1
|
Guichardaz M, Bottini S, Balmas E, Bertero A. Overcoming the Silencing of Doxycycline-Inducible Promoters in hiPSC-derived Cardiomyocytes. OPEN RESEARCH EUROPE 2024; 4:266. [PMID: 39926351 PMCID: PMC11803382 DOI: 10.12688/openreseurope.19024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/11/2025]
Abstract
Background Human induced pluripotent stem cells (hiPSCs) are pivotal for studying human development, modeling diseases, and advancing regenerative medicine. Effective control of transgene expression is crucial to achieve temporal and quantitative precision in all of these contexts. The doxycycline (dox)-inducible OPTi-OX system, which integrates the Tet-On 3G transactivator and dox-responsive transgene at the hROSA26 and AAVS1 genomic safe harbors (GSHs), respectively, offers a promising solution. Yet, transgene silencing, particularly in hiPSC-derived cardiomyocytes (hiPSC-CMs), limits its utility. Methods To address this, we evaluated strategies to enhance dox-inducible transgene expression. We compared two promoters, TRE3VG and T11, for activity and stability, and investigated the addition of a Ubiquitous Chromatin Opening Element (UCOE) to reduce silencing. We also tested relocating the transgene cassette to the CLYBL GSH, and employed sodium butyrate (SB), a histone deacetylase inhibitor, to restore promoter activity. Transgene expression was assessed via flow cytometry and real-time quantitative PCR. Results TRE3VG exhibited higher activity than T11, but both were prone to silencing. UCOE did not enhance promoter activity in hiPSCs, but modestly reduced silencing in hiPSC-CMs. Targeting the CLYBL locus improved promoter activity compared to AAVS1 in both hiPSCs and hiPSC-CMs. SB restored activity in silenced inducible promoters within hiPSC-CMs, but compromised hiPSC viability. Unexpectedly, Tet-On 3G was silenced in some clones and could not be reactivated by SB. Conclusions These findings underscore the need for integrating multiple strategies, including careful GSH selection, improved cassette design, epigenetic modulation, and clone screening, to develop robust dox-inducible systems that retain functionality during hiPSC differentiation.
Collapse
Affiliation(s)
- Michelle Guichardaz
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Torino, 10126, Italy
| |
Collapse
|
2
|
Jores T, Mueth NA, Tonnies J, Char SN, Liu B, Grillo-Alvarado V, Abbitt S, Anand A, Deschamps S, Diehn S, Gordon-Kamm B, Jiao S, Munkvold K, Snowgren H, Sardesai N, Fields S, Yang B, Cuperus JT, Queitsch C. Small DNA elements that act as both insulators and silencers in plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612883. [PMID: 39345455 PMCID: PMC11429706 DOI: 10.1101/2024.09.13.612883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Insulators are cis-regulatory elements that separate transcriptional units, whereas silencers are elements that repress transcription regardless of their position. In plants, these elements remain largely uncharacterized. Here, we use the massively parallel reporter assay Plant STARR-seq with short fragments of eight large insulators to identify more than 100 fragments that block enhancer activity. The short fragments can be combined to generate more powerful insulators that abolish the capacity of the strong viral 35S enhancer to activate the 35S minimal promoter. Unexpectedly, when tested upstream of weak enhancers, these fragments act as silencers and repress transcription. Thus, these elements are capable of both insulating or repressing transcription dependent upon regulatory context. We validate our findings in stable transgenic Arabidopsis, maize, and rice plants. The short elements identified here should be useful building blocks for plant biotechnology efforts.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- CEPLAS – Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Nicholas A. Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Graduate Program in Biology, University of Washington, Seattle, WA, USA
| | - Si Nian Char
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Bo Liu
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Valentina Grillo-Alvarado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular & Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | | | - Ajith Anand
- Corteva Agriscience, Johnston, IA, USA
- Present address: MyFloraDNA, Sacramento, CA, USA
| | | | | | | | | | - Kathy Munkvold
- Corteva Agriscience, Johnston, IA, USA
- Present address: Foundation for Food & Agriculture Research, Washington, DC, USA
| | | | | | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Kotb NM, Ulukaya G, Chavan A, Nguyen SC, Proskauer L, Joyce EF, Hasson D, Jagannathan M, Rangan P. Genome organization regulates nuclear pore complex formation and promotes differentiation during Drosophila oogenesis. Genes Dev 2024; 38:436-454. [PMID: 38866556 PMCID: PMC11216175 DOI: 10.1101/gad.351402.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.
Collapse
Affiliation(s)
- Noor M Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany State University of New York (SUNY), Albany, New York 12202, USA
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12202, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Gulay Ulukaya
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ankita Chavan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Son C Nguyen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lydia Proskauer
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12202, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dan Hasson
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Madhav Jagannathan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA;
| |
Collapse
|
4
|
Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: molecular mechanisms and disease associations. Exp Mol Med 2024; 56:772-787. [PMID: 38658702 PMCID: PMC11058250 DOI: 10.1038/s12276-024-01233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer-promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer-promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer-promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.
Collapse
Affiliation(s)
- Meyer J Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tobias Wagner
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haram Lee
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Michael G Rosenfeld
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Soohwan Oh
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
5
|
Kotb NM, Ulukaya G, Chavan A, Nguyen SC, Proskauer L, Joyce E, Hasson D, Jagannathan M, Rangan P. Genome organization regulates nuclear pore complex formation and promotes differentiation during Drosophila oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567233. [PMID: 38014330 PMCID: PMC10680722 DOI: 10.1101/2023.11.15.567233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ-cell genes during differentiation and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we find that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ-cell genes into a silenced state and activating a group of oocyte genes and Nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, crosstalk between genome architecture and NPCs is essential for successful cell fate transitions.
Collapse
Affiliation(s)
- Noor M. Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany SUNY, Albany, NY 12202
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gulay Ulukaya
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core
| | - Ankita Chavan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8092 Zurich
| | - Son C. Nguyen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104
| | - Lydia Proskauer
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202
- Current address: Biochemistry and Molecular Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Eric Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104
| | - Dan Hasson
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhav Jagannathan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8092 Zurich
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
6
|
Arnold M, Stengel KR. Emerging insights into enhancer biology and function. Transcription 2023; 14:68-87. [PMID: 37312570 PMCID: PMC10353330 DOI: 10.1080/21541264.2023.2222032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
Cell type-specific gene expression is coordinated by DNA-encoded enhancers and the transcription factors (TFs) that bind to them in a sequence-specific manner. As such, these enhancers and TFs are critical mediators of normal development and altered enhancer or TF function is associated with the development of diseases such as cancer. While initially defined by their ability to activate gene transcription in reporter assays, putative enhancer elements are now frequently defined by their unique chromatin features including DNase hypersensitivity and transposase accessibility, bidirectional enhancer RNA (eRNA) transcription, CpG hypomethylation, high H3K27ac and H3K4me1, sequence-specific transcription factor binding, and co-factor recruitment. Identification of these chromatin features through sequencing-based assays has revolutionized our ability to identify enhancer elements on a genome-wide scale, and genome-wide functional assays are now capitalizing on this information to greatly expand our understanding of how enhancers function to provide spatiotemporal coordination of gene expression programs. Here, we highlight recent technological advances that are providing new insights into the molecular mechanisms by which these critical cis-regulatory elements function in gene control. We pay particular attention to advances in our understanding of enhancer transcription, enhancer-promoter syntax, 3D organization and biomolecular condensates, transcription factor and co-factor dependencies, and the development of genome-wide functional enhancer screens.
