1
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
2
|
Agol VI. In pursuit of intriguing puzzles. Virology 2020; 539:49-60. [PMID: 31670219 DOI: 10.1016/j.virol.2019.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
This Invited Review is a kind of scientific autobiography based on the presentation at the Symposium "Viruses: Discovering Big in Small" held in honor of the author's 90th birthday (Moscow, March 2019).
Collapse
Affiliation(s)
- Vadim I Agol
- Institute of Poliomyelitis, M. P. Chumakov Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, 108819, Russia; A. N. Belozersky Institute of Physical-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, 119899, Russia.
| |
Collapse
|
3
|
Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination. J Immunol Res 2015; 2015:541282. [PMID: 26568962 PMCID: PMC4629041 DOI: 10.1155/2015/541282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 11/21/2022] Open
Abstract
Background. Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. Objective. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Methods. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1) have zero percent of identity to human proteins, (2) are potentially endowed with an immunologic potential, and (3) are highly conserved among poliovirus strains. Results. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Conclusion. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination.
Collapse
|
4
|
Majid L, Zagorodnyaya T, Plant EP, Petrovskaya S, Bidzhieva B, Ye Z, Simonyan V, Chumakov K. Deep Sequencing for Evaluation of Genetic Stability of Influenza A/California/07/2009 (H1N1) Vaccine Viruses. PLoS One 2015; 10:e0138650. [PMID: 26407068 PMCID: PMC4583247 DOI: 10.1371/journal.pone.0138650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
Virus growth during influenza vaccine manufacture can lead to mutations that alter antigenic properties of the virus, and thus may affect protective potency of the vaccine. Different reassortants of pandemic "swine" H1N1 influenza A vaccine (121XP, X-179A and X-181) viruses as well as wild type A/California/07/2009(H1N1) and A/PR/8/34 strains were propagated in embryonated eggs and used for DNA/RNA Illumina HiSeq and MiSeq sequencing. The RNA sequences of these viruses published in NCBI were used as references for alignment of the sequencing reads generated in this study. Consensus sequences of these viruses differed from the NCBI-deposited sequences at several nucleotides. 121XP stock derived by reverse genetics was more heterogeneous than X-179A and X-181 stocks prepared by conventional reassortant technology. Passaged 121XP virus contained four non-synonymous mutations in the HA gene. One of these mutations (Lys226Glu) was located in the Ca antigenic site of HA (present in 18% of the population). Two non-synonymous mutations were present in HA of viruses derived from X-179A: Pro314Gln (18%) and Asn146Asp (78%). The latter mutation located in the Sa antigenic site was also detected at a low level (11%) in the wild-type A/California/07/2009(H1N1) virus, and was present as a complete substitution in X-181 viruses derived from X-179A virus. In the passaged X-181 viruses, two mutations emerged in HA: a silent mutation A1398G (31%) in one batch and G756T (Glu252Asp, 47%) in another batch. The latter mutation was located in the conservative region of the antigenic site Ca. The protocol for RNA sequencing was found to be robust, reproducible, and suitable for monitoring genetic consistency of influenza vaccine seed stocks.
Collapse
Affiliation(s)
- Laassri Majid
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
- * E-mail:
| | - Tatiana Zagorodnyaya
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Ewan P. Plant
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Svetlana Petrovskaya
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Bella Bidzhieva
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Zhiping Ye
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Vahan Simonyan
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, United States of America
| |
Collapse
|
5
|
Gupta A, Anupurba S. Detection of drug resistance in Mycobacterium tuberculosis: Methods, principles and applications. ACTA ACUST UNITED AC 2015; 62:13-22. [DOI: 10.1016/j.ijtb.2015.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Bidzhieva B, Zagorodnyaya T, Karagiannis K, Simonyan V, Laassri M, Chumakov K. Deep sequencing approach for genetic stability evaluation of influenza A viruses. J Virol Methods 2014; 199:68-75. [PMID: 24406624 DOI: 10.1016/j.jviromet.2013.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
Assessment of genetic stability of viruses could be used to monitor manufacturing process of both live and inactivated viral vaccines. Until recently such studies were limited by the difficulty of detecting and quantifying mutations in heterogeneous viral populations. High-throughput sequencing technologies (deep sequencing) can generate massive amounts of genetic information and could be used to reveal and quantify mutations. Comparison of different approaches for deep sequencing of the complete influenza A genome was performed to determine the best way to detect and quantify mutants in attenuated influenza reassortant strain A/Brisbane/59/2007 (H1N1) and its passages in different cell substrates. Full-length amplicons of influenza A virus segments as well as multiple overlapping amplicons covering the entire viral genome were subjected to several ways of DNA library preparation followed by deep sequencing using Solexa (Illumina) and pyrosequencing (454 Life Science) technologies. Sequencing coverage (the number of times each nucleotide was determined) of mutational profiles generated after 454-pyrosequencing of individually synthesized overlapping amplicons were relatively low and insufficiently uniform. Amplification of the entire genome of influenza virus followed by its enzymatic fragmentation, library construction, and Illumina sequencing resulted in high and uniform sequencing coverage enabling sensitive quantitation of mutations. A new bioinformatic procedure was developed to improve the post-alignment quality control for deep-sequencing data analysis.
Collapse
Affiliation(s)
- Bella Bidzhieva
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| | - Tatiana Zagorodnyaya
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| | - Konstantinos Karagiannis
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| | - Vahan Simonyan
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| | - Majid Laassri
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA.
| | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| |
Collapse
|
7
|
|
8
|
Pliaka V, Kyriakopoulou Z, Markoulatos P. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines 2012; 11:609-28. [PMID: 22827246 DOI: 10.1586/erv.12.28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.
Collapse
Affiliation(s)
- Vaia Pliaka
- University of Thessaly, School of Health Sciences, Department of Biochemistry and Biotechnology, Microbiology-Virology Laboratory, Larissa, Greece.
| | | | | |
Collapse
|
9
|
Application of a full-genome microarray-based assay for the study of genetic variability of West Nile virus. J Virol Methods 2012; 183:219-23. [DOI: 10.1016/j.jviromet.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/06/2012] [Accepted: 04/18/2012] [Indexed: 01/26/2023]
|
10
|
Abstract
Poliovirus causes paralytic poliomyelitis, an ancient disease of humans that became a major public-health issue in the 20th century. The primary site of infection is the gut, where virus replication is entirely harmless; the two very effective vaccines developed in the 1950s (oral polio vaccine, or OPV, and inactivated polio vaccine, or IPV) induce humoral immunity, which prevents viraemic spread and disease. The success of vaccination in middle-income and developing countries encouraged the World Health Organization to commit itself to an eradication programme, which has made great advances. The features of the infection, including its largely silent nature and the ability of the live vaccine (OPV) to evolve and change in vaccine recipients and their contacts, make eradication particularly challenging. Understanding the pathogenesis and virology of the infection is of major significance as the programme reaches its conclusion.
Collapse
Affiliation(s)
- Philip D Minor
- National Institute of Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
11
|
Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. Viruses 2011; 3:1460-84. [PMID: 21994791 PMCID: PMC3185806 DOI: 10.3390/v3081460] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.
