1
|
Xie Y, Wei C, Fu D, Zhang W, Du Y, Huang C, Liu S, Yao R, He Z, Zhang S, Jin X, Shen B, Cao L, Wang P, Fang X, Zheng X, Lin H, Wei X, Lin W, Bai M, Zhu D, Li Y, Ding Y, Zhu H, Ye H, He J, Su Y, Jia Y, Wu H, Wang Y, Xing D, Qiu X, Li Z, Hu F. Large-scale multicenter study reveals anticitrullinated SR-A peptide antibody as a biomarker and exacerbator for rheumatoid arthritis. SCIENCE ADVANCES 2025; 11:eadr8078. [PMID: 39752500 PMCID: PMC11698088 DOI: 10.1126/sciadv.adr8078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Current diagnosis and treatment of rheumatoid arthritis (RA) is still challenging. More than one-third of patients with RA could not be accurately diagnosed because of lacking biomarkers. Our recent study reported that scavenger receptor-A (SR-A) is a biomarker for RA, especially for anticyclic citrullinated peptide antibody (anti-CCP)-negative RA. Here, we further identified the B cell autoantigenic epitopes of SR-A. By a large-scale multicenter study including one training and three validation cohorts of 1954 participants, we showed that anticitrullinated SR-A peptide antibody (anti-CSP) was exclusively elevated in RA as a biomarker, particularly useful for seronegative RA. Combination of anti-CSP with anti-CCP demonstrated superior diagnostic value for RA, with sensitivity of 84.83% and specificity of 92.43%. Moreover, RA anti-CSP revealed distinct glycosylation patterns, capable of provoking inflammation in cartilage organoids and exacerbating disease progression in experimental arthritis. Together, these data identify anti-CSP as an RA autoantibody clinically applicable and actively involved in disease pathogenesis.
Collapse
Affiliation(s)
- Yang Xie
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chaonan Wei
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Dongdong Fu
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, Xinxiang, China
| | - Wei Zhang
- Department of Rheumatology and Immunology, First Hospital Affiliated to Baotou Medical College & Inner Mongolia Key Laboratory of Autoimmunity, Baotou, China
| | - Yan Du
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuncui Huang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuyan Liu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ranran Yao
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zihao He
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xu Jin
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Bin Shen
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ping Wang
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiangyu Fang
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xi Zheng
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hongying Lin
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xihua Wei
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Wenhao Lin
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Danxue Zhu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yamin Ding
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaxiang Wu
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, First Hospital Affiliated to Baotou Medical College & Inner Mongolia Key Laboratory of Autoimmunity, Baotou, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh SA, Farjadfar A. Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatment. Int J Biol Macromol 2024; 278:134576. [PMID: 39127273 DOI: 10.1016/j.ijbiomac.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In 1958, the presence of citrulline in the structure of the proteins was discovered for the first time. Several years later they found that Arginine converted to citrulline during a post-translational modification process by PAD enzyme. Each PAD is expressed in a certain tissue developing a series of diseases such as inflammation and cancers. Among these, PAD2 and PAD4 play a role in the development of rheumatoid arthritis (RA) by producing citrullinated autoantigens and increasing the production of inflammatory cytokines. PAD4 is also associated with the formation of NET structures and thrombosis. In the crystallographic structure, PAD has several calcium binding sites, and the active site of the enzyme consists of different amino acids. Various PAD inhibitors have been developed divided into pan-PAD and selective PAD inhibitors. F-amidine, Cl-amidine, and BB-Cl-amidine are some of pan-PAD inhibitors. AFM-30a and JBI589 are selective for PAD2 and PAD4, respectively. There is a need to evaluate the effectiveness of existing inhibitors more accurately in the coming years, as well as design and production of novel inhibitors targeting highly specific isoforms.
Collapse
Affiliation(s)
- Pegah Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
3
|
Hemon M, Giassi M, Ghaffar Y, Martin M, Roudier J, Auger I, Lambert NC. Microchimeric cells promote production of rheumatoid arthritis-specific autoantibodies. J Autoimmun 2024; 146:103238. [PMID: 38754239 DOI: 10.1016/j.jaut.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Women are more likely to develop autoimmune diseases than men. Contribution from microchimerism (Mc) has been proposed, as women naturally acquire Mc from more sources than men because of pregnancy. Women with Rheumatoid Arthritis (RA) who lack RA-associated HLA alleles have been found to harbor Mc with RA-associated HLA alleles in higher amounts than healthy women in prior work. However, an immunological impact of Mc remains to be elucidated. OBJECTIVES To test the hypothesis that Mc with RA-risk associated HLA alleles can result in the production of RA-associated autoantibodies, when host genetic risk is absent. METHODS DBA/2 mice are unable to produce RA-specific anti-citrullinated autoantibodies (ACPAs) after immunization with the enzyme peptidyl arginine deiminase (PAD) in a previously developed model. DBA/2 females were mated with C57BL/6 males humanized to express HLA-DR4, which is associated with RA-risk and production of ACPAs, to evaluate DR4+ fetal Mc contribution. Next, DBA/2 females born of heterozygous DR4+/- mothers were evaluated for DR4+ Mc of maternal or littermate origin. Finally, DBA/2 females from DR4+/- mothers were crossed with DR4+ males, to evaluate the contribution of any Mc source to ACPA production. RESULTS After PAD immunization, between 20 % and 43 % of DBA/2 females (otherwise unable to produce ACPAs) had detectable ACPAs (CCP2 kit) after exposure to sources of Mc with RA-associated HLA alleles, compared to 0 % of unmated/unexposed DBA/2 females. Further the microchimeric origin of the autoantibodies was confirmed by detecting a C57BL/6-specific immunoglobulin isotype in the DBA/2 response. CONCLUSION Our study demonstrates that Mc cells can produce "autoantibodies" and points to a role of Mc in the biology of autoimmune diseases, including RA.
