1
|
Qian M, Wang Z, Liu H, Zhang X, Xu J, Zhang Y, Chen L, Zhou Z, Yu Y, Dong W. Reactive astrocytes in spinal cord injury: An analysis of heterogeneity based on temporality and spatiality, potential therapies, and limitations. J Neuropathol Exp Neurol 2025:nlaf042. [PMID: 40314931 DOI: 10.1093/jnen/nlaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Spinal cord injury (SCI) constitutes a profound central nervous system disorder characterized by significant neurological dysfunction and sensory loss below the injury site. SCI elicits a multifaceted cellular response in which the proliferation of reactive astrocytes and the ensuing diversity in their functions and phenotypes play pivotal roles within the injury microenvironment, especially during the secondary phases of the condition. This review explores the activation and heterogeneity of astrocytes following SCI. It underscores the necessity of delineating the heterogeneity among reactive astrocyte subpopulations throughout the secondary injury phase of SCI. Developing therapeutic strategies that capitalize on the beneficial properties of certain reactive astrocyte subpopulations while mitigating the adverse effects of others could have profound implications for future clinical management of SCI.
Collapse
Affiliation(s)
- Mengting Qian
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zheng Wang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hang Liu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, People's Republic of China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Zhong J, Bæk O, Doughty R, Jørgensen BM, Jensen HE, Thymann T, Sangild PT, Brunse A, Nguyen DN. Reduced parenteral glucose supply during neonatal infection attenuates neurological and renal pathology associated with modulation of innate and Th1 immunity. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167723. [PMID: 39978441 DOI: 10.1016/j.bbadis.2025.167723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Premature infants are highly susceptible to infections that can lead to sepsis with life-threatening organ dysfunctions. The clinical practice of high parenteral glucose supply in preterm infants can exacerbate infection outcomes through excessive glycolysis-induced inflammatory response. This in turn can affect the health of vital preterm organs, including the brain and kidneys. We hypothesized that reduced parenteral glucose supply to infected preterm newborns may help protect against pathology in these two key organs. METHODS Cesarean-delivered preterm pigs were nourished with high or low parenteral glucose levels (21 % vs. 5 %), infused with Staphylococcus epidermidis or saline, and monitored in heated, oxygenated incubators until 22 h. Blood, brain, and kidney samples were collected for histological, immunohistological, q-PCR, ELISA, and biochemical analyses. RESULTS Infection led to multiple pathological changes (e.g. edema), increased inflammation and tissue injury (indicated by gene expression data) in both brain and kidneys of preterm piglets. Reduced glucose supply in infected animals alleviated histopathological manifestations in the brain, and reduced neuroinflammation with enhanced M2 microglial phenotype. Reduced glucose supply also decreased plasma creatinine, and the severity of renal edema, tubular vacuolization and dilatation. Multiple genes related to innate and Th1 immunity in both organs were dampened by reduced glucose supply. Correlation analysis showed that renal inflammation was more closely connected to systemic inflammation compared to neuroinflammation. CONCLUSION Reduced glucose supply can reduce renal and neuro-inflammation during neonatal infection, thereby protecting brain and kidney health in infected preterm neonates.
Collapse
Affiliation(s)
- Jingren Zhong
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Ole Bæk
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Richard Doughty
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Benjamin Meyer Jørgensen
- Section of Pathological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Section of Pathological Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark; Department of Pediatrics, Odense University Hospital, Odense, Denmark; Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | - Anders Brunse
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| | - Duc Ninh Nguyen
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Islam M, Rawnsley DR, Ma X, Navid W, Zhao C, Guan X, Foroughi L, Murphy JT, Navid H, Weinheimer CJ, Kovacs A, Nigro J, Diwan A, Chang RP, Kumari M, Young ME, Razani B, Margulies KB, Abdellatif M, Sedej S, Javaheri A, Covey DF, Mani K, Diwan A. Phosphorylation of CRYAB induces a condensatopathy to worsen post-myocardial infarction left ventricular remodeling. J Clin Invest 2025; 135:e163730. [PMID: 39932799 PMCID: PMC11957698 DOI: 10.1172/jci163730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart-failure syndromes remains mechanistically unexamined. We observed mislocalization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by the R120G mutation in the cognate chaperone protein CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine 59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phosphomimetic mutation of serine 59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates, and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knockin was sufficient to induce desmin mislocalization and myocardial protein aggregates, while S59A CRYAB knockin rescued left ventricular systolic dysfunction after myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine 59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David R. Rawnsley
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiucui Ma
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Walter Navid
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chen Zhao
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xumin Guan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Layla Foroughi
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John T. Murphy
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Honora Navid
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carla J. Weinheimer
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jessica Nigro
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaradhya Diwan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan P. Chang
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minu Kumari
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Martin E. Young
- Division of Cardiology and Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Babak Razani
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth B. Margulies
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mahmoud Abdellatif
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Ali Javaheri
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Douglas F. Covey
- Department of Developmental Biology and
- Department of Anesthesiology, Psychiatry, and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kartik Mani
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Cardiovascular Service Line, HCA Midwest Health, Overland Park, Kansas, USA
| | - Abhinav Diwan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Departments of Cell Biology and Physiology, Obstetrics and Gynecology, and Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Tang P, Sun Y, Yang C, Zhang N. Early functional and structural hippocampal impairment in a bilateral common carotid artery stenosis mouse model. Animal Model Exp Med 2025. [PMID: 39853719 DOI: 10.1002/ame2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Subcortical ischemic vascular dementia (SIVD) is a common subtype of vascular dementia. Currently, the bilateral common carotid artery stenosis (BCAS) mouse model is the most suitable SIVD rodent model. In this study, we investigated the functional and structural impairments in the hippocampus 1 month after BCAS. METHODS We used behavioral tests, laser speckle flowmetry, long-term potentiation, histochemical staining, molecular experiments, and voxel-based morphometry to evaluate the hippocampal impairments. RESULTS Behavioral studies revealed that BCAS mice exhibited worse performance. Laser speckle flowmetry detected an obvious decrease in cerebral blood flow. The synaptic plasticity of the perforant path-dentate gyrus pathway was inhibited. Decreased fractional anisotropy and increased mean diffusivity were detected in the hippocampus via diffusion tensor imaging data. A reduction in gray matter volume, which was most prominent in the hippocampus and its surrounding areas, was detected via voxel-based morphometry analysis. Impairments in cell morphology and myelin integrity were validated using histochemical staining and molecular biology techniques. In addition, the numbers of GFAP+ astrocytes and Iba1+ microglia increased in the hippocampus. CONCLUSIONS Overall, our study demonstrates early functional and structural impairments in the hippocampus contributing to learning and memory deficits after 1 month of BCAS, indicating that the hippocampus is vulnerable to chronic cerebral ischemia.