Collapse
|
12
|
Chen H, Mammel M, Kulka M, Patel I, Jackson S, Goswami BB. Detection and identification of common food-borne viruses with a tiling microarray. Open Virol J 2011; 5:52-9. [PMID: 21660190 PMCID: PMC3109525 DOI: 10.2174/1874357901105010052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 01/03/2023] Open
Abstract
Microarray hybridization based identification of viral genotypes is increasingly assuming importance due to outbreaks of multiple pathogenic viruses affecting humans causing wide-spread morbidity and mortality. Surprisingly, microarray based identification of food-borne viruses, one of the largest groups of pathogenic viruses, causing more than 1.5 billion infections world-wide every year, has lagged behind. Cell-culture techniques are either unavailable or time consuming for routine application. Consequently, current detection methods for these pathogens largely depend on polymerase chain reaction (PCR) based techniques, generally requiring an investigator to preselect the target virus of interest. Here we describe the first attempt to use the microarray as an identification tool for these viruses. We have developed methodology to synthesize targets for virus identification without using PCR, making the process genuinely sequence independent. We show here that a tiling microarray can simultaneously detect and identify the genotype and strain of common food-borne viruses in a single experiment.
Collapse
Affiliation(s)
- Haifeng Chen
- Division of Molecular Biology, OARSA, Center for Food Safety and Applied Nutrition, U.S Food and Drug Administration, Laurel, MD 20708, USA
| | | | | | | | | | | |
Collapse
|
13
|
Laassri M, Bidzhieva B, Speicher J, Pletnev AG, Chumakov K. Microarray hybridization for assessment of the genetic stability of chimeric West Nile/dengue 4 virus. J Med Virol 2011; 83:910-20. [PMID: 21360544 DOI: 10.1002/jmv.22033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 01/08/2023]
Abstract
Genetic stability is an important characteristic of live viral vaccines because an accumulation of mutants can cause reversion to a virulent phenotype as well as a loss of immunogenic properties. This study was aimed at evaluating the genetic stability of a live attenuated West Nile (WN) virus vaccine candidate that was generated by replacing the pre-membrane and envelope protein genes of dengue 4 virus with those from WN. Chimeric virus was serially propagated in Vero, SH-SY5Y human neuroblastoma and HeLa cells and screened for point mutations using hybridization with microarrays of overlapping oligonucleotide probes covering the entire genome. The analysis revealed several spontaneous mutations that led to amino acid changes, most of which were located in the envelope (E) and non-structural NS4A, NS4B, and NS5 proteins. Viruses passaged in Vero and SH-SY5Y cells shared two common mutations: G(2337) C (Met(457) Ile) in the E gene and A(6751) G (Lys(125) Arg) in the NS4A gene. Quantitative assessment of the contents of these mutants in viral stocks indicated that they accumulated independently with different kinetics during propagation in cell cultures. Mutant viruses grew better in Vero cells compared to the parental virus, suggesting that they have a higher fitness. When tested in newborn mice, the cell culture-passaged viruses did not exhibit increased neurovirulence. The approach described in this article could be useful for monitoring the molecular consistency and quality control of vaccine strains.
Collapse
Affiliation(s)
- Majid Laassri
- Laboratory of Method Development, Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, Maryland 20852-1448, USA
| | | | | | | | | |
Collapse
|
14
|
Abebe G, Paasch F, Apers L, Rigouts L, Colebunders R. Tuberculosis drug resistance testing by molecular methods: Opportunities and challenges in resource limited settings. J Microbiol Methods 2011; 84:155-60. [DOI: 10.1016/j.mimet.2010.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022]
|
15
|
Shin J, Lei D, Conrad C, Knezevic I, Wood D. International regulatory requirements for vaccine safety and potency testing: a WHO perspective&. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.provac.2011.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Massively parallel sequencing for monitoring genetic consistency and quality control of live viral vaccines. Proc Natl Acad Sci U S A 2010; 107:20063-8. [PMID: 21041640 DOI: 10.1073/pnas.1012537107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrinsic genetic instability of RNA viruses may lead to the accumulation of revertants during manufacture of live viral vaccines, requiring rigorous quality control to ensure vaccine safety. Each lot of oral poliovirus vaccine (OPV) is tested for neurovirulence in animals and also for the presence of neurovirulent revertants. Mutant analysis by PCR and restriction enzyme cleavage (MAPREC) is used to measure the frequency of neurovirulent mutations at the 5' untranslated region (UTR) of the viral genome that correlate with the level of neurovirulence determined by the monkey neurovirulence test. However, MAPREC can only monitor mutations at a few genomic loci and miss mutations at other sites that could adversely affect vaccine quality. Here we propose to use massively parallel sequencing (MPS) for sensitive detection and quantification of all mutations in the entire genome of attenuated viruses. Analysis of vaccine samples and reference preparations demonstrated a perfect agreement with MAPREC results. Quantitative MPS analysis of validated reference preparations tested by MAPREC produced identical results, suggesting that the method could take advantage of the existing reference materials and be used as a replacement for the MAPREC procedure in lot release of OPV. Patterns of mutations present at a low level in vaccine preparations were characteristic of seed viruses used for their manufacture and could be used for identification of individual batches. This approach may represent the ultimate tool for monitoring genetic consistency of live viral vaccines.
Collapse
|
17
|
Volokhov DV, Chizhikov VE, Denkin S, Zhang Y. Molecular detection of drug-resistant Mycobacterium tuberculosis with a scanning-frame oligonucleotide microarray. Methods Mol Biol 2010; 465:395-417. [PMID: 20560062 DOI: 10.1007/978-1-59745-207-6_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing emergence of drug-resistant Mycobacterium tuberculosis poses significant threat to the treatment of tuberculosis (TB). Conventional drug susceptibility testing is time-consuming and takes several weeks because of the slow growth rate of M. tuberculosis and the requirement for the drugs to show antimycobacterial activity. Resistance to TB drugs in M. tuberculosis is caused by mutations in the corresponding drug resistance genes (e.g., katG, inhA, rpoB, pncA, embB, rrs, gyrA, gyrB), and detection of these mutations can be a molecular indicator of drug resistance. In this chapter, we describe the utility of a microarray-based approach exploiting short overlapping oligonucleotides (sliding-frame array) to rapidly detect drug resistance-associated mutations (substitutions, deletions, and insertions) in the pncA gene responsible for resistance ofM. tuberculosis to pyrazinamide (PZA) as an example for this approach. Hybridization of pncA-derived RNA or DNA with the microarray enables easy and simple screening of nucleotide changes in the pncA gene. Sliding-frame microarrays can be used to identify other drug-resistant TB strains that have mutations in relevant drug resistance genes.
