1
|
McHenry LC, Schürch R, Council-Troche M, Gross AD, Johnson LE, Ohlinger BD, Couvillon MJ. Sublethal glyphosate exposure reduces honey bee foraging and alters the balance of biogenic amines in the brain. J Exp Biol 2025; 228:jeb250124. [PMID: 40326703 DOI: 10.1242/jeb.250124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/17/2025] [Indexed: 05/07/2025]
Abstract
Glyphosate is a broad-spectrum herbicide that inhibits the shikimate pathway, which honey bees (Apis mellifera), a non-target beneficial pollinator, do not endogenously express. Nonetheless, sublethal glyphosate exposure in honey bees has been correlated to impairments in gustation, learning, memory and navigation. While these impacted physiologies underpin honey bee foraging and recruitment, the effects of sublethal glyphosate exposure on these important behaviors remain unclear, and any proximate mechanism of action in the honey bee is poorly understood. We trained cohorts of honey bees from the same hives to forage at one of two artificial feeders offering 1 mol l-1 sucrose solution, either unaltered (N=40) or containing glyphosate at 5 mg acid equivalent (a.e.) l-1 (N=46). We then compared key foraging behaviors and, on a smaller subset of bees, recruitment behaviors. Next, we quantified protein levels of octopamine, tyramine and dopamine, and levels of the amino acid precursor tyrosine in the brains of experimental bees collected 3 days after the exposure. We found that glyphosate treatment bees reduced their foraging by 13.4% (P=0.022), and the brain content of tyramine was modulated by a crossover interaction between glyphosate treatment and the number of feeder visits (P=0.004). Levels of octopamine were significantly correlated with its precursors tyramine (P=0.011) and tyrosine (P=0.018) in glyphosate treatment bees, but not in control bees. Our findings emphasize the critical need to investigate impacts of the world's most-applied herbicide and to elucidate its non-target mechanism of action in insects to create better-informed pollinator protection strategies.
Collapse
Affiliation(s)
- Laura C McHenry
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Roger Schürch
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Aaron D Gross
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Bradley D Ohlinger
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
2
|
Zong SM, Jiang YP, Zhu-Salzman K, Xiao LB, Zhao J, Xu DJ, Xu GC, Ge LQ, Tan YA. Cloning and expression profiling of voltage-gated sodium channel gene (VGSC) from Spodoptera frugiperda. Gene 2024; 931:148857. [PMID: 39151677 DOI: 10.1016/j.gene.2024.148857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Spodoptera frugiperda is a long-distance migratory pest with strong dispersal ability, fast reproduction speed and destructive feeding, so it is difficult to prevent and control. Pyrethroid insecticides are commonly used in pest insects control, And since the voltage-gated sodium channel (VGSC) serves as a major target of pyrethroids, it is important to study this gene for pest control. VGSC is an integral transmembrane protein consisting of approximately 2,000 amino acid residues found in neurons, myocytes, endocrine cells, and ovarian cells and involved in the initiation and propagation of excitable cellular action potentials. In this study, the cDNA sequence of the VGSC was identified from S. frugiperda by rapid amplification of cDNA ends (RACE) which contained an open reading frame of 6,261 bp encoding a protein of 2,086 amino acids. The molecular weight of this protein was predicted to be 236 kDa, and the theoretical isoelectric point was 5.21. A phylogenetic tree constructed based on lepidopteran insects showed that the VGSC of S. frugiperda was most closely relative to that of Spodoptera litura. VGSC is a highly conserved protein with Ion channel conserved structural domains of transmembrane proteins. qPCR showed that the VGSC gene was highly expressed in the epidermis of 2nd instar larvae, and its expression level was low in other tissues, such as the foregut and Malpighian tubules. In addition, VGSC was also detected in the prepupal stage, then gradually increased in abundance after entering the adult stage, peaked at the adult males on the 4th day of pupal stage, and decreased afterwards. The recombinant plasmid of pSumo-mut-VGSC was constructed and induced to express a His tag fused VGSC protein. Polyclonal antibodies were prepared from purified recombinant VGSC protein. The antibody was ELISA-titered, and the western blotting results showed that it specifically recognized VGSC, whether it was recombinant or endogenous protein. These results have laid the foundation for future studies on the physiological function of this gene in the growth and development of S. frugiperda.
Collapse
Affiliation(s)
- Su-Man Zong
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yi-Ping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station TX 77843, United States
| | - Liu-Bin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - De-Jin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guang-Chun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lin-Quan Ge
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Yong-An Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
3
|
Egunjobi F, Andreazza F, Zhorov BS, Dong K. A unique mechanism of transfluthrin action revealed by mapping its binding sites in the mosquito sodium channel. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104214. [PMID: 39566664 PMCID: PMC11624841 DOI: 10.1016/j.ibmb.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Pyrethroid insecticides exert their toxic action by prolonging the opening of insect voltage-gated sodium channels, resulting in the characteristic tail current during membrane repolarization in voltage clamp experiments. Permethrin (PMT) and deltamethrin (DMT), representative type I and type II pyrethroids, respectively, are predicted to bind to two lipid-exposed pyrethroid receptor sites, PyR1 and PyR2, at the lipid-exposed interfaces of repeats II/III and I/II, respectively. Transfluthrin (TF), a volatile type I pyrethroid and mosquito repellent, has received increased attention in the global combat of vector-borne human diseases. However, the electrophysiological and molecular bases of TF action on insect sodium channels remain unexplored. In this study we discovered that, unlike DMT and PMT, TF barely induces the characteristic tail current of the Aedes aegypti mosquito sodium channel (AaNav1-1) expressed in Xenopus oocytes. Instead, TF induces a unique persistent current. We docked TF into the AlphaFold2 model of AaNav1-1 and found that the tetrafluorophenyl ring of TF binds to alpha helices S5, P1, and S6, but not to the linker helices S4-S5 within either PyR1 or PyR2. In agreement with the model, functional examination of 15 AaNav1-1 mutants demonstrated that substitutions of DMT/PMT-sensing residues in helices S5, P1, and S6, but not in the linker-helices S4-S5, altered channel sensitivity to TF. These results revealed the unique action of TF on channel gating and suggest a distinct subtype of type I pyrethroids with a previously uncharacterized pattern of interactions with residues at the dual pyrethroid receptor sites.
Collapse
Affiliation(s)
| | | | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia; Almazov National Medical Research Centre, Saint Petersburg, 197341, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
4
|
Wang P, Liu Q, Wang X, Sun T, Liu B, Wang B, Li H, Wang C, Sun W, Pan B. Point mutations in the voltage-gated sodium channel gene conferring pyrethroid resistance in China populations of the Dermanyssus gallinae. PEST MANAGEMENT SCIENCE 2024; 80:4950-4958. [PMID: 38828899 DOI: 10.1002/ps.8223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Dermanyssus gallinae, the poultry red mite (PRM), is a worldwide ectoparasite posing significant economic challenges in poultry farming. The extensive use of pyrethroids for PRM control has led to the emergence of pyrethroid resistance. The objective of this study is to detect the pyrethroid resistance and explore its associated point mutations in the voltage-gated sodium channel (VGSC) gene among PRM populations in China. RESULTS Several populations of D. gallinae, namely CJF-1, CJP-2, CJP-3, CSD-4 and CLD-5, displayed varying degrees of resistance to beta-cypermethrin compared to a susceptible field population (CBP-5). Mutations of VGSC gene in populations of PRMs associated with pyrethroid resistance were identified through sequencing its fragments IIS4-IIS5 and IIIS6. The mutations I917V, M918T/L, A924G and L925V were present in multiple populations, while no mutations were found at positions T929, I936, F1534 and F1538. CONCLUSION The present study confirmed the presence of extremely high levels of pyrethroid resistance in PRM populations in China, and for the first time detected four pyrethroid resistance mutations in the VGSC gene. Identifying pyrethroid resistance in the field population of PRM in China can be achieved through screening for VGSC gene mutations as an early detection method. Our findings underscore the importance of implementing chemical PRM control strategies based on resistance evidence, while also considering the management of acaricide resistance in the control of PRMs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xu Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tiancong Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Boxing Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bohan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huan Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Xu L, Ren C, Qiang P, Zhao M, Wen X, Li J, Dou W, Feng K, He L. Differences in Mitochondrial Cytochrome b Binding Mediate Selectivity of Bifenazate toward Phytophagous and Predatory Mites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19699-19709. [PMID: 39190753 DOI: 10.1021/acs.jafc.4c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bifenazate, a potent acaricide that targets mitochondrial complex III, exhibits selective toxicity (>280-fold) toward phytophagous mites versus predatory mites. Here, a systematic study was conducted to clarify the selective mechanism. Nontarget factors were excluded through epidermal penetration tests and assessment of detoxification enzymes' activities. Quantification of IC50 values, ATP content, and reactive oxygen species (ROS) levels revealed that differences in drug-target binding determine the toxicity selectivity. Structural modeling and molecular docking revealed that variations in key amino acid sites within the cytochrome b (cytb) target might regulate this selectivity, which was validated through a microscale thermophoresis assay. Significant disparities were observed in the binding affinity between bifenazate and recombinant cytb proteins derived from phytophagous mites and predatory mites. Mutating isoleucine 139 to leucine notably reduced the binding affinity of bifenazate to cytb. Insights into bifenazate selectivity between phytophagous and predatory mites inform a basis for developing compounds that target cytochrome b.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Changwei Ren
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Peipei Qiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Mingyu Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Jinhang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, 400715 Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, 400715 Chongqing, China
- National Citrus Engineering Research Center, Southwest University, 400712 Chongqing, China
| |
Collapse
|
6
|
