Typical approaches in developing immunotherapies tend to focus on antigen targeting and molecular signaling, while overlooking biophysical and mechanobiological effects. Immune cells and tumor cells are both responsive to biophysical cues, which are prominent in the tumor microenvironment. Recent studies have shown that mechanosensing - including through Piezo1, adhesions, and Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) - influences tumor-immune interactions and immunotherapeutic efficacy. Furthermore, biophysical methods such as fluidic systems and mechanoactivation schemes can improve the controllability and manufacturing of engineered T cells, with potential for increasing therapeutic efficacy and specificity. This review focuses on leveraging advances in immune biophysics and mechanobiology toward improving chimeric antigen receptor (CAR) T-cell and anti-programmed cell death protein 1 (anti-PD-1) therapies.
Collapse
Affiliation(s)
- Chuzhi Zhuang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jared E Gould
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Stephanie Shao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
5
|
Hyun J, Kim SJ, Cho SD, Kim HW. Mechano-modulation of T cells for cancer immunotherapy. Biomaterials 2023; 297:122101. [PMID: 37023528 DOI: 10.1016/j.biomaterials.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Immunotherapy, despite its promise for future anti-cancer approach, faces significant challenges, such as off-tumor side effects, innate or acquired resistance, and limited infiltration of immune cells into stiffened extracellular matrix (ECM). Recent studies have highlighted the importance of mechano-modulation/-activation of immune cells (mainly T cells) for effective caner immunotherapy. Immune cells are highly sensitive to the applied physical forces and matrix mechanics, and reciprocally shape the tumor microenvironment. Engineering T cells with tuned properties of materials (e.g., chemistry, topography, and stiffness) can improve their expansion and activation ex vivo, and their ability to mechano-sensing the tumor specific ECM in vivo where they perform cytotoxic effects. T cells can also be exploited to secrete enzymes that soften ECM, thus increasing tumor infiltration and cellular therapies. Furthermore, T cells, such as chimeric antigen receptor (CAR)-T cells, genomic engineered to be spatiotemporally controllable by physical stimuli (e.g., ultrasound, heat, or light), can mitigate adverse off-tumor effects. In this review, we communicate these recent cutting-edge endeavors devoted to mechano-modulating/-activating T cells for effective cancer immunotherapy, and discuss future prospects and challenges in this field.
Collapse
|
6
|
Pinon L, Ruyssen N, Pineau J, Mesdjian O, Cuvelier D, Chipont A, Allena R, Guerin CL, Asnacios S, Asnacios A, Pierobon P, Fattaccioli J. Phenotyping polarization dynamics of immune cells using a lipid droplet-cell pairing microfluidic platform. CELL REPORTS METHODS 2022; 2:100335. [PMID: 36452873 PMCID: PMC9701611 DOI: 10.1016/j.crmeth.2022.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The immune synapse is the tight contact zone between a lymphocyte and a cell presenting its cognate antigen. This structure serves as a signaling platform and entails a polarization of intracellular components necessary to the immunological function of the cell. While the surface properties of the presenting cell are known to control the formation of the synapse, their impact on polarization has not yet been studied. Using functional lipid droplets as tunable artificial presenting cells combined with a microfluidic pairing device, we simultaneously observe synchronized synapses and dynamically quantify polarization patterns of individual B cells. By assessing how ligand concentration, surface fluidity, and substrate rigidity impact lysosome polarization, we show that its onset and kinetics depend on the local antigen concentration at the synapse and on substrate rigidity. Our experimental system enables a fine phenotyping of monoclonal cell populations based on their synaptic readout.
Collapse
Affiliation(s)
- Léa Pinon
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Nicolas Ruyssen
- Arts et Métiers Institute of Technology, Université Paris 13, Sorbonne Paris Cité, IBHGC, HESAM Université, 75013 Paris, France
| | - Judith Pineau
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
| | - Olivier Mesdjian
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Damien Cuvelier
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
- Institut Curie, UMR 144, PSL Research University, CNRS, Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 926 Chemistry, 75005 Paris, France
| | - Anna Chipont
- Institut Curie, Cytometry Platform, 75005 Paris, France
| | - Rachele Allena
- Arts et Métiers Institute of Technology, Université Paris 13, Sorbonne Paris Cité, IBHGC, HESAM Université, 75013 Paris, France
- LJAD, UMR 7351, Université Côte d’Azur, 06100 Nice, France
| | - Coralie L. Guerin
- Institut Curie, Cytometry Platform, 75005 Paris, France
- Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, 75006 Paris, France
| | - Sophie Asnacios
- Université de Paris, CNRS, Laboratoire Matière et Systèmes Complexes, UMR 7057, 75013 Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 925 Physics, 75005 Paris, France
| | - Atef Asnacios
- Université de Paris, CNRS, Laboratoire Matière et Systèmes Complexes, UMR 7057, 75013 Paris, France
| | - Paolo Pierobon
- Institut Curie, U932, Immunology and Cancer, INSERM, 75005 Paris, France
| | - Jacques Fattaccioli
- École Normale Supérieure, UMR 8640, Laboratoire PASTEUR, Département de Chimie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| |
Collapse
|
7
|
Ovejero-Sánchez M, Asensio-Juárez G, González M, Puebla P, Vicente-Manzanares M, Pélaez R, González-Sarmiento R, Herrero AB. Panobinostat Synergistically Enhances the Cytotoxicity of Microtubule Destabilizing Drugs in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:13019. [PMID: 36361809 PMCID: PMC9657298 DOI: 10.3390/ijms232113019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common gynecologic neoplasia and has the highest mortality rate, which is mainly due to late-stage diagnosis and chemotherapy resistance. There is an urgent need to explore new and better therapeutic strategies. We have previously described a family of Microtubule Destabilizing Sulfonamides (MDS) that does not trigger multidrug-mediated resistance in OC cell lines. MDS bind to the colchicine site of tubulin, disrupting the microtubule network and causing antiproliferative and cytotoxic effects. In this work, a novel microtubule-destabilizing agent (PILA9) was synthetized and characterized. This compound also inhibited OC cell proliferation and induced G2/M cell cycle arrest and apoptosis. Interestingly, PILA9 was significantly more cytotoxic than MDS. Here, we also analyzed the effect of these microtubule-destabilizing agents (MDA) in combination with Panobinostat, a pan-histone deacetylase inhibitor. We found that Panobinostat synergistically enhanced MDA-cytotoxicity. Mechanistically, we observed that Panobinostat and MDA induced α-tubulin acetylation and that the combination of both agents enhanced this effect, which could be related to the observed synergy. Altogether, our results suggest that MDA/Panobinostat combinations could represent new therapeutic strategies against OC.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Gloria Asensio-Juárez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Myriam González
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Puebla
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Rafael Pélaez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Wheatley BA, Rey-Suarez I, Hourwitz MJ, Kerr S, Shroff H, Fourkas JT, Upadhyaya A. Nanotopography modulates cytoskeletal organization and dynamics during T cell activation. Mol Biol Cell 2022; 33:ar88. [PMID: 35830602 PMCID: PMC9582624 DOI: 10.1091/mbc.e21-12-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exposure to MHC-antigen complexes on the surface of antigen-presenting cells (APCs) activates T cells, inducing the formation of the immune synapse (IS). Antigen detection at the APC surface is thus a critical step in the adaptive immune response. The physical properties of antigen-presenting surfaces encountered by T cells in vivo are believed to modulate T cell activation and proliferation. Although stiffness and ligand mobility influence IS formation, the effect of the complex topography of the APC surface on this process is not well understood. Here we investigate how nanotopography modulates cytoskeletal dynamics and signaling during the early stages of T cell activation using high-resolution fluorescence microscopy on nanofabricated surfaces with parallel nanoridges of different spacings. We find that although nanoridges reduce the maximum spread area as compared with cells on flat surfaces, the ridges enhance the accumulation of actin and the signaling kinase ZAP-70 at the IS. Actin polymerization is more dynamic in the presence of ridges, which influence the directionality of both actin flows and microtubule (MT) growth. Our results demonstrate that the topography of the activating surface exerts both global effects on T cell morphology and local changes in actin and MT dynamics, collectively influencing T cell signaling.