Collapse
Affiliation(s)
- Mirjam Arnold
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristy R. Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
7
|
Swargiary P, Boruah N, Singh CS, Chatterjee A. Genome-wide analysis of DNaseI hypersensitivity unveils open chromatin associated with histone H3 modifications after areca nut with lime exposure. Mutagenesis 2022; 37:182-190. [DOI: 10.1093/mutage/geac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Research over the years revealed that precocious anaphase, securin overexpression, and genome instability in both target and nontarget cells are significantly associated with the increased risk of areca nut (AN) and lime-induced oral, esophageal, and gastric cancers. Further, hyperphosphorylation of Rb and histone H3 epigenetic modifications both globally and in the promoter region of the securin gene were demonstrated after AN + lime exposure. This study aims whether the extract of raw AN + lime relaxes chromatin structure which further facilitates the histone H3 epigenetic modifications during the initial phase of carcinogenesis. Three groups of mice (10 in each group) were used. The treated group consumed 1 mg/day/mice of AN extract with lime ad libitum in the drinking water for 60 days. The dose was increased by 1 mg every 60 days. Isolated nuclei were digested with DNaseI and 2 kb and below DNA was eluted from the agarose gel, purified and PCR amplified by using securin and GAPDH primers. Securin and E2F1 expression, pRb phosphorylation, and histone epigenetic modifications were analyzed by immunohistochemistry. The number of DNA fragments within 2 kb in size after DNaseI treatment was higher significantly in AN + lime exposed tissue samples than in the untreated one. The PCR result showed that the number of fragments bearing securin gene promoter and GAPDH gene was significantly higher in AN + lime exposed DNaseI-treated samples. Immunohistochemistry data revealed increased Rb hyperphosphorylation, upregulation of E2F1, and securin in the AN + lime-treated samples. Increased trimethylation of histone H3 lysine 4 and acetylation of H3 lysine 9 and 18 were observed globally in the treated samples. Therefore, the results of this study have led to the hypothesis that AN + lime exposure relaxes the chromatin, changes the epigenetic landscape, and deregulates the Rb–E2F1 circuit which might be involved in the upregulation of securin and some other proto-oncogenes that might play an important role in the initial phases of AN + lime mediated carcinogenesis.
Collapse
Affiliation(s)
- Pooja Swargiary
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Nabamita Boruah
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Chongtham Sovachandra Singh
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, Meghalaya 793022 , India
- Department of Biotechnology, Royal School of Biosciences, The Assam Royal Global University , Guwahati, Assam 781035 , India
| |
Collapse
|
8
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Butyrate Induces Modifications of the CTCF-Binding Landscape in Cattle Cells. Biomolecules 2022; 12:biom12091177. [PMID: 36139015 PMCID: PMC9496099 DOI: 10.3390/biom12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Butyrate is produced in the rumen from microbial fermentation and is related to several functions, including cell differentiation and proliferation. Butyrate supplementation in calves can accelerate rumen development. DNA-protein interactions, such as the CCCTC-binding factor (CTCF), play essential roles in chromatin organization and gene expression regulation. Although CTCF-binding sites have been identified recently in cattle, a deeper characterization, including differentially CTCF-binding sites (DCBS), is vital for a better understanding of butyrate’s role in the chromatin landscape. This study aimed to identify CTCF-binding regions and DCBS under a butyrate-induced condition using ChIP-seq in bovine cells; 61,915 CTCF peaks were identified in the butyrate and 51,347 in the control. From these regions, 2265 DCBS were obtained for the butyrate vs. control comparison, comprising ~90% of induced sites. Most of the butyrate DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment showed crucial terms for the induced DCBS, mainly related to cellular proliferation, cell adhesion, and growth regulation. Interestingly, the ECM-receptor interaction pathway was observed for the induced DCBS. Motif enrichment analysis further identified transcription factors, including CTCF, BORIS, TGIF2, and ZIC3. When DCBS was integrated with RNA-seq data, putative genes were identified for the repressed DCBS, including GATA4. Our study revealed promising candidate genes in bovine cells by a butyrate-induced condition that might be related to the regulation of rumen development, such as integrins, keratins, and collagens. These results provide a better understanding of the function of butyrate in cattle rumen development and chromatin landscape regulation.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
9
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Differentially CTCF-Binding Sites in Cattle Rumen Tissue during Weaning. Int J Mol Sci 2022; 23:ijms23169070. [PMID: 36012336 PMCID: PMC9408924 DOI: 10.3390/ijms23169070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The weaning transition in calves is characterized by major structural changes such as an increase in the rumen capacity and surface area due to diet changes. Studies evaluating rumen development in calves are vital to identify genetic mechanisms affected by weaning. This study aimed to provide a genome-wide characterization of CTCF-binding sites and differentially CTCF-binding sites (DCBS) in rumen tissue during the weaning transition of four Holstein calves to uncover regulatory elements in rumen epithelial tissue using ChIP-seq. Our study generated 67,280 CTCF peaks for the before weaning (BW) and 39,891 for after weaning (AW). Then, 7401 DCBS were identified for the AW vs. BW comparison representing 0.15% of the cattle genome, comprising ~54% of induced DCBS and ~46% of repressed DCBS. Most of the induced and repressed DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment revealed many shared GO terms for the induced and the repressed DCBS, mainly related to cellular migration, proliferation, growth, differentiation, cellular adhesion, digestive tract morphogenesis, and response to TGFβ. In addition, shared KEGG pathways were obtained for adherens junction and focal adhesion. Interestingly, other relevant KEGG pathways were observed for the induced DCBS like gastric acid secretion, salivary secretion, bacterial invasion of epithelial cells, apelin signaling, and mucin-type O-glycan biosynthesis. IPA analysis further revealed pathways with potential roles in rumen development during weaning, including TGFβ, Integrin-linked kinase, and Integrin signaling. When DCBS were further integrated with RNA-seq data, 36 putative target genes were identified for the repressed DCBS, including KRT84, COL9A2, MATN3, TSPAN1, and AJM1. This study successfully identified DCBS in cattle rumen tissue after weaning on a genome-wide scale and revealed several candidate target genes that may have a role in rumen development, such as TGFβ, integrins, keratins, and SMADs. The information generated in this preliminary study provides new insights into bovine genome regulation and chromatin landscape.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
10
|
Lensch S, Herschl MH, Ludwig CH, Sinha J, Hinks MM, Mukund A, Fujimori T, Bintu L. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 2022; 11:e75115. [PMID: 35678392 PMCID: PMC9183234 DOI: 10.7554/elife.75115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.
Collapse
Affiliation(s)
- Sarah Lensch
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael H Herschl
- University of California, Berkeley—University of California, San Francisco Graduate Program in BioengineeringBerkeleyUnited States
| | - Connor H Ludwig
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Michaela M Hinks
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Adi Mukund
- Biophysics Program, Stanford UniversityStanfordUnited States
| | - Taihei Fujimori
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
11
|
Tompa M, Kajtar B, Galik B, Gyenesei A, Kalman B. DNA methylation and protein expression of Wnt pathway markers in progressive glioblastoma. Pathol Res Pract 2021; 222:153429. [PMID: 33857857 DOI: 10.1016/j.prp.2021.153429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Wnt signaling plays important roles in tumorigenesis, invasiveness and therapeutic resistance of glioblastoma (GBM). METHODS We simultaneously investigated six Wnt pathway markers (Wnt5a, Fzd-2, beta-catenin, Wnt3a, Wnt7b, Fzd-10) at epigenetic and protein levels in 21 sequential formalin-fixed paraffin-embedded GBM pairs and controls. RESULTS Expression levels of Wnt5a, beta-catenin and Wnt3a proteins either moderately or significantly increased, while those of Fzd-2, Wnt7b and Fzd-10 decreased in the primary (GBM-P) and recurrent (GBM-R) tumors compared to the controls. Methylation levels within promoters and genes showed corresponding decreases for Wnt5a, beta-catenin and Wnt3a in tumors vs. controls, while that of Fzd-10 was uniformly high. Comparing the GBM-P and GBM-R pairs, proteins of Fzd-2, beta-catenin and Wnt3a were either moderately or significantly up-, while that of Wnt7b was downregulated in GBM-R, but these patterns were not accompanied by inverse methylation patterns in the corresponding promoters and genes over time. No methylation differences were noted within promoters and genes of the same markers in 112 pairs of primary and recurrent GBMs in a database, suggesting that the observed changes in protein expression levels may not be explained by CpG methylation status alone. The promoter and gene methylation rate was the highest for Fzd-10 in the database cohort too, supporting the noted low Fzd-10 protein expression. DISCUSSION These analyses underscore the relevance of Wnt pathway molecules in the context of their methylation profiles in the development and evolution of GBM, and suggest that Wnt pathway regulation as a potential treatment target merits further studies.
Collapse
Affiliation(s)
- Marton Tompa
- Department of Laboratory Medicine, University of Pecs, School of Medicine, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - Bela Kajtar
- Department of Pathology, University of Pecs, School of Medicine, Pecs, Hungary.
| | - Bence Galik
- Szentagothai Research Center, University of Pecs, Pecs, Hungary; Department of Clinical Molecular Biology, Medical University of Bialystok, Białystok, Poland.