Collapse
Affiliation(s)
- Ping Tang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| |
Collapse
|
5
|
Boulton M, Al-Rubaie A. Neuroinflammation and neurodegeneration following traumatic brain injuries. Anat Sci Int 2025; 100:3-14. [PMID: 38739360 PMCID: PMC11725545 DOI: 10.1007/s12565-024-00778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Traumatic brain injuries (TBI) commonly occur following head trauma. TBI may result in short- and long-term complications which may lead to neurodegenerative consequences, including cognitive impairment post-TBI. When investigating the neurodegeneration following TBI, studies have highlighted the role reactive astrocytes have in the neuroinflammation and degeneration process. This review showcases a variety of markers that show reactive astrocyte presence under pathological conditions, including glial fibrillary acidic protein (GFAP), Crystallin Alpha-B (CRYA-B), Complement Component 3 (C3) and S100A10. Astrocyte activation may lead to white-matter inflammation, expressed as white-matter hyperintensities. Other white-matter changes in the brain following TBI include increased cortical thickness in the white matter. This review addresses the gaps in the literature regarding post-mortem human studies focussing on reactive astrocytes, alongside the potential uses of these proteins as markers in the future studies that investigate the proportions of astrocytes in the post-TBI brain has been discussed. This research may benefit future studies that focus on the role reactive astrocytes play in the post-TBI brain and may assist clinicians in managing patients who have suffered TBI.
Collapse
Affiliation(s)
- Matthew Boulton
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Ali Al-Rubaie
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
6
|
Ganta KK, McManus M, Blanc R, Wang Q, Jung W, Brody R, Carrington M, Paris R, Chandramouli S, McNamara R, Luzuriaga K. Acute infectious mononucleosis generates persistent, functional EBNA-1 antibodies with high cross-reactivity to alpha crystalline beta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629009. [PMID: 39763959 PMCID: PMC11702679 DOI: 10.1101/2024.12.18.629009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Epstein-Barr Virus (EBV) infects over 95% of the world's population and is the most common cause of infectious mononucleosis (IM). Epidemiologic studies have linked EBV with certain cancers or autoimmune conditions, including multiple sclerosis (MS). Recent studies suggest that molecular mimicry between EBV proteins, particularly EBV nuclear antigen 1 (EBNA-1), and self-proteins is a plausible mechanism through which EBV infection may contribute to the development of autoimmune disorders. We used a systems immunology approach to investigate the magnitude, specificity, and functional properties of EBNA-1 specific antibodies in a cohort of 97 young adults with IM from presentation through 1-year post-primary infection compared to a control cohort of EBV-seropositive individuals. Levels of EBNA-1 specific IgG1 and IgG3 binding antibodies increased over the course of infection. EBNA-1 antibodies capable of mediating antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent complement deposition (ADCD) were detected at or after 6 months. Binding and ADCP- and ADCD-leveraged antibodies primarily targeted a region of EBNA-1 known to elicit cross-reactive antibodies to several self-peptides in individuals with MS. Significantly higher binding and ADCD-active antibodies targeting EBNA-1 were observed in individuals with at least one HLA-DRB1*15:01 allele, a known genetic risk factor for MS; Importantly, high levels of antibodies capable of binding alpha crystalline beta (CRYAB) and mediating complement deposition were detected at 6 months and 1-year following IM; CRYAB antibodies were resistant to denaturing forces, indicating an affinity matured response. Blocking experiments confirmed that CRYAB antibodies were cross-reactive with EBNA-1. Altogether, these results demonstrate that high levels of functional antibodies targeting EBNA-1 are generated in early EBV infection, some of which are cross-reactive with CRYAB. Further investigation is warranted to determine how these antibody responses may contribute to the subsequent development of MS.
Collapse
|
7
|
Islam M, Rawnsley DR, Ma X, Navid W, Zhao C, Foroughi L, Murphy JT, Navid H, Weinheimer CJ, Kovacs A, Nigro J, Diwan A, Chang R, Kumari M, Young ME, Razani B, Margulies KB, Abdellatif M, Sedej S, Javaheri A, Covey DF, Mani K, Diwan A. Phosphorylation of CRYAB Induces a Condensatopathy to Worsen Post-Myocardial Infarction Left Ventricular Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610556. [PMID: 39282298 PMCID: PMC11398338 DOI: 10.1101/2024.08.30.610556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart failure syndromes remains mechanistically unexamined. We observed mis-localization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by R120G mutation in the cognate chaperone protein, CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine-59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phospho-mimetic mutation of serine-59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity, and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knock-in was sufficient to induce desmin mis-localization and myocardial protein aggregates, while S59A CRYAB knock-in rescued left ventricular systolic dysfunction post-myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine-59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.
Collapse
|
8
|
Bisht P, Rathore C, Rathee A, Kabra A. Astrocyte Activation and Drug Target in Pathophysiology of Multiple Sclerosis. Methods Mol Biol 2024; 2761:431-455. [PMID: 38427254 DOI: 10.1007/978-1-0716-3662-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease, which is also referred to as an autoimmune disorder with chronic inflammatory demyelination affecting the core system that is the central nervous system (CNS). Demyelination is a pathological manifestation of MS. It is the destruction of myelin sheath, which is wrapped around the axons, and it results in the loss of synaptic connections and conduction along the axon is also compromised. Various attempts are made to understand MS and demyelination using various experimental models out of them. The most popular model is experimental autoimmune encephalomyelitis (EAE), in which autoimmunity against CNS components is induced in experimental animals by immunization with self-antigens derived from basic myelin protein. Astrocytes serve as a dual-edged sword both in demyelination and remyelination. Various drug targets have also been discussed that can be further explored for the treatment of MS. An extensive literature research was done from various online scholarly and research articles available on PubMed, Google Scholar, and Elsevier. Keywords used for these articles were astrocyte, demyelination, astrogliosis, and reactive astrocytes. This includes articles being the most relevant information to the area compiled to compose a current review.
Collapse
Affiliation(s)
- Preeti Bisht
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Ankit Rathee
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| |
Collapse
|
9
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Yamamoto T, Kase S, Shinkai A, Murata M, Kikuchi K, Wu D, Kageyama Y, Shinohara M, Sasase T, Ishida S. Phosphorylation of αB-Crystallin Involves Interleukin-1β-Mediated Intracellular Retention in Retinal Müller Cells: A New Mechanism Underlying Fibrovascular Membrane Formation. Invest Ophthalmol Vis Sci 2023; 64:20. [PMID: 37459063 PMCID: PMC10362920 DOI: 10.1167/iovs.64.10.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose Chronic inflammation plays a pivotal role in the pathology of proliferative diabetic retinopathy (PDR), in which biological alterations of retinal glial cells are one of the key elements. The phosphorylation of αB-crystallin/CRYAB modulates its molecular dynamics and chaperone activity, and attenuates αB-crystallin secretion via exosomes. In this study, we investigated the effect of phosphorylated αB-crystallin in retinal Müller cells on diabetic mimicking conditions, including interleukin (IL)-1β stimuli. Methods Human retinal Müller cells (MIO-M1) were used to examine gene and protein expressions with real-time quantitative PCR, enzyme linked immunosorbent assay (ELISA), and immunoblot analyses. Cell apoptosis was assessed by Caspase-3/7 assay and TdT-mediated dUTP nick-end labeling staining. Retinal tissues isolated from the Spontaneously Diabetic Torii (SDT) fatty rat, a type 2 diabetic animal model with obesity, and fibrovascular membranes from patients with PDR were examined by double-staining immunofluorescence. Results CRYAB mRNA was downregulated in MIO-M1 cells with the addition of 10 ng/mL IL-1β; however, intracellular αB-crystallin protein levels were maintained. The αB-crystallin serine 59 (Ser59) residue was phosphorylated with IL-1β application in MIO-M1 cells. Cell apoptosis in MIO-M1 cells was induced by CRYAB knockdown. Immunoreactivity for Ser59-phosphorylated αB-crystallin and glial fibrillary acidic protein was colocalized in glial cells of SDT fatty rats and fibrovascular membranes. Conclusions The Ser59 phosphorylation of αB-crystallin was modulated by IL-1β in Müller cells under diabetic mimicking inflammatory conditions, suggesting that αB-crystallin contributes to the pathogenesis of PDR through an anti-apoptotic effect.