Collapse
Affiliation(s)
- Brittany A Wheatley
- Department of Integrative Structural and Computational Biology and.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Sarah Kerr
- Department of Physics, University of Colorado, Boulder, CO 80302
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.,Maryland Quantum Materials Center, University of Maryland, College Park, MD 20742
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
9
|
Mustapha F, Sengupta K, Puech PH. May the force be with your (immune) cells: an introduction to traction force microscopy in Immunology. Front Immunol 2022; 13:898558. [PMID: 35990636 PMCID: PMC9389945 DOI: 10.3389/fimmu.2022.898558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
For more than a couple of decades now, "force" has been recognized as an important physical parameter that cells employ to adapt to their microenvironment. Whether it is externally applied, or internally generated, cells use force to modulate their various actions, from adhesion and migration to differentiation and immune function. T lymphocytes use such mechano-sensitivity to decipher signals when recognizing cognate antigens presented on the surface of antigen presenting cells (APCs), a critical process in the adaptive immune response. As such, many techniques have been developed and used to measure the forces felt/exerted by these small, solitary and extremely reactive cells to decipher their influence on diverse T cell functions, primarily activation. Here, we focus on traction force microscopy (TFM), in which a deformable substrate, coated with the appropriate molecules, acts as a force sensor on the cellular scale. This technique has recently become a center of interest for many groups in the "ImmunoBiophysics" community and, as a consequence, has been subjected to refinements for its application to immune cells. Here, we present an overview of TFM, the precautions and pitfalls, and the most recent developments in the context of T cell immunology.
Collapse
Affiliation(s)
- Farah Mustapha
- Laboratory Adhesion Inflammation (LAI), INSERM, CNRS, Aix Marseille University, Marseille, France
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| | - Kheya Sengupta
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| | - Pierre-Henri Puech
- Laboratory Adhesion Inflammation (LAI), INSERM, CNRS, Aix Marseille University, Marseille, France
- Turing Center for Living Systems (CENTURI), Marseille, France
| |
Collapse
|
10
|
Abstract
Heart disease remains the leading cause of morbidity and mortality worldwide. With the advancement of modern technology, the role(s) of microtubules in the pathogenesis of heart disease has become increasingly apparent, though currently there are limited treatments targeting microtubule-relevant mechanisms. Here, we review the functions of microtubules in the cardiovascular system and their specific adaptive and pathological phenotypes in cardiac disorders. We further explore the use of microtubule-targeting drugs and highlight promising druggable therapeutic targets for the future treatment of heart diseases.
Collapse
Affiliation(s)
- Emily F Warner
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University School of Medicine, People's Republic of China (Y.L.)
| | - Xuan Li
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, United Kingdom (E.F.W., X.L.)
| |
Collapse
|
11
|
Pathni A, Özçelikkale A, Rey-Suarez I, Li L, Davis S, Rogers N, Xiao Z, Upadhyaya A. Cytotoxic T Lymphocyte Activation Signals Modulate Cytoskeletal Dynamics and Mechanical Force Generation. Front Immunol 2022; 13:779888. [PMID: 35371019 PMCID: PMC8966475 DOI: 10.3389/fimmu.2022.779888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an integral role in the adaptive immune response by killing infected cells. Antigen presenting cells (APCs), such as dendritic cells, present pathogenic peptides to the T cell receptor on the CTL surface and co-stimulatory signals required for complete activation. Activated CTLs secrete lytic granules containing enzymes that trigger target cell death at the CTL-target contact, also known as the immune synapse (IS). The actin and microtubule cytoskeletons are instrumental in the killing of CTL targets. Lytic granules are transported along microtubules to the IS, where granule secretion is facilitated by actin depletion and recovery. Furthermore, actomyosin contractility promotes target cell death by mediating mechanical force exertion at the IS. Recent studies have shown that inflammatory cytokines produced by APCs, such as interleukin-12 (IL-12), act as a third signal for CTL activation and enhance CTL proliferation and effector function. However, the biophysical mechanisms mediating such enhanced effector function remain unclear. We hypothesized that the third signal for CTL activation, IL-12, modulates cytoskeletal dynamics and force exertion at the IS, thus potentiating CTL effector function. Here, we used live cell total internal reflection fluorescence (TIRF) microscopy to study actomyosin and microtubule dynamics at the IS of murine primary CTLs activated in the presence of peptide-MHC and co-stimulation alone (two signals), or additionally with IL-12 (three signals). We found that three signal-activated CTLs have altered actin flows, myosin dynamics and microtubule growth rates as compared to two signal-activated CTLs. We further showed that lytic granules in three-signal activated CTLs are less clustered and have lower velocities than in two-signal activated CTLs. Finally, we used traction force microscopy to show that three signal-activated CTLs exert greater traction forces than two signal-activated CTLs. Our results demonstrate that activation of CTLs in the presence of IL-12 leads to differential modulation of the cytoskeleton, thereby augmenting the mechanical response of CTLs to their targets. This indicates a potential physical mechanism via which the third signal can enhance the CTL response.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States
| | - Altuğ Özçelikkale
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States.,Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Scott Davis
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Nate Rogers
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Zhengguo Xiao
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States.,Department of Physics, University of Maryland, College Park, MD, United States
| |
Collapse
|
12
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
13
|
Hornak I, Rieger H. Stochastic model of T Cell repolarization during target elimination (II). Biophys J 2022; 121:1246-1265. [PMID: 35196513 PMCID: PMC9034251 DOI: 10.1016/j.bpj.2022.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/08/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cytotoxic T lymphocytes (T cells) and natural killer cells form a tight contact, the immunological synapse (IS), with target cells, where they release their lytic granules containing perforin/granzyme and cytokine-containing vesicles. During this process the cell repolarizes and moves the microtubule organizing center (MTOC) toward the IS. In the first part of our work we developed a computational model for the molecular-motor-driven motion of the microtubule cytoskeleton during T cell polarization and analyzed the effects of cortical-sliding and capture-shrinkage mechanisms. Here we use this model to analyze the dynamics of the MTOC repositioning in situations in which 1) the IS is in an arbitrary position with respect to the initial position of the MTOC and 2) the T cell has two IS at two arbitrary positions. In the case of one IS, we found that the initial position determines which mechanism is dominant and that the time of repositioning does not rise monotonously with the MTOC-IS distance. In the case of two IS, we observe several scenarios that have also been reported experimentally: the MTOC alternates stochastically (but with a well-defined average transition time) between the two IS; it wiggles in between the two IS without transiting to one of the two; or it is at some point pulled to one of the two IS and stays there. Our model allows one to predict which scenario emerges in dependency of the mechanisms in action and the number of dyneins present. We report that the presence of capture-shrinkage mechanism in at least one IS is necessary to assure the transitions in every cell configuration. Moreover, the frequency of transitions does not decrease with the distance between the two IS and is the highest when both mechanisms are present in both IS.