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, Pecs, Hungary; Department of Clinical Molecular Biology, Medical University of Bialystok, Białystok, Poland.
| | - Bernadette Kalman
- Department of Laboratory Medicine, University of Pecs, School of Medicine, Pecs, Hungary; Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| |
Collapse
|
12
|
Keiser AA, Kramár EA, Dong T, Shanur S, Pirodan M, Ru N, Acharya MM, Baulch JE, Limoli CL, Wood MA. Systemic HDAC3 inhibition ameliorates impairments in synaptic plasticity caused by simulated galactic cosmic radiation exposure in male mice. Neurobiol Learn Mem 2021; 178:107367. [PMID: 33359392 PMCID: PMC8456980 DOI: 10.1016/j.nlm.2020.107367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
Deep space travel presents a number of measurable risks including exposure to a spectrum of radiations of varying qualities, termed galactic cosmic radiation (GCR) that are capable of penetrating the spacecraft, traversing through the body and impacting brain function. Using rodents, studies have reported that exposure to simulated GCR leads to cognitive impairments associated with changes in hippocampus function that can persist as long as one-year post exposure with no sign of recovery. Whether memory can be updated to incorporate new information in mice exposed to GCR is unknown. Further, mechanisms underlying long lasting impairments in cognitive function as a result of GCR exposure have yet to be defined. Here, we examined whether whole body exposure to simulated GCR using 6 ions and doses of 5 or 30 cGy interfered with the ability to update an existing memory or impact hippocampal synaptic plasticity, a cellular mechanism believed to underlie memory processes, by examining long term potentiation (LTP) in acute hippocampal slices from middle aged male mice 3.5-5 months after radiation exposure. Using a modified version of the hippocampus-dependent object location memory task developed by our lab termed "Objects in Updated Locations" (OUL) task we find that GCR exposure impaired hippocampus-dependent memory updating and hippocampal LTP 3.5-5 months after exposure. Further, we find that impairments in LTP are reversed through one-time systemic subcutaneous injection of the histone deacetylase 3 inhibitor RGFP 966 (10 mg/kg), suggesting that long lasting impairments in cognitive function may be mediated at least in part, through epigenetic mechanisms.
Collapse
Affiliation(s)
- A A Keiser
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - E A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - T Dong
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - S Shanur
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - M Pirodan
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - N Ru
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - M M Acharya
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - J E Baulch
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States
| | - C L Limoli
- Department of Radiation Oncology, University of California, Irvine 92697-2695, United States.
| | - M A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States.
| |
Collapse
|
13
|
Ruiz Y, Ramos PL, Soto J, Rodríguez M, Carlos N, Reyes A, Callard D, Sánchez Y, Pujol M, Fuentes A. The M4 insulator, the TM2 matrix attachment region, and the double copy of the heavy chain gene contribute to the enhanced accumulation of the PHB-01 antibody in tobacco plants. Transgenic Res 2020; 29:171-186. [PMID: 31919795 DOI: 10.1007/s11248-019-00187-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/31/2019] [Indexed: 11/24/2022]
Abstract
The expression of recombinant proteins in plants is a valuable alternative to bioreactors using mammalian cell systems. Ease of scaling, and their inability to host human pathogens, enhance the use of plants to generate complex therapeutic products such as monoclonal antibodies. However, stably transformed plants expressing antibodies normally have a poor accumulation of these proteins that probably arise from the negative positional effects of their flanking chromatin. The induction of boundaries between the transgenes and the surrounding DNA using matrix attachment regions (MAR) and insulator elements may minimize these effects. With the PHB-01 antibody as a model, we demonstrated that the insertion of DNA elements, the TM2 (MAR) and M4 insulator, flanking the transcriptional cassettes that encode the light and heavy chains of the PHB-01 antibody, increased the protein accumulation that remained stable in the first plant progeny. The M4 insulator had a stronger effect than the TM2, with over a twofold increase compared to the standard construction. This effect was probably associated with an enhancer-promoter interference. Moreover, transgenic plants harboring two transcriptional units encoding for the PHB-01 heavy chain combined with both TM2 and M4 elements enhanced the accumulation of the antibody. In summary, the M4 combined with a double transcriptional unit of the heavy chain may be a suitable strategy for potentiating PHB-01 production in tobacco plants.
Collapse
Affiliation(s)
- Yoslaine Ruiz
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba.
| | - Pedro Luis Ramos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
- Department of Phytopathology and Plant Biochemistry, Instituto Biologico, São Paulo, Brazil
| | - Jeny Soto
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
- Comparative Pathology Department, University of Miami, Miami, USA
| | - Meilyn Rodríguez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Natacha Carlos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Aneisi Reyes
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Danay Callard
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Yadira Sánchez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Merardo Pujol
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba
| | - Alejandro Fuentes
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, Cuba, Ave. 31/158 and 190, Playa, P.O. Box 6162, 10600, Havana, Cuba.
| |
Collapse
|
14
|
Majumder P, Lee JT, Rahmberg AR, Kumar G, Mi T, Scharer CD, Boss JM. A super enhancer controls expression and chromatin architecture within the MHC class II locus. J Exp Med 2020; 217:e20190668. [PMID: 31753848 PMCID: PMC7041702 DOI: 10.1084/jem.20190668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Super enhancers (SEs) play critical roles in cell type-specific gene regulation. The mechanisms by which such elements work are largely unknown. Two SEs termed DR/DQ-SE and XL9-SE are situated within the human MHC class II locus between the HLA-DRB1 and HLA-DQA1 genes and are highly enriched for disease-causing SNPs. To test the function of these elements, we used CRISPR/Cas9 to generate a series of mutants that deleted the SE. Deletion of DR/DQ-SE resulted in reduced expression of HLA-DRB1 and HLA-DQA1 genes. The SEs were found to interact with each other and the promoters of HLA-DRB1 and HLA-DQA1. DR/DQ-SE also interacted with neighboring CTCF binding sites. Importantly, deletion of DR/DQ-SE reduced the local chromatin interactions, implying that it functions as the organizer for the local three-dimensional architecture. These data provide direct mechanisms by which an MHC-II SE contributes to expression of the locus and suggest how variation in these SEs may contribute to human disease and altered immunity.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Joshua T Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Andrew R Rahmberg
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Gaurav Kumar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Tian Mi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
15
|
Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains. Nat Commun 2020; 11:54. [PMID: 31911579 PMCID: PMC6946690 DOI: 10.1038/s41467-019-13753-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
The architectural protein CTCF is a mediator of chromatin conformation, but how CTCF binding to DNA is orchestrated to maintain long-range gene expression is poorly understood. Here we perform RNAi knockdown to reduce CTCF levels and reveal a shared subset of CTCF-bound sites are robustly resistant to protein depletion. The ‘persistent’ CTCF sites are enriched at domain boundaries and chromatin loops constitutive to all cell types. CRISPR-Cas9 deletion of 2 persistent CTCF sites at the boundary between a long-range epigenetically active (LREA) and silenced (LRES) region, within the Kallikrein (KLK) locus, results in concordant activation of all 8 KLK genes within the LRES region. CTCF genome-wide depletion results in alteration in Topologically Associating Domain (TAD) structure, including the merging of TADs, whereas TAD boundaries are not altered where persistent sites are maintained. We propose that the subset of essential CTCF sites are involved in cell-type constitutive, higher order chromatin architecture. The architectural protein CTCF is a mediator of chromatin conformation, but how CTCF binding to DNA is regulated remains poorly understood. Here the authors find that there is a shared subset of CTCF-bound sites resistant to protein depletion in different cell lines, which are enriched at domain boundaries and chromatin loops constitutive to all cell types.
Collapse
|
16
|
Zhang JH, Zhang JH, Wang XY, Xu DH, Wang TY. Distance effect characteristic of the matrix attachment region increases recombinant protein expression in Chinese hamster ovary cells. Biotechnol Lett 2019; 42:187-196. [PMID: 31776751 DOI: 10.1007/s10529-019-02775-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Previously, we have found that the matrix attachment region (MAR) may confer a 'distance effect' on transgene expression. This work aims to systematically explore the increased transgene expression in transfected Chinese hamster ovary (CHO) cells due to the characteristics of MAR and its mechanism. RESULTS Compared with the control vector, 500 and 1000 bp DNA distances between MAR and the cytomegalovirus promoter can increase transgene expression by 1.77- and 1.56-fold, respectively. Meanwhile, transgene expression was not affected when 2000 and 2500 bp spacer DNAs were inserted, but a declining trend was observed when a 1500 bp spacer DNA was inserted. The vector containing a 500 bp DNA distance significantly increased the expression of the enhanced green fluorescent protein, and this increase was not related to transgene copy numbers. CONCLUSIONS A short DNA distance-containing MAR confers high transgene expression level in transfected CHO cells, but a distance threshold does not exist in the vector system.