Pan D, Luo QJ, O Reilly AO, Yuan GR, Wang JJ, Dou W. Mutations of voltage-gated sodium channel contribute to pyrethroid resistance in Panonychus citri. INSECT SCIENCE 2024; 31:803-816. [PMID: 37650774 DOI: 10.1111/1744-7917.13266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Insecticide resistance in Panonychus citri is a major obstacle to mite control in citrus orchards. Pyrethroid insecticides are continually used to control mites in China, although resistance to pyrethroids has evolved in some populations. Here, the resistance to the pyrethroid fenpropathrin was investigated and 7 out of 8 field-collected populations of P. citri exhibited a high level of resistance, ranging from 171-fold to 15 391-fold higher than the susceptible (SS) comparison strain. Three voltage-gated sodium channel (VGSC) mutations were identified in the tested populations: L1031V, F1747L, and F1751I. Amplicon sequencing was used to evaluate the frequency of these mutations in the 19 field populations. L1031V and F1751I were present in all populations at frequencies of 11.6%-82.1% and 0.5%-31.8%, respectively, whereas the F1747L mutation was only present in 12 populations from Chongqing, Sichuan, Guangxi, and Yunnan provinces. Introduction of these mutations singly or in combination into transgenic flies significantly increased their resistance to fenpropathrin and these flies also exhibited reduced mortality after exposure to the pyrethroids permethrin and β-cypermethrin. Panonychus citri VGSC homology modeling and ligand docking indicate that F1747 and F1751 form direct binding contacts with pyrethroids, which are lost with mutation, whereas L1031 mutation may diminish pyrethroid effects through an allosteric mechanism. Overall, the results provide molecular markers for monitoring pest resistance to pyrethroids and offer new insights into the basis of pyrethroid actions on sodium channels.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiu-Juan Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Andrias O O Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Gao R, Ma S, Geng J, Zhang K, Xian L, Liu K, Cao P, Yuchi Z, Wu S. Functional Characterization of Double Mutations T929I/K1774N in the Voltage-Gated Sodium Channel of Megalurothrips usitatus (Bagnall) Related to Pyrethroid Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11958-11967. [PMID: 38761134 DOI: 10.1021/acs.jafc.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Megalurothrips usitatus (Bagnall), the main pest on legume vegetables, is controlled by pyrethroids in the field. Field strains of M. usitatus resistant to pyrethroids were collected from three areas in Hainan Province (Haikou, Ledong, and Sanya City), and two mutations, T929I and K1774N, were detected in the voltage-gated sodium channel. In this study, the sodium channel in M. usitatus was first subcloned and successfully expressed in Xenopus oocytes. The single mutation (T929I or K1774N) and double mutation (T929I/K1774N) shifted the voltage dependence of activation in the hyperpolarization direction. The three mutants all reduced the amplitude of tail currents induced by type I (permethrin and bifenthrin) and type II (deltamethrin and λ-cyhalothrin) pyrethroids. Homology modeling analysis of these two mutations shows that they may change the local hydrophobicity and positive charge of the sodium channel. Our data can be used to reveal the causes of the resistance of M. usitatus to pyrethroids and provide guidance for the comprehensive control of M. usitatus in the future.
Collapse
Affiliation(s)
- Ruibo Gao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Shuyue Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Junjie Geng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Limin Xian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571737, China
| |
Collapse
|
8
|
Erdem E, Koç-İnak N, Rüstemoğlu M, İnak E. Geographical distribution of pyrethroid resistance mutations in Varroa destructor across Türkiye and a European overview. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:309-321. [PMID: 38401013 PMCID: PMC11035437 DOI: 10.1007/s10493-023-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Varroa destructor Anderson & Trueman (Acari: Varroidae) is of paramount significance in modern beekeeping, with infestations presenting a primary challenge that directly influences colony health, productivity, and overall apicultural sustainability. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate, flumethrin and organophosphate coumaphos. However, the excessive use of these substances has led to the widespread development of resistance in various beekeeping areas globally. In the present study, the occurrence of resistance mutations in the voltage-gated sodium channel (VGSC) and acetylcholinesterase (AChE), the target-site of pyrethroids and coumaphos, respectively, was examined in Varroa populations collected throughout the southeastern and eastern Anatolia regions of Türkiye. All Varroa samples belonged to the Korean haplotype, and a very low genetic distance was observed based on cytochrome c oxidase subunit I (COI) gene sequences. No amino acid substitutions were determined at the key residues of AChE. On the other hand, three amino acid substitutions, (L925V/I/M), previously associated with pyrethroid resistance, were identified in nearly 80% of the Turkish populations. Importantly, L925M, the dominant mutation in the USA, was detected in Turkish Varroa populations for the first time. To gain a more comprehensive perspective, we conducted a systematic analysis of the distribution of pyrethroid resistance mutations across Europe, based on the previously reported data. Varroa populations from Mediterranean countries such as Türkiye, Spain, and Greece exhibited the highest frequency of resistance mutation. Revealing the occurrence and geographical distribution of pyrethroid resistance mutations in V. destructor populations across the country will enhance the development of more efficient strategies for mite management.
Collapse
Affiliation(s)
- Esengül Erdem
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Nafiye Koç-İnak
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Altindag, 06070, Ankara, Turkey
| | - Mustafa Rüstemoğlu
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, 06110, Ankara, Turkey.
| |
Collapse
|
9
|
Bass C, Hayward A, Troczka BJ, Haas J, Nauen R. The molecular determinants of pesticide sensitivity in bee pollinators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170174. [PMID: 38246392 DOI: 10.1016/j.scitotenv.2024.170174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Bees carry out vital ecosystem services by pollinating both wild and economically important crop plants. However, while performing this function, bee pollinators may encounter potentially harmful xenobiotics in the environment such as pesticides (fungicides, herbicides and insecticides). Understanding the key factors that influence the toxicological outcomes of bee exposure to these chemicals, in isolation or combination, is essential to safeguard their health and the ecosystem services they provide. In this regard, recent work using toxicogenomic and phylogenetic approaches has begun to identify, at the molecular level, key determinants of pesticide sensitivity in bee pollinators. These include detoxification systems that convert pesticides to less toxic forms and key residues in insecticide target-sites that underlie species-specific insecticide selectivity. Here we review this emerging body of research and summarise the state of knowledge of the molecular determinants of pesticide sensitivity in bee pollinators. We identify gaps in our knowledge for future research and examine how an understanding of the genetic basis of bee sensitivity to pesticides can be leveraged to, a) predict and avoid negative bee-pesticide interactions and facilitate the future development of pest-selective bee-safe insecticides, and b) inform traditional effect assessment approaches in bee pesticide risk assessment and address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Bartlomiej J Troczka
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Julian Haas
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
10
|
Yuan L, Zhang K, Wang Z, Xian L, Liu K, Wu S. Functional diversity of voltage-gated sodium channel in Drosophila suzukii (Matsumura). PEST MANAGEMENT SCIENCE 2024; 80:592-601. [PMID: 37740934 DOI: 10.1002/ps.7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/22/2023] [Accepted: 09/23/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The larvae of Drosophila suzukii Matsumura feed directly inside the fruit, causing catastrophic damage to orchards. The misuse of pyrethroid insecticides during the control period has led to increasing resistance of D. suzukii to pyrethroids acting on the voltage-gated sodium channel (VGSC). RESULTS In this study, the sodium channel of D. suzukii was cloned (DsNav 5 GenBank number: OQ871532). The results of multiple-sequence alignment showed that the homology of sodium channel between D. suzukii and Drosophila melanogaster was as high as 95.3%. Analysis of transcripts from 62 variants of D. suzukii VGSC revealed a total of six alternative splicing sites (exons u, j, a, b, e, and h) and 33 RNA editing. Exons j, a, b, e, and h are conserved in D. melanogaster and other insects, whereas exon u has never been reported before. The number of A-to-I was distinctly more than that of U-to-C for RNA editing. All D. suzukii VGSC variants were expressed in Xenopus oocytes, but only one (type 5) was able to produce robust currents and nine produce weak currents. DsNav 5 with TipE of D. melanogaster co-expresses current better than its own TipE. Subsequently, tetrodotoxin was verified to be a blocker of VGSC, and the gating properties of DsNav 5 were investigated. CONCLUSION These findings proved that the VGSC of D. suzukii has not only the basic gating properties, but also the diversity of gating properties. This study also laid a foundation for the study of pyrethroid resistance mechanism of VGSC in D. suzukii. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linlin Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Zhenglei Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Limin Xian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
11
|
Chen L, Wang Y, Zhang K, Wu S. Functional diversity of sodium channel variants in common eastern bumblebee, Bombus impatiens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22052. [PMID: 37672296 DOI: 10.1002/arch.22052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
For the past decade, Colony Collapse Disorder has been reported worldwide. Insecticides containing pyrethroids may be responsible for a decline in bees, which are more sensitive to pyrethroids compared with other insects. Voltage-gated sodium channels (Nav ) are the major target sites of pyrethroids, and the sodium channel diversity is generated through extensive alternative splicing and RNA editing. In this study, we cloned and analyzed the function of variants of the Nav channel, BiNav , from Bombus impatiens. BiNav covers a 46 kb genome region including 30 exons. Sequence analysis of 56 clones showed that the clones can be grouped into 22 splice types with 11 optional exons (exons j, w, p, q, r, b, e, t, l/k, and z). Here, a special alternative exon w is identified, encoding a stretch of 31 amino acid resides in domain I between S3 and S4. RNA editing generates 18 amino acid changes in different positions in individual variants. Among 56 variants examined, only six variants generated sufficient sodium currents for functional characterization in Xenopus oocytes. In the presence of B. impatiens TipE and TEH1, the sodium current amplitude of BiNav 1-1 increased by fourfold, while TipE of other insect species had no effect on the expression. Abundant alternative splicing and RNA editing of BiNav suggests the molecular and functional pharmacology diversity of the Nav channel for bumblebees. This study provides a theoretical basis for the design of insecticides that specifically target pests without affecting beneficial insects.