Collapse
Affiliation(s)
- Ivan Hornak
- Department of Theoretical Physics, Center for Biophysics, Saarland University, Saarbrücken, Germany.
| | - Heiko Rieger
- Department of Theoretical Physics, Center for Biophysics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
14
|
Stoiber P, Scribani Rossi P, Pokharel N, Germany JL, York EA, Schaus SE, Hansen U. Factor quinolinone inhibitors alter cell morphology and motility by destabilizing interphase microtubules. Sci Rep 2021; 11:23564. [PMID: 34876605 PMCID: PMC8651680 DOI: 10.1038/s41598-021-02962-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Factor quinolinone inhibitors are promising anti-cancer compounds, initially characterized as specific inhibitors of the oncogenic transcription factor LSF (TFCP2). These compounds exert anti-proliferative activity at least in part by disrupting mitotic spindles. Herein, we report additional interphase consequences of the initial lead compound, FQI1, in two telomerase immortalized cell lines. Within minutes of FQI1 addition, the microtubule network is disrupted, resulting in a substantial, although not complete, depletion of microtubules as evidenced both by microtubule sedimentation assays and microscopy. Surprisingly, this microtubule breakdown is quickly followed by an increase in tubulin acetylation in the remaining microtubules. The sudden breakdown and partial depolymerization of the microtubule network precedes FQI1-induced morphological changes. These involve rapid reduction of cell spreading of interphase fetal hepatocytes and increase in circularity of retinal pigment epithelial cells. Microtubule depolymerization gives rise to FH-B cell compaction, as pretreatment with taxol prevents this morphological change. Finally, FQI1 decreases the rate and range of locomotion of interphase cells, supporting an impact of FQI1-induced microtubule breakdown on cell motility. Taken together, our results show that FQI1 interferes with microtubule-associated functions in interphase, specifically cell morphology and motility.
Collapse
Affiliation(s)
- Patrick Stoiber
- MCBB Graduate Program, Boston University, Boston, MA, 02215, USA
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Pietro Scribani Rossi
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185, Rome, Italy
| | - Niranjana Pokharel
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Jean-Luc Germany
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Emily A York
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Scott E Schaus
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- Center for Molecular Discovery, Boston University, Boston, MA, 02215, USA
| | - Ulla Hansen
- MCBB Graduate Program, Boston University, Boston, MA, 02215, USA.
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Cytomorphology of Chimeric Antigen Receptor T-Cells (CAR-T). Mediterr J Hematol Infect Dis 2021; 13:e2021066. [PMID: 34804440 PMCID: PMC8577561 DOI: 10.4084/mjhid.2021.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022] Open
|
16
|
Fazil MHUT, Chirumamilla CS, Perez-Novo C, Wong BHS, Kumar S, Sze SK, Vanden Berghe W, Verma NK. The steroidal lactone withaferin A impedes T-cell motility by inhibiting the kinase ZAP70 and subsequent kinome signaling. J Biol Chem 2021; 297:101377. [PMID: 34742736 PMCID: PMC8637146 DOI: 10.1016/j.jbc.2021.101377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
The steroidal lactone withaferin A (WFA) is a dietary phytochemical, derived from Withania somnifera. It exhibits a wide range of biological properties, including immunomodulatory, anti-inflammatory, antistress, and anticancer activities. Here we investigated the effect of WFA on T-cell motility, which is crucial for adaptive immune responses as well as autoimmune reactions. We found that WFA dose-dependently (within the concentration range of 0.3–1.25 μM) inhibited the ability of human T-cells to migrate via cross-linking of the lymphocyte function-associated antigen-1 (LFA-1) integrin with its ligand, intercellular adhesion molecule 1 (ICAM-1). Coimmunoprecipitation of WFA interacting proteins and subsequent tandem mass spectrometry identified a WFA-interactome consisting of 273 proteins in motile T-cells. In particular, our data revealed significant enrichment of the zeta-chain-associated protein kinase 70 (ZAP70) and cytoskeletal actin protein interaction networks upon stimulation. Phospho-peptide mapping and kinome analysis substantiated kinase signaling downstream of ZAP70 as a key WFA target, which was further confirmed by bait-pulldown and Western immunoblotting assays. The WFA-ZAP70 interaction was disrupted by a disulfide reducing agent dithiothreitol, suggesting an involvement of cysteine covalent binding interface. In silico docking predicted WFA binding to ZAP70 at cystine 560 and 564 residues. These findings provide a mechanistic insight whereby WFA binds to and inhibits the ZAP70 kinase and impedes T-cell motility. We therefore conclude that WFA may be exploited to pharmacologically control host immune responses and potentially prevent autoimmune-mediated pathologies.
Collapse
Affiliation(s)
| | - Chandra Sekhar Chirumamilla
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Claudina Perez-Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore; NTU Institute for Health Technologies (HealthTech NTU), Interdisciplinary Graduate Programme, Nanyang Technological University Singapore, Singapore
| | - Sunil Kumar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau, Uttar Pradesh, India
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore.
| |
Collapse
|
17
|
Jung P, Zhou X, Iden S, Bischoff M, Qu B. T cell stiffness is enhanced upon formation of immunological synapse. eLife 2021; 10:66643. [PMID: 34313220 PMCID: PMC8360652 DOI: 10.7554/elife.66643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
T cells are activated by target cells via an intimate contact, termed immunological synapse (IS). Cellular mechanical properties, especially stiffness, are essential to regulate cell functions. However, T cell stiffness at a subcellular level at the IS still remains largely elusive. In this work, we established an atomic force microscopy (AFM)-based elasticity mapping method on whole T cells to obtain an overview of the stiffness with a resolution of ~60 nm. Using primary human CD4+ T cells, we show that when T cells form IS with stimulating antibody-coated surfaces, the lamellipodia are stiffer than the cell body. Upon IS formation, T cell stiffness is enhanced both at the lamellipodia and on the cell body. Chelation of intracellular Ca2+ abolishes IS-induced stiffening at the lamellipodia but has no influence on cell-body-stiffening, suggesting different regulatory mechanisms of IS-induced stiffening at the lamellipodia and the cell body.
Collapse
Affiliation(s)
- Philipp Jung
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Xiangda Zhou
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Sandra Iden
- Cell and Developmental Biology, School of Medicine, Center of Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Bin Qu
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,Leibniz Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
18
|
Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments. Nat Commun 2021; 12:2815. [PMID: 33990566 PMCID: PMC8121808 DOI: 10.1038/s41467-021-22985-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Defining the principles of T cell migration in structurally and mechanically complex tumor microenvironments is critical to understanding escape from antitumor immunity and optimizing T cell-related therapeutic strategies. Here, we engineered nanotextured elastic platforms to study and enhance T cell migration through complex microenvironments and define how the balance between contractility localization-dependent T cell phenotypes influences migration in response to tumor-mimetic structural and mechanical cues. Using these platforms, we characterize a mechanical optimum for migration that can be perturbed by manipulating an axis between microtubule stability and force generation. In 3D environments and live tumors, we demonstrate that microtubule instability, leading to increased Rho pathway-dependent cortical contractility, promotes migration whereas clinically used microtubule-stabilizing chemotherapies profoundly decrease effective migration. We show that rational manipulation of the microtubule-contractility axis, either pharmacologically or through genome engineering, results in engineered T cells that more effectively move through and interrogate 3D matrix and tumor volumes. Thus, engineering cells to better navigate through 3D microenvironments could be part of an effective strategy to enhance efficacy of immune therapeutics. The mechanics of the migration of T cells into tumours is an important aspect of tumour immunity. Here the authors engineer complex 3D environments to explore functions of microtubules and cell contractility as strategies to enhance T cell migration in tumour microenvironments.
Collapse
|
19
|
Fragliasso V, Tameni A, Inghirami G, Mularoni V, Ciarrocchi A. Cytoskeleton Dynamics in Peripheral T Cell Lymphomas: An Intricate Network Sustaining Lymphomagenesis. Front Oncol 2021; 11:643620. [PMID: 33928032 PMCID: PMC8076600 DOI: 10.3389/fonc.2021.643620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Defects in cytoskeleton functions support tumorigenesis fostering an aberrant proliferation and promoting inappropriate migratory and invasive features. The link between cytoskeleton and tumor features has been extensively investigated in solid tumors. However, the emerging genetic and molecular landscape of peripheral T cell lymphomas (PTCL) has unveiled several alterations targeting structure and function of the cytoskeleton, highlighting its role in cell shape changes and the aberrant cell division of malignant T cells. In this review, we summarize the most recent evidence about the role of cytoskeleton in PTCLs development and progression. We also discuss how aberrant signaling pathways, like JAK/STAT3, NPM-ALK, RhoGTPase, and Aurora Kinase, can contribute to lymphomagenesis by modifying the structure and the signaling properties of cytoskeleton.