Collapse
Affiliation(s)
- Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ji-Hong Zhang
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
17
|
Bicoid-Dependent Activation of the Target Gene hunchback Requires a Two-Motif Sequence Code in a Specific Basal Promoter. Mol Cell 2019; 75:1178-1187.e4. [PMID: 31402096 DOI: 10.1016/j.molcel.2019.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
In complex genetic loci, individual enhancers interact most often with specific basal promoters. Here we investigate the activation of the Bicoid target gene hunchback (hb), which contains two basal promoters (P1 and P2). Early in embryogenesis, P1 is silent, while P2 is strongly activated. In vivo deletion of P2 does not cause activation of P1, suggesting that P2 contains intrinsic sequence motifs required for activation. We show that a two-motif code (a Zelda binding site plus TATA) is required and sufficient for P2 activation. Zelda sites are present in the promoters of many embryonically expressed genes, but the combination of Zelda plus TATA does not seem to be a general code for early activation or Bicoid-specific activation per se. Because Zelda sites are also found in Bicoid-dependent enhancers, we propose that simultaneous binding to both enhancers and promoters independently synchronizes chromatin accessibility and facilitates correct enhancer-promoter interactions.
Collapse
|
18
|
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA. Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Mol Cell 2019; 76:473-484.e7. [PMID: 31494034 PMCID: PMC6838673 DOI: 10.1016/j.molcel.2019.07.038] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping. Super-resolution microscopy reveals increased enhancer-promoter separation upon activation Synthetic enhancer activation supports decreased enhancer-promoter proximity Enhancer-promoter separation can be driven by poly(ADP-ribose) polymerase 1
Collapse
Affiliation(s)
- Nezha S Benabdallah
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lauren Kane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Therizols
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; UMR INSERM 944, CNRS 7212, Bâtiment Jean Bernard, Hôpital Saint Louis, Paris, France
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
19
|
Keiser AA, Wood MA. Examining the contribution of histone modification to sex differences in learning and memory. Learn Mem 2019; 26:318-331. [PMID: 31416905 PMCID: PMC6699407 DOI: 10.1101/lm.048850.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
The epigenome serves as a signal integration platform that encodes information from experience and environment that adds tremendous complexity to the regulation of transcription required for memory, beyond the directions encoded in the genome. To date, our understanding of how epigenetic mechanisms integrate information to regulate gene expression required for memory is primarily obtained from male derived data despite sex-specific life experiences and sex differences in consolidation and retrieval of memory, and in the molecular mechanisms that mediate these processes. In this review, we examine the contribution of chromatin modification to learning and memory in both sexes. We provide examples of how exposure to a number of internal and external factors influence the epigenome in sex-similar and sex-specific ways that may ultimately impact transcription required for memory processes. We also pose a number of key open questions and identify areas requiring further investigation as we seek to understand how histone modifying mechanisms shape memory in females.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
20
|
Siegler BH, Uhle F, Lichtenstern C, Arens C, Bartkuhn M, Weigand MA, Weiterer S. Impact of human sepsis on CCCTC-binding factor associated monocyte transcriptional response of Major Histocompatibility Complex II components. PLoS One 2018; 13:e0204168. [PMID: 30212590 PMCID: PMC6136812 DOI: 10.1371/journal.pone.0204168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Background Antigen presentation on monocyte surface to T-cells by Major Histocompatibility Complex, Class II (MHC-II) molecules is fundamental for pathogen recognition and efficient host response. Accordingly, loss of Major Histocompatibility Complex, Class II, DR (HLA-DR) surface expression indicates impaired monocyte functionality in patients suffering from sepsis-induced immunosuppression. Besides the impact of Class II Major Histocompatibility Complex Transactivator (CIITA) on MHC-II gene expression, X box-like (XL) sequences have been proposed as further regulatory elements. These elements are bound by the DNA-binding protein CCCTC-Binding Factor (CTCF), a superordinate modulator of gene transcription. Here, we hypothesized a differential interaction of CTCF with the MHC-II locus contributing to an altered monocyte response in immunocompromised septic patients. Methods We collected blood from six patients diagnosed with sepsis and six healthy controls. Flow cytometric analysis was used to identify sepsis-induced immune suppression, while inflammatory cytokine levels in blood were determined via ELISA. Isolation of CD14++ CD16—monocytes was followed by (i) RNA extraction for gene expression analysis and (ii) chromatin immunoprecipitation to assess the distribution of CTCF and chromatin modifications in selected MHC-II regions. Results Compared to healthy controls, CD14++ CD16—monocytes from septic patients with immune suppression displayed an increased binding of CTCF within the MHC-II locus combined with decreased transcription of CIITA gene. In detail, enhanced CTCF enrichment was detected on the intergenic sequence XL9 separating two subregions coding for MHC-II genes. Depending on the relative localisation to XL9, gene expression of both regions was differentially affected in patients with sepsis. Conclusion Our experiments demonstrate for the first time that differential CTCF binding at XL9 is accompanied by uncoupled MHC-II expression as well as transcriptional and epigenetic alterations of the MHC-II regulator CIITA in septic patients. Overall, our findings indicate a sepsis-induced enhancer blockade mediated by variation of CTCF at the intergenic sequence XL9 in altered monocytes during immunosuppression.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Christoph Lichtenstern
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Christoph Arens
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58–62, Giessen, Hessen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
21
|
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 2018; 23:181-192.e5. [PMID: 30082067 PMCID: PMC6084450 DOI: 10.1016/j.stem.2018.06.002] [Citation(s) in RCA: 690] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/13/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptors (CARs) significantly enhance the anti-tumor activity of immune effector cells. Although most studies have evaluated CAR expression in T cells, here we evaluate different CAR constructs that improve natural killer (NK) cell-mediated killing. We identified a CAR containing the transmembrane domain of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain to mediate strong antigen-specific NK cell signaling. NK cells derived from human iPSCs that express this CAR (NK-CAR-iPSC-NK cells) have a typical NK cell phenotype and demonstrate improved anti-tumor activity compared with T-CAR-expressing iPSC-derived NK cells (T-CAR-iPSC-NK cells) and non-CAR-expressing cells. In an ovarian cancer xenograft model, NK-CAR-iPSC-NK cells significantly inhibited tumor growth and prolonged survival compared with PB-NK cells, iPSC-NK cells, or T-CAR-iPSC-NK cells. Additionally, NK-CAR-iPSC-NK cells demonstrate in vivo activity similar to that of T-CAR-expressing T cells, although with less toxicity. These NK-CAR-iPSC-NK cells now provide standardized, targeted "off-the-shelf" lymphocytes for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David L Hermanson
- Department of Medicine, University of Minnesota Minneapolis, Minneapolis, MN 55455, USA
| | - Branden S Moriarity
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Browning DL, Everson EM, Leap DJ, Hocum JD, Wang H, Stamatoyannopoulos G, Trobridge GD. Evidence for the in vivo safety of insulated foamy viral vectors. Gene Ther 2016; 24:187-198. [PMID: 28024082 PMCID: PMC5374020 DOI: 10.1038/gt.2016.88] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
Retroviral vector mediated stem cell gene therapy is a promising approach for the treatment of hematopoietic disorders. However, genotoxic side effects from integrated vector proviruses are a significant concern for the use of retroviral vectors in the clinic. Insulated foamy viral (FV) vectors are potentially safer retroviral vectors for hematopoietic stem cell gene therapy. We evaluated two newly identified human insulators, A1 and A2 for use in FV vectors. These insulators had moderate insulating capacity and higher titers than previously developed insulated FV vectors. The A1 insulated FV vector was chosen for comparison with the previously described 650cHS4 insulated FV vector in human cord blood CD34+ repopulating cells in an immunodeficient mouse model. To maximize the effects of the insulators on the safety of FV vectors, FV vectors containing a highly genotoxic spleen focus forming virus (SFFV) promoter was used to elicit differences in genotoxicity. In vivo, the A1 insulated FV vector showed an approximate 50% reduction in clonal dominance compared to either the 650cHS4 insulated or control FV vectors, although the transduction efficiency of the A1 insulated vector was higher. This data suggests that the A1 insulated FV vector is promising for future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- D L Browning
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - E M Everson
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - D J Leap
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - J D Hocum
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - H Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - G Stamatoyannopoulos
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - G D Trobridge
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.,Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
25
|
Wei K, Libbrecht MW, Bilmes JA, Noble WS. Choosing panels of genomics assays using submodular optimization. Genome Biol 2016; 17:229. [PMID: 27846892 PMCID: PMC5111315 DOI: 10.1186/s13059-016-1089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/24/2016] [Indexed: 01/23/2023] Open
Abstract
Due to the high cost of sequencing-based genomics assays such as ChIP-seq and DNase-seq, the epigenomic characterization of a cell type is typically carried out using a small panel of assay types. Deciding a priori which assays to perform is, thus, a critical step in many studies. We present the submodular selection of assays (SSA), a method for choosing a diverse panel of genomic assays that leverages methods from submodular optimization. More generally, this application serves as a model for how submodular optimization can be applied to other discrete problems in biology.