Collapse
Affiliation(s)
- Longwei Chen
- College of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Yuquan Wang
- College of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Kun Zhang
- College of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Shaoying Wu
- College of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| |
Collapse
|
12
|
Zhou H, Jian Y, Shao Q, Guo F, Zhang M, Wan F, Yang L, Liu Y, Yang L, Li Y, Yang P, Li Z, Li S, Ding W. Development of Sustainable Insecticide Candidates for Protecting Pollinators: Insight into the Bioactivities, Selective Mechanism of Action and QSAR of Natural Coumarin Derivatives against Aphids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18359-18374. [PMID: 37965968 DOI: 10.1021/acs.jafc.3c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Plants employ abundant toxic secondary metabolites to withstand insect attack, while pollinators can tolerate some natural defensive compounds. Coumarins, as promising green alternatives to chemical insecticides, possess wide application prospects in the crop protection field. Herein, the bioactivities of 30 natural coumarin derivatives against Aphis gossypii were assessed and revealed that 6-methylcoumarin exhibited potent aphicidal activity against aphids but displayed no toxicity to honeybees. Additionally, using biochemical, bioinformatic, and molecular assays, we confirmed that the action mode of 6-methylcoumarin against aphids was by inhibiting acetylcholinesterase (AChE). Meanwhile, functional assays revealed that the difference in action site, which located in Lys585 in aphid AChE (equivalent to Val548 in honeybee AChE), was the principal reason for 6-methylcoumarin being toxic to aphids but safe to pollinators. This action site was further validated by mutagenesis data, which uncovered how 6-methylcoumarin was unique selective to the aphid over honeybee or mammalian AChE. Furthermore, a 2D-QSAR model was established, revealing that the central structural feature was H3m, which offers guidance for the future design of more potent coumarin compounds. This work provides a sustainable strategy to take advantage of coumarin analogues for pest management while protecting nontarget pollinators.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Qingyi Shao
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Ying Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Li Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Yanhong Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Pinglong Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Zongquan Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
13
|
Zhang Y, Huang Q, Sheng C, Liu G, Zhang K, Jia Z, Tang T, Mao X, Jones AK, Han Z, Zhao C. G3'MTMD3 in the insect GABA receptor subunit, RDL, confers resistance to broflanilide and fluralaner. PLoS Genet 2023; 19:e1010814. [PMID: 37384781 DOI: 10.1371/journal.pgen.1010814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Meta-diamides (e.g. broflanilide) and isoxazolines (e.g. fluralaner) are novel insecticides that target the resistant to dieldrin (RDL) subunit of insect γ-aminobutyric acid receptors (GABARs). In this study, we used in silico analysis to identify residues that are critical for the interaction between RDL and these insecticides. Substitution of glycine at the third position (G3') in the third transmembrane domain (TMD3) with methionine (G3'M TMD3), which is present in vertebrate GABARs, had the strongest effect on fluralaner binding. This was confirmed by expression of RDL from the rice stem borer, Chilo suppressalis (CsRDL) in oocytes of the African clawed frog, Xenopus laevis, where the G3'MTMD3 mutation almost abolished the antagonistic action of fluralaner. Subsequently, G3'MTMD3 was introduced into the Rdl gene of the fruit fly, Drosophila melanogaster, using the CRISPR/Cas9 system. Larvae of heterozygous lines bearing G3'MTMD3 did not show significant resistance to avermectin, fipronil, broflanilide, and fluralaner. However, larvae homozygous for G3'MTMD3 were highly resistant to broflanilide and fluralaner whilst still being sensitive to fipronil and avermectin. Also, homozygous lines showed severely impaired locomotivity and did not survive to the pupal stage, indicating a significant fitness cost associated with the G3'MTMD3. Moreover, the M3'GTMD3 in the mouse Mus musculus α1β2 GABAR increased sensitivity to fluralaner. Taken together, these results provide convincing in vitro and in vivo evidence for both broflanilide and fluralaner acting on the same amino acid site, as well as insights into potential mechanisms leading to target-site resistance to these insecticides. In addition, our findings could guide further modification of isoxazolines to achieve higher selectivity for the control of insect pests with minimal effects on mammals.
Collapse
Affiliation(s)
- Yichi Zhang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiutang Huang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chengwang Sheng
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Kexin Zhang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhongqiang Jia
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, People's Republic of China
| | - Xin Mao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Zhaojun Han
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chunqing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
14
|
Niklas B, Rydzewski J, Lapied B, Nowak W. Toward Overcoming Pyrethroid Resistance in Mosquito Control: The Role of Sodium Channel Blocker Insecticides. Int J Mol Sci 2023; 24:10334. [PMID: 37373481 DOI: 10.3390/ijms241210334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Diseases spread by mosquitoes lead to the death of 700,000 people each year. The main way to reduce transmission is vector control by biting prevention with chemicals. However, the most commonly used insecticides lose efficacy due to the growing resistance. Voltage-gated sodium channels (VGSCs), membrane proteins responsible for the depolarizing phase of an action potential, are targeted by a broad range of neurotoxins, including pyrethroids and sodium channel blocker insecticides (SCBIs). Reduced sensitivity of the target protein due to the point mutations threatened malaria control with pyrethroids. Although SCBIs-indoxacarb (a pre-insecticide bioactivated to DCJW in insects) and metaflumizone-are used in agriculture only, they emerge as promising candidates in mosquito control. Therefore, a thorough understanding of molecular mechanisms of SCBIs action is urgently needed to break the resistance and stop disease transmission. In this study, by performing an extensive combination of equilibrium and enhanced sampling molecular dynamics simulations (3.2 μs in total), we found the DIII-DIV fenestration to be the most probable entry route of DCJW to the central cavity of mosquito VGSC. Our study revealed that F1852 is crucial in limiting SCBI access to their binding site. Our results explain the role of the F1852T mutation found in resistant insects and the increased toxicity of DCJW compared to its bulkier parent compound, indoxacarb. We also delineated residues that contribute to both SCBIs and non-ester pyrethroid etofenprox binding and thus could be involved in the target site cross-resistance.