Collapse
Affiliation(s)
- Dmitriy V Volokhov
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, Maryland, USA
| | | | | | | |
Collapse
|
18
|
Griffin DE. Emergence and re-emergence of viral diseases of the central nervous system. Prog Neurobiol 2010; 91:95-101. [PMID: 20004230 PMCID: PMC2860042 DOI: 10.1016/j.pneurobio.2009.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/30/2009] [Accepted: 12/01/2009] [Indexed: 11/29/2022]
Abstract
Neurologic disease is a major cause of disability in resource-poor countries and a substantial portion of this disease is due to infections of the CNS. A wide variety of emerging and re-emerging viruses contribute to this disease burden. New emerging infections are commonly due to RNA viruses that have expanded their geographic range, spread from animal reservoirs or acquired new neurovirulence properties. Mosquito-borne viruses with expanding ranges include West Nile virus, Japanese encephalitis virus and Chikungunya virus. Zoonotic viruses that have recently crossed into humans to cause neurologic disease include the bat henipaviruses Nipah and Hendra, as well as the primate-derived human immunodeficiency virus. Viruses adapt to new hosts, or to cause more severe disease, by changing their genomes through reassortment (e.g. influenza virus), mutation (essentially all RNA viruses) and recombination (e.g. vaccine strains of poliovirus). Viruses that appear to have recently become more neurovirulent include West Nile virus, enterovirus 71 and possibly Chikungunya virus. In addition to these newer challenges, rabies, polio and measles all remain important causes of neurologic disease despite good vaccines and global efforts toward control. Control of human rabies depends on elimination of rabies in domestic dogs through regular vaccination. Poliovirus eradication is challenged by the ability of the live attenuated vaccine strains to revert to virulence during the prolonged period of gastrointestinal replication. Measles elimination depends on delivery of two doses of live virus vaccine to a high enough proportion of the population to maintain herd immunity for this highly infectious virus.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St #E5132, Baltimore, MD, USA.
| |
Collapse
|
19
|
Mugisha L, Pauli G, Opuda-Asibo J, Joseph OO, Leendertz FH, Diedrich S. Evaluation of poliovirus antibody titers in orally vaccinated semi-captive chimpanzees in Uganda. J Med Primatol 2010; 39:123-8. [PMID: 20102460 DOI: 10.1111/j.1600-0684.2010.00400.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND To understand immunological responses in chimpanzees vaccinated with live-attenuated vaccine (oral polio vaccine; OPV), serum neutralizing antibodies against poliovirus types 1, 2, and 3 were investigated over time. METHODS The neutralizing antibody titers against poliovirus types 1, 2, and 3 were determined by microneutralization test using 100 ID(50) of poliovirus types 1, 2, and 3 (Sabin strains). RESULTS Neutralizing antibodies against poliovirus types 1, 2, and 3 were detected in 85.7%, 71.4%, and 65% of the serum from 42 chimpanzees tested 9 years post-vaccination. The neutralizing antibody titers in chimpanzees were similar to the documented levels in human studies as an indicator of vaccine efficacy. CONCLUSIONS This study reveals persistence of neutralizing antibodies in chimpanzees for at least 9 years after vaccination with OPV. This first study in chimpanzees provides useful information for the evaluation of the success of vaccination with OPV in other captive apes.
Collapse
Affiliation(s)
- L Mugisha
- Chimpanzee Sanctuary & Wildlife Conservation Trust (CSWCT), Entebbe, Uganda.
| | | | | | | | | | | |
Collapse
|
20
|
Li X, Qi X, Miao L, Wang Y, Liu F, Gu H, Lu S, Yang Y, Liu F. Detection and subtyping of influenza A virus based on a short oligonucleotide microarray. Diagn Microbiol Infect Dis 2009; 65:261-70. [PMID: 19733996 DOI: 10.1016/j.diagmicrobio.2009.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 01/07/2023]
Abstract
We report the design and characterization of a microarray with 46 short virus-specific oligonucleotides for detecting influenza A virus of 5 subtypes: H1N1, H1N2, H3N2, H5N1, and H9N2. A unique combination of 3 specific modifications was introduced into the microarray assay: (1) short probes of 19 to 27 nucleotides, (2) simple amplification of full-length hemagglutinin and neuraminidase cDNAs with universal primers, and (3) Klenow-mediated labeling and further amplification of the samples before hybridization. The assay correctly and specifically detected and subtyped 11 different influenza A isolates from human, avian, and swine species representing the 5 subtypes. When tested with 225 clinical samples, 20 were detected to be positive using our microarray-based assay, whereas only 10 were positive by the conventional culture method. The entire analysis was completed within 7 h. Thus, these modifications result in a specific, sensitive, and rapid microarray assay and may be used for constructing microarrays for the detection of all influenza subtypes and strains.
Collapse
Affiliation(s)
- Xihan Li
- Institute of Virology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
We have developed a straightforward assay for the rapid typing of enteroviruses using oligonucleotide arrays in microtiter wells. The viral nucleic acids are concomitantly amplified and labeled during reverse transcription-PCR, and unpurified PCR products are used for hybridization. DNA strands are separated by alkaline denaturation, and hybridization is started by neutralization. The microarray hybridization reactions and the subsequent washes are performed in standard 96-well microtiter plates, which makes the method easily adaptable to high-throughput analysis. We describe here the assay principle and its potential in clinical laboratory use by correctly identifying 10 different enterovirus reference strains. Furthermore, we explore the detection of unknown sequence variants using serotype consensus oligonucleotide probes. With just two consensus probes for the coxsackievirus A9 (CVA9) serotype, we detected 23 out of 25 highly diverse CVA9 isolates. Overall, the assay involves several features aiming at ease of performance, robustness, and applicability to large-scale studies.
Collapse
|
22
|
Ayodeji M, Kulka M, Jackson SA, Patel I, Mammel M, Cebula TA, Goswami BB. A microarray based approach for the identification of common foodborne viruses. Open Virol J 2009; 3:7-20. [PMID: 19718237 PMCID: PMC2707758 DOI: 10.2174/1874357900903010007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/20/2009] [Accepted: 02/27/2009] [Indexed: 01/08/2023] Open
Abstract
An oligonucleotide array (microarray) incorporating 13,000 elements representing selected strains of hepatitis A virus (HAV), human coxsackieviruses A and B (CVA and CVB), genogroups I and II of Norovirus (NV), and human rotavirus (RV) gene segments 3,4,10, and 11 was designed based on the principle of tiling. Each oligonucleotide was 29 bases long, starting at every 5th base of every sequence, resulting in an overlap of 24 bases in two consecutive oligonucleotides. The applicability of the array for virus identification was examined using PCR amplified products from multiple HAV and CV strains. PCR products labeled with biotin were hybridized to the array, and the biotin was detected using a brief reaction with Cy3-labeled streptavidin, the array subjected to laser scanning, and the hybridization data plotted as fluorescence intensity against each oligonucleotide in the array. The combined signal intensities of all probes representing a particular strain of virus were calculated and plotted against all virus strains identified on a linear representation of the array. The profile of the total signal intensity identified the strain that is most likely represented in the amplified cDNA target. The results obtained with HAV and CV indicated that the hybridization profile thus generated can be used to identify closely related viral strains. This represents a significant improvement over current methods for virus identification using PCR amplification and amplicon sequencing.