Collapse
Affiliation(s)
- Kai Wei
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Maxwell W Libbrecht
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jeffrey A Bilmes
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
26
|
Pauli T, Vedder L, Dowling D, Petersen M, Meusemann K, Donath A, Peters RS, Podsiadlowski L, Mayer C, Liu S, Zhou X, Heger P, Wiehe T, Hering L, Mayer G, Misof B, Niehuis O. Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects : Insect insulator proteins. BMC Genomics 2016; 17:861. [PMID: 27809783 PMCID: PMC5094011 DOI: 10.1186/s12864-016-3205-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/25/2016] [Indexed: 01/19/2023] Open
Abstract
Background Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. Results Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number of IBPs. Specifically, of the known twelve insect IBPs, at least three (i.e., CP190, Su(Hw), and CTCF) already existed prior to the evolution of insects. Furthermore we found GAF orthologs in early branching insect orders, including Zygentoma (silverfish and firebrats) and Diplura (two-pronged bristletails). Mod(mdg4) is most likely a derived feature of Neoptera, while Pita is likely an evolutionary novelty of holometabolous insects. Zw5 appears to be restricted to schizophoran flies, whereas BEAF-32, ZIPIC and the Elba complex, are probably unique to the genus Drosophila. Selection models indicate that insect IBPs evolved under neutral or purifying selection. Conclusions Our results suggest that a substantial number of IBPs either pre-date the evolution of insects or evolved early during insect evolution. This suggests an evolutionary history of insulator binding proteins in insects different to that previously thought. Moreover, our study demonstrates the versatility of the 1KITE transcriptomic data for comparative analyses in insects and other arthropods. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Pauli
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.
| | - Lucia Vedder
- University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
| | - Daniel Dowling
- Johannes Gutenberg University Mainz, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Malte Petersen
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Karen Meusemann
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.,Department for Evolutionary Biology and Ecology (Institut for Biology I, Zoology), University of Freiburg, Hauptstr. 1, 79104, Freiburg, Germany.,Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Alexander Donath
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Ralph S Peters
- Zoological Research Museum Alexander Koenig, Arthropod Department, Adenauerallee 160, 53113, Bonn, Germany
| | - Lars Podsiadlowski
- University of Bonn, Institute of Evolutionary Biology and Ecology, An der Immenburg 1, 53121, Bonn, Germany
| | - Christoph Mayer
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Shanlin Liu
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Peter Heger
- University of Cologne, Cologne Biocenter, Institute for Genetics, Zülpicher Straße 47a, 50674, Köln, Germany
| | - Thomas Wiehe
- University of Cologne, Cologne Biocenter, Institute for Genetics, Zülpicher Straße 47a, 50674, Köln, Germany
| | - Lars Hering
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Georg Mayer
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Bernhard Misof
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany
| | - Oliver Niehuis
- Center of Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 51113, Bonn, Germany.
| |
Collapse
|
27
|
Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain 2016; 9:83. [PMID: 27595843 PMCID: PMC5011999 DOI: 10.1186/s13041-016-0263-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/06/2016] [Indexed: 01/08/2023] Open
Abstract
The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the main physical substrate for behavioral adaptation to new experiences in a changing environment. Although transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these mechanisms can trigger behavioral malfunction.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
28
|
Do C, Lang C, Lin J, Darbary H, Krupska I, Gaba A, Petukhova L, Vonsattel JP, Gallagher M, Goland R, Clynes R, Dwork A, Kral J, Monk C, Christiano A, Tycko B. Mechanisms and Disease Associations of Haplotype-Dependent Allele-Specific DNA Methylation. Am J Hum Genet 2016; 98:934-955. [PMID: 27153397 DOI: 10.1016/j.ajhg.2016.03.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/25/2016] [Indexed: 10/21/2022] Open
Abstract
Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-Seq approaches to multiple human tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, including CCDC155, CD69, FRMD1, IRF1, KBTBD11, and S100A(∗)-ILF2, associated with immune phenotypes, MYT1L, PTPRN2, CMTM8 and CELF2, associated with neurological disorders, NGFR and HLA-DRB6, associated with both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic imprinting. Polymorphic CTCF and transcription factor (TF) binding sites were over-represented among hap-ASM DMRs and mQTLs, and analysis of the human data, supplemented by cross-species comparisons to macaques, indicated that CTCF and TF binding likelihood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue specific; an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; and variation in CTCF and TF binding sites is an underlying mechanism, and maps of hap-ASM and mQTLs reveal regulatory sequences underlying supra- and sub-threshold GWAS peaks in immunological and neurological disorders.
Collapse
|
29
|
Qin F, Song Y, Zhang Y, Facemire L, Frierson H, Li H. Role of CTCF in Regulating SLC45A3-ELK4 Chimeric RNA. PLoS One 2016; 11:e0150382. [PMID: 26938874 PMCID: PMC4777538 DOI: 10.1371/journal.pone.0150382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/12/2016] [Indexed: 12/30/2022] Open
Abstract
The chimeric RNA, SLC45A3-ELK4, was found to be a product of cis-splicing between the two adjacent genes (cis-SAGe). Despite the biological and clinical significance of SLC45A3-ELK4, its generating mechanism has not been elucidated. It was shown in one cell line that the binding of transcription factor CTCF to the insulators located at or near the gene boundaries, inversely correlates with the level of the chimera. To investigate the mechanism of such cis-SAGe events, we sequenced potential regions that may play a role in such transcriptional read-through. We could not detect mutations at the transcription termination site, insulator sites, splicing sites, or within CTCF itself in LNCaP cells, thus suggesting a “soft-wired” mechanism in regulating the cis-SAGe event. To investigate the role CTCF plays in regulating the chimeric RNA expression, we compared the levels of CTCF binding to the insulators in different cell lines, as well as clinical samples. Surprisingly, we did not find an inverse correlation between CTCF level, or its bindings to the insulators and SLC45A3-ELK4 expression among different samples. However, in three prostate cancer cell lines, different environmental factors can cause the expression levels of the chimeric RNA to change, and these changes do inversely correlate with CTCF level, and/or its bindings to the insulators. We thus conclude that CTCF and its bindings to the insulators are not the primary reasons for differential SLC45A3-ELK4 expression in different cell lines, or clinical cases. However, they are the likely mechanism for the same cells to respond to different environmental cues, in order to regulate the expression of SLC45A3-ELK4 chimeric RNA. This response to different environmental cues is not general to other cis-SAGe events, as we only found one out of 16 newly identified chimeric RNAs showing a pattern similar to SLC45A3-ELK4.
Collapse
Affiliation(s)
- Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yansu Song
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yanmei Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Loryn Facemire
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Henry Frierson
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Browning DL, Collins CP, Hocum JD, Leap DJ, Rae DT, Trobridge GD. Insulated Foamy Viral Vectors. Hum Gene Ther 2016; 27:255-66. [PMID: 26715244 PMCID: PMC4800274 DOI: 10.1089/hum.2015.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/24/2015] [Indexed: 01/12/2023] Open
Abstract
Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy.