Collapse
Affiliation(s)
- Beata Niklas
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Bruno Lapied
- University Angers, INRAE, SIFCIR, SFR QUASAV, F-49045 Angers, France
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
15
|
Global honeybee health decline factors and potential conservation techniques. Food Secur 2023. [DOI: 10.1007/s12571-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Zhang P, Yang F, Shi L, Yang C, Chen Q, Hu X, Zhang Z, Qian K, Xu Z, He L. Enantiomer-Specific Study of Fenpropathrin in Soil-Earthworm Microcosms: Enantioselective Bioactivity, Bioaccumulation, and Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13152-13164. [PMID: 36194681 DOI: 10.1021/acs.jafc.2c04624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, the enantiomer-specific bioactivity, bioaccumulation, and toxicity of fenpropathrin (FEN) enantiomers were investigated in soil-earthworm microcosms. The bioactivity order was S-FEN > rac-FEN > R-FEN for Spodoptera litura and Conogethes punctiferalis. Moreover, S-FEN was 12.0 and 32.2 times more toxic than rac-FEN and R-FEN to earthworms, respectively. S-FEN degraded faster than R-FEN with the enrichment of R-FEN in the soil environment. Furthermore, the peak-shaped accumulation curves for FEN enantiomers were observed, and R-FEN was preferentially bioaccumulated by earthworms. As compared to R-FEN, S-FEN induced greater changes in the activities of detoxification enzymes, antioxidant enzymes, and malondialdehyde content, which suggested that earthworms exhibited enantioselective defense responses to S-FEN and R-FEN. Integrated biomarker response results indicated that S-FEN exhibited higher toxic effects on earthworms than R-FEN. Finally, molecular simulation revealed that the greater interaction forces between S-FEN and sodium channel protein could be the primary reason for the enantioselective bioactivity and toxicity of FEN enantiomers. This study comprehensively highlights the enantiomer-specific bioactivity, bioaccumulation, toxicity, and mechanism of FEN in soil-earthworm microcosms at the enantiomer level. Our findings will contribute to a better risk assessment of FEN in the soil ecosystem.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| | - Furong Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
| | - Linlin Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
| | - Cancan Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
| | - Qi Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Zan Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| | - Kun Qian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| | - Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
17
|
Sun H, Nomura Y, Du Y, Liu Z, Zhorov BS, Dong K. Characterization of two kdr mutations at predicted pyrethroid receptor site 2 in the sodium channels of Aedes aegypti and Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103814. [PMID: 35932971 PMCID: PMC10076083 DOI: 10.1016/j.ibmb.2022.103814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 05/12/2023]
Abstract
Pyrethroid insecticides prolong the opening of insect sodium channels by binding to two predicted pyrethroid receptor sites (PyR), PyR1 and PyR2. Many naturally-occurring sodium channel mutations that confer pyrethroid resistance (known as knockdown resistance, kdr) are located at PyR1. Recent studies identified two new mutations, V253F and T267A, at PyR2, which co-exist with two well-known mutations F1534C or M918T, at PyR1, in pyrethroid-resistant populations of Aedes aegypti and Nilaparvata lugens, respectively. However, the role of the V253F and T267A mutations in pyrethroid resistance has not been functionally examined. Here we report functional characterization of the V253F and T267A mutations in the Ae. aegypti sodium channel AaNav2-1 and the N. lugens sodium channel NlNav1 expressed in Xenopus oocytes. Both mutations alone reduced channel sensitivity to pyrethroids, including etofenprox. We docked etofenprox in a homology model of the pore module of the NlNav1 channel based on the crystal structure of an open prokaryotic sodium channel NavMs. In the low-energy binding pose etofenprox formed contacts with V253, T267 and a previously identified L1014 within PyR2. Combining of V253F or T267A with F1534C or M918T results in a higher level of pyrethroid insensitivity. Furthermore, both V253F and T267A mutations altered channel gating properties. However, V253F- and T267A-induced gating modifications was not observed in the double mutant channels. Our findings highlight the first example in which naturally-found combinational mutations in PyR1 and PyR2 not only confer higher level pyrethroid insensitivity, but also reduce potential fitness tradeoff in pyrethroid-resistant mosquitoes caused by kdr mutation-induced sodium channel gating modifications.
Collapse
Affiliation(s)
- Huahua Sun
- Department of Biology, Duke University, Durham, NC, USA; College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yoshiko Nomura
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Yuzhe Du
- Southern Insect Management Research Unit, Agriculture Research Service, United States Department of Agriculture, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Zewen Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC, USA; Department of Entomology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Zhorov BS, Dong K. Pyrethroids in an AlphaFold2 Model of the Insect Sodium Channel. INSECTS 2022; 13:745. [PMID: 36005370 PMCID: PMC9409284 DOI: 10.3390/insects13080745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Pyrethroid insecticides stabilize the open state of insect sodium channels. Previous mutational, electrophysiological, and computational analyses led to the development of homology models predicting two pyrethroid receptor sites, PyR1 and PyR2. Many of the naturally occurring sodium channel mutations, which confer knockdown resistance (kdr) to pyrethroids, are located within or close to these receptor sites, indicating that these mutations impair pyrethroid binding. However, the mechanism of the state-dependent action of pyrethroids and the mechanisms by which kdr mutations beyond the receptor sites confer resistance remain unclear. Recent advances in protein structure prediction using the AlphaFold2 (AF2) neural network allowed us to generate a new model of the mosquito sodium channel AaNav1-1, with the activated voltage-sensing domains (VSMs) and the presumably inactivated pore domain (PM). We further employed Monte Carlo energy minimizations to open PM and deactivate VSM-I and VSM-II to generate additional models. The docking of a Type II pyrethroid deltamethrin in the models predicted its interactions with many known pyrethroid-sensing residues in the PyR1 and PyR2 sites and revealed ligand-channel interactions that stabilized the open PM and activated VSMs. Our study confirms the predicted two pyrethroid receptor sites, explains the state-dependent action of pyrethroids, and proposes the mechanisms of the allosteric effects of various kdr mutations on pyrethroid action. The AF2-based models may assist in the structure-based design of new insecticides.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
- Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
19
|
Wang H, Duan W, Gao R, Li F, Yang L, Li W, Yin X, Wu S. Unique post-translational modifications diversify the sodium channels in peach aphid (Myzus persicae [Sulzer]). PEST MANAGEMENT SCIENCE 2021; 77:4521-4529. [PMID: 34041843 DOI: 10.1002/ps.6489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Myzus persicae (Sulzer), a worldwide pest, has caused remarkable damage to agriculture. Among the various control methods, chemical control (especially pyrethroids) is most commonly used. The targets of pyrethroids are voltage-gated sodium channels (Nav s). Unlike those of other insects, all Nav s of aphids (including two genes), such as Myzus persicae, are unique. RESULTS In this study, three interlock patterns, I(918)-F(1014), L(918)-L(1014), and T(918)-F(1014), were found at sites 918 and 1014 in the sensitive Myzus persicae strain. Similar to that of other aphids, the Nav of Myzus persicae (MpNav ) consisted of two parts, that is MpNav -I and MpNav -II, which were embedded with an atypical 'DENS' ion selectivity filter and a conventional 'MFM' inactivation gate, respectively. MpNav had 11 alternative exons, including two mutually exclusive exons (k and l) and three exons (w, x, and t), which were located in domains I and III, respectively. In addition, various RNA editing events, A503T and V588A, appearing between the connection of domains I and II and the S3 of domain IV, respectively, had been described. CONCLUSION Overall, MpNav was characterized by unique post-translational regulation mode, 918 and 1014 interlocks, and unusually alternative exons. Our research provides a new perspective on the evolution and variation of insect Nav s. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Wang
- Hainan University, The Innovation Team of Research, Development, and Application of Key Technologies for Safe Production of Tropical Crops, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - WenBo Duan
- Hainan University, The Innovation Team of Research, Development, and Application of Key Technologies for Safe Production of Tropical Crops, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ruibo Gao
- Hainan University, The Innovation Team of Research, Development, and Application of Key Technologies for Safe Production of Tropical Crops, Haikou, China
| | - Fen Li
- Hainan University, The Innovation Team of Research, Development, and Application of Key Technologies for Safe Production of Tropical Crops, Haikou, China
| | - Lei Yang
- Hainan University, The Innovation Team of Research, Development, and Application of Key Technologies for Safe Production of Tropical Crops, Haikou, China
| | - WeiZheng Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - XinMing Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - ShaoYing Wu
- Hainan University, The Innovation Team of Research, Development, and Application of Key Technologies for Safe Production of Tropical Crops, Haikou, China
| |
Collapse
|
20
|
Guo L, Fan XY, Qiao X, Montell C, Huang J. An octopamine receptor confers selective toxicity of amitraz on honeybees and Varroa mites. eLife 2021; 10:68268. [PMID: 34263722 PMCID: PMC8313232 DOI: 10.7554/elife.68268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/11/2021] [Indexed: 12/30/2022] Open
Abstract
The Varroa destructor mite is a devastating parasite of Apis mellifera honeybees. They can cause colonies to collapse by spreading viruses and feeding on the fat reserves of adults and larvae. Amitraz is used to control mites due to its low toxicity to bees; however, the mechanism of bee resistance to amitraz remains unknown. In this study, we found that amitraz and its major metabolite potently activated all four mite octopamine receptors. Behavioral assays using Drosophila null mutants of octopamine receptors identified one receptor subtype Octβ2R as the sole target of amitraz in vivo. We found that thermogenetic activation of octβ2R-expressing neurons mimics amitraz poisoning symptoms in target pests. We next confirmed that the mite Octβ2R was more sensitive to amitraz and its metabolite than the bee Octβ2R in pharmacological assays and transgenic flies. Furthermore, replacement of three bee-specific residues with the counterparts in the mite receptor increased amitraz sensitivity of the bee Octβ2R, indicating that the relative insensitivity of their receptor is the major mechanism for honeybees to resist amitraz. The present findings have important implications for resistance management and the design of safer insecticides that selectively target pests while maintaining low toxicity to non-target pollinators.