Collapse
Affiliation(s)
- Mobolanle Ayodeji
- Division of Molecular Biology, Office of Applied Research and Safety Assessment (OARSA), Food And Drug Administration, 8301 Muirkirk Road, Laurel, Maryland, 20708, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Evolution of the Sabin vaccine into pathogenic derivatives without appreciable changes in antigenic properties: need for improvement of current poliovirus surveillance. J Virol 2009; 83:3402-6. [PMID: 19129444 DOI: 10.1128/jvi.02122-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sabin oral polio vaccine (OPV) may evolve into pathogenic viruses, causing sporadic cases and outbreaks of poliomyelitis. Such vaccine-derived polioviruses (VDPV) generally exhibit altered antigenicity. The current paradigm to distinguish VDPV from OPV and wild polioviruses is to characterize primarily those poliovirus isolates that demonstrate deviations from OPV in antigenic and genetic intratypic differentiation (ITD) tests. Here we report on two independent cases of poliomyelitis caused by VDPVs with "Sabin-like" properties in several ITD assays. The results suggest the existence of diverse pathways of OPV evolution and necessitate improvement of poliovirus surveillance, which currently potentially misses this class of VDPV.
Collapse
|
24
|
Földes-Papp Z. Viral Chip Technology in Genomic Medicine. GENOMIC AND PERSONALIZED MEDICINE 2009. [PMCID: PMC7149707 DOI: 10.1016/b978-0-12-369420-1.00048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
25
|
Microarray-based assay for the detection of genetic variations of structural genes of West Nile virus. J Virol Methods 2008; 154:27-40. [DOI: 10.1016/j.jviromet.2008.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 12/11/2022]
|
26
|
Lee WH, Wong CW, Leong WY, Miller LD, Sung WK. LOMA: a fast method to generate efficient tagged-random primers despite amplification bias of random PCR on pathogens. BMC Bioinformatics 2008; 9:368. [PMID: 18783594 PMCID: PMC2553803 DOI: 10.1186/1471-2105-9-368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 09/10/2008] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Pathogen detection using DNA microarrays has the potential to become a fast and comprehensive diagnostics tool. However, since pathogen detection chips currently utilize random primers rather than specific primers for the RT-PCR step, bias inherent in random PCR amplification becomes a serious problem that causes large inaccuracies in hybridization signals. RESULTS In this paper, we study how the efficiency of random PCR amplification affects hybridization signals. We describe a model that predicts the amplification efficiency of a given random primer on a target viral genome. The prediction allows us to filter false-negative probes of the genome that lie in regions of poor random PCR amplification and improves the accuracy of pathogen detection. Subsequently, we propose LOMA, an algorithm to generate random primers that have good amplification efficiency. Wet-lab validation showed that the generated random primers improve the amplification efficiency significantly. CONCLUSION The blind use of a random primer with attached universal tag (random-tagged primer) in a PCR reaction on a pathogen sample may not lead to a successful amplification. Thus, the design of random-tagged primers is an important consideration when performing PCR.
Collapse
Affiliation(s)
- Wah Heng Lee
- Genome Institute of Singapore, Genome, Singapore.
| | | | | | | | | |
Collapse
|
27
|
Mikhailovich V, Gryadunov D, Kolchinsky A, Makarov AA, Zasedatelev A. DNA microarrays in the clinic: infectious diseases. Bioessays 2008; 30:673-82. [PMID: 18536036 DOI: 10.1002/bies.20781] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We argue that the most-promising area of clinical application of microarrays in the foreseeable future is the diagnostics and monitoring of infectious diseases. Microarrays for the detection and characterization of human pathogens have already found their way into clinical practice in some countries. After discussing the persistent, yet often underestimated, importance of infectious diseases for public health, we consider the technologies that are best suited for the detection and clinical investigation of pathogens. Clinical application of microarray technologies for the detection of mycobacteria, Bacillus anthracis, HIV, hepatitis and influenza viruses, and other major pathogens, as well as the analysis of their drug-resistance patterns, illustrate our main thesis.
Collapse
Affiliation(s)
- Vladimir Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
28
|
Rakoto-Andrianarivelo M, Gumede N, Jegouic S, Balanant J, Andriamamonjy SN, Rabemanantsoa S, Birmingham M, Randriamanalina B, Nkolomoni L, Venter M, Schoub BD, Delpeyroux F, Reynes JM. Reemergence of recombinant vaccine-derived poliovirus outbreak in Madagascar. J Infect Dis 2008; 197:1427-35. [PMID: 18419577 DOI: 10.1086/587694] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND After the 2001-2002 poliomyelitis outbreak due to recombinant vaccine-derived polioviruses (VDPVs) in the Toliara province of Madagascar, another outbreak reoccurred in the same province in 2005. METHODS We conducted epidemiological and virological investigations for each polio case patient and for their contacts. RESULTS From May to August 2005, a total of 5 cases of acute flaccid paralysis were reported among unvaccinated or partially vaccinated children 2-3 years old. Type-3 or type-2 VDPV was isolated from case patients and from healthy contacts. These strains were classified into 4 recombinant lineages that showed complex mosaic genomic structures originating from different vaccine strain serotypes and probably from human enterovirus C (HEV-C) species. Genetic relatedness could be observed among these 4 lineages. Vaccination coverage of the population was very low (<50%). CONCLUSIONS The broad distribution of VDPVs in the province and their close genetic relationship indicate intense and rapid cocirculation and coevolution of the vaccine strains and of their related HEV-C strains. The occurrence of an outbreak due to VDPV 3 years after a previous outbreak indicates that a short period with low vaccination coverage is enough to create favorable conditions for the emergence of VDPV in this setting.
Collapse
|
29
|
Chumakov K, Ehrenfeld E, Wimmer E, Agol VI. Vaccination against polio should not be stopped. Nat Rev Microbiol 2007; 5:952-8. [PMID: 17965726 DOI: 10.1038/nrmicro1769] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The striking 50-year-long decline in the incidence of poliomyelitis has stalled in the past 7 years, which has led to calls for an urgent re-assessment of eradication and post-eradication campaign strategies. The current plan of eliminating the circulation of wild poliovirus so that further immunization will be unnecessary does not take into account recent scientific data and political realities that limit the likelihood that this strategy can sustain prevention of the disease. It is crucially important that high levels of population immunity are maintained against polio in the foreseeable future.