Collapse
Affiliation(s)
- Diana L. Browning
- School of Molecular Biosciences, Washington State University, Pullman
| | - Casey P. Collins
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Jonah D. Hocum
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - David J. Leap
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Dustin T. Rae
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Grant D. Trobridge
- School of Molecular Biosciences, Washington State University, Pullman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
31
|
Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol 2015; 16:263. [PMID: 26607552 PMCID: PMC4659173 DOI: 10.1186/s13059-015-0827-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
Background Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood. Results Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects. Conclusions These data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0827-6) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
González-Buendía E, Escamilla-Del-Arenal M, Pérez-Molina R, Tena JJ, Guerrero G, Suaste-Olmos F, Ayala-Ortega E, Gómez-Skarmeta JL, Recillas-Targa F. A novel chromatin insulator regulates the chicken folate receptor gene from the influence of nearby constitutive heterochromatin and the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:955-65. [DOI: 10.1016/j.bbagrm.2015.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/17/2022]
|
33
|
Najafi S, Potestio R. Two Adhesive Sites Can Enhance the Knotting Probability of DNA. PLoS One 2015; 10:e0132132. [PMID: 26136125 PMCID: PMC4489926 DOI: 10.1371/journal.pone.0132132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Self-entanglement, or knotting, is entropically favored in long polymers. Relatively short polymers such as proteins can knot as well, but in this case the entanglement is mainly driven by fine-tuned, sequence-specific interactions. The relation between the sequence of a long polymer and its topological state is here investigated by means of a coarse-grained model of DNA. We demonstrate that the introduction of two adhesive regions along the sequence of a self-avoiding chain substantially increases the probability of forming a knot.
Collapse
Affiliation(s)
- Saeed Najafi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Raffaello Potestio
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
34
|
Johnson WC, Ordway AJ, Watada M, Pruitt JN, Williams TM, Rebeiz M. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species. PLoS Genet 2015; 11:e1005279. [PMID: 26115430 PMCID: PMC4483262 DOI: 10.1371/journal.pgen.1005279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/13/2015] [Indexed: 11/23/2022] Open
Abstract
The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting “enhancer” elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, we found that phenotypes uniquely correlated with differences in the expression of ebony, a gene required for yellow-colored cuticle. Assays of ebony’s transcriptional control region indicated that a lightly pigmented strain harbored cis-regulatory mutations that caused correlated changes in its expression. Through a series of chimeric reporter constructs between light and dark strain alleles, we localized function-altering mutations to a conserved silencer that mediates a male-specific pattern of ebony repression. This suggests that the light allele was derived through the loss of this silencer’s activity. Furthermore, examination of the ebony gene of D. serrata, a close relative of D. auraria which secondarily lost male-specific pigmentation revealed the parallel loss of this silencer element. These results demonstrate how loss-of-function mutations in a silencer element resulted in increased gene expression. We propose that the mutational inactivation of silencer elements may represent a favored path to evolve gene expression, impacting morphological traits. One of the greatest challenges in understanding the relationship between genotype and phenotype is to discern how changes in DNA affect the normal functioning of genes. Mutations may generate a new function for a gene, yet it is frequently observed that they inactivate some aspect of a gene’s normal capacity. Investigations focused on understanding the developmental basis for the evolution of anatomical structures has found a prevalent role for mutations that alter developmental gene regulation. In animals, genes are transcriptionally activated in specific tissues during development by regulatory sequences distributed across their expansive non-protein coding regions. Regulatory elements known as silencers act to prevent genes from being expressed in certain tissues, providing a mechanism for precise control. Here, we show how a silencer that prevents expression of a pigment-producing enzyme in certain Drosophila species has repeatedly been subject to inactivating mutations that increased this gene’s expression. This example illustrates how such negative-acting regulatory sequences can represent a convenient target for increasing gene expression through the loss of a genetic element.
Collapse
Affiliation(s)
- Winslow C. Johnson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alison J. Ordway
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Masayoshi Watada
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Jonathan N. Pruitt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas M. Williams
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Li W, Freudenberg J, Oswald M. Principles for the organization of gene-sets. Comput Biol Chem 2015; 59 Pt B:139-49. [PMID: 26188561 DOI: 10.1016/j.compbiolchem.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/08/2015] [Indexed: 12/23/2022]
Abstract
A gene-set, an important concept in microarray expression analysis and systems biology, is a collection of genes and/or their products (i.e. proteins) that have some features in common. There are many different ways to construct gene-sets, but a systematic organization of these ways is lacking. Gene-sets are mainly organized ad hoc in current public-domain databases, with group header names often determined by practical reasons (such as the types of technology in obtaining the gene-sets or a balanced number of gene-sets under a header). Here we aim at providing a gene-set organization principle according to the level at which genes are connected: homology, physical map proximity, chemical interaction, biological, and phenotypic-medical levels. We also distinguish two types of connections between genes: actual connection versus sharing of a label. Actual connections denote direct biological interactions, whereas shared label connection denotes shared membership in a group. Some extensions of the framework are also addressed such as overlapping of gene-sets, modules, and the incorporation of other non-protein-coding entities such as microRNAs.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, USA.
| | - Jan Freudenberg
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, USA
| | - Michaela Oswald
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore LIJ Health System, Manhasset, NY, USA
| |
Collapse
|
36
|
Rebeiz M, Patel NH, Hinman VF. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet 2015; 16:103-31. [PMID: 26079281 DOI: 10.1146/annurev-genom-091212-153423] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | | | |
Collapse
|
37
|
Libbrecht MW, Ay F, Hoffman MM, Gilbert DM, Bilmes JA, Noble WS. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression. Genome Res 2015; 25:544-57. [PMID: 25677182 PMCID: PMC4381526 DOI: 10.1101/gr.184341.114] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/06/2015] [Indexed: 11/24/2022]
Abstract
The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term “specific expression domains.” We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data.
Collapse
Affiliation(s)
- Maxwell W Libbrecht
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University of Toronto, ON M5G 1L7, Canada Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada
| | - David M Gilbert
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32304, USA
| | - Jeffrey A Bilmes
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - William Stafford Noble
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
38
|
Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells. PLoS Genet 2015; 11:e1005001. [PMID: 25658338 PMCID: PMC4450057 DOI: 10.1371/journal.pgen.1005001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
Abstract
Genes or their encoded products are not expected to mingle with each other unless in some disease situations. In cancer, a frequent mechanism that can produce gene fusions is chromosomal rearrangement. However, recent discoveries of RNA trans-splicing and cis-splicing between adjacent genes (cis-SAGe) support for other mechanisms in generating fusion RNAs. In our transcriptome analyses of 28 prostate normal and cancer samples, 30% fusion RNAs on average are the transcripts that contain exons belonging to same-strand neighboring genes. These fusion RNAs may be the products of cis-SAGe, which was previously thought to be rare. To validate this finding and to better understand the phenomenon, we used LNCaP, a prostate cell line as a model, and identified 16 additional cis-SAGe events by silencing transcription factor CTCF and paired-end RNA sequencing. About half of the fusions are expressed at a significant level compared to their parental genes. Silencing one of the in-frame fusions resulted in reduced cell motility. Most out-of-frame fusions are likely to function as non-coding RNAs. The majority of the 16 fusions are also detected in other prostate cell lines, as well as in the 14 clinical prostate normal and cancer pairs. By studying the features associated with these fusions, we developed a set of rules: 1) the parental genes are same-strand-neighboring genes; 2) the distance between the genes is within 30kb; 3) the 5′ genes are actively transcribing; and 4) the chimeras tend to have the second-to-last exon in the 5′ genes joined to the second exon in the 3′ genes. We then randomly selected 20 neighboring genes in the genome, and detected four fusion events using these rules in prostate cancer and non-cancerous cells. These results suggest that splicing between neighboring gene transcripts is a rather frequent phenomenon, and it is not a feature unique to cancer cells. Genes are considered the units of hereditary information; thus, neither genes nor their encoded products are expected to mingle with each other unless in some disease situations. However, the genes are not alone in the genome. Genes have neighbors, some close, some far. With RNA-seq, many fusion RNAs involving neighboring genes are being identified. However, little is done to validate and characterize the fusion RNAs. Using one prostate cell line and a discovery pipeline for cis-splicing between adjacent genes (cis-SAGe), we found 16 new such events. We then developed a set of rules based on the characteristics of these fusion RNAs, and applied them to 20 random neighboring gene pairs. Four turned out to be true. The majority of the fusions are found in cancer cells, as well as in non-cancer cells. These results suggest that the genes are “leaky”, and the fusions are not limited to cancer cells.
Collapse
|
39
|
Liu M, Maurano MT, Wang H, Qi H, Song CZ, Navas PA, Emery DW, Stamatoyannopoulos JA, Stamatoyannopoulos G. Genomic discovery of potent chromatin insulators for human gene therapy. Nat Biotechnol 2015; 33:198-203. [PMID: 25580597 DOI: 10.1038/nbt.3062] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Insertional mutagenesis and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to realizing the promise of gene therapy. Although insulator sequences that block transcriptional enhancers could mitigate or eliminate these risks, so far no human insulators with high functional potency have been identified. Here we describe a genomic approach for the identification of compact sequence elements that function as insulators. These elements are highly occupied by the insulator protein CTCF, are DNase I hypersensitive and represent only a small minority of the CTCF recognition sequences in the human genome. We show that the elements identified acted as potent enhancer blockers and substantially decreased the risk of tumor formation in a cancer-prone animal model. The elements are small, can be efficiently accommodated by viral vectors and have no detrimental effects on viral titers. The insulators we describe here are expected to increase the safety of gene therapy for genetic diseases.