Collapse
Affiliation(s)
- Taku Yamamoto
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Satoru Kase
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihiro Shinkai
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Miyuki Murata
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kasumi Kikuchi
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Di Wu
- Eye Center of the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | | | | | - Tomohiko Sasase
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Drake SS, Zaman A, Simas T, Fournier AE. Comparing RNA-sequencing datasets from astrocytes, oligodendrocytes, and microglia in multiple sclerosis identifies novel dysregulated genes relevant to inflammation and myelination. WIREs Mech Dis 2023; 15:e1594. [PMID: 36600404 DOI: 10.1002/wsbm.1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
Central nervous system (CNS) inflammation is a key factor in multiple sclerosis (MS). Invasion of peripheral immune cells into the CNS resulting from an unknown signal or combination of signals results in activation of resident immune cells and the hallmark feature of the disease: demyelinating lesions. These lesion sites are an amalgam of reactive peripheral and central immune cells, astrocytes, damaged and dying oligodendrocytes, and injured neurons and axons. Sustained inflammation affects cells directly located within the lesion site and further abnormalities are apparent diffusely throughout normal-appearing white matter and grey matter. It is only relatively recently, using animal models, new tissue sampling techniques, and next-generation sequencing, that molecular changes occurring in CNS resident cells have been broadly captured. Advances in cell isolation through Fluorescence Activated Cell Sorting (FACS) and laser-capture microdissection together with the emergence of single-cell sequencing have enabled researchers to investigate changes in gene expression in astrocytes, microglia, and oligodendrocytes derived from animal models of MS as well as from primary patient tissue. The contribution of some dysregulated pathways has been followed up in individual studies; however, corroborating results often go unreported between sequencing studies. To this end, we have consolidated results from numerous RNA-sequencing studies to identify and review novel patterns of differentially regulated genes and pathways occurring within CNS glial cells in MS. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Sienna S Drake
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Aliyah Zaman
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Tristan Simas
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Alyson E Fournier
- McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Shinozaki Y, Kashiwagi K, Koizumi S. Astrocyte Immune Functions and Glaucoma. Int J Mol Sci 2023; 24:2747. [PMID: 36769067 PMCID: PMC9916878 DOI: 10.3390/ijms24032747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Astrocytes, a non-neuronal glial cell type in the nervous system, are essential for regulating physiological functions of the central nervous system. In various injuries and diseases of the central nervous system, astrocytes often change their phenotypes into neurotoxic ones that participate in pro-inflammatory responses (hereafter referred to as "immune functions"). Such astrocytic immune functions are not only limited to brain diseases but are also found in ocular neurodegenerative diseases such as glaucoma, a retinal neurodegenerative disease that is the leading cause of blindness worldwide. The eye has two astrocyte-lineage cells: astrocytes and Müller cells. They maintain the physiological environment of the retina and optic nerve, thereby controlling visual function. Dysfunction of astrocyte-lineage cells may be involved in the onset and progression of glaucoma. These cells become reactive in glaucoma patients, and animal studies have suggested that their immune responses may be linked to glaucoma-related events: tissue remodeling, neuronal death, and infiltration of peripheral immune cells. In this review, we discuss the role of the immune functions of astrocyte-lineage cells in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
13
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
14
|
Borgenheimer E, Hamel K, Sheeler C, Moncada FL, Sbrocco K, Zhang Y, Cvetanovic M. Single nuclei RNA sequencing investigation of the Purkinje cell and glial changes in the cerebellum of transgenic Spinocerebellar ataxia type 1 mice. Front Cell Neurosci 2022; 16:998408. [PMID: 36457352 PMCID: PMC9706545 DOI: 10.3389/fncel.2022.998408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells constitute half the population of the human brain and are essential for normal brain function. Most, if not all, brain diseases are characterized by reactive gliosis, a process by which glial cells respond and contribute to neuronal pathology. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease characterized by a severe degeneration of cerebellar Purkinje cells (PCs) and cerebellar gliosis. SCA1 is caused by an abnormal expansion of CAG repeats in the gene Ataxin1 (ATXN1). While several studies reported the effects of mutant ATXN1 in Purkinje cells, it remains unclear how cerebellar glia respond to dysfunctional Purkinje cells in SCA1. To address this question, we performed single nuclei RNA sequencing (snRNA seq) on cerebella of early stage Pcp2-ATXN1[82Q] mice, a transgenic SCA1 mouse model expressing mutant ATXN1 only in Purkinje cells. We found no changes in neuronal and glial proportions in the SCA1 cerebellum at this early disease stage compared to wild-type controls. Importantly, we observed profound non-cell autonomous and potentially neuroprotective reactive gene and pathway alterations in Bergmann glia, velate astrocytes, and oligodendrocytes in response to Purkinje cell dysfunction.
Collapse
Affiliation(s)
- Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Hou J, Bi H, Ge Q, Teng H, Wan G, Yu B, Jiang Q, Gu X. Heterogeneity analysis of astrocytes following spinal cord injury at single-cell resolution. FASEB J 2022; 36:e22442. [PMID: 35816276 DOI: 10.1096/fj.202200463r] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Astrocytes play many important functions in response to spinal cord injury (SCI) in an activated manner, including clearance of necrotic tissue, formation of protective barrier, maintenance of microenvironment balance, interaction with immune cells, and formation of the glial scar. More and more studies have shown that the astrocytes are heterogeneous, such as inflammatory astrocyte 1 (A1) and neuroprotective astrocyte 2 (A2) types. However, the subtypes of astrocyte resulting from SCI have not been clearly defined. In this study, using single-cell RNA sequencing, we constructed the transcriptomic profile of astrocytes from uninjured spinal cord tissue and injured tissue nearby the lesion epicenter at 0.5, 1, 3, 7, 14, 60, and 90 days after mouse hemisection spinal cord surgery. Our analysis uncovered six transcriptionally distinct astrocyte states, including Atp1b2+ , S100a4+ , Gpr84+ , C3+ /G0s2+ , GFAP+ /Tm4sf1+ , and Gss+ /Cryab+ astrocytes. We used these new signatures combined with canonical astrocyte markers to determine the distribution of morphologically and physiologically distinct astrocyte population at injured sites by immunofluorescence staining. Then we identified the dynamic evolution process of each astrocyte subtype following SCI. Finally, we also revealed the evolution of highly expressed genes in these astrocyte subtypes at different phases of SCI. Together, we provided six astrocyte subtypes at single-cell resolution following SCI. These data not only contribute to understand the heterogeneity of astrocytes during SCI but also help to find new astrocyte subtypes as a target for SCI repair.