Collapse
Affiliation(s)
- Konstantin Chumakov
- Konstantin Chumakov is at the Center for Biologics Evaluation and Research, Food and Drug Administration, 1401 Rockville Pike, Rockville, Maryland 20852, USA
| | | | | | | |
Collapse
|
30
|
García-Arriaza J, Domingo E, Briones C. Characterization of minority subpopulations in the mutant spectrum of HIV-1 quasispecies by successive specific amplifications. Virus Res 2007; 129:123-34. [PMID: 17706828 DOI: 10.1016/j.virusres.2007.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 01/06/2023]
Abstract
RNA viruses do not replicate as defined genomic nucleotide sequences but rather as complex distributions of mutant genomes termed viral quasispecies. Quasispecies dynamics has a number of relevant biological consequences in ribo- and retroviruses, among these the possible presence of memory genomes as minority components of their mutant spectra. Minority memory genomes reflect those viral subpopulations that were dominant at an earlier phase of viral evolution, and can quickly re-emerge to react to certain selective pressures, as it was documented with HIV-1 in vivo. Therefore, an adequate clinical management of HIV-1 requires the development of experimental methods for the detection and quantification of minority viral subpopulations, even at levels of less than 1% of the total quasispecies. We describe a new approach based on successive, highly specific PCR amplifications, which allows the genetic characterization of minority genomes present in increasingly smaller proportion in viral populations. We have coined the term 'quasispecies diving' to reflect the progressive draw on minority or 'deeper' genomes in the mutant spectrum of the quasispecies. In the case of the multidrug-resistant HIV-1 strain analyzed here, quasispecies diving allowed the detection of mutant minority genomes at an unprecedented level of 0.0054% of the amplified viral population. This approach represents a general strategy for the genetic characterization of smaller minority genomes in complex molecular populations.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
31
|
Laassri M, Meseda CA, Williams O, Merchlinsky M, Weir JP, Chumakov K. Microarray assay for evaluation of the genetic stability of modified vaccinia virus Ankara B5R gene. J Med Virol 2007; 79:791-802. [PMID: 17457926 DOI: 10.1002/jmv.20889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adverse events associated with the use of live smallpox vaccines have led to the development of a new generation of attenuated smallpox vaccines that are prepared in cultured cells as alternatives. The inability to conduct direct clinical evaluation of their efficacy in humans demands that licensure be based on animal studies and exhaustive evaluation of their in vitro properties. One of the most important characteristics of live viral vaccines is their genetic stability, including reversion of the vaccine strain to more virulent forms, recombination with other viral sequences to produce potentially pathogenic viruses, and genetic drift that can result in decrease of immunogenicity and efficacy. To study genetic stability of an immunoessential vaccinia virus gene in a new generation smallpox vaccine, an advanced oligonucleotide microchip was developed and used to assay for mutations that could emerge in B5R gene, a vaccinia virus gene encoding for a protein that contains very important neutralizing epitopes. This microarray contained overlapping oligonucleotides covering the B5R gene of modified vaccinia virus Ankara (MVA), a well-studied candidate smallpox vaccine. The microarray assay was shown to be able to detect even a single point mutation, and to differentiate between vaccinia strains. At the same time, it could detect newly emerged mutations in clones of vaccinia strains. In the work described here, it was shown that MVA B5R gene was stable after 34 passages in Vero and MRC-5 cells that were proposed for use as cell substrates for vaccine manufacture. Potentially, the proposed method could be used as an identity test and could be extended for the entire viral genome and used to monitor consistency of vaccine production.
Collapse
Affiliation(s)
- Majid Laassri
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville, Maryland 20852, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Nasri D, Bouslama L, Pillet S, Bourlet T, Aouni M, Pozzetto B. Basic rationale, current methods and future directions for molecular typing of human enterovirus. Expert Rev Mol Diagn 2007; 7:419-434. [PMID: 17620049 DOI: 10.1586/14737159.7.4.419] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enterovirus is a genus of the Picornaviridae family including more than 80 serotypes belonging to four species designed Human enterovirus A to D. The antigens of the structural proteins support the subdivision of enteroviruses into multiple serotypes. Comparative phylogeny based on molecular typing methods has been of great help to classify former and new types of enterovirus, and to investigate the diversity of enteroviruses and the evolutionary mechanisms involved in their diversity. By now, molecular typing methods of enterovirus rely mainly on the sequencing of an amplicon targeting a variable part of the region coding for the capsid proteins (VP1 and, alternatively, VP2 or VP4), either from a strain recovered by cell culture or, more recently, by direct amplification of a clinical or environmental specimen. In the future, microarrays are thought to play a major role in enterovirus typing and in the analysis of the determinants of virulence that support the puzzling diversity of the pathological conditions associated with human infection by these viruses.
Collapse
Affiliation(s)
- Dorsaf Nasri
- Laboratory of Bacteriology-Virology, GIMAP EA3064, Faculté de Médicine Jacques Lisfranc, Saint-Etienne cedex 02, France.
| | | | | | | | | | | |
Collapse
|
33
|
Honma S, Chizhikov V, Santos N, Tatsumi M, Timenetsky MDCST, Linhares AC, Mascarenhas JDP, Ushijima H, Armah GE, Gentsch JR, Hoshino Y. Development and validation of DNA microarray for genotyping group A rotavirus VP4 (P[4], P[6], P[8], P[9], and P[14]) and VP7 (G1 to G6, G8 to G10, and G12) genes. J Clin Microbiol 2007; 45:2641-8. [PMID: 17567783 PMCID: PMC1951270 DOI: 10.1128/jcm.00736-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previously, we reported the development of a microarray-based method for the identification of five clinically relevant G genotypes (G1 to G4 and G9) (V. Chizhikov et al., J. Clin. Microbiol. 40:2398-2407, 2002). The expanded version of the rotavirus microarray assay presented herein is capable of identifying (i) five clinically relevant human rotavirus VP4 genotypes (P[4], P[6], P[8], P[9], and P[14]) and (ii) five additional human rotavirus VP7 genotypes (G5, G6, G8, G10, and G12) on one chip. Initially, a total of 80 cell culture-adapted human and animal reference rotavirus strains of known P (P[1] to P[12], P[14], P[16], and P[20]) and G (G1-6, G8 to G12, and G14) genotypes isolated in various parts of the world were employed to evaluate the new microarray assay. All rotavirus strains bearing P[4], P[6], P[8], P[9], or P[14] and/or G1 to G6, G8 to G10, or G12 specificity were identified correctly. In addition, cross-reactivity to viruses of genotype G11, G13, or G14 or P[1] to P[3], P[5], P[7], P[10] to P[12], P[16], or P[20] was not observed. Next, we analyzed a total of 128 rotavirus-positive human stool samples collected in three countries (Brazil, Ghana, and the United States) by this assay and validated its usefulness. The results of this study showed that the assay was sensitive and specific and capable of unambiguously discriminating mixed rotavirus infections from nonspecific cross-reactivity; the inability to discriminate mixed infections from nonspecific cross-reactivity is one of the inherent shortcomings of traditional multiplex reverse transcription-PCR genotyping. Moreover, because the hybridization patterns exhibited by rotavirus strains of different genotypes can vary, this method may be ideal for analyzing the genetic polymorphisms of the VP7 or VP4 genes of rotaviruses.
Collapse
Affiliation(s)
- Shinjiro Honma
- Epidemiology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-8026, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hsia CC, Chizhikov VE, Yang AX, Selvapandiyan A, Hewlett I, Duncan R, Puri RK, Nakhasi HL, Kaplan GG. Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples. Biochem Biophys Res Commun 2007; 356:1017-23. [PMID: 17407765 DOI: 10.1016/j.bbrc.2007.03.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 03/16/2007] [Indexed: 01/12/2023]
Abstract
Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminated the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients.