Collapse
Affiliation(s)
- Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Annalisa Tameni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Valentina Mularoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
20
|
Rey-Suarez I, Rogers N, Kerr S, Shroff H, Upadhyaya A. Actomyosin dynamics modulate microtubule deformation and growth during T-cell activation. Mol Biol Cell 2021; 32:1641-1653. [PMID: 33826369 PMCID: PMC8684730 DOI: 10.1091/mbc.e20-10-0685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Activation of T-cells leads to the formation of immune synapses (ISs) with antigen-presenting cells. This requires T-cell polarization and coordination between the actomyosin and microtubule cytoskeletons. The interactions between these two cytoskeletal components during T-cell activation are not well understood. Here, we elucidate the interactions between microtubules and actin at the IS with high-resolution fluorescence microscopy. We show that microtubule growth dynamics in the peripheral actin-rich region is distinct from that in the central actin-free region. We further demonstrate that these differences arise from differential involvement of Arp2/3- and formin-nucleated actin structures. Formin inhibition results in a moderate decrease in microtubule growth rates, which is amplified in the presence of integrin engagement. In contrast, Arp2/3 inhibition leads to an increase in microtubule growth rates. We find that microtubule filaments are more deformed and exhibit greater shape fluctuations in the periphery of the IS than at the center. Using small molecule inhibitors, we show that actin dynamics and actomyosin contractility play key roles in defining microtubule deformations and shape fluctuations. Our results indicate a mechanical coupling between the actomyosin and microtubule systems during T-cell activation, whereby different actin structures influence microtubule dynamics in distinct ways.
Collapse
Affiliation(s)
- Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Nate Rogers
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Sarah Kerr
- Department of Physics, University of Colorado, Boulder, CO 80302
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742
| |
Collapse
|
21
|
Acharya BR. Can mechanical forces attune heterotypic cell-cell communications? J Biomech 2021; 121:110409. [PMID: 33845355 DOI: 10.1016/j.jbiomech.2021.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Heterotypic cell lineages relentlessly exchange biomechanical signals among themselves in metazoan organs. Hence, cell-cell communications are pivotal for organ physiology and pathogenesis. Every cell lineage of an organ responds differently to a specific signal due to its unique receptibility and signal interpretation capacity. These distinct cellular responses generate a system-scale signaling network that helps in generating a specific organ phenotype. Although the reciprocal biochemical signal exchange between non-identical neighboring cells is known to be an essential factor for organ functioning, if, then how, mechanical cues incite these signals is not yet quite explored. Cells within organ tissues experience multiple mechanical forces, such as stretching, bending, compression, and shear stress. Forms and magnitudes of mechanical forces influence biochemical signaling in a cell-specific manner. Additionally, the biophysical state of acellular extracellular matrix (ECM) can transmit exclusive mechanical cues to specific cells of an organ. As it scaffolds heterotypic cells and tissues in close proximities, therefore, ECM can easily be contemplated as a mechanical conduit for signal exchange among them. However, force-stimulated signal transduction is not always physiological, aberrant force sensing by tissue-resident cells can transduce anomalous signals to each other, and potentially can promote pathological phenotypes. Herein, I attempt to put forward a perspective on how mechanical forces may influence signal transductions among heterotypic cell populations and how they feedback each other to achieve a transient or perpetual alteration in metazoan organs. A mechanistic insight of organ scale mechanotransduction can emanate the possibility of finding potential biomarkers and novel therapeutic strategies to deal with pathogenesis and organ regeneration.
Collapse
Affiliation(s)
- Bipul R Acharya
- Department of Cell Biology, School of Medicine, University of Virginia, USA.
| |
Collapse
|
22
|
Kopf A, Kiermaier E. Dynamic Microtubule Arrays in Leukocytes and Their Role in Cell Migration and Immune Synapse Formation. Front Cell Dev Biol 2021; 9:635511. [PMID: 33634136 PMCID: PMC7900162 DOI: 10.3389/fcell.2021.635511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
The organization of microtubule arrays in immune cells is critically important for a properly operating immune system. Leukocytes are white blood cells of hematopoietic origin, which exert effector functions of innate and adaptive immune responses. During these processes the microtubule cytoskeleton plays a crucial role for establishing cell polarization and directed migration, targeted secretion of vesicles for T cell activation and cellular cytotoxicity as well as the maintenance of cell integrity. Considering this large spectrum of distinct effector functions, leukocytes require flexible microtubule arrays, which timely and spatially reorganize allowing the cells to accommodate their specific tasks. In contrast to other specialized cell types, which typically nucleate microtubule filaments from non-centrosomal microtubule organizing centers (MTOCs), leukocytes mainly utilize centrosomes for sites of microtubule nucleation. Yet, MTOC localization as well as microtubule organization and dynamics are highly plastic in leukocytes thus allowing the cells to adapt to different environmental constraints. Here we summarize our current knowledge on microtubule organization and dynamics during immune processes and how these microtubule arrays affect immune cell effector functions. We particularly highlight emerging concepts of microtubule involvement during maintenance of cell shape and physical coherence.
Collapse
Affiliation(s)
- Aglaja Kopf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Lei K, Kurum A, Tang L. Mechanical Immunoengineering of T cells for Therapeutic Applications. Acc Chem Res 2020; 53:2777-2790. [PMID: 33258577 DOI: 10.1021/acs.accounts.0c00486] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells, a key component in adaptive immunity, are central to many immunotherapeutic modalities aimed at treating various diseases including cancer, infectious diseases, and autoimmune disorders. The past decade has witnessed tremendous progress in immunotherapy, which aims at activation or suppression of the immune responses for disease treatments. Most strikingly, cancer immunotherapy has led to curative responses in a fraction of patients with relapsed or refractory cancers. However, extending those clinical benefits to a majority of cancer patients remains challenging. In order to improve both efficacy and safety of T cell-based immunotherapies, significant effort has been devoted to modulating biochemical signals to enhance T cell proliferation, effector functions, and longevity. Such strategies include discovery of new immune checkpoints, design of armored chimeric antigen receptor (CAR) T cells, and targeted delivery of stimulatory cytokines and so on.Despite the intense global research effort in developing novel cancer immunotherapies, a major dimension of the interactions between cancer and the immune system, its biomechanical aspect, has been largely underappreciated. Throughout their lifecycle, T cells constantly survey a multitude of organs and tissues and experience diverse biomechanical environments, such as shear force in the blood flow and a broad range of tissue stiffness. Furthermore, biomechanical properties of tissues or cells may be altered in disease and inflammation. Biomechanical cues, including both passive mechanical cues and active mechanical forces, have been shown to govern T cell development, activation, migration, differentiation, and effector functions. In other words, T cells can sense, respond to, and adapt to both passive mechanical cues and active mechanical forces.Biomechanical cues have been intensively studied at a fundamental level but are yet to be extensively incorporated in the design of immunotherapies. Nonetheless, the growing knowledge of T cell mechanobiology has formed the basis for the development of novel engineering strategies to mechanically modulate T cell immunity, a nascent field that we termed "mechanical immunoengineering". Mechanical immunoengineering exploits biomechanical cues (e.g., stiffness and external forces) to modulate T cell differentiation, proliferation, effector functions, etc., for diagnostic or therapeutic applications. It provides an additional dimension, complementary to traditional modulation of biochemical cues (e.g., antigen density and co-stimulatory signals), to tailor T cell immune responses and enhance therapeutic outcomes. For example, stiff antigen-presenting matrices have been shown to enhance T cell proliferation independently of the intensity of biochemical stimulatory signals. Current strategies of mechanical immunoengineering of T cells can be categorized into two major fields including passive mechanical cue-oriented and active force-oriented strategies. In this Account, we first present a brief overview of T cell mechanobiology. Next, we summarize recent advances in mechanical immunoengineering, discuss the roles of chemistry and material science in the development of these engineering strategies, and highlight potential therapeutic applications. Finally, we present our perspective on the future directions in mechanical immunoengineering and critical steps to translate mechanical immunoengineering strategies into therapeutic applications in the clinic.