Collapse
Affiliation(s)
- Jinxing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, People's Republic of China
| | - Huiru Bi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, People's Republic of China
| | - Qiting Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, People's Republic of China
| | - Huajian Teng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, People's Republic of China
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, People's Republic of China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, People's Republic of China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
16
|
Dorgau B, Georgiou M, Chaudhary A, Moya-Molina M, Collin J, Queen R, Hilgen G, Davey T, Hewitt P, Schmitt M, Kustermann S, Pognan F, Steel DH, Sernagor E, Armstrong L, Lako M. Human Retinal Organoids Provide a Suitable Tool for Toxicological Investigations: A Comprehensive Validation Using Drugs and Compounds Affecting the Retina. Stem Cells Transl Med 2022; 11:159-177. [PMID: 35298655 PMCID: PMC8929478 DOI: 10.1093/stcltm/szab010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Retinal drug toxicity screening is essential for the development of safe treatment strategies for a large number of diseases. To this end, retinal organoids derived from human pluripotent stem cells (hPSCs) provide a suitable screening platform due to their similarity to the human retina and the ease of generation in large-scale formats. In this study, two hPSC cell lines were differentiated to retinal organoids, which comprised all key retinal cell types in multiple nuclear and synaptic layers. Single-cell RNA-Seq of retinal organoids indicated the maintenance of retinal ganglion cells and development of bipolar cells: both cell types segregated into several subtypes. Ketorolac, digoxin, thioridazine, sildenafil, ethanol, and methanol were selected as key compounds to screen on retinal organoids because of their well-known retinal toxicity profile described in the literature. Exposure of the hPSC-derived retinal organoids to digoxin, thioridazine, and sildenafil resulted in photoreceptor cell death, while digoxin and thioridazine additionally affected all other cell types, including Müller glia cells. All drug treatments caused activation of astrocytes, indicated by dendrites sprouting into neuroepithelium. The ability to respond to light was preserved in organoids although the number of responsive retinal ganglion cells decreased after drug exposure. These data indicate similar drug effects in organoids to those reported in in vivo models and/or in humans, thus providing the first robust experimental evidence of their suitability for toxicological studies.
Collapse
Affiliation(s)
- Birthe Dorgau
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Newcells Biotech, Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Maria Georgiou
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Alexander Chaudhary
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Marina Moya-Molina
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Newcells Biotech, Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Joseph Collin
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Rachel Queen
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Gerrit Hilgen
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Northumbria University, Applied Sciences, Faculty of Health and Life Science, Newcastle upon Tyne, UK
| | - Tracey Davey
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Stefan Kustermann
- Pharmaceutical Sciences, F. Hoffmann-La Roche, Pharma Research and Early Development, Roche Innovation Center Basel, Switzerland
| | | | - David H Steel
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Evelyne Sernagor
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Lyle Armstrong
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Newcells Biotech, Biosphere, Newcastle Helix, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Deng J, Chen X, Zhan T, Chen M, Yan X, Huang X. CRYAB predicts clinical prognosis and is associated with immunocyte infiltration in colorectal cancer. PeerJ 2021; 9:e12578. [PMID: 34966587 PMCID: PMC8667716 DOI: 10.7717/peerj.12578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023] Open
Abstract
Background αB-Crystallin (CRYAB) is differentially expressed in various tumors. However, the correlation between CRYAB and immune cell infiltration in colorectal cancer (CRC) remains unclear. Materials & Methods Kaplan-Meier survival curves in The Cancer Genome Atlas (TCGA) were used to evaluate the relationship between CRYAB expression and both overall survival and progression-free survival. The relationships between CRYAB expression and infiltrating immune cells and their corresponding gene marker sets were examined using the TIMER database. Results The expression of CRYAB was lower in CRC tumor tissues than in normal tissues (P < 0.05). High CRYAB gene expression and high levels of CRYAB gene methylation were correlated with high-grade malignant tumors and more advanced tumor, nodes and metastasis (TNM) cancer stages. In addition, in colorectal cancer, there was a positive correlation between CRYAB expression and immune infiltrating cells including neutrophils, macrophages, CD8 + T cells, and CD4 + T cells, as well as immune-related genes including CD2, CD3D, and CD3E. Methylation sites such as cg13084335, cg15545878, cg13210534, and cg15318568 were positively correlated with low expression of CRYAB. Conclusion Because CRYAB likely plays an important role in immune cell infiltration, it may be a potential tumor-suppressor gene in CRC and a potential novel therapeutic target and predictive biomarker for colorectal cancer (CRC).
Collapse
Affiliation(s)
- Junsheng Deng
- Gastroenterology, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoli Chen
- Gastroenterology, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ting Zhan
- Gastroenterology, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengge Chen
- Gastroenterology, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xisheng Yan
- Tongren Hospital of Wuhan Unversity, Wuhan, Hubei, China
| | - Xiaodong Huang
- Gastroenterology, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Liu Q, Bhuiyan MIH, Liu R, Song S, Begum G, Young CB, Foley LM, Chen F, Hitchens TK, Cao G, Chattopadhyay A, He L, Sun D. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function. J Neuroinflammation 2021; 18:187. [PMID: 34454529 PMCID: PMC8403348 DOI: 10.1186/s12974-021-02234-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) causes white matter damage and cognitive impairment, in which astrogliosis is the major pathology. However, underlying cellular mechanisms are not well defined. Activation of Na+/H+ exchanger-1 (NHE1) in reactive astrocytes causes astrocytic hypertrophy and swelling. In this study, we examined the role of NHE1 protein in astrogliosis, white matter demyelination, and cognitive function in a murine CCH model with bilateral carotid artery stenosis (BCAS). METHODS Sham, BCAS, or BCAS mice receiving vehicle or a selective NHE1 inhibitor HOE642 were monitored for changes of the regional cerebral blood flow and behavioral performance for 28 days. Ex vivo MRI-DTI was subsequently conducted to detect brain injury and demyelination. Astrogliosis and demyelination were further examined by immunofluorescence staining. Astrocytic transcriptional profiles were analyzed with bulk RNA-sequencing and RT-qPCR. RESULTS Chronic cerebral blood flow reduction and spatial working memory deficits were detected in the BCAS mice, along with significantly reduced mean fractional anisotropy (FA) values in the corpus callosum, external capsule, and hippocampus in MRI DTI analysis. Compared with the sham control mice, the BCAS mice displayed demyelination and axonal damage and increased GFAP+ astrocytes and Iba1+ microglia. Pharmacological inhibition of NHE1 protein with its inhibitor HOE642 prevented the BCAS-induced gliosis, damage of white matter tracts and hippocampus, and significantly improved cognitive performance. Transcriptome and immunostaining analysis further revealed that NHE1 inhibition specifically attenuated pro-inflammatory pathways and NADPH oxidase activation. CONCLUSION Our study demonstrates that NHE1 protein is involved in astrogliosis with pro-inflammatory transformation induced by CCH, and its blockade has potentials for reducing astrogliosis, demyelination, and cognitive impairment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Mohammad Iqbal H Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Ruijia Liu
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Cullen B Young
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- VA Pittsburgh Healthcare System, Geriatric Research Education and Clinical Center, Pittsburgh, Pennsylvania, 15240, USA
| | - Ansuman Chattopadhyay
- Molecular Biology-Information Service, Health Sciences Library System, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.