Collapse
Affiliation(s)
- Chu Chieh Hsia
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Combiescu M, Guillot S, Persu A, Baicus A, Pitigoi D, Balanant J, Oprisan G, Crainic R, Delpeyroux F, Aubert-Combiescu A. Circulation of a type 1 recombinant vaccine-derived poliovirus strain in a limited area in Romania. Arch Virol 2007; 152:727-38. [PMID: 17195957 DOI: 10.1007/s00705-006-0884-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/01/2006] [Indexed: 01/14/2023]
Abstract
After intensive immunisation campaigns with the oral polio vaccine (OPV) as part of the Global Polio Eradication Initiative, poliomyelitis due to wild viruses has disappeared from most parts of the world, including Europe. Here, we report the characterization of a serotype 1 vaccine-derived poliovirus (VDPV) isolated from one acute flaccid paralysis (AFP) case with tetraplegia and eight healthy contacts belonging to the same small socio-cultural group having a low vaccine coverage living in a small town in Romania. The genomes of the isolated strains appeared to be tripartite type 1/type 2/type 1 vaccine intertypic recombinant genomes derived from a common ancestor strain. The presence of 1.2% nucleotide substitutions in the VP1 capsid protein coding region of most of the strains indicated a circulation time of about 14 months. These VDPVs were thermoresistant and, in transgenic mice expressing the human poliovirus receptor, appeared to have lost the attenuated phenotype. These results suggest that small populations with low vaccine coverage living in globally well-vaccinated countries can be the origin of VDPV emergence and circulation. These results reaffirm the importance of active surveillance for acute flaccid paralysis and poliovirus in both polio-free and polio-endemic countries.
Collapse
Affiliation(s)
- M Combiescu
- Cantacuzino National Institute of Research-Development for Microbiology and Immunology, Bucharest, Romania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shulman LM, Manor Y, Sofer D, Handsher R, Swartz T, Delpeyroux F, Mendelson E. Neurovirulent vaccine-derived polioviruses in sewage from highly immune populations. PLoS One 2006; 1:e69. [PMID: 17183700 PMCID: PMC1762338 DOI: 10.1371/journal.pone.0000069] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 10/27/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vaccine-derived polioviruses (VDPVs) have caused poliomyelitis outbreaks in communities with sub-optimal vaccination. Israeli environmental surveillance of sewage from populations with high (>95%) documented vaccine coverage of confirmed efficacy identified two separate evolutionary clusters of VDPVs: Group 1 (1998-2005, one system, population 1.6x10(6)) and Group 2 (2006, 2 systems, populations 0.7x10(6) and 5x10(4)). PRINCIPAL FINDINGS Molecular analyses support evolution of nine Group 1 VDPVs along five different lineages, starting from a common ancestral type 2 vaccine-derived Sabin-2/Sabin-1 recombinant strain, and independent evolution of three Group 2 VDPVs along one lineage starting from a different recombinant strain. The primary evidence for two independent origins was based on comparison of unique recombination fingerprints, the number and distribution of identical substitutions, and evolutionary rates. Geometric mean titers of neutralizing antibodies against Group 1 VDPVs were significantly lower than against vaccine strains in all age-group cohorts tested. All individuals had neutralizing titers >1:8 against these VDPVs except 7% of the 20-50 year cohort. Group 1 VDPVs were highly neurovirulent in a transgenic mouse model. Intermediate levels of protective immunity against Group 2 VDPVs correlated with fewer (5.0+1.0) amino acid substitutions in neutralizing antigenic sites than in Group 1 VDPV's (12.1+/-1.5). SIGNIFICANCE VDPVs that revert from live oral attenuated vaccines and reacquire characteristics of wild-type polioviruses not only threaten populations with poor immune coverage, but are also a potential source for re-introduction of poliomyelitis into highly immune populations through older individuals with waning immunity. The presence of two independently evolved groups of VDPVs in Israel and the growing number of reports of environmental VDPV elsewhere make it imperative to determine the global frequency of environmental VDPV. Our study underscores the importance of the environmental surveillance and the need to reconsider the global strategies for polio eradication and the proposed cessation of vaccination.
Collapse
Affiliation(s)
- Lester M Shulman
- Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tebbens RJD, Pallansch MA, Kew OM, Cáceres VM, Jafari H, Cochi SL, Sutter RW, Aylward RB, Thompson KM. Risks of paralytic disease due to wild or vaccine-derived poliovirus after eradication. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2006; 26:1471-505. [PMID: 17184393 DOI: 10.1111/j.1539-6924.2006.00827.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
After the global eradication of wild polioviruses, the risk of paralytic poliomyelitis from polioviruses will still exist and require active management. Possible reintroductions of poliovirus that can spread rapidly in unprotected populations present challenges to policymakers. For example, at least one outbreak will likely occur due to circulation of a neurovirulent vaccine-derived poliovirus after discontinuation of oral poliovirus vaccine and also could possibly result from the escape of poliovirus from a laboratory or vaccine production facility or from an intentional act. In addition, continued vaccination with oral poliovirus vaccines would result in the continued occurrence of vaccine-associated paralytic poliomyelitis. The likelihood and impacts of reintroductions in the form of poliomyelitis outbreaks depend on the policy decisions and on the size and characteristics of the vulnerable population, which change over time. A plan for managing these risks must begin with an attempt to characterize and quantify them as a function of time. This article attempts to comprehensively characterize the risks, synthesize the existing data available for modeling them, and present quantitative risk estimates that can provide a starting point for informing policy decisions.
Collapse
|
38
|
Neverov AA, Riddell MA, Moss WJ, Volokhov DV, Rota PA, Lowe LE, Chibo D, Smit SB, Griffin DE, Chumakov KM, Chizhikov VE. Genotyping of measles virus in clinical specimens on the basis of oligonucleotide microarray hybridization patterns. J Clin Microbiol 2006; 44:3752-9. [PMID: 17021105 PMCID: PMC1594792 DOI: 10.1128/jcm.00998-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An oligonucleotide microarray hybridization method for identification of most known measles virus (MV) genotypes was developed. Like the conventional genotyping method, the microarray relied on detecting sequence differences in the 450-nucleotide region coding for the COOH-terminal 150 amino acids of the nucleoprotein (N). This region was amplified using PCR primers binding to all known MV genotypes. The microarray included 71 pairs of oligonucleotide probes (oligoprobes) immobilized on glass slides. Each pair consisted of a genotype-specific oligoprobe, which matched the sequence of only one target genotype, and a control oligoprobe, which contained mismatches at the nucleotide positions unique to this genotype. A pattern recognition algorithm based on cluster analysis of the ratios of hybridization signals from specific and control oligoprobes was used to identify the specific MV genotype. Following the initial validation, the method was used for rapid genotyping of two panels of coded samples. The results of this study showed good sensitivity (90.7%), specificity (100%), and genotype agreement (91.8%) for the new method compared to the results of genotyping conducted using phylogenetic analysis of viral sequences of the C terminus of the N gene. In addition, the microarray demonstrated the ability to identify potential new genotypes of MV based on the similarity of their hybridization patterns with those of known MV genotypes.