Collapse
|
24
|
Li R, Ma C, Cai H, Chen W. The CAR T-Cell Mechanoimmunology at a Glance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002628. [PMID: 33344135 PMCID: PMC7740088 DOI: 10.1002/advs.202002628] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/13/2020] [Indexed: 05/10/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell transfer is a novel paradigm of adoptive T-cell immunotherapy. When coming into contact with a target cancer cell, CAR T-cell forms a nonclassical immunological synapse with the cancer cell and dynamically orchestrates multiple critical forces to commit cytotoxic immune function. Such an immunologic process involves a force transmission in the CAR and a spatiotemporal remodeling of cell cytoskeleton to facilitate CAR activation and CAR T-cell cytotoxic function. Yet, the detailed understanding of such mechanotransduction at the interface between the CAR T-cell and the target cell, as well as its molecular structure and signaling, remains less defined and is just beginning to emerge. This article summarizes the basic mechanisms and principles of CAR T-cell mechanoimmunology, and various lessons that can be comparatively learned from interrogation of mechanotransduction at the immunological synapse in normal cytotoxic T-cell. The recent development and future application of novel bioengineering tools for studying CAR T-cell mechanoimmunology is also discussed. It is believed that this progress report will shed light on the CAR T-cell mechanoimmunology and encourage future researches in revealing the less explored yet important mechanosensing and mechanotransductive mechanisms involved in CAR T-cell immuno-oncology.
Collapse
Affiliation(s)
- Rui Li
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
- Department of Biomedical EngineeringNew York UniversityBrooklynNY11201USA
| | - Chao Ma
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
- Department of Biomedical EngineeringNew York UniversityBrooklynNY11201USA
| | - Haogang Cai
- Tech4Health instituteNYU Langone HealthNew YorkNY10016USA
- Department of RadiologyNYU Langone HealthNew YorkNY10016USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
- Department of Biomedical EngineeringNew York UniversityBrooklynNY11201USA
- Laura and Isaac Perlmutter Cancer CenterNYU Langone HealthNew YorkNY10016USA
| |
Collapse
|
25
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
26
|
Moreau HD, Lennon-Duménil AM, Pierobon P. “If you please… draw me a cell”. Insights from immune cells. J Cell Sci 2020; 133:133/5/jcs244806. [DOI: 10.1242/jcs.244806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Studies in recent years have shed light on the particular features of cytoskeleton dynamics in immune cells, challenging the classical picture drawn from typical adherent cell lines. New mechanisms linking the dynamics of the membrane–cytoskeleton interface to the mechanical properties of immune cells have been uncovered and shown to be essential for immune surveillance functions. In this Essay, we discuss these features, and propose immune cells as a new playground for cell biologists who try to understand how cells adapt to different microenvironments to fulfil their functions efficiently.
Collapse
Affiliation(s)
- Hélène D. Moreau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | - Ana-Maria Lennon-Duménil
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | - Paolo Pierobon
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| |
Collapse
|
27
|
Hornak I, Rieger H. Stochastic Model of T Cell Repolarization during Target Elimination I. Biophys J 2020; 118:1733-1748. [PMID: 32130873 DOI: 10.1016/j.bpj.2020.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cytotoxic T lymphocytes (T) and natural killer cells are the main cytotoxic killer cells of the human body to eliminate pathogen-infected or tumorigenic cells (i.e., target cells). Once a natural killer or T cell has identified a target cell, they form a tight contact zone, the immunological synapse (IS). One then observes a repolarization of the cell involving the rotation of the microtubule (MT) cytoskeleton and a movement of the MT organizing center (MTOC) to a position that is just underneath the plasma membrane at the center of the IS. Concomitantly, a massive relocation of organelles attached to MTs is observed, including the Golgi apparatus, lytic granules, and mitochondria. Because the mechanism of this relocation is still elusive, we devise a theoretical model for the molecular-motor-driven motion of the MT cytoskeleton confined between plasma membrane and nucleus during T cell polarization. We analyze different scenarios currently discussed in the literature, the cortical sliding and capture-shrinkage mechanisms, and compare quantitative predictions about the spatiotemporal evolution of MTOC position and MT cytoskeleton morphology with experimental observations. The model predicts the experimentally observed biphasic nature of the repositioning due to an interplay between MT cytoskeleton geometry and motor forces and confirms the dominance of the capture-shrinkage over the cortical sliding mechanism when the MTOC and IS are initially diametrically opposed. We also find that the two mechanisms act synergistically, thereby reducing the resources necessary for repositioning. Moreover, it turns out that the localization of dyneins in the peripheral supramolecular activation cluster facilitates their interaction with the MTs. Our model also opens a way to infer details of the dynein distribution from the experimentally observed features of the MT cytoskeleton dynamics. In a subsequent publication, we will address the issue of general initial configurations and situations in which the T cell established two ISs.
Collapse
Affiliation(s)
- Ivan Hornak
- Center for Biophysics (ZBP) and Department of Theoretical Physics, Saarland University, Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics (ZBP) and Department of Theoretical Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
28
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Prahl LS, Bangasser PF, Stopfer LE, Hemmat M, White FM, Rosenfeld SS, Odde DJ. Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration. Cell Rep 2019; 25:2591-2604.e8. [PMID: 30485822 PMCID: PMC6345402 DOI: 10.1016/j.celrep.2018.10.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/25/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are widely used chemotherapy drugs capable of disrupting microtubule-dependent cellular functions, such as division and migration. We show that two clinically approved MTAs, paclitaxel and vinblastine, each suppress stiffness-sensitive migration and polarization characteristic of human glioma cells on compliant hydrogels. MTAs influence microtubule dynamics and cell traction forces by nearly opposite mechanisms, the latter of which can be explained by a combination of changes in myosin motor and adhesion clutch number. Our results support a microtubule-dependent signaling-based model for controlling traction forces through a motor-clutch mechanism, rather than microtubules directly relieving tension within F-actin and adhesions. Computational simulations of cell migration suggest that increasing protrusion number also impairs stiffness-sensitive migration, consistent with experimental MTA effects. These results provide a theoretical basis for the role of microtubules and mechanisms of MTAs in controlling cell migration. Prahl et al. examine the mechanisms by which microtubule-targeting drugs inhibit glioma cell migration. They find that dynamic microtubules regulate actin-based protrusion dynamics that facilitate cell polarity and migration. Changes in net microtubule assembly alter cell traction forces via signaling-based regulation of a motor-clutch system.