- VA Pittsburgh Healthcare System, Geriatric Research Education and Clinical Center, Pittsburgh, Pennsylvania, 15240, USA.
| |
Collapse
|
19
|
Skinnider MA, Scott NE, Prudova A, Kerr CH, Stoynov N, Stacey RG, Chan QWT, Rattray D, Gsponer J, Foster LJ. An atlas of protein-protein interactions across mouse tissues. Cell 2021; 184:4073-4089.e17. [PMID: 34214469 DOI: 10.1016/j.cell.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nichollas E Scott
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Peter Doherty Institute, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anna Prudova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Craig H Kerr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Queenie W T Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Rattray
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
20
|
Li J, Yu J, Xue W, Huang H, Yan L, Sang F, An S, Zhang J, Wang M, Zhang J, Li H, Cui X, He J, Hu Y. The engineered expression of secreted HSPB5-Fc in CHO cells exhibits cytoprotection in vitro. BMC Biotechnol 2021; 21:39. [PMID: 34126963 PMCID: PMC8204567 DOI: 10.1186/s12896-021-00700-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background HSPB5 is an ATP-independent molecular chaperone that is induced by heat shock or other proteotoxic stresses. HSPB5 is cytoprotective against stress both intracellularly and extracellularly. It acts as a potential therapeutic candidate in ischemia-reperfusion and neurodegenerative diseases. Results In this paper, we constructed a recombinant plasmid that expresses and extracellularly secrets a HSPB5-Fc fusion protein (sHSPB5-Fc) at 0.42 μg/ml in CHO-K1 cells. This sHSPB5-Fc protein contains a Fc-tag at the C-terminal extension of HSPB5, facilitating protein-affinity purification. Our study shows that sHSPB5-Fc inhibits heat-induced aggregation of citrate synthase in a time and dose dependent manner in vitro. Administration of sHSPB5-Fc protects lens epithelial cells against cisplatin- or UVB-induced cell apoptosis. It also decreases GFP-Httex1-Q74 insolubility, and reduces the size and cytotoxicity of GFP-Httex1-Q74 aggregates in PC-12 cells. Conclusion This recombinant sHSPB5-Fc exhibits chaperone activity to protect cells against proteotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00700-y.
Collapse
Affiliation(s)
- Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jingjing Yu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Wenxian Xue
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Huili Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Longjun Yan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Fan Sang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Shuangshuang An
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China. .,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China. .,Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Jafari A, Babajani A, Rezaei-Tavirani M. Multiple Sclerosis Biomarker Discoveries by Proteomics and Metabolomics Approaches. Biomark Insights 2021; 16:11772719211013352. [PMID: 34017167 PMCID: PMC8114757 DOI: 10.1177/11772719211013352] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disorder of the central nervous system (CNS) resulting in demyelination and axonal loss in the brain and spinal cord. The precise pathogenesis and etiology of this complex disease are still a mystery. Despite many studies that have been aimed to identify biomarkers, no protein marker has yet been approved for MS. There is urgently needed for biomarkers, which could clarify pathology, monitor disease progression, response to treatment, and prognosis in MS. Proteomics and metabolomics analysis are powerful tools to identify putative and novel candidate biomarkers. Different human compartments analysis using proteomics, metabolomics, and bioinformatics approaches has generated new information for further clarification of MS pathology, elucidating the mechanisms of the disease, finding new targets, and monitoring treatment response. Overall, omics approaches can develop different therapeutic and diagnostic aspects of complex disorders such as multiple sclerosis, from biomarker discovery to personalized medicine.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
22
|
Huang L, Liao J, Chen Y, Zou C, Zhang H, Yang X, Zhang Q, Li T, Mo L, Zeng Y, Bao M, Zhang F, Ye Y, Yang Z, Cheng J, Mo Z. Single-cell transcriptomes reveal characteristic features of cell types within the human adrenal microenvironment. J Cell Physiol 2021; 236:7308-7321. [PMID: 33934358 DOI: 10.1002/jcp.30398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023]
Abstract
Various cells within the adrenal microenvironment are important in maintaining the body homeostasis. However, our understanding of adrenal disease pathogenesis is limited by an incomplete molecular characterization of the cell types responsible for the organ's multiple homeostatic functions. We report a cellular landscape of the human adrenal gland using single-cell RNA sequencing. We reveal characteristic features of cell types within the human adrenal microenvironment and found immune activation of nonimmune cells in the adrenal endothelial cells. We also reveal that abundant immune cells occupied a lot of space in adrenal gland. Additionally, Sex-related diversity in the adrenocortical cells and different gene expression profiles between the left and right adrenal gland are also observed at single-cell resolution. Together, at single-cell resolution, the transcriptomic map presents a comprehensive view of the human adrenal gland, which serves as a fundamental baseline description of this organ and paves a way for the further studies of adrenal diseases.
Collapse
Affiliation(s)
- Lin Huang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Jinling Liao
- Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi Zhuang, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Qinyun Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Tianyu Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Linjian Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Yanyu Zeng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Mengying Bao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Fangxing Zhang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Yu Ye
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Zhanbin Yang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Institute of Urology and Nephrology, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang, China.,Guangxi key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang, China
| |
Collapse
|
23
|
Saglam A, Calof AL, Wray S. Novel factor in olfactory ensheathing cell-astrocyte crosstalk: Anti-inflammatory protein α-crystallin B. Glia 2021; 69:1022-1036. [PMID: 33314354 PMCID: PMC9469687 DOI: 10.1002/glia.23946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are key players in CNS neuroinflammation and neuroregeneration that may help or hinder recovery, depending on the context of the injury. Although pro-inflammatory factors that promote astrocyte-mediated neurotoxicity have been shown to be secreted by reactive microglia, anti-inflammatory factors that suppress astrocyte activation are not well-characterized. Olfactory ensheathing cells (OECs), glial cells that wrap axons of olfactory sensory neurons, have been shown to moderate astrocyte reactivity, creating an environment conducive to regeneration. Similarly, astrocytes cultured in medium conditioned by cultured OECs (OEC-CM) show reduced nuclear translocation of nuclear factor kappa-B (NFκB), a pro-inflammatory protein that induces neurotoxic reactivity in astrocytes. In this study, we screened primary and immortalized OEC lines to identify these factors and discovered that Alpha B-crystallin (CryAB), an anti-inflammatory protein, is secreted by OECs via exosomes, coordinating an intercellular immune response. Our results showed that: (a) OEC exosomes block nuclear NFκB translocation in astrocytes while exosomes from CryAB-null OECs could not; (b) OEC exosomes could be taken up by astrocytes, and (c) CryAB treatment suppressed neurotoxicity-associated astrocyte transcripts. Our results indicate CryAB, as well as other factors secreted by OECs, are potential agents that can ameliorate, or even reverse, the growth-inhibitory environment created by neurotoxic reactive astrocytes following CNS injuries.