Collapse
Affiliation(s)
- Alexander A Neverov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852-1448, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Briones C, de Vicente A, Molina-París C, Domingo E. Minority memory genomes can influence the evolution of HIV-1 quasispecies in vivo. Gene 2006; 384:129-38. [PMID: 17059869 DOI: 10.1016/j.gene.2006.07.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/09/2006] [Accepted: 07/13/2006] [Indexed: 11/13/2022]
Abstract
One of the consequences of viral quasispecies dynamics is the presence, in the mutant spectrum, of minority memory genomes that reflect those variants that were dominant at an earlier phase of the same evolutionary lineage. Replicative and cellular (or anatomical) contributions to quasispecies memory were previously defined during intrahost evolution of human immunodeficiency virus type 1 (HIV-1) [Briones, C., Domingo, E., Molina-París, C., 2003. Memory in retroviral quasispecies: experimental evidence and theoretical model for human immunodeficiency virus. J. Mol. Biol. 331, 213-229.]. However, the effects of replicative memory regarding virus evolution in vivo have not been investigated. Here we document that a multidrug-resistant (MDR) HIV-1, present at memory level, determined the ensuing evolution of the virus in an infected patient. Nucleotide sequencing and detailed phylogenetic analyses of sequential viral populations and individual molecular clones evidenced that the progeny of a minority MDR genome during a treatment interruption contributed the dominant genomes when an antiretroviral treatment was restored. An extension of a mathematical model of establishment and maintenance of memory, based on quasispecies theory, supports the experimental data. Therefore a replicative memory subpopulation, not detectable in a consensus nucleotide sequence, affected decisively subsequent states of viral evolution in vivo.
Collapse
Affiliation(s)
- Carlos Briones
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain.
| | | | | | | |
Collapse
|
40
|
Martín V, Perales C, Abia D, Ortíz AR, Domingo E, Briones C. Microarray-based identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment. BMC Genomics 2006; 7:117. [PMID: 16709242 PMCID: PMC1481559 DOI: 10.1186/1471-2164-7-117] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of viral quasispecies can influence viral pathogenesis and the response to antiviral treatments. Mutant clouds in infected organisms represent the first stage in the genetic and antigenic diversification of RNA viruses, such as foot and mouth disease virus (FMDV), an important animal pathogen. Antigenic variants of FMDV have been classically diagnosed by immunological or RT-PCR-based methods. DNA microarrays are becoming increasingly useful for the analysis of gene expression and single nucleotide polymorphisms (SNPs). Recently, a FMDV microarray was described to detect simultaneously the seven FMDV serotypes. These results encourage the development of new oligonucleotide microarrays to probe the fine genetic and antigenic composition of FMDV for diagnosis, vaccine design, and to gain insight into the molecular epidemiology of this pathogen. RESULTS A FMDV microarray was designed and optimized to detect SNPs at a major antigenic site of the virus. A screening of point mutants of the genomic region encoding antigenic site A of FMDV C-S8c1 was achieved. The hybridization pattern of a mutant includes specific positive and negative signals as well as crosshybridization signals, which are of different intensity depending on the thermodynamic stability of each probe-target pair. Moreover, an array bioinformatic classification method was developed to evaluate the hybridization signals. This statistical analysis shows that the procedure allows a very accurate classification per variant genome. CONCLUSION A specific approach based on a microarray platform aimed at distinguishing point mutants within an important determinant of antigenicity and host cell tropism, namely the G-H loop of capsid protein VP1, was developed. The procedure is of general applicability as a test for specificity and discriminatory power of microarray-based diagnostic procedures using multiple oligonucleotide probes.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Angel R Ortíz
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Carlos Briones
- Centro de Astobiología (CSIC-INTA), Torrejón de Ardoz, 28850, Madrid, Spain
| |
Collapse
|
41
|
Abstract
The Sabin oral poliovaccine (OPV) is extremely efficacious and safe, despite its inherent genetic instability. While reversion to nearly wild-type phenotype regularly occurs soon after the onset of OPV reproduction in the gastro-intestinal tract of vaccine recipients or their contacts, this is usually not a big problem, provided the vaccine is used either for mass vaccination or in populations with a relatively high level of anti-polio immunity. However, if these conditions are not met, the vaccine viruses are likely to be converted into highly transmissible agents with a nearly wild-type level of neurovirulence. Moreover, OPV viruses may persist and evolve even in adequately immunized populations. The current strategy for the "endgame" of poliovirus eradication envisions cessation of OPV usage shortly after the last isolation of a wild poliovirus. If implemented, this strategy would result in rapid growth of non-immune human populations at the time when OPV derivatives would very likely be persisting. Therefore, the planned cessation of OPV vaccination is associated with a very high, and in the author's opinion, unacceptable risk of polio outbreaks caused by OPV derivatives. The only currently available tool to curb such outbreaks is OPV, which should have been used at a global scale. Safe discontinuation of OPV vaccination will be possible only after an efficient new vaccine or an anti-poliovirus drug is available. To achieve this goal, stimulation of poliovirus research and elimination of organizational and financial obstacles preventing it are needed.
Collapse
Affiliation(s)
- Vadim I Agol
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Russia.
| |
Collapse
|
42
|
Abstract
1. Microarrays, a recent development, provide a revolutionary platform to analyse thousands of genes at once. They have enormous potential in the study of biological processes in health and disease and, perhaps, microarrays have become crucial tools in diagnostic applications and drug discovery. 2. Microarray based studies have provided the essential impetus for biomedical experiments, such as identification of disease-causing genes in malignancies and regulatory genes in the cell cycle mechanism. Microarrays can identify genes for new and unique potential drug targets, predict drug responsiveness for individual patients and, finally, initiate gene therapy and prevention strategies. 3. The present article reviews the principles and technological concerns, as well as the steps involved in obtaining and analysing of data. Furthermore, applications of microarray based experiments in drug target identifications and validation strategies are discussed. 4. To exemplify how this tool can be useful, in the present review we provide an overview of some of the past and potential future aspects of microarray technology and present a broad overview of this rapidly growing field.