Collapse
Affiliation(s)
- Lei Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Yu Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Raffa CM, Chiampo F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering (Basel) 2021; 8:bioengineering8070092. [PMID: 34356199 PMCID: PMC8301097 DOI: 10.3390/bioengineering8070092] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Pesticides are chemical compounds used to eliminate pests; among them, herbicides are compounds particularly toxic to weeds, and this property is exploited to protect the crops from unwanted plants. Pesticides are used to protect and maximize the yield and quality of crops. The excessive use of these chemicals and their persistence in the environment have generated serious problems, namely pollution of soil, water, and, to a lower extent, air, causing harmful effects to the ecosystem and along the food chain. About soil pollution, the residual concentration of pesticides is often over the limits allowed by the regulations. Where this occurs, the challenge is to reduce the amount of these chemicals and obtain agricultural soils suitable for growing ecofriendly crops. The microbial metabolism of indigenous microorganisms can be exploited for degradation since bioremediation is an ecofriendly, cost-effective, rather efficient method compared to the physical and chemical ones. Several biodegradation techniques are available, based on bacterial, fungal, or enzymatic degradation. The removal efficiencies of these processes depend on the type of pollutant and the chemical and physical conditions of the soil. The regulation on the use of pesticides is strictly connected to their environmental impacts. Nowadays, every country can adopt regulations to restrict the consumption of pesticides, prohibit the most harmful ones, and define the admissible concentrations in the soil. However, this variability implies that each country has a different perception of the toxicology of these compounds, inducing different market values of the grown crops. This review aims to give a picture of the bioremediation of soils polluted with commercial pesticides, considering the features that characterize the main and most used ones, namely their classification and their toxicity, together with some elements of legislation into force around the world.
Collapse
|
22
|
Li F, Lin L, Wang H, Duan W, Yuan L, Cao P, Yuchi Z, Wu S. Functional characterization of knockdown resistance mutations in the plant bug, Apolygus lucorum Meyer-Dür. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104874. [PMID: 34119219 DOI: 10.1016/j.pestbp.2021.104874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Apolygus lucorum could cause severe economic damage to crops in China. The pest has been controlled by pyrethroids, and the target of pyrethroids is voltage-gated sodium channel (Nav). Double mutation (L1002F/D941G) was detected in a field-strain of A. lucorum . We found there was single mutation L1002F and double mutation L1002F/D941G, but no single mutation D941G in the field. The tail currents of L1002F and L1002F/D941G were reduced by two types pyrethroid. In contrast, D941G showed a similar activity as wild type channel. D941G and L1002F are both located in domain II but do not face the pyrethroid-binding pocket directly, suggesting that they might affect the insecticide-binding allosterically. L1002F/D941G has significantly different responses to pyrethroids compared to the wild type, but D941G alone has little effect compared to wild type. Our finding demonstrates that some mutation do not cause resistance by itself but can enhance the resistance combined with other mutations.
Collapse
Affiliation(s)
- Fen Li
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- College of Plant Protection, Hainan University, Haikou 570228, China; China College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenbo Duan
- College of Plant Protection, Hainan University, Haikou 570228, China; China College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Linlin Yuan
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Peng Cao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Shaoying Wu
- College of Plant Protection, Hainan University, Haikou 570228, China.
| |
Collapse
|
23
|
Wang LK, Li F, Jiang W, Duan WB, Abdelraheem E, Peng ZQ, Malhat F, Wu SY. A Preliminary Toxicology Study on Eco-friendly Control Target of Spodoptera frugiperda. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:295-301. [PMID: 33386859 DOI: 10.1007/s00128-020-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Pyrethroid and indoxacarb are commonly used pesticides to control the fall armyworm (Spodoptera frugiperda) in the crops. There are a series of consequences caused by the use of pyrethroid and indoxacarb pesticides under emergency control, such as pest resistance development, contamination of soil, water, and farm products. This study analyzed the structure and physiological function of the sodium channel in S. frugiperda, which is an important step to elaborate the resistance mechanism of S. frugiperda to indoxacarb and pyrethroid pesticides. According to genetic analysis, the cloned cDNA sequences of sodium channel in S. frugiperda (SfNav) showed the shortest genetic distance with that of the sodium channel in Helicoverpa armigera. Under the induction of three pesticides, the expression of SfNav decreased in the first 12 h and then increased after 24 h. It was concluded that SfNav had a typical structure of the sodium channel of insects and its down-regulated expression can decrease the combination of S. frugiperda with pyrethroid and indoxacarb pesticides. The up-regulated expression of SfNav was conducive to the enhancement of the pesticide resistance.
Collapse
Affiliation(s)
- Li-Kui Wang
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, 570228, Haikou, China
| | - Fen Li
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, 570228, Haikou, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, 48824, East Lansing, MI, USA
| | - Wen-Bo Duan
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, 570228, Haikou, China
| | - Ehab Abdelraheem
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 12618, Dokki, Giza, Egypt
| | - Zheng-Qiang Peng
- The Ministry of Agriculture and Rural Affairs Key Laboratory of Integrated Pest Management of Tropical Crops, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Haikou, China
| | - Farag Malhat
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 12618, Dokki, Giza, Egypt.
| | - Shao-Ying Wu
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, 570228, Haikou, China.
| |
Collapse
|
24
|
Kocourek F, Stara J, Sopko B, Talacko P, Harant K, Hovorka T, Erban T. Proteogenomic insight into the basis of the insecticide tolerance/resistance of the pollen beetle Brassicogethes (Meligethes) aeneus. J Proteomics 2020; 233:104086. [PMID: 33378720 DOI: 10.1016/j.jprot.2020.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/28/2022]
Abstract
The pollen beetle is a major pest of oilseed rape. Although various resistance mechanisms have been identified, such as kdr (mutation in the sodium channel) and metabolic resistance (CYP overexpression), other "hidden" factors also exist. Some studies have stressed the importance of epistasis as a genetic background. The combination of kdr and metabolic resistance appears to be unfavorable under field conditions in the absence of pesticide selection. The regulation of detoxification enzymes can play an important role, but we highlight different detoxification markers compared to those emphasized in other studies. We also stress the importance of studying the role of markers identified as pathogenesis-related protein 5-like (PR5; upregulated by insecticides) and highlight the role of RNA (DEAD-box) helicases (downregulated by insecticides). Thus, we suggest the importance of epigenetic drivers of resistance/tolerance to pesticides. The key results are similar to those of our previous study, in which deltamethrin treatment of the pollen beetle was also investigated by a proteogenomic approach. Indeed, the mechanism leading to resistance of the pollen beetle may be an innate mechanism that the pollen beetle can also employ in natural habitats, but under field conditions (pesticide exposure), this mechanism is used to survive in response to insecticides. SIGNIFICANCE: Pesticide resistance is a serious problem that hampers the successful production of crops. Understanding the mechanisms of insecticide resistance is highly important for successful pest control, especially when considering integrated pest management. Here, using a proteogenomic approach, we identified novel markers for understanding pollen beetle resistance to pesticides. In addition, future studies will reveal the role of these markers in the multiresistance of pollen beetle populations. We highlight that the proteins identified as PR5, which are known to occur in beetles and are similar to those in plants, may be responsible for tolerance to multiple stresses. In addition, our results indicate that the RNA helicases that exhibited changes in expression may be the epigenetic drivers of multiresistance. The nature of these changes remains an open question, and their relevance in different situations (responses to different stresses) in natural habitats in the absence of pesticides can be proposed.
Collapse
Affiliation(s)
- Frantisek Kocourek
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Jitka Stara
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, BIOCEV, Charles University, Prumyslova 595, Vestec CZ-252 42, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, BIOCEV, Charles University, Prumyslova 595, Vestec CZ-252 42, Czechia
| | - Tomas Hovorka
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia; Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Czech University of Life Sciences Prague, Kamycka 129, Praha-Suchdol CZ-165 00, Czechia
| | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-161 06, Czechia.