Collapse
Affiliation(s)
- Mingdong Liu
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Matthew T Maurano
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Hao Wang
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Heyuan Qi
- 1] Division of Medical Genetics, University of Washington, Seattle, Washington, USA. [2] Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chao-Zhong Song
- 1] Division of Medical Genetics, University of Washington, Seattle, Washington, USA. [2] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Patrick A Navas
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - David W Emery
- 1] Division of Medical Genetics, University of Washington, Seattle, Washington, USA. [2] Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - John A Stamatoyannopoulos
- 1] Department of Genome Sciences, University of Washington, Seattle, Washington, USA. [2] Department of Medicine, University of Washington, Seattle, Washington, USA
| | - George Stamatoyannopoulos
- 1] Division of Medical Genetics, University of Washington, Seattle, Washington, USA. [2] Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
40
|
González-Buendía E, Pérez-Molina R, Ayala-Ortega E, Guerrero G, Recillas-Targa F. Experimental strategies to manipulate the cellular levels of the multifunctional factor CTCF. Methods Mol Biol 2014; 1165:53-69. [PMID: 24839018 DOI: 10.1007/978-1-4939-0856-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular homeostasis is the result of an intricate and coordinated combinatorial of biochemical and molecular processes. Among them is the control of gene expression in the context of the chromatin structure which is central for cell survival. Interdependent action of transcription factors, cofactors, chromatin remodeling activities, and three-dimensional organization of the genome are responsible to reach exquisite levels of gene expression. Among such transcription factors there is a subset of highly specialized nuclear factors with features resembling master regulators with a large variety of functions. This is turning to be the case of the multifunctional nuclear factor CCCTC-binding protein (CTCF) which is involved in gene regulation, chromatin organization, and three-dimensional conformation of the genome inside the cell nucleus. Technically its study has turned to be challenging, in particular its posttranscriptional interference by small interference RNAs. Here we describe three main strategies to downregulate the overall abundance of CTCF in culture cell lines.
Collapse
Affiliation(s)
- Edgar González-Buendía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México, DF, 04510, México
| | | | | | | | | |
Collapse
|
41
|
Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. GENOMICS, PROTEOMICS & BIOINFORMATICS 2014; 12:164-71. [PMID: 25132181 PMCID: PMC4411372 DOI: 10.1016/j.gpb.2014.07.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/29/2014] [Accepted: 07/03/2014] [Indexed: 12/27/2022]
Abstract
Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences.
Collapse
Affiliation(s)
- Shweta Mehrotra
- Department of Botany, University of Delhi, Delhi 110007, India.
| | - Vinod Goyal
- Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
42
|
Guertin MJ, Zhang X, Coonrod SA, Hager GL. Transient estrogen receptor binding and p300 redistribution support a squelching mechanism for estradiol-repressed genes. Mol Endocrinol 2014; 28:1522-33. [PMID: 25051172 DOI: 10.1210/me.2014-1130] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proper gene regulation is essential for proper organismal development and appropriate responses to external stimuli. Specialized factors, termed master regulators, are often responsible for orchestrating the molecular events that result from signaling cascades. Master regulators coordinate the activation and repression of specific gene classes. Estrogen receptor α (ER) precipitates the signaling cascade that results from endogenous or exogenous estrogen hormones. ER is a classic transcriptional activator and the mechanisms by which ER coordinates gene activation are well characterized. However, it remains unclear how ER coordinates the immediate repression of genes. We integrated genomic transcription, chromosome looping, transcription factor binding, and chromatin structure data to analyze the molecular cascade that results from estradiol (E2)-induced signaling in human MCF-7 breast cancer cells and addressed the context-specific nature of gene regulation. We defined a class of genes that are immediately repressed upon estrogen stimulation, and we compared and contrasted the molecular characteristics of these repressed genes vs activated and unregulated genes. The most striking and unique feature of the repressed gene class is transient binding of ER at early time points after estrogen stimulation. We also found that p300, a coactivator and acetyltransferase, quantitatively redistributes from non-ER enhancers to ER enhancers after E2 treatment. These data support an extension of the classic physiological squelching model, whereby ER hijacks coactivators from repressed genes and redistributes the coactivators to ER enhancers that activate transcription.
Collapse
Affiliation(s)
- Michael J Guertin
- Laboratory of Receptor Biology and Gene Expression (M.J.G., G.L.H.), National Cancer Institute, Bethesda, Maryland 20892; State Key Laboratory of Reproductive Medicine (X.Z.), Nanjing Medical University, Nanjing 210029, China; and Baker Institute for Animal Health (X.Z., S.A.C.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | | | | | | |
Collapse
|
43
|
Li MV, Shukla D, Rhodes BH, Lall A, Shu J, Moriarity BS, Largaespada DA. HomeRun Vector Assembly System: a flexible and standardized cloning system for assembly of multi-modular DNA constructs. PLoS One 2014; 9:e100948. [PMID: 24959875 PMCID: PMC4069157 DOI: 10.1371/journal.pone.0100948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/01/2014] [Indexed: 11/29/2022] Open
Abstract
Advances in molecular and synthetic biology call for efficient assembly of multi-modular DNA constructs. We hereby present a novel modular cloning method that obviates the need for restriction endonucleases and significantly improves the efficiency in the design and construction of complex DNA molecules by standardizing all DNA elements and cloning reactions. Our system, named HomeRun Vector Assembly System (HVAS), employs a three-tiered vector series that utilizes both multisite gateway cloning and homing endonucleases, with the former building individual functional modules and the latter linking modules into the final construct. As a proof-of-principle, we first built a two-module construct that supported doxycycline-induced expression of green fluorescent protein (GFP). Further, with a three-module construct we showed quantitatively that there was minimal promoter leakage between neighbouring modules. Finally, we developed a method, in vitro Cre recombinase-mediated cassette exchange (RMCE) cloning, to regenerate a gateway destination vector from a previous multisite gateway cloning reaction, allowing access to existing DNA element libraries in conventional gateway entry clones, and simple creation of constructs ready for in vivo RMCE. We believe these methods constitute a useful addition to the standard molecular cloning techniques that could potentially support industrial scale synthesis of DNA constructs.
Collapse
Affiliation(s)
- Ming V. Li
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Dip Shukla
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian H. Rhodes
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Anjali Lall
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jingmin Shu
- Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Genome Engineering and Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Branden S. Moriarity
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Genome Engineering and Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David A. Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Genome Engineering and Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
44
|
Tai PWL, Zaidi SK, Wu H, Grandy RA, Montecino MM, van Wijnen AJ, Lian JB, Stein GS, Stein JL. The dynamic architectural and epigenetic nuclear landscape: developing the genomic almanac of biology and disease. J Cell Physiol 2014; 229:711-27. [PMID: 24242872 PMCID: PMC3996806 DOI: 10.1002/jcp.24508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology.
Collapse
Affiliation(s)
- Phillip W. L. Tai
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Sayyed K. Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Hai Wu
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Rodrigo A. Grandy
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Martin M. Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Jane B. Lian
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Gary S. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| | - Janet L. Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT
| |
Collapse
|
45
|
Luo Y, Rao M, Zou J. Generation of GFP Reporter Human Induced Pluripotent Stem Cells Using AAVS1 Safe Harbor Transcription Activator-Like Effector Nuclease. ACTA ACUST UNITED AC 2014; 29:5A.7.1-18. [PMID: 24838915 DOI: 10.1002/9780470151808.sc05a07s29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Generation of a fluorescent GFP reporter line in human induced pluripotent stem cells (hiPSCs) provides enormous potentials in both basic stem cell research and regenerative medicine. A protocol for efficiently generating such an engineered reporter line by gene targeting is highly desired. Transcription activator-like effector nucleases (TALENs) are a new class of artificial restriction enzymes that have been shown to significantly promote homologous recombination by >1000-fold. The AAVS1 (adeno-associated virus integration site 1) locus is a "safe harbor" and has an open chromatin structure that allows insertion and stable expression of transgene. Here, we describe a step-by-step protocol from determination of TALENs activity, hiPSC culture, and delivery of a donor into AAVS1 targeting site, to validation of targeted integration by PCR and Southern blot analysis using hiPSC line, and a pair of open-source AAVS1 TALENs.