Collapse
Affiliation(s)
- Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
43
|
Denkin S, Volokhov D, Chizhikov V, Zhang Y. Microarray-based pncA genotyping of pyrazinamide-resistant strains of Mycobacterium tuberculosis. J Med Microbiol 2006; 54:1127-1131. [PMID: 16278424 DOI: 10.1099/jmm.0.46129-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drug-resistant Mycobacterium tuberculosis poses a significant threat to the treatment of tuberculosis (TB). The current susceptibility testing for the first-line TB drug pyrazinamide (PZA) is not only time-consuming but also difficult, due to the requirement for acid pH for drug activity. Predominantly, resistance to PZA in M. tuberculosis is caused by mutations in the pncA gene, and the detection of pncA mutations can be an indicator of PZA resistance. In this study, the use of a previously developed microarray method for the rapid detection of PZA-resistant M. tuberculosis based on identifying mutations in the pncA gene was evaluated. Microarray analysis was performed in a blind manner on 33 clinical isolates of M. tuberculosis for which the sequence of the pncA gene had not previously been determined. The results showed that all mutations in PZA-resistant strains identified by DNA sequencing could be unambiguously detected by the microarray method. It is concluded that the microarray method is a valuable tool for the rapid screening and genetic identification of potential PZA-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Steven Denkin
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA 2Center for Biologics Evaluation and Research, Food and Drug Administration, Kensington, MD 20895, USA
| | - Dmitriy Volokhov
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA 2Center for Biologics Evaluation and Research, Food and Drug Administration, Kensington, MD 20895, USA
| | - Vladimir Chizhikov
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA 2Center for Biologics Evaluation and Research, Food and Drug Administration, Kensington, MD 20895, USA
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA 2Center for Biologics Evaluation and Research, Food and Drug Administration, Kensington, MD 20895, USA
| |
Collapse
|
44
|
Yakovenko ML, Cherkasova EA, Rezapkin GV, Ivanova OE, Ivanov AP, Eremeeva TP, Baykova OY, Chumakov KM, Agol VI. Antigenic evolution of vaccine-derived polioviruses: changes in individual epitopes and relative stability of the overall immunological properties. J Virol 2006; 80:2641-53. [PMID: 16501074 PMCID: PMC1395452 DOI: 10.1128/jvi.80.6.2641-2653.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 12/21/2005] [Indexed: 12/13/2022] Open
Abstract
The Sabin oral poliovirus vaccine (OPV) readily undergoes changes in antigenic sites upon replication in humans. Here, a set of antigenically altered descendants of the three OPV serotypes (76 isolates) was characterized to determine the driving forces behind these changes and their biological implications. The amino acid residues of OPV derivatives that lie within or close to the known antigenic sites exhibited a marked tendency to be replaced by residues characteristic of homotypic wild polioviruses, and these changes may occur very early in OPV evolution. The specific amino acid alterations nicely correlated with serotype-specific changes in the reactivity of certain individual antigenic sites, as revealed by the recently devised monoclonal antibody-based enzyme-linked immunosorbent assay. In comparison to the original vaccine, small changes, if any, in the neutralizing capacity of human or rabbit sera were observed in highly diverged vaccine polioviruses of three serotypes, in spite of strong alterations of certain epitopes. We propose that the common antigenic alterations in evolving OPV strains largely reflect attempts to eliminate fitness-decreasing mutations acquired either during the original selection of the vaccine or already present in the parental strains. Variability of individual epitopes does not appear to be primarily caused by, or lead to, a significant immune evasion, enhancing only slightly, if at all, the capacity of OPV derivatives to overcome immunity in human populations. This study reveals some important patterns of poliovirus evolution and has obvious implications for the rational design of live viral vaccines.
Collapse
Affiliation(s)
- Maria L Yakovenko
- A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Replication of poliovirus RNA is accomplished by the error-prone viral RNA-dependent RNA polymerase and hence is accompanied by numerous mutations. In addition, genetic errors may be introduced by nonreplicative mechanisms. Resulting variability is manifested by point mutations and genomic rearrangements (e.g., deletions, insertions and recombination). After description of basic mechanisms underlying this variability, the review focuses on regularities of poliovirus evolution (mutation fixation) in tissue cultures, human organisms and populations.
Collapse
Affiliation(s)
- V I Agol
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782, Russia.
| |
Collapse
|
46
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on request from the European Commission related to: Assessing the risk of Foot and Mouth Disease introduction into the EU from developing countries, assessing the reduction of this risk t. EFSA J 2006. [DOI: 10.2903/j.efsa.2006.313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
Ryabinin VA, Shundrin LA, Kostina EB, Laassri M, Chizhikov V, Shchelkunov SN, Chumakov K, Sinyakov AN. Microarray assay for detection and discrimination ofOrthopoxvirus species. J Med Virol 2006; 78:1325-40. [PMID: 16927285 DOI: 10.1002/jmv.20698] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A microarray method was developed for simultaneous detection and identification of six species of Orthopoxvirus (OPV) including Variola, Monkeypox, Cowpox, Camelpox, Vaccinia, and Ectromelia viruses. The method allowed us to discriminate OPV species from varicella-zoster virus (VZV), Herpes Simplex 1 virus (HSV-1), and Herpes Simplex 2 virus (HSV-2) that cause infections with clinical manifestations similar to OPV infections. The nucleotide sequences of the C23L/B29R and the B19R genes identified for 86 and 72 different OPV strains, respectively, were used to design species-specific microarray oligonucleotide probes (oligoprobes). The microarray also contained several oligoprobes selected from the ORF31, US4, and US5 genes of VZV, HSV-1, and HSV-2, respectively. The samples (from HSVs or OPVs) of ssDNAs for analyses were prepared by using asymmetric PCR followed by chemical labeling of ssDNA with Cy3 dye. DNA from 52 samples of various OPV species, two isolates of VZV, two of HSV-1, and three of HSV-2 were tested using the developed microarray assay; all tested viruses were accurately identified. To ensure the robustness of the microarray assay, three additional unrelated variola virus strains with unknown sequences of the C23L/B29R and the B19R genes were tested. In each instance the microarray unambiguously identified them as Variola virus species. The results obtained in this study demonstrated that this new microarray method is a valuable tool for the rapid and accurate detection and differentiation of these important viral pathogens.
Collapse
Affiliation(s)
- Vladimir A Ryabinin
- State Research Center of Virology and Biotechnology Vector, Novosibirsk Region, Kol'tsovo, Russia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA. VACCINE-DERIVED POLIOVIRUSES AND THE ENDGAME STRATEGY FOR GLOBAL POLIO ERADICATION. Annu Rev Microbiol 2005; 59:587-635. [PMID: 16153180 DOI: 10.1146/annurev.micro.58.030603.123625] [Citation(s) in RCA: 479] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the global eradication of wild poliovirus nears, the World Health Organization (WHO) is addressing challenges unprecedented in public health. The live, attenuated oral poliovirus vaccine (OPV), used for more than four decades to interrupt poliovirus transmission, and the vaccine of choice for developing countries, is genetically unstable. Reversion of the small number of substitutions conferring the attenuated phenotype frequently occurs during OPV replication in humans and is the underlying cause of the rare cases of vaccine-associated paralytic poliomyelitis (VAPP) in OPV recipients and their close contacts. Whereas VAPP has long been recognized, two other adverse events have been identified more recently: (a) long-term excretion of highly evolved vaccine-derived polioviruses (VDPVs) in persons with primary immunodeficiencies, and (b) polio outbreaks associated with circulating VDPVs in areas with low rates of OPV coverage. Developing a posteradication strategy to minimize the risks of VDPV emergence and spread has become an urgent WHO priority.
Collapse
Affiliation(s)
- Olen M Kew
- Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
DNA microarrays have enabled biology researchers to conduct large-scale quantitative experiments. This capacity has produced qualitative changes in the breadth of hypotheses that can be explored. In what has become the dominant mode of use, changes in the transcription rate of nearly all the genes in a genome, taking place in a particular tissue or cell type, can be measured in disease states, during development, and in response to intentional experimental perturbations, such as gene disruptions and drug treatments. The response patterns have helped illuminate mechanisms of disease and identify disease subphenotypes, predict disease progression, assign function to previously unannotated genes, group genes into functional pathways, and predict activities of new compounds. Directed at the genome sequence itself, microarrays have been used to identify novel genes, binding sites of transcription factors, changes in DNA copy number, and variations from a baseline sequence, such as in emerging strains of pathogens or complex mutations in disease-causing human genes. They also serve as a general demultiplexing tool to sort spatially the sequence-tagged products of highly parallel reactions performed in solution. A brief review of microarray platform technology options, and of the process steps involved in complete experiment workflows, is included.
Collapse
|