Collapse
Affiliation(s)
- Aybike Saglam
- Cellular & Developmental Neurobiology Section, NINDS, NIH, Bethesda, Maryland
- Program in Neuroscience & Cognitive Science, University of Maryland, College Park, Maryland
| | - Anne L. Calof
- Department of Anatomy & Neurobiology and the Center for Complex Biological Systems, University of California, Irvine, California
| | - Susan Wray
- Cellular & Developmental Neurobiology Section, NINDS, NIH, Bethesda, Maryland
| |
Collapse
|
24
|
Contents of Myelin Basic Protein and Autoantibodies against Brain Proteins in the Experimental Antiphospholipid Syndrome. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Werkman IL, Lentferink DH, Baron W. Macroglial diversity: white and grey areas and relevance to remyelination. Cell Mol Life Sci 2020; 78:143-171. [PMID: 32648004 PMCID: PMC7867526 DOI: 10.1007/s00018-020-03586-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Macroglia, comprising astrocytes and oligodendroglial lineage cells, have long been regarded as uniform cell types of the central nervous system (CNS). Although regional morphological differences between these cell types were initially described after their identification a century ago, these differences were largely ignored. Recently, accumulating evidence suggests that macroglial cells form distinct populations throughout the CNS, based on both functional and morphological features. Moreover, with the use of refined techniques including single-cell and single-nucleus RNA sequencing, additional evidence is emerging for regional macroglial heterogeneity at the transcriptional level. In parallel, several studies revealed the existence of regional differences in remyelination capacity between CNS grey and white matter areas, both in experimental models for successful remyelination as well as in the chronic demyelinating disease multiple sclerosis (MS). In this review, we provide an overview of the diversity in oligodendroglial lineage cells and astrocytes from the grey and white matter, as well as their interplay in health and upon demyelination and successful remyelination. In addition, we discuss the implications of regional macroglial diversity for remyelination in light of its failure in MS. Since the etiology of MS remains unknown and only disease-modifying treatments altering the immune response are available for MS, the elucidation of macroglial diversity in grey and white matter and its putative contribution to the observed difference in remyelination efficiency between these regions may open therapeutic avenues aimed at enhancing endogenous remyelination in either area.
Collapse
Affiliation(s)
- Inge L Werkman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dennis H Lentferink
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
26
|
Jacko D, Bersiner K, Schulz O, Przyklenk A, Spahiu F, Höhfeld J, Bloch W, Gehlert S. Coordinated alpha-crystallin B phosphorylation and desmin expression indicate adaptation and deadaptation to resistance exercise-induced loading in human skeletal muscle. Am J Physiol Cell Physiol 2020; 319:C300-C312. [PMID: 32520607 DOI: 10.1152/ajpcell.00087.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is a target of contraction-induced loading (CiL), leading to protein unfolding or cellular perturbations, respectively. While cytoskeletal desmin is responsible for ongoing structural stabilization, in the immediate response to CiL, alpha-crystallin B (CRYAB) is phosphorylated at serine 59 (pCRYABS59) by P38, acutely protecting the cytoskeleton. To reveal adaptation and deadaptation of these myofibrillar subsystems to CiL, we examined CRYAB, P38, and desmin regulation following resistance exercise at diverse time points of a chronic training period. Mechanosensitive JNK phosphorylation (pJNKT183/Y185) was determined to indicate the presence of mechanical components in CiL. Within 6 wk, subjects performed 13 resistance exercise bouts at the 8-12 repetition maximum, followed by 10 days detraining and a final 14th bout. Biopsies were taken at baseline and after the 1st, 3rd, 7th, 10th, 13th, and 14th bout. To assess whether potential desensitization to CiL can be mitigated, one group trained with progressive and a second with constant loading. As no group differences were found, all subjects were combined for statistics. Total and phosphorylated P38 was not regulated over the time course. pCRYABS59 and pJNKT183/Y185 strongly increased following the unaccustomed first bout. This exercise-induced pCRYABS59/pJNKT183/Y185 increase disappeared with the 10th until 13th bout. As response to the detraining period, the 14th bout led to a renewed increase in pCRYABS59. Desmin content followed pCRYABS59 inversely, i.e., was up- when pCRYABS59 was downregulated and vice versa. In conclusion, the pCRYABS59 response indicates increase and decrease in resistance to CiL, in which a reinforced desmin network could play an essential role by structurally stabilizing the cells.
Collapse
Affiliation(s)
- Daniel Jacko
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.,Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Käthe Bersiner
- Department for Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| | - Oliver Schulz
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Axel Przyklenk
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Fabian Spahiu
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sebastian Gehlert
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany.,Department for Biosciences of Sports, Institute for Sports Sciences, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
27
|
Langley MR, Yoon H, Kim HN, Choi CI, Simon W, Kleppe L, Lanza IR, LeBrasseur NK, Matveyenko A, Scarisbrick IA. High fat diet consumption results in mitochondrial dysfunction, oxidative stress, and oligodendrocyte loss in the central nervous system. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165630. [PMID: 31816440 PMCID: PMC7982965 DOI: 10.1016/j.bbadis.2019.165630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is a key risk factor and co-morbidity in multiple sclerosis (MS) and other neurological conditions, such that a better understanding of how a high fat diet contributes to oligodendrocyte loss and the capacity for myelin regeneration has the potential to highlight new treatment targets. Results demonstrate that modeling metabolic dysfunction in mice with chronic high fat diet (HFD) consumption promotes loss of oligodendrocyte progenitors across the brain and spinal cord. A number of transcriptomic and metabolomic changes in ER stress, mitochondrial dysfunction, and oxidative stress pathways in HFD-fed mouse spinal cords were also identified. Moreover, deficits in TCA cycle intermediates and mitochondrial respiration were observed in the chronic HFD spinal cord tissue. Oligodendrocytes are known to be particularly vulnerable to oxidative damage, and we observed increased markers of oxidative stress in both the brain and spinal cord of HFD-fed mice. We additionally identified that increased apoptotic cell death signaling is underway in oligodendrocytes from mice chronically fed a HFD. When cultured under high saturated fat conditions, oligodendrocytes decreased both mitochondrial function and differentiation. Overall, our findings show that HFD-related changes in metabolic regulators, decreased mitochondrial function, and oxidative stress contribute to a loss of myelinating cells. These studies identify HFD consumption as a key modifiable lifestyle factor for improved myelin integrity in the adult central nervous system and in addition new tractable metabolic targets for myelin protection and repair strategies.