| |
Collapse
|
25
|
Wang L, Lin L, Wang H, Duan W, Li F, Zhang K, Cao P, Yuchi Z, Wu S. Two classic mutations in the linker-helix IIL45 and segment IIS6 of Apolygus lucorum sodium channel confer pyrethroid resistance. PEST MANAGEMENT SCIENCE 2020; 76:3954-3964. [PMID: 32506650 DOI: 10.1002/ps.5944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pyrethroids are classified as type I and type II for distinct symptomology. Voltage-gated sodium channel is a primary target of pyrethroids. Mutations of the insect sodium channel have been identified to result in resistance to pyrethroids. Double mutation (L1002 F/M906 I) was detected in field-strain of Apolygus lucorum (Meyer-Dür). Although, it was illuminated the function of the same position mutation in other pests, it is necessary to demonstrate the role in A. lucorum . RESULTS In this study, we examined the effects of mutations on channel gating and pyrethroid sensitivity in Xenopus oocytes. L1002 F, M906 I and L1002 F/M906 I all shifted the voltage dependence of activation in the depolarizing direction. L1002 F, M906 I and L1002 F/M906 I all reduced the amplitude of tail currents induced by type I (bifenthrin and permethrin) and type II (λ-cyhalothrin and deltamethrin). The double mutation, L1002 F/M906 I, reduced integral channel modification by 10-fold compared with the L1002 F and M906 I mutations alone, respectively. Computational analysis based on the model of dual pyrethroid receptors, the two resistance mutations, L1002 F and M906 I are facing two opposite sides of this newly identified pocket. Both mutations affect the optimal binding of the ligands by changing the shape of the pocket but in different ways. CONCLUSION Our results illustrate the distinct effect of mutations on pyrethroids. It is predicted with computer modeling that these mutations allosterically affect pyrethroid binding. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Likui Wang
- Hainan University, Ministry of Education, Haikou, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hao Wang
- Hainan University, Ministry of Education, Haikou, China
| | - Wenbo Duan
- Hainan University, Ministry of Education, Haikou, China
| | - Fen Li
- Hainan University, Ministry of Education, Haikou, China
| | - Kun Zhang
- Hainan University, Ministry of Education, Haikou, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shaoying Wu
- Hainan University, Ministry of Education, Haikou, China
| |
Collapse
|
26
|
Gao Y, He L, Zhu J, Cheng J, Li B, Liu F, Mu W. The relationship between features enabling SDHI fungicide binding to the Sc-Sdh complex and its inhibitory activity against Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2020; 76:2799-2808. [PMID: 32216079 DOI: 10.1002/ps.5827] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND A new generation of succinate dehydrogenase inhibitors (SDHIs) with high efficiency and broad-spectrum antifungal activity has been frequently used in crop production. Sclerotinia stem rot is a major disease of various plants and crops caused by Sclerotinia sclerotiorum. Although benzovindiflupyr and isopyrazam reportedly have high activity against S. sclerotiorum, little is known about the bioactivity of different SDHIs classes against S. sclerotiorum or the mechanism of their differential antifungal activity. RESULTS The in vitro tests revealed that the pyrazole-4-carboxamides of SDHIs (benzovindiflupyr, isopyrazam, fluxapyroxad, pydiflumetofen) had the highest activity against S. sclerotiorum followed by pyridine carboxamides (boscalid), pyridinyl-ethyl benzamides (fluopyram) and thiazole carboxamides (thifluzamide), and of these thifluzamide showed poor antifungal activity with EC50 values greater than 6.01 mg L-1 . The pyrazole-4-carboxamides of SDHIs showed satisfactory protective and curative activity against Sclerotinia stem rot. After treatment with the pyrazole-4-carboxamides of SDHIs, mitochondrial function in S. sclerotiorum decreased significantly. The enzyme activity assays revealed a lower affinity between thifluzamide and the Sc-Sdh complex than was observed for the other six fungicides, with IC50 values ranging from 0.0036 to 1.2088 μmol L-1 . Additionally, the docking positions of fungicides were similar, yet binding energies were different in the docking study with the Sdh complex. The correspondingly weaker hydrogen bonds may be responsible for the poor activity of thifluzamide against S. sclerotiorum. CONCLUSION Understanding different binding features of various SDHIs classes with the Sc-Sdh complex might be beneficial for the design and development of highly effective broad-spectrum fungicides to ensure high yield and quality in crops by reducing fungicide use. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yangyang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, P.R. China
- College of Plant Protection, Shandong Agricultural University, Tai'an, P.R. China
| | - Lifei He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, P.R. China
- College of Plant Protection, Shandong Agricultural University, Tai'an, P.R. China
| | - Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, P.R. China
- College of Plant Protection, Shandong Agricultural University, Tai'an, P.R. China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, P.R. China
- College of Plant Protection, Shandong Agricultural University, Tai'an, P.R. China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, P.R. China
- College of Plant Protection, Shandong Agricultural University, Tai'an, P.R. China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, P.R. China
- College of Plant Protection, Shandong Agricultural University, Tai'an, P.R. China
| |
Collapse
|
27
|
Yan R, Zhou Q, Xu Z, Zhu G, Dong K, Zhorov BS, Chen M. Three sodium channel mutations from Aedes albopictus confer resistance to Type I, but not Type II pyrethroids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103411. [PMID: 32450204 DOI: 10.1016/j.ibmb.2020.103411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Voltage-gated sodium channels are the major targets of several classes of insecticides, including pyrethroids. However, sensitivities of many insect pest species to pyrethroids have gradually decreased due to overuse in pest management programs. One major mechanism of pyrethroid resistance known as knockdown resistance (kdr) involves mutations in the sodium channel gene. Three new mutations in helix IIIS6 of sodium channel (I1532T and F1534S/L) are recently detected in several pyrethroid-resistant populations of Aedes albopictus. The roles of these mutations in pyrethroid resistance have not been functionally examined. We introduced mutations I1532T and F1534S/L alone or in combination into the pyrethroid-sensitive sodium channel AaNav1-1 from Aedes aegypti by site-directed mutagenesis and explored effects of these mutations on the channel gating and sensitivity to pyrethroids. No significant modifications in channel properties were detected, except for a slightly changed activation by F1534S and I1532T + F1534S. However, I1532T and F1534S/L substantially reduced the channel sensitivity to Type I pyrethroids, permethrin and bifenthrin, but not to two Type II pyrethroids, deltamethrin and cypermethrin. The double mutations did not increase the channel resistance to permethrin or bifenthrin. We have built a Nav1.4-based homology model of the AaNav1-1 channel and docked pyrethroids in the model to explain different sensitivities of the mutants to Type I and Type II pyrethroids. The results will assist in developing molecular markers for monitoring pest resistance to pyrethroids. They also provide new insight in the molecular basis of different action of Type I and Type II pyrethroids on sodium channels.
Collapse
Affiliation(s)
- Ru Yan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
| | - Qiaoling Zhou
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI48824, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Mengli Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China; Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
28
|
Thompson AJ, Verdin PS, Burton MJ, Davies TGE, Williamson MS, Field LM, Baines RA, Mellor IR, Duce IR. The effects of knock-down resistance mutations and alternative splicing on voltage-gated sodium channels in Musca domestica and Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103388. [PMID: 32376273 DOI: 10.1016/j.ibmb.2020.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Voltage-gated sodium channels (VGSCs) are a major target site for the action of pyrethroid insecticides and resistance to pyrethroids has been ascribed to mutations in the VGSC gene. VGSCs in insects are encoded by only one gene and their structural and functional diversity results from posttranscriptional modification, particularly, alternative splicing. Using whole cell patch clamping of neurons from pyrethroid susceptible (wild-type) and resistant strains (s-kdr) of housefly, Musca domestica, we have shown that the V50 for activation and steady state inactivation of sodium currents (INa+) is significantly depolarised in s-kdr neurons compared with wild-type and that 10 nM deltamethrin significantly hyperpolarised both of these parameters in the neurons from susceptible but not s-kdr houseflies. Similarly, tail currents were more sensitive to deltamethrin in wild-type neurons (EC15 14.5 nM) than s-kdr (EC15 133 nM). We also found that in both strains, INa+ are of two types: a strongly inactivating (to 6.8% of peak) current, and a more persistent (to 17.1% of peak) current. Analysis of tail currents showed that the persistent current in both strains (wild-type EC15 5.84 nM) was more sensitive to deltamethrin than was the inactivating type (wild-type EC15 35.1 nM). It has been shown previously, that the presence of exon l in the Drosophila melanogaster VGSC gives rise to a more persistent INa+ than does the alternative splice variant containing exon k and we used PCR with housefly head cDNA to confirm the presence of the housefly orthologues of splice variants k and l. Their effect on deltamethrin sensitivity was determined by examining INa+ in Xenopus oocytes expressing either the k or l variants of the Drosophila para VGSC. Analysis of tail currents, in the presence of various concentrations of deltamethrin, showed that the l splice variant was significantly more sensitive (EC50 42 nM) than the k splice variant (EC50 866 nM). We conclude that in addition to the presence of point mutations, target site resistance to pyrethroids may involve the differential expression of splice variants.