Collapse
Affiliation(s)
- Yongquan Luo
- NIH Center for Regenerative Medicine, Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Medicine, Bethesda, Maryland
| | | | | |
Collapse
|
46
|
Eggeling R, Gohr A, Keilwagen J, Mohr M, Posch S, Smith AD, Grosse I. On the value of intra-motif dependencies of human insulator protein CTCF. PLoS One 2014; 9:e85629. [PMID: 24465627 PMCID: PMC3899044 DOI: 10.1371/journal.pone.0085629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/05/2013] [Indexed: 01/08/2023] Open
Abstract
The binding affinity of DNA-binding proteins such as transcription factors is mainly determined by the base composition of the corresponding binding site on the DNA strand. Most proteins do not bind only a single sequence, but rather a set of sequences, which may be modeled by a sequence motif. Algorithms for de novo motif discovery differ in their promoter models, learning approaches, and other aspects, but typically use the statistically simple position weight matrix model for the motif, which assumes statistical independence among all nucleotides. However, there is no clear justification for that assumption, leading to an ongoing debate about the importance of modeling dependencies between nucleotides within binding sites. In the past, modeling statistical dependencies within binding sites has been hampered by the problem of limited data. With the rise of high-throughput technologies such as ChIP-seq, this situation has now changed, making it possible to make use of statistical dependencies effectively. In this work, we investigate the presence of statistical dependencies in binding sites of the human enhancer-blocking insulator protein CTCF by using the recently developed model class of inhomogeneous parsimonious Markov models, which is capable of modeling complex dependencies while avoiding overfitting. These findings lead to a more detailed characterization of the CTCF binding motif, which is only poorly represented by independent nucleotide frequencies at several positions, predominantly at the 3' end.
Collapse
Affiliation(s)
- Ralf Eggeling
- Institute of Computer Science, Martin Luther University Halle–Wittenberg, Halle/Saale, Germany
| | - André Gohr
- Institute of Computer Science, Martin Luther University Halle–Wittenberg, Halle/Saale, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Michaela Mohr
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
| | - Stefan Posch
- Institute of Computer Science, Martin Luther University Halle–Wittenberg, Halle/Saale, Germany
| | - Andrew D. Smith
- Molecular and Computational Biology, University of Southern California, Los Angeles, United States of America
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle–Wittenberg, Halle/Saale, Germany
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland OT Gatersleben, Germany
- German Center of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Uchida N, Hanawa H, Yamamoto M, Shimada T. The chicken hypersensitivity site 4 core insulator blocks promoter interference in lentiviral vectors. Hum Gene Ther Methods 2013; 24:117-24. [PMID: 23448496 DOI: 10.1089/hgtb.2012.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lentiviral vectors, including double internal promoters, can be used to express two transgenes in a single vector construct; however, transcriptional activities from double internal promoters are often inhibited by promoter interference. To determine whether the chicken hypersensitivity site 4 insulator (cHS4) could block promoter interference, lentiviral vectors including an MSCV-U3 promoter (Mp) and an EF1α promoter (Ep) were generated, and transgene expression was evaluated among transduced cells. In the Ep-Mp configuration, transcriptional activity from Mp was much lower, while Mp-Ep had similar transcription levels from both promoters. The cHS4 core insulator increased expression levels from Mp in HeLa cells, hematopoietic cell lines, and mouse peripheral blood cells following hematopoietic stem cell transplantation transduced with the Mp-Ep configured vector. This blocking function was mainly mediated by barrier activity regions in the insulator but not by CCCTC-binding factor (CTCF) binding sites. Cytosine-phosphate-guanine (CpG) methylation did not contribute to this barrier activity. In summary, combining the cHS4 insulator in double promoter vectors can improve transgene expression levels in various cell lines and mouse hematopoietic repopulating cells. These findings are useful for developing hematopoietic stem cell gene therapy.
Collapse
Affiliation(s)
- Naoya Uchida
- Molecular Genetics, Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, 113-8602 Japan.
| | | | | | | |
Collapse
|
48
|
Wasserkort R, Kalmar A, Valcz G, Spisak S, Krispin M, Toth K, Tulassay Z, Sledziewski AZ, Molnar B. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer 2013; 13:398. [PMID: 23988185 PMCID: PMC3837632 DOI: 10.1186/1471-2407-13-398] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/28/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The septin 9 gene (SEPT9) codes for a GTP-binding protein associated with filamentous structures and cytoskeleton formation. SEPT9 plays a role in multiple cancers as either an oncogene or a tumor suppressor gene. Regulation of SEPT9 expression is complex and not well understood; however, hypermethylation of the gene was recently introduced as a biomarker for early detection of colorectal cancer (CRC) and has been linked to cancer of the breast and of the head and neck. Because the DNA methylation landscape of different regions of SEPT9 is poorly understood in cancer, we analyzed the methylation patterns of this gene in distinct cell populations from normal and diseased colon mucosa. METHODS Laser capture microdissection was performed to obtain homogeneous populations of epithelial and stromal cells from normal, adenomatous, and tumorous colon mucosa. Microdissected samples were analyzed using direct bisulfite sequencing to determine the DNA methylation status of eight regions within and near the SEPT9 gene. Septin-9 protein expression was assessed using immunohistochemistry (IHC). RESULTS Regions analyzed in SEPT9 were unmethylated in normal tissue except for a methylation boundary detected downstream of the largest CpG island. In adenoma and tumor tissues, epithelial cells displayed markedly increased DNA methylation levels (>80%, p <0.0001) in only one of the CpG islands investigated. SEPT9 methylation in stromal cells increased in adenomatous and tumor tissues (≤50%, p <0.0001); however, methylation did not increase in stromal cells of normal tissue close to the tumor. IHC data indicated a significant decrease (p <0.01) in Septin-9 protein levels in epithelial cells derived from adenoma and tumor tissues; Septin-9 protein levels in stromal cells were low in all tissues. CONCLUSIONS Hypermethylation of SEPT9 in adenoma and CRC specimens is confined to one of several CpG islands of this gene. Tumor-associated aberrant methylation originates in epithelial cells; stromal cells appear to acquire hypermethylation subsequent to epithelial cells, possibly through field effects. The region in SEPT9 with disease-related hypermethylation also contains the CpGs targeted by a novel blood-based screening test (Epi proColon®), providing further support for the clinical relevance of this biomarker.
Collapse
Affiliation(s)
- Reinhold Wasserkort
- Epigenomics AG, Berlin, Germany
- Current address: Delta-Vir GmbH, Leipzig, Germany
| | - Alexandra Kalmar
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Valcz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Sandor Spisak
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Manuel Krispin
- Epigenomics AG, Berlin, Germany
- Current address: Zymo Research, Irvine CA 92614, USA
| | - Kinga Toth
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Science, Budapest, Hungary
| | | | - Bela Molnar
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Unit, Hungarian Academy of Science, Budapest, Hungary
| |
Collapse
|
49
|
Jazwa A, Florczyk U, Jozkowicz A, Dulak J. Gene therapy on demand: Site specific regulation of gene therapy. Gene 2013; 525:229-38. [DOI: 10.1016/j.gene.2013.03.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/02/2013] [Accepted: 03/07/2013] [Indexed: 12/29/2022]
|
50
|
Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials 2013; 34:7158-67. [PMID: 23796578 DOI: 10.1016/j.biomaterials.2013.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
Ocular gene therapy has been extensively explored in recent years as a therapeutic avenue to target diseases of the cornea, retina and retinal pigment epithelium (RPE). Adeno-associated virus (AAV)-mediated gene therapy has shown promise in several RPE clinical trials but AAVs have limited payload capacity and potential immunogenicity. Traditionally however, non-viral alternatives have been plagued by low transfection efficiency, short-term expression and low expression levels. Recently, these drawbacks have begun to be overcome by the use of specialty carriers such as polylysine, liposomes, or polyethyleneimines, and by inclusion of suitable DNA elements to enhance gene expression and longevity. Recent advancements in the field have yielded non-viral vectors that have favorable safety profiles, lack immunogenicity, exhibit long-term elevated gene expression, and show efficient transfection in the retina and RPE, making them poised to transition to clinical applications. Here we discuss the advancements in nanotechnology and vector engineering that have improved the prospects for clinical application of non-viral gene therapy in the RPE.
Collapse
Affiliation(s)
- Adarsha Koirala
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|