Collapse
Affiliation(s)
- Monica R Langley
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyesook Yoon
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Ha Neui Kim
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Chan-Il Choi
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Whitney Simon
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian R Lanza
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Ruan H, Li Y, Wang X, Sun B, Fang W, Jiang S, Liang C. CRYAB inhibits migration and invasion of bladder cancer cells through the PI3K/AKT and ERK pathways. Jpn J Clin Oncol 2019; 50:254-260. [PMID: 31829429 DOI: 10.1093/jjco/hyz172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Bladder cancer is a common malignancy characterized by a high recurrence rate and the development of drug resistance. Frequent mutations and gene expression alterations in the PI3K/AKT and mitogen-activated protein kinase-ERK pathways lead to deregulated cell growth and the acquisition of invasive properties, which facilitates tumour progression and confers resistance to chemotherapy. Therefore, identification of the underlying mechanisms that trigger the activation of these signalling pathways and control the invasive phenotype of tumour cells is of urgent need.
Methods
We utilized publicly available gene expression databases (GEO and TCGA) and bioinformatics analysis to identify key gene expression changes in human bladder cancer . The key gene expression was detected using BC tissue microarrays. Cell proliferation, apoptosis, migration, invasion and related signalling pathways were analysed flowing transfection with key gene overexpression plasmids.
Results
The analysis revealed that inhibited expression of the alpha-crystallin B chain was a common feature in all analysed datasets. The decrease in alpha-crystallin B expression was further confirmed at the protein level using BC tissue microarrays. Overexpression of alpha-crystallin B in T24 and J82 BC cell lines resulted in significant inhibition of tumour cell migration and invasion, which was associated with a decrease in PI3K, AKT and ERK activation. Moreover, alpha-crystallin B overexpression increased the expression of E-cadherin, while reducing the expression of N-cadherin, which indicated suppression of the epithelial–mesenchymal transition.
Conclusions
Overall, the results of our study suggested that alpha-crystallin B may function as a tumour-suppressive factor in bladder cancer.
Collapse
Affiliation(s)
- Houxin Ruan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, AHMU, Hefei, China
| | - Yang Li
- Department of Gastroenterolog y, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Wang
- Department of Gastroenterolog y, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Sun
- Department of Gastroenterolog y, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, AHMU, Hefei, China
| |
Collapse
|
29
|
Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 2019; 80:10-24. [PMID: 31125711 DOI: 10.1016/j.bbi.2019.05.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.
Collapse
|
30
|
Hanshaw DM, McLelland DJ, Manavis J, Finnie JW. Large felid leucoencephalomyelopathy in a Sumatran tiger (Panthera tigris sumatrae) from an Australian zoo. Aust Vet J 2019; 97:277-282. [PMID: 31209862 DOI: 10.1111/avj.12826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/31/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
CASE REPORT The clinicopathological features of a case consistent with large felid leucoencephalomyelopathy are described in a 19-year-old, zoo-based Sumatran tiger in which degenerative vertebral disease, renal insufficiency, diaphragmatic hernia and cataracts were comorbid. The principal presenting sign was ataxia, with concurrent deterioration of vertebral stiffness and vision loss. Histological features included marked destruction of the white matter, the formation of large, bizarre astrocytes and accumulation of numerous foamy macrophages (gitter cells). Immunohistochemical investigation of reactive astrocytes revealed several different cytoplasmic proteins. CONCLUSION This is the first reported case of large felid leucoencephalomyelopathy in Australia.
Collapse
Affiliation(s)
- D M Hanshaw
- Gribbles Veterinary Pathology, 33 Flemington Street, Glenside, South Australia, 5065, Australia
| | | | - J Manavis
- Faculty of Health and Medical Sciences, University of Adelaide and SA Pathology, Adelaide, SA, Australia
| | - J W Finnie
- Faculty of Health and Medical Sciences, University of Adelaide and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
31
|
Lu SZ, Guo YS, Liang PZ, Zhang SZ, Yin S, Yin YQ, Wang XM, Ding F, Gu XS, Zhou JW. Suppression of astrocytic autophagy by αB-crystallin contributes to α-synuclein inclusion formation. Transl Neurodegener 2019; 8:3. [PMID: 30675347 PMCID: PMC6337871 DOI: 10.1186/s40035-018-0143-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 01/17/2023] Open
Abstract
Background Parkinson’s disease (PD) is characterized by a chronic loss of dopaminergic neurons and the presence of proteinaceous inclusions (Lewy bodies) within some remaining neurons in the substantia nigra. Recently, astroglial inclusion body has also been found in some neurodegenerative diseases including PD. However, the underlying molecular mechanisms of how astroglial protein aggregation forms remain largely unknown. Here, we investigated the contribution of αB-crystallin (CRYAB), a small heat shock protein, in α-synuclein inclusion formation in astrocytes. Methods Small interfering RNA (siRNA)-mediated CRYAB (siCRYAB) knockdown or CRYAB overexpression was performed to investigate the impact of CRYAB on the autophagy in human glioblastoma cell line U251 cells. Co-immunoprecipitation (co-IP) and immunoblotting were used to dissect the interaction among multiple proteins. The clearance of α-synuclein in vitro was evaluated by immunocytochemistry. CRYAB transgenic mice and transgenic mice overexpressing A30P mutant form of human α-synuclein were used to examine the influence of CRYAB to α-synuclein accumulation in vivo. Results We found that knockdown of CRYAB in U251 cells or primary cultured astrocytes resulted in a marked augmentation of autophagy activity. In contrast, exogenous CRYAB disrupted the assembly of the BAG3-HSPB8-HSC70 complex via binding with BAG3, thereby suppressing the autophagy activity. Furthermore, CRYAB-regulated autophagy has relevance to PD pathogenesis. Knockdown of CRYAB remarkably promoted cytoplasmic clearance of α-synuclein preformed fibrils (PFFs). Conversely, selective overexpression of CRYAB in astrocytes markedly suppressed autophagy leading to the accumulation of α-synuclein aggregates in the brain of transgenic mice expressing human α-synuclein A30P mutant. Conclusions This study reveals a novel function for CRYAB as a natural inhibitor of astrocytic autophagy and shows that knockdown of CYRAB may provide a therapeutic target against proteinopathies such as synucleinopathies.