Collapse
Affiliation(s)
- Andrew J Thompson
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Paul S Verdin
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Mark J Burton
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - T G Emyr Davies
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Martin S Williamson
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Linda M Field
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom
| | - Ian R Mellor
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ian R Duce
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
29
|
Zhang K, Chen M, Wang H, Duan W, Wang Q, Li F, Deng D, Bandason E, Wu S. Molecular characterization and functional expression of voltage-gated sodium channel variants in Apolygus lucorum (Meyer-Dür). PEST MANAGEMENT SCIENCE 2020; 76:2095-2104. [PMID: 31944525 DOI: 10.1002/ps.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/30/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Apolygus lucorum (Meyer-Dür) is a serious worldwide agricultural pest, especially for Bt cotton in China. Pyrethroids, neonicotinoids and organophosphates are the most effective insecticides to control piercing and sucking insects, including A. lucorum. The voltage-gated sodium channel (Nav ) is major target site of pyrethroids. Extensive alternative splicing and RNA editing, two major post-transcriptional mechanisms, contribute to generate different functional sodium channel variants. In our research, we characterized the sodium channel variants of A. lucorum. RESULTS In this study, we isolated numerous sodium channel variants that cover the entire coding region of the VGSC gene from A. lucorum. All clones could be grouped into 47 splice types based on the presence of nine alternative exons (exons j, n, o, a, p, b, s, q and t). Exons j, b and t were located independently, while exons n, o, a and p were located adjacently, as were exons s and q. We also found 35 nucleotide changes in different positions in individual variants, of which 18 nucleotide changes were A-to-I RNA editing, 11 nucleotide changes were likely due to U-to-C or C-to-U editing, and the others were likely natural sequence polymorphisms in the population. Furthermore, we expressed all of the variants in Xenopus oocytes. Eighteen of them were expressed in oocytes and sensitive to tetrodotoxin. CONCLUSION Our results provide a functional basis for understanding how A. lucorum sodium channel variants work in regulating channel expression, pharmacology and gating properties for agricultural insects. Apolygus lucorum is widely distributed in cotton production. Our results suggest how AlNav (the sodium channel of A.lucorum) variants work in regulating channel expression, pharmacology and sodium channel gating for agricultural insects in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Zhang
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengli Chen
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hao Wang
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Duan
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fen Li
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Denghui Deng
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Elizabeth Bandason
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Shaoying Wu
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
30
|
Sun H, Du Y, Liu Z, Dong K. Distinct functional properties of sodium channel variants are associated with usage of alternative exons in Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103292. [PMID: 31811885 PMCID: PMC7085919 DOI: 10.1016/j.ibmb.2019.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 05/04/2023]
Abstract
Voltage-gated sodium channels (Nav) are essential for electrical signaling in the nervous system. They are also the primary targets of several classes of insecticides including pyrethroids. There is only one sodium channel gene in most insect species, whereas mammals possess at least nine sodium channel genes. Extensive alternative splicing and RNA editing of sodium channel transcripts have been documented in many insect species. However, the functional consequences of these post-transcriptional events have been evaluated only in DmNav and BgNav from Drosophila melanogaster and Blattella germanica, respectively. In this study, we isolated 41 full-length cDNA clones encoding 34 sodium channel (NlNav) variants from a major rice pest, the brown planthopper (Nilaparvata lugens Stål). The 34 NlNav variants represent 24 distinct splicing types based on the usage of nine alternative exons, six of which, including exon b, have been previously reported in other insect species. When expressed in Xenopus oocytes, NlNav variants lacking exon b generated significantly larger sodium currents than variants possessing exon b, suggesting an inhibitory effect of exon b on sodium current expression. A similar effect has been reported for exon b from BgNav. Mutational analysis showed that three conserved amino acid residues encoded by exon b are critical for its inhibitory effect. In addition, mutually exclusive exons k/l contribute to distinct functional properties and channel sensitivity to pyrethroids. Altogether, these results show that alternative splicing generates functional diversity of sodium channels in this insect species and that the role of exon b in regulating neuronal excitability is likely conserved among insect species.
Collapse
Affiliation(s)
- Huahua Sun
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI, 48824, USA
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
31
|
Chen N, Pei XJ, Li S, Fan YL, Liu TX. Involvement of integument-rich CYP4G19 in hydrocarbon biosynthesis and cuticular penetration resistance in Blattella germanica (L.). PEST MANAGEMENT SCIENCE 2020; 76:215-226. [PMID: 31149772 DOI: 10.1002/ps.5499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cuticle penetration plays an important role as a mechanism of insecticide resistance, but the underlying molecular mechanism remains poorly understood. In Blattella germanica, the cytochrome P450 gene, CYP4G19, is overexpressed in a pyrethroid-resistant strain. Here, we investigated whether CYP4G19 is involved in the biosynthesis of hydrocarbons and further contributes to cuticular penetration resistance in B. germanica. RESULTS Compared with the susceptible strain, pyrethroid-resistant cockroaches showed lower cuticular permeability with Eosin Y staining. Removal of epicuticular lipids, mainly nonpolar hydrocarbons, with a hexane wash intensified the cuticular permeability and decreased the resistance index of the resistant strain. CYP4G19 was predominately expressed in the abdominal integument and could be upregulated by desiccation stress or short exposure to beta-cypermethrin. Overexpression of CYP4G19 in the resistant strain was positively correlated with a higher level of cuticular hydrocarbons (CHCs). RNAi-mediated knockdown of CYP4G19 significantly decreased its expression and caused a reduction in CHCs. Meanwhile, CYP4G19 suppression resulted in a non-uniform array of the lipid layer, enhanced cuticle permeability, and compromised insecticide tolerance. CONCLUSION Our findings confirm that CYP4G19 is involved in hydrocarbon production and appears to contribute to hydrocarbon-based penetration resistance in B. germanica. This study highlights the lipid-based penetration resistance, advancing our understanding of the molecular mechanism underlying P450-mediated cuticular penetration resistance in insects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Zhang J, Hao W, Zhorov BS, Dong K, Jiang D. Discovery of a Novel Series of Tricyclic Oxadiazine 4a-Methyl Esters Based on Indoxacarb as Potential Sodium Channel Blocker/Modulator Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7793-7809. [PMID: 31274315 DOI: 10.1021/acs.jafc.9b00826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Indoxacarb, a commercialized oxadiazine insecticide, nearly irreversibly blocks open/inactivated, but not resting sodium channels. The structure-activity relationships showed that the substituents at the position of the chiral atom in the oxadiazine ring are very important to the biological activity of oxadiazine insecticide. Here we synthesized a series of tricyclic oxadiazine 4a-methyl ester derivatives. The chiral atom in the oxadiazine ring has been epimerized and substituted with either pyrethric acid or cinnamic acid derivatives. Benzene ring in the tricyclic moiety was substituted with a chlorine, fluorine, or bromine atom, and nitrogen-linked benzene ring was substituted with a trifluoromethyl or trifluoromethoxy group. Toxicity of these compounds against Spodoptera litura F. was evaluated. Diastereoisomers of most toxic compounds J7 and J9 with pyrethric acid moiety were separated by flash column chromatography. The more polar diastereoisomers, J7-L-Rf and J9-L-Rf, and compounds J24 and J26 with cinnamic acid moiety exhibited highest insecticidal activities. We further used Monte Carlo energy minimizations to dock compound J7 and J24 in the NavMs-based homology model of the open cockroach sodium channel. In the low-energy binding modes, the compound interacted with residues in the inner pore and domain interfaces, which previously were proposed to contribute to receptors of pyrethroids and sodium channel blocker insecticides. Our results define compound J7 and J24 as a potentially useful optimized hit for the development of multiple sites sodium channel blocker or modulator.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology , South China Agricultural University , Guangzhou 510642 , P.R. China
| | - Wenbo Hao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology , South China Agricultural University , Guangzhou 510642 , P.R. China
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS , St. Petersburg , Russia
- Department of Biochemistry & Biomedical Sciences , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - Ke Dong
- Department of Entomology, Neuroscience and Genetics Programs , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Dingxin Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology , South China Agricultural University , Guangzhou 510642 , P.R. China
| |
Collapse
|
33
|
Chen M, Du Y, Wu S, Nomura Y, Zhu G, Zhorov BS, Dong K. Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti. PLoS Negl Trop Dis 2019; 13:e0007432. [PMID: 31158225 PMCID: PMC6564045 DOI: 10.1371/journal.pntd.0007432] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/13/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Multiple mutations in the voltage-gated sodium channel have been associated with knockdown resistance (kdr) to DDT and pyrethroid insecticides in a major human disease vector Aedes aegypti. One mutation, V1016G, confers sodium channel resistance to pyrethroids, but a different substitution in the same position V1016I alone had no effect. In pyrethroid-resistant Ae. aegypti populations, V1016I is often linked to another mutation, F1534C, which confers sodium channel resistance only to Type I pyrethroids including permethrin (PMT), but not to Type II pyrethroids including deltamethrin (DMT). Mosquitoes carrying both V1016G and F1534C exhibited a greater level of pyrethroid resistance than those carrying F1534C alone. More recently, a new mutation T1520I co-existing with F1534C was detected in India. However, whether V1016I or T1520I enhances pyrethroid resistance of sodium channels carrying F1534C remains unknown. METHODOLOGY/PRINCIPAL FINDINGS V1016I, V1016G, T1520I and F1534C substitutions were introduced alone and in various combinations into AaNav1-1, a sodium channel from Aedes aegypti. The mutant channels were then expressed in Xenopus oocytes and examined for channel properties and sensitivity to pyrethroids using the two-electrode voltage clamping technique. The results showed that V1016I or T1520I alone did not alter the AaNav1-1 sensitivity to PMT or DMT. However, the double mutant T1520I+F1534C was more resistant to PMT than F1534C, but remained sensitive to DMT. In contrast, the double mutant V1016I+F1534C was resistant to DMT and more resistant to PMT than F1534C. Furthermore, V1016I/G and F1534C channels, but not T1520I, were resistant to dichlorodiphenyltrichloroethane (DDT). Cryo-EM structures of sodium channels suggest that T1520I allosterically deforms geometry of the pyrethroid receptor site PyR1 in AaNav1-1. The small deformation does not affect binding of DDT, PMT or DMT, but in combination with F1534C it increases the channel resistance to PMT and DDT. CONCLUSIONS/SIGNIFICANCE Our data corroborated the previously proposed sequential selection of kdr mutations in Ae. aegypti. We proposed that mutation F1534C first emerged in response to DDT/pyrethroids providing a platform for subsequent selection of mutations V1016I and T1520I that confer greater and broader spectrum of pyrethroid resistance.