Collapse
Affiliation(s)
- Louis S Prahl
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Physical Sciences-Oncology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Patrick F Bangasser
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Physical Sciences-Oncology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren E Stopfer
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research and Physical Sciences-Oncology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mahya Hemmat
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research and Physical Sciences-Oncology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven S Rosenfeld
- Physical Sciences-Oncology Center, University of Minnesota, Minneapolis, MN 55455, USA; Brain Tumor and Neuro-Oncology Center and Department of Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Physical Sciences-Oncology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Stavreva DA, Garcia DA, Fettweis G, Gudla PR, Zaki GF, Soni V, McGowan A, Williams G, Huynh A, Palangat M, Schiltz RL, Johnson TA, Presman DM, Ferguson ML, Pegoraro G, Upadhyaya A, Hager GL. Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Mol Cell 2019; 75:1161-1177.e11. [PMID: 31421980 PMCID: PMC6754282 DOI: 10.1016/j.molcel.2019.06.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA; Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Prabhakar R Gudla
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - George F Zaki
- High Performance Computing Group, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vikas Soni
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Andrew McGowan
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Geneva Williams
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Anh Huynh
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Murali Palangat
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Matthew L Ferguson
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Arpita Upadhyaya
- Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| |
Collapse
|
31
|
Traction force-mediated B cell activation: how and why. SCIENCE CHINA-LIFE SCIENCES 2019; 62:971-973. [PMID: 31197762 DOI: 10.1007/s11427-019-9533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
32
|
Wan Z, Shaheen S, Chau A, Zeng Y, Liu W. Imaging: Gear up for mechano-immunology. Cell Immunol 2019; 350:103926. [PMID: 31151736 DOI: 10.1016/j.cellimm.2019.103926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Immune cells including B and T lymphocytes have a remarkable ability to sense the physical perturbations through their surface expressed receptors. At the advent of modern imaging technologies paired with biophysical methods, we have gained the understanding of mechanical forces exerted by immune cells to perform their functions. This review will go over the imaging techniques already being used to study mechanical forces in immune cells. We will also discuss the dire need for new modern technologies for future work.
Collapse
Affiliation(s)
- Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Alicia Chau
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
33
|
Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat Commun 2019; 10:1850. [PMID: 31015429 PMCID: PMC6478854 DOI: 10.1038/s41467-019-09709-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
Macrophage (Mϕ)-fibroblast interactions coordinate tissue repair after injury whereas miscommunications can result in pathological healing and fibrosis. We show that contracting fibroblasts generate deformation fields in fibrillar collagen matrix that provide far-reaching physical cues for Mϕ. Within collagen deformation fields created by fibroblasts or actuated microneedles, Mϕ migrate towards the force source from several hundreds of micrometers away. The presence of a dynamic force source in the matrix is critical to initiate and direct Mϕ migration. In contrast, collagen condensation and fiber alignment resulting from fibroblast remodelling activities or chemotactic signals are neither required nor sufficient to guide Mϕ migration. Binding of α2β1 integrin and stretch-activated channels mediate Mϕ migration and mechanosensing in fibrillar collagen ECM. We propose that Mϕ mechanosense the velocity of local displacements of their substrate, allowing contractile fibroblasts to attract Mϕ over distances that exceed the range of chemotactic gradients. Macrophages play an important role in wound healing but the guidance cues driving macrophages to sites of repair are still not clear. Here the authors discover that macrophages are attracted to contracting fibroblasts by responding to locally sensed displacements of collagen fibres.
Collapse
|
34
|
Sarkar A, Rieger H, Paul R. Search and Capture Efficiency of Dynamic Microtubules for Centrosome Relocation during IS Formation. Biophys J 2019; 116:2079-2091. [PMID: 31084903 DOI: 10.1016/j.bpj.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022] Open
Abstract
Upon contact with antigen-presenting cells, cytotoxic T lymphocytes (T cells) establish a highly organized contact zone denoted as the immunological synapse (IS). The formation of the IS implies relocation of the microtubule organizing center (MTOC) toward the contact zone, which necessitates a proper connection between the MTOC and the IS via dynamic microtubules (MTs). The efficiency of the MTs finding the IS within the relevant timescale is, however, still illusive. We investigate how MTs search the three-dimensional constrained cellular volume for the IS and bind upon encounter to dynein anchored at the IS cortex. The search efficiency is estimated by calculating the time required for the MTs to reach the dynein-enriched region of the IS. In this study, we develop simple mathematical and numerical models incorporating relevant components of a cell and propose an optimal search strategy. Using the mathematical model, we have quantified the average search time for a wide range of model parameters and proposed an optimized set of values leading to the minimal capture time. Our results show that search times are minimal when the IS formed at the nearest or at the farthest sites on the cell surface with respect to the perinuclear MTOC. The search time increases monotonically away from these two specific sites and is maximal at an intermediate position near the equator of the cell. We observed that search time strongly depends on the number of searching MTs and distance of the MTOC from the nuclear surface.
Collapse
Affiliation(s)
- Apurba Sarkar
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| | - Heiko Rieger
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
35
|
Torralba D, Martín-Cófreces NB, Sanchez-Madrid F. Mechanisms of polarized cell-cell communication of T lymphocytes. Immunol Lett 2019; 209:11-20. [PMID: 30954509 DOI: 10.1016/j.imlet.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 01/07/2023]
Abstract
Cell-cell communication comprises a variety of molecular mechanisms that immune cells use to respond appropriately to diverse pathogenic stimuli. T lymphocytes polarize in response to different stimuli, such as cytokines, adhesion to specific ligands and cognate antigens presented in the context of MHC. Polarization takes different shapes, from migratory front-back polarization to the formation of immune synapses (IS). The formation of IS between a T cell and an antigen-presenting cell involves early events of receptor-ligand interaction leading to the reorganization of the plasma membrane and the cytoskeleton to orchestrate vesicular and endosomal traffic and directed secretion of several types of mediators, including cytokines and nanovesicles. Cell polarization involves the repositioning of many subcellular organelles, including the endosomal compartment, which becomes an effective platform for the shuttling of molecules as vesicular cargoes that lately will be secreted to transfer information to antigen-presenting cells. Overall, the polarized interaction between a T cell and APC modifies the recipient cell in different ways that are likely lineage-dependent, e.g. dendritic cells, B cells or even other T cells. In this review, we will discuss the mechanisms that mediate the polarization of different membrane receptors, cytoskeletal components and organelles in T cells in a variety of immune contexts.
Collapse
Affiliation(s)
- D Torralba
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - N B Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - F Sanchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
36
|
Harrison DL, Fang Y, Huang J. T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. FRONTIERS IN PHYSICS 2019; 7:45. [PMID: 32601597 PMCID: PMC7323161 DOI: 10.3389/fphy.2019.00045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A T cell is a sensitive self-referential mechanical sensor. Mechanical forces influence the recognition, activation, differentiation, and function throughout the lifetime of a T cell. T cells constantly perceive and respond to physical stimuli through their surface receptors, cytoskeleton, and subcellular structures. Surface receptors receive physical cues in the form of forces generated through receptor-ligand binding events, which are dynamically regulated by contact tension, shear stress, and substrate rigidity. The resulting mechanotransduction not only influences T-cell recognition and signaling but also possibly modulates cell metabolism and gene expression. Moreover, forces also dynamically regulate the deformation, organization, and translocation of cytoskeleton and subcellular structures, leading to changes in T-cell mobility, migration, and infiltration. However, the roles and mechanisms of how mechanical forces modulate T-cell recognition, signaling, metabolism, and gene expression, are largely unknown and underappreciated. Here, we review recent technological and scientific advances in T-cell mechanobiology, discuss possible roles and mechanisms of T-cell mechanotransduction, and propose new research directions of this emerging field in health and disease.