Collapse
Affiliation(s)
- Shen-Zhao Lu
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.,2School of Future Techology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yong-Shun Guo
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.,2School of Future Techology, University of Chinese Academy of Sciences, Beijing, 100049 China.,3Center for Brain Disorders Research, Capital Medical University and Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100053 China
| | - Pei-Zhou Liang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shu-Zhen Zhang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shu Yin
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yan-Qing Yin
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiao-Min Wang
- 3Center for Brain Disorders Research, Capital Medical University and Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100053 China
| | - Fei Ding
- 4Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001 Jiangsu China
| | - Xiao-Song Gu
- 4Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001 Jiangsu China
| | - Jia-Wei Zhou
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.,2School of Future Techology, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
32
|
Extracellular αB-crystallin modulates the inflammatory responses. Biochem Biophys Res Commun 2019; 508:282-288. [DOI: 10.1016/j.bbrc.2018.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
|
33
|
Gorter RP, Stephenson J, Nutma E, Anink J, de Jonge JC, Baron W, Jahreiβ MC, Belien JAM, van Noort JM, Mijnsbergen C, Aronica E, Amor S. Rapidly progressive amyotrophic lateral sclerosis is associated with microglial reactivity and small heat shock protein expression in reactive astrocytes. Neuropathol Appl Neurobiol 2018; 45:459-475. [PMID: 30346063 PMCID: PMC7379307 DOI: 10.1111/nan.12525] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive loss of motor neurons, muscle weakness, spasticity, paralysis and death usually within 2-5 years of onset. Neuroinflammation is a hallmark of ALS pathology characterized by activation of glial cells, which respond by upregulating small heat shock proteins (HSPBs), but the exact underlying pathological mechanisms are still largely unknown. Here, we investigated the association between ALS disease duration, lower motor neuron loss, TARDNA-binding protein 43 (TDP-43) pathology, neuroinflammation and HSPB expression. METHODS With immunohistochemistry, we examined HSPB1, HSPB5, HSPB6, HSPB8 and HSP16.2 expression in cervical, thoracic and sacral spinal cord regions in 12 ALS cases, seven with short disease duration (SDD), five with moderate disease duration (MDD), and ten age-matched controls. Expression was quantified using ImageJ to examine HSP expression, motor neuron numbers, microglial and astrocyte density and phosphorylated TDP-43 (pTDP-43+) inclusions. RESULTS SDD was associated with elevated HSPB5 and 8 expression in lateral tract astrocytes, while HSP16.2 expression was increased in astrocytes in MDD cases. SDD cases had higher numbers of motor neurons and microglial activation than MDD cases, but similar levels of motor neurons with pTDP-43+ inclusions. CONCLUSIONS Increased expression of several HSPBs in lateral column astrocytes suggests that astrocytes play a role in the pathogenesis of ALS. SDD is associated with increased microgliosis, HSPB5 and 8 expression in astrocytes, and only minor changes in motor neuron loss. This suggests that the interaction between motor neurons, microglia and astrocytes determines neuronal fate and functional decline in ALS.
Collapse
Affiliation(s)
- R P Gorter
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J Stephenson
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J Anink
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J C de Jonge
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Deltacrystallon, Leiden, The Netherlands
| | - W Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Deltacrystallon, Leiden, The Netherlands
| | - M-C Jahreiβ
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J A M Belien
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | | | - C Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S Amor
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
34
|
Gorter RP, Nutma E, Jahrei M, de Jonge JC, Quinlan RA, van der Valk P, van Noort JM, Baron W, Amor S. Heat shock proteins are differentially expressed in brain and spinal cord: implications for multiple sclerosis. Clin Exp Immunol 2018; 194:137-152. [PMID: 30014472 PMCID: PMC6194336 DOI: 10.1111/cei.13186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by demyelination, inflammation and neurodegeneration throughout the central nervous system. Although spinal cord pathology is an important factor contributing to disease progression, few studies have examined MS lesions in the spinal cord and how they differ from brain lesions. In this study we have compared brain and spinal cord white (WM) and grey (GM) matter from MS and control tissues, focusing on small heat shock proteins (HSPB) and HSP16.2. Western blotting was used to examine protein levels of HSPB1, HSPB5, HSPB6, HSPB8 and HSP16.2 in brain and spinal cord from MS and age-matched non-neurological controls. Immunohistochemistry was used to examine expression of the HSPs in MS spinal cord lesions and controls. Expression levels were quantified using ImageJ. Western blotting revealed significantly higher levels of HSPB1, HSPB6 and HSPB8 in MS and control spinal cord compared to brain tissues. No differences in HSPB5 and HSP16.2 protein levels were observed, although HSPB5 protein levels were higher in brain WM versus GM. In MS spinal cord lesions, increased HSPB1 and HSPB5 expression was observed in astrocytes, and increased neuronal expression of HSP16.2 was observed in normal-appearing GM and type 1 GM lesions. The high constitutive expression of several HSPBs in spinal cord and increased expression of HSPBs and HSP16.2 in MS illustrate differences between brain and spinal cord in health and upon demyelination. Regional differences in HSP expression may reflect differences in astrocyte cytoskeleton composition and influence inflammation, possibly affecting the effectiveness of pharmacological agents.
Collapse
Affiliation(s)
- R. P. Gorter
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - E. Nutma
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - M.‐C. Jahrei
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
| | - J. C. de Jonge
- Department of Cell BiologyUniversity of Groningen, University Medical Center GroningenGroningenUK
| | - R. A Quinlan
- Department of BiosciencesDurham UniversityDurhamUK
| | | | | | - W. Baron
- Department of Cell BiologyUniversity of Groningen, University Medical Center GroningenGroningenUK
| | - S. Amor
- Pathology DepartmentAmsterdam UMC, VUMCGroningenUK
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
35
|
Ogawa Y, Furusawa E, Saitoh T, Sugimoto H, Omori T, Shimizu S, Kondo H, Yamazaki M, Sakuraba H, Oishi K. Inhibition of astrocytic adenosine receptor A 2A attenuates microglial activation in a mouse model of Sandhoff disease. Neurobiol Dis 2018; 118:142-154. [DOI: 10.1016/j.nbd.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/02/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022] Open
|
36
|
Sarnat HB, Scantlebury MH. Novel Inflammatory Neuropathology in Immature Brain: (1) Fetal Tuberous Sclerosis, (2) Febrile Seizures, (3) α-B-crystallin, and (4) Role of Astrocytes. Semin Pediatr Neurol 2017; 24:152-160. [PMID: 29103422 DOI: 10.1016/j.spen.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Though the term "inflammation" is traditionally defined as proliferation or infiltration of lymphatic cells of the lymphatic immune system and macrophages or as immunoreactive proteins including cytokines, interleukins and major histocompatibility complexes, recently recognized reactions to tissue injury also are inflammation, often occurring in the central nervous system in conditions where they previously were not anticipated and where they may play a role in both pathogenesis and repair. We highlight 4 such novel inflammatory conditions revealed by neuropathologic studies: (1) inflammatory markers and cells in the brain of human fetuses with tuberous sclerosis complex and perhaps other disorders of the mechanistic target of rapamycin genetic or metabolic pathway, (2) inflammatory markers in the brain related to febrile seizures of infancy and early childhood, (3) heat-shock protein upregulation in glial cells and neurons at sites of chronic epileptic foci, and (4) the emerging role of astrocytes in the presence of and participation in inflammation. Novel evidence shows that cerebral inflammation plays a role in some genetic diseases as early as midgestation and thus is not always acquired postnatally or in adult life.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Pediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine (Neuropathology), University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | - Morris H Scantlebury
- Department of Pediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|