Collapse
Affiliation(s)
- Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| | - Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| | - Shaoying Wu
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| |
Collapse
|
34
|
Kadala A, Charreton M, Charnet P, Cens T, Rousset M, Chahine M, Vaissière BE, Collet C. Voltage-gated sodium channels from the bees Apis mellifera and Bombus terrestris are differentially modulated by pyrethroid insecticides. Sci Rep 2019; 9:1078. [PMID: 30705348 PMCID: PMC6355911 DOI: 10.1038/s41598-018-37278-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/05/2018] [Indexed: 11/23/2022] Open
Abstract
Recent experimental and in-field evidence of the deleterious effects of insecticides on the domestic honey bee Apis mellifera have led to a tightening of the risk assessment requirements of these products, and now more attention is being paid to their sublethal effects on other bee species. In addition to traditional tests, in vitro and in silico approaches may become essential tools for a comprehensive understanding of the impact of insecticides on bee species. Here we present a study in which electrophysiology and a Markovian multi-state modelling of the voltage-gated sodium channel were used to measure the susceptibility of the antennal lobe neurons from Apis mellifera and Bombus terrestris, to the pyrethroids tetramethrin and esfenvalerate. Voltage-gated sodium channels from Apis mellifera and Bombus terrestris are differentially sensitive to pyrethroids. In both bee species, the level of neuronal activity played an important role in their relative sensitivity to pyrethroids. This work supports the notion that honey bees cannot unequivocally be considered as a surrogate for other bee species in assessing their neuronal susceptibility to insecticides.
Collapse
Affiliation(s)
- Aklesso Kadala
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France
| | - Mercédès Charreton
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France
- UMT PRADE, Protection des Abeilles dans l'Environnement, 84914, Avignon, France
| | - Pierre Charnet
- CNRS, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, Université Montpellier 2, Montpellier, France
| | - Thierry Cens
- CNRS, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, Université Montpellier 2, Montpellier, France
| | - Mathieu Rousset
- CNRS, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, Université Montpellier 2, Montpellier, France
| | - Mohamed Chahine
- Department of Medicine, Université Laval, Quebec City, QC, G1K 7P4, Canada
| | - Bernard E Vaissière
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France
- UMT PRADE, Protection des Abeilles dans l'Environnement, 84914, Avignon, France
| | - Claude Collet
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
- UMT PRADE, Protection des Abeilles dans l'Environnement, 84914, Avignon, France.
| |
Collapse
|
35
|
Scott JG. Life and Death at the Voltage-Sensitive Sodium Channel: Evolution in Response to Insecticide Use. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:243-257. [PMID: 30629893 DOI: 10.1146/annurev-ento-011118-112420] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The voltage-sensitive sodium channel (VSSC) is a critical component of the insect nervous system. Pyrethroids and DDT are insecticides that have been widely used, and they kill insects by perturbations of the VSSC. Decades of insecticide use selected for mutations in Vssc that give rise to resistance in almost all pest insects. However, the mutations responsible for the resistance are not always the same, and some unusual patterns have emerged. This review focuses on what pyrethroid/DDT selection has done, in terms of Vssc changes that have occurred, using four well-studied species as examples of the differences that have evolved. Information is provided about the mutations that occur, potential pathways by which alleles with multiple mutations arose, the relative fitness of the alleles, the levels of resistance conferred, and the geographic distribution of the mutations. The lessons learned and exciting new areas of research are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
36
|
Fux JE, Mehta A, Moffat J, Spafford JD. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front Physiol 2018; 9:1406. [PMID: 30519187 PMCID: PMC6259924 DOI: 10.3389/fphys.2018.01406] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
The appearance of voltage-gated, sodium-selective channels with rapid gating kinetics was a limiting factor in the evolution of nervous systems. Two rounds of domain duplications generated a common 24 transmembrane segment (4 × 6 TM) template that is shared amongst voltage-gated sodium (Nav1 and Nav2) and calcium channels (Cav1, Cav2, and Cav3) and leak channel (NALCN) plus homologs from yeast, different single-cell protists (heterokont and unikont) and algae (green and brown). A shared architecture in 4 × 6 TM channels include an asymmetrical arrangement of extended extracellular L5/L6 turrets containing a 4-0-2-2 pattern of cysteines, glycosylated residues, a universally short III-IV cytoplasmic linker and often a recognizable, C-terminal PDZ binding motif. Six intron splice junctions are conserved in the first domain, including a rare U12-type of the minor spliceosome provides support for a shared heritage for sodium and calcium channels, and a separate lineage for NALCN. The asymmetrically arranged pores of 4x6 TM channels allows for a changeable ion selectivity by means of a single lysine residue change in the high field strength site of the ion selectivity filter in Domains II or III. Multicellularity and the appearance of systems was an impetus for Nav1 channels to adapt to sodium ion selectivity and fast ion gating. A non-selective, and slowly gating Nav2 channel homolog in single cell eukaryotes, predate the diversification of Nav1 channels from a basal homolog in a common ancestor to extant cnidarians to the nine vertebrate Nav1.x channel genes plus Nax. A close kinship between Nav2 and Nav1 homologs is evident in the sharing of most (twenty) intron splice junctions. Different metazoan groups have lost their Nav1 channel genes altogether, while vertebrates rapidly expanded their gene numbers. The expansion in vertebrate Nav1 channel genes fills unique functional niches and generates overlapping properties contributing to redundancies. Specific nervous system adaptations include cytoplasmic linkers with phosphorylation sites and tethered elements to protein assemblies in First Initial Segments and nodes of Ranvier. Analogous accessory beta subunit appeared alongside Nav1 channels within different animal sub-phyla. Nav1 channels contribute to pace-making as persistent or resurgent currents, the former which is widespread across animals, while the latter is a likely vertebrate adaptation.
Collapse
Affiliation(s)
- Julia E Fux
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jack Moffat
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
37
|
Chen M, Du Y, Zhu G, Takamatsu G, Ihara M, Matsuda K, Zhorov BS, Dong K. Action of six pyrethrins purified from the botanical insecticide pyrethrum on cockroach sodium channels expressed in Xenopus oocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 151:82-89. [PMID: 30704718 DOI: 10.1016/j.pestbp.2018.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 05/28/2023]
Abstract
Pyrethrin I, pyrethrin II, cinerin I, cinerin II, jasmolin I and jasmolin II are six closely related insecticidal active esters, known as pyrethrins, found in the pyrethrum extract from the dry flowers of Tanacetum cinerariifolium. The chemical structures of the six compounds differ only in the terminal moieties at the acid and alcohol ends, but the compounds' in vivo toxicities are substantially different. Pyrethrins are lead compounds for pyrethroids, a large family of synthetic insecticides that alter nerve functions by prolonging the opening of voltage-gated sodium channels. However, data on the mechanism of action of natural pyrethrins are very limited. In this study, we examined the actions of all six pyrethrins on cockroach sodium channels expressed in Xenopus oocytes. Although the six compounds showed comparable potencies in inhibiting the inactivation of sodium channels, they had greatly variable potencies in inhibiting channel deactivation. Furthermore, unlike pyrethroids, the action of pyrethrins neither depend on nor were enhanced by repeated channel activation. We created a NavMs-based model of the cockroach sodium channel, in which pyrethrin II was docked at the pyrethroid receptor site 1 (PyR1), and proposed a rationale for the observed structure-activity relationship of the six pyrethrins. Our study sheds light on the molecular mechanism of pyrethrum action on sodium channels and reveled differences in the modes of action of the six bioactive constitutes of pyrethrum.
Collapse
Affiliation(s)
- Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China
| | - Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China
| | - Genki Takamatsu
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
38
|
Manjon C, Troczka BJ, Zaworra M, Beadle K, Randall E, Hertlein G, Singh KS, Zimmer CT, Homem RA, Lueke B, Reid R, Kor L, Kohler M, Benting J, Williamson MS, Davies TGE, Field LM, Bass C, Nauen R. Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides. Curr Biol 2018; 28:1137-1143.e5. [PMID: 29576476 PMCID: PMC5887109 DOI: 10.1016/j.cub.2018.02.045] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
Abstract
The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.
Collapse
Affiliation(s)
- Cristina Manjon
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Bartlomiej J Troczka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Marion Zaworra
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany; Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms University Bonn, 53115 Bonn, Germany
| | - Katherine Beadle
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Emma Randall
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Christoph T Zimmer
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Rafael A Homem
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Bettina Lueke
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Rebecca Reid
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Laura Kor
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Maxie Kohler
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Jürgen Benting
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Martin S Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - T G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Linda M Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| |
Collapse
|