Collapse
Affiliation(s)
- Devin L. Harrison
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Yun Fang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Jun Huang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
37
|
Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. J Leukoc Biol 2019; 105:1261-1273. [DOI: 10.1002/jlb.mr0718-267r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Noah Joseph
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| |
Collapse
|
38
|
Kim JK, Shin YJ, Ha LJ, Kim DH, Kim DH. Unraveling the Mechanobiology of the Immune System. Adv Healthc Mater 2019; 8:e1801332. [PMID: 30614636 PMCID: PMC7700013 DOI: 10.1002/adhm.201801332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/01/2018] [Indexed: 12/20/2022]
Abstract
Cells respond and actively adapt to environmental cues in the form of mechanical stimuli. This extends to immune cells and their critical role in the maintenance of tissue homeostasis. Multiple recent studies have begun illuminating underlying mechanisms of mechanosensation in modulating immune cell phenotypes. Since the extracellular microenvironment is critical to modify cellular physiology that ultimately determines the functionality of the cell, understanding the interactions between immune cells and their microenvironment is necessary. This review focuses on mechanoregulation of immune responses mediated by macrophages, dendritic cells, and T cells, in the context of modern mechanobiology.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Leslie Jaesun Ha
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
39
|
Abstract
The inherent ability of T-cells to migrate is critical for a fully functional immune system, both in normal immune surveillance and for mounting an adaptive immune response. At the same time, inappropriate trafficking of T-cells can be a pathological factor for immune-mediated or chronic inflammatory diseases. T-cell motility is critically dependent on a series of ligand-receptor interactions, a precisely regulated intracellular signaling, an involvement of adaptor proteins, and dynamic remodeling of the cytoskeletal systems. The leukocyte integrin LFA-1 receptor present on T-cells binds to the ligand intercellular adhesion molecule 1 (ICAM-1) and this LFA-1/ICAM-1 contact acts as a trigger for T-cell motility. In this book, we present a collection of methods and protocols that are frequently used by researchers to better understand T-cell motility in health and diseases.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.
| | - Dermot Kelleher
- Lymphocyte Signalling Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Departments of Medicine and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Nataraj NM, Dang AP, Kam LC, Lee JH. Ex vivo induction of regulatory T cells from conventional CD4 + T cells is sensitive to substrate rigidity. J Biomed Mater Res A 2018; 106:3001-3008. [PMID: 30303608 PMCID: PMC6240380 DOI: 10.1002/jbm.a.36489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
The immune system maintains a balance between protection and tolerance. Regulatory T cells (Tregs) function as a vital tolerance mechanism in the immune system to suppress effector immune cells. Additionally, Tregs can be utilized as a form of immunotherapy for autoimmune disorders. As T cells have previously been shown to exhibit sensitivity to the rigidity of an activating substrate upon activation via IL-2 secretion, we herein explore the previously unknown effect of substrate rigidity on the induction of Tregs from conventional naïve mouse CD4+ T cells. Substrates with modulatable rigidities ranging from a hundred kilopascals to a few megapascals were fabricated via poly(dimethylsiloxane). We found that there was a significant increase in Treg induction at lower substrate rigidities (i.e., E ~ 100 kPa) compared to higher rigidity levels (i.e., E ~ 3 MPa). To confirm that this significant difference in induction rate was truly related to T-cell mechanosensing, we administered compound Y-27632 to inhibit myosin contractility. In the presence of Y-27632, the myosin-based contractility was disrupted and, as a result, the difference in Treg induction caused by the substrate rigidity was abrogated. This study demonstrates that mechanosensing is involved in Treg induction and raises questions about the underlying molecular mechanisms involved in this process. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3001-3008, 2018.
Collapse
Affiliation(s)
- Neha M Nataraj
- Department of Biomedical Engineering, Columbia University, New York, New York
- Biomedical Graduate Studies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex P Dang
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Jounghyun H Lee
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
41
|
|
42
|
Wang J, Lin F, Wan Z, Sun X, Lu Y, Huang J, Wang F, Zeng Y, Chen YH, Shi Y, Zheng W, Li Z, Xiong C, Liu W. Profiling the origin, dynamics, and function of traction force in B cell activation. Sci Signal 2018; 11:11/542/eaai9192. [PMID: 30087179 DOI: 10.1126/scisignal.aai9192] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B lymphocytes use B cell receptors (BCRs) to recognize membrane-bound antigens to further initiate cell spreading and contraction responses during B cell activation. We combined traction force microscopy and live-cell imaging to profile the origin, dynamics, and function of traction force generation in these responses. We showed that B cell activation required the generation of 10 to 20 nN of traction force when encountering antigens presented by substrates with stiffness values from 0.5 to 1 kPa, which mimic the rigidity of antigen-presenting cells in vivo. Perturbation experiments revealed that F-actin remodeling and myosin- and dynein-mediated contractility contributed to traction force generation and B cell activation. Moreover, membrane-proximal BCR signaling molecules (including Lyn, Syk, Btk, PLC-γ2, BLNK, and Vav3) and adaptor molecules (Grb2, Cbl, and Dok-3) linking BCR microclusters and motor proteins were also required for the sustained generation of these traction forces. We found a positive correlation between the strength of the traction force and the mean fluorescence intensity of the BCR microclusters. Furthermore, we demonstrated that isotype-switched memory B cells expressing immunoglobulin G (IgG)-BCRs generated greater traction forces than did mature naïve B cells expressing IgM-BCRs during B cell activation. Last, we observed that primary B cells from patients with rheumatoid arthritis generated greater traction forces than did B cells from healthy donors in response to antigen stimulation. Together, these data delineate the origin, dynamics, and function of traction force during B cell activation.
Collapse
Affiliation(s)
- Junyi Wang
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Feng Lin
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Zhengpeng Wan
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Yun Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin South Road, Chengdu 610041, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Ying-Hua Chen
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Center for Life Sciences, Department of Basic Medical Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wanli Liu
- China Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China. .,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
43
|
Moalli F, Ficht X, Germann P, Vladymyrov M, Stolp B, de Vries I, Lyck R, Balmer J, Fiocchi A, Kreutzfeldt M, Merkler D, Iannacone M, Ariga A, Stoffel MH, Sharpe J, Bähler M, Sixt M, Diz-Muñoz A, Stein JV. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8 + T cells. J Exp Med 2018; 215:1869-1890. [PMID: 29875261 PMCID: PMC6028505 DOI: 10.1084/jem.20170896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/28/2017] [Accepted: 05/11/2018] [Indexed: 12/27/2022] Open
Abstract
Moalli et al. combine in vitro CD8+ T cell motility analysis with intravital imaging of mouse tissues to identify the actomyosin regulator Myo9b as a central player for nonlymphoid tissue infiltration during adaptive immune responses by facilitating crossing of tissue barriers. T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b−/− CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b−/− CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b−/− CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue–resident T cell populations.
Collapse
Affiliation(s)
- Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Xenia Ficht
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Philipp Germann
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,European Molecular Biology Laboratory, Barcelona, Spain
| | - Mykhailo Vladymyrov
- Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland
| | - Bettina Stolp
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ingrid de Vries
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jasmin Balmer
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Amleto Fiocchi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Akitaka Ariga
- Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - James Sharpe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,European Molecular Biology Laboratory, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Michael Sixt
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
Dang A, De Leo S, Bogdanowicz DR, Yuan DJ, Fernandes SM, Brown JR, Lu HH, Kam LC. Enhanced activation and expansion of T cells using mechanically soft elastomer fibers. ADVANCED BIOSYSTEMS 2018; 2:1700167. [PMID: 31008184 PMCID: PMC6469863 DOI: 10.1002/adbi.201700167] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Practical deployment of cellular therapies requires effective platforms for producing clinically relevant numbers of high-quality cells. This report introduces a materials-based approach to improving activation and expansion of T cells, which are rapidly emerging as an agent for treating cancer and a range of other diseases. Electrospinning is used to create a mesh of poly(ε-caprolactone) fibers, which is used to present activating ligands to CD3 and CD28, which activate T cells for expansion. Incorporation of poly(dimethyl siloxane) elastomer into the fibers reduces substrate rigidity and enhances expansion of mixed populations of human CD4+ and CD8+ T cells. Intriguingly, this platform also rescues expansion of T cells isolated from CLL patients, which often show limited responsiveness and other features resembling exhaustion. By simplifying the process of cell expansion, compared to current bead-based platforms, and improving T cell expansion, the system introduced here may accelerate development of cellular immunotherapy.
Collapse
Affiliation(s)
- Alex Dang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah De Leo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Dennis J Yuan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Helen H Lu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA,
| |
Collapse
|
45
|
Jankowska KI, Williamson EK, Roy NH, Blumenthal D, Chandra V, Baumgart T, Burkhardt JK. Integrins Modulate T Cell Receptor Signaling by Constraining Actin Flow at the Immunological Synapse. Front Immunol 2018; 9:25. [PMID: 29403502 PMCID: PMC5778112 DOI: 10.3389/fimmu.2018.00025] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022] Open
Abstract
Full T cell activation requires coordination of signals from multiple receptor–ligand pairs that interact in parallel at a specialized cell–cell contact site termed the immunological synapse (IS). Signaling at the IS is intimately associated with actin dynamics; T cell receptor (TCR) engagement induces centripetal flow of the T cell actin network, which in turn enhances the function of ligand-bound integrins by promoting conformational change. Here, we have investigated the effects of integrin engagement on actin flow, and on associated signaling events downstream of the TCR. We show that integrin engagement significantly decelerates centripetal flow of the actin network. In primary CD4+ T cells, engagement of either LFA-1 or VLA-4 by their respective ligands ICAM-1 and VCAM-1 slows actin flow. Slowing is greatest when T cells interact with low mobility integrin ligands, supporting a predominately drag-based mechanism. Using integrin ligands presented on patterned surfaces, we demonstrate that the effects of localized integrin engagement are distributed across the actin network, and that focal adhesion proteins, such as talin, vinculin, and paxillin, are recruited to sites of integrin engagement. Further analysis shows that talin and vinculin are interdependent upon one another for recruitment, and that ongoing actin flow is required. Suppression of vinculin or talin partially relieves integrin-dependent slowing of actin flow, indicating that these proteins serve as molecular clutches that couple engaged integrins to the dynamic actin network. Finally, we found that integrin-dependent slowing of actin flow is associated with reduction in tyrosine phosphorylation downstream of the TCR, and that this modulation of TCR signaling depends on expression of talin and vinculin. More generally, we found that integrin-dependent effects on actin retrograde flow were strongly correlated with effects on TCR signaling. Taken together, these studies support a model in which ligand-bound integrins engage the actin cytoskeletal network via talin and vinculin, and tune TCR signaling events by modulating actin dynamics at the IS.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Edward K Williamson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Vidhi Chandra
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
46
|
Logan CM, Bowen CJ, Menko AS. Functional role for stable microtubules in lens fiber cell elongation. Exp Cell Res 2017; 362:477-488. [PMID: 29253534 DOI: 10.1016/j.yexcr.2017.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
The process of tissue morphogenesis, especially for tissues reliant on the establishment of a specific cytoarchitecture for their functionality, depends a balanced interplay between cytoskeletal elements and their interactions with cell adhesion molecules. The microtubule cytoskeleton, which has many roles in the cell, is a determinant of directional cell migration, a process that underlies many aspects of development. We investigated the role of microtubules in development of the lens, a tissue where cell elongation underlies morphogenesis. Our studies with the microtubule depolymerizing agent nocodazole revealed an essential function for the acetylated population of stable microtubules in the elongation of lens fiber cells, which was linked to their regulation of the activation state of myosin. Suppressing myosin activation with the inhibitor blebbistatin could attenuate the loss of acetylated microtubules by nocodazole and rescue the effect of this microtubule depolymerization agent on both fiber cell elongation and lens integrity. Our results also suggest that acetylated microtubules impact lens morphogenesis through their interaction with N-cadherin junctions, with which they specifically associate in the region where lens fiber cell elongate. Disruption of the stable microtubule network increased N-cadherin junctional organization along lateral borders of differentiating lens fiber cells, which was prevented by suppression of myosin activity. These results reveal a role for the stable microtubule population in lens fiber cell elongation, acting in tandem with N-cadherin cell-cell junctions and the actomyosin network, giving insight into the cooperative role these systems play in tissue morphogenesis.
Collapse
Affiliation(s)
- Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Caitlin J Bowen
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
47
|
Sawicka A, Babataheri A, Dogniaux S, Barakat AI, Gonzalez-Rodriguez D, Hivroz C, Husson J. Micropipette force probe to quantify single-cell force generation: application to T-cell activation. Mol Biol Cell 2017; 28:3229-3239. [PMID: 28931600 PMCID: PMC5687025 DOI: 10.1091/mbc.e17-06-0385] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 11/11/2022] Open
Abstract
We describe the micropipette force probe, a novel technique that uses a micropipette as a flexible cantilever that aspirates a coated microbead and brings it into contact with a cell. We apply the technique to quantify mechanical and morphological events occurring during T-cell activation. In response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell. This technique simultaneously allows tracking the resulting changes in cell morphology and mechanics as well as measuring the forces generated by the cell. To illustrate the power of this technique, we applied it to the study of human primary T lymphocytes (T-cells). It allowed the fine monitoring of pushing and pulling forces generated by T-cells in response to various activating antibodies and bending stiffness of the micropipette. We further dissected the sequence of mechanical and morphological events occurring during T-cell activation to model force generation and to reveal heterogeneity in the cell population studied. We also report the first measurement of the changes in Young’s modulus of T-cells during their activation, showing that T-cells stiffen within the first minutes of the activation process.
Collapse
Affiliation(s)
- Anna Sawicka
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole polytechnique-CNRS UMR7646, 91128 Palaiseau, France.,Institut Curie Section Recherche, INSERM U932 and PSL Research University, 75005 Paris, France
| | - Avin Babataheri
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole polytechnique-CNRS UMR7646, 91128 Palaiseau, France
| | - Stéphanie Dogniaux
- Institut Curie Section Recherche, INSERM U932 and PSL Research University, 75005 Paris, France
| | - Abdul I Barakat
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole polytechnique-CNRS UMR7646, 91128 Palaiseau, France
| | | | - Claire Hivroz
- Institut Curie Section Recherche, INSERM U932 and PSL Research University, 75005 Paris, France
| | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole polytechnique-CNRS UMR7646, 91128 Palaiseau, France
| |
Collapse
|
48
|
Bembenek JN, Meshik X, Tsarouhas V. Meeting report - Cellular dynamics: membrane-cytoskeleton interface. J Cell Sci 2017; 130:2775-2779. [PMID: 29360626 DOI: 10.1242/jcs.208660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first ever 'Cellular Dynamics' meeting on the membrane-cytoskeleton interface took place in Southbridge, MA on May 21-24, 2017 and was co-organized by Michael Way, Elizabeth Chen, Margaret Gardel and Jennifer Lippincott-Schwarz. Investigators from around the world studying a broad range of related topics shared their insights into the function and regulation of the cytoskeleton and membrane compartments. This provided great opportunities to learn about key questions in various cellular processes, from the basic organization and operation of the cell to higher-order interactions in adhesion, migration, metastasis, division and immune cell interactions in different model organisms. This unique and diverse mix of research interests created a stimulating and educational meeting that will hopefully continue to be a successful meeting for years to come.
Collapse
Affiliation(s)
- Joshua N Bembenek
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Xenia Meshik
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vasilios Tsarouhas
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
49
|
Mechanosensing in the immune response. Semin Cell Dev Biol 2017; 71:137-145. [PMID: 28830744 DOI: 10.1016/j.semcdb.2017.08.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/16/2023]
Abstract
Cells have a remarkable ability to sense and respond to the mechanical properties of their environment. Mechanosensing is essential for many phenomena, ranging from cell movements and tissue rearrangements to cell differentiation and the immune response. Cells of the immune system get activated when membrane receptors bind to cognate antigen on the surface of antigen presenting cells. Both T and B lymphocyte signaling has been shown to be responsive to physical forces and mechanical cues. Cytoskeletal forces exerted by cells likely mediate this mechanical modulation. Here, we discuss recent advances in the field of immune cell mechanobiology at the molecular and cellular scale.
Collapse
|