Collapse
Affiliation(s)
- Marie Hemon
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France; Arthritis R&D, Neuilly-sur-Seine, France
| | - Mathilde Giassi
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Yoan Ghaffar
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Marielle Martin
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Jean Roudier
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France; Rheumatology department, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille France
| | - Isabelle Auger
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Nathalie C Lambert
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France.
| |
Collapse
|
4
|
Pérez-Pérez ME, Nieto-Torres E, Bollain-y-Goytia JJ, Delgadillo-Ruíz L. Protein Citrullination by Peptidyl Arginine Deiminase/Arginine Deiminase Homologs in Members of the Human Microbiota and Its Recognition by Anti-Citrullinated Protein Antibodies. Int J Mol Sci 2024; 25:5192. [PMID: 38791230 PMCID: PMC11121387 DOI: 10.3390/ijms25105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The human microbiome exists throughout the body, and it is essential for maintaining various physiological processes, including immunity, and dysbiotic events, which are associated with autoimmunity. Peptidylarginine deiminase (PAD) enzymes can citrullinate self-proteins related to rheumatoid arthritis (RA) that induce the production of anti-citrullinated protein antibodies (ACPAs) and lead to inflammation and joint damage. The present investigation was carried out to demonstrate the expression of homologs of PADs or arginine deiminases (ADs) and citrullinated proteins in members of the human microbiota. To achieve the objective, we used 17 microbial strains and specific polyclonal antibodies (pAbs) of the synthetic peptide derived from residues 100-200 of human PAD2 (anti-PAD2 pAb), and the recombinant fragment of amino acids 326 and 611 of human PAD4 (anti-PAD4 pAb), a human anti-citrulline pAb, and affinity ACPAs of an RA patient. Western blot (WB), enzyme-linked immunosorbent assay (ELISA), elution, and a test with Griess reagent were used. This is a cross-sectional case-control study on patients diagnosed with RA and control subjects. Inferential statistics were applied using the non-parametric Kruskal-Wallis test and Mann-Whitney U test generated in the SPSS program. Some members of phyla Firmicutes and Proteobacteria harbor homologs of PADs/ADs and citrullinated antigens that are reactive to the ACPAs of RA patients. Microbial citrullinome and homolog enzymes of PADs/ADs are extensive in the human microbiome and are involved in the production of ACPAs. Our findings suggest a molecular link between microorganisms of a dysbiotic microbiota and RA pathogenesis.
Collapse
Affiliation(s)
- María-Elena Pérez-Pérez
- PhD in Basic Science with Biological Orientation, Academic Unit of Biological Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98066, Mexico; (M.-E.P.-P.); (L.D.-R.)
- Department of Immunology and Molecular Biology, Academic Unit of Biological Sciences, Universidad Autónoma de Zacatecas, Guadalupe, Zacatecas 98615, Mexico
| | - Enrique Nieto-Torres
- Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico;
| | - Juan-José Bollain-y-Goytia
- PhD in Basic Science with Biological Orientation, Academic Unit of Biological Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98066, Mexico; (M.-E.P.-P.); (L.D.-R.)
- Department of Immunology and Molecular Biology, Academic Unit of Biological Sciences, Universidad Autónoma de Zacatecas, Guadalupe, Zacatecas 98615, Mexico
| | - Lucía Delgadillo-Ruíz
- PhD in Basic Science with Biological Orientation, Academic Unit of Biological Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98066, Mexico; (M.-E.P.-P.); (L.D.-R.)
| |
Collapse
|
5
|
Zhang G, Xu J, Du D, Liu Y, Dai L, Zhao Y. Diagnostic values, association with disease activity and possible risk factors of anti-PAD4 in rheumatoid arthritis: a meta-analysis. Rheumatology (Oxford) 2024; 63:914-924. [PMID: 37824204 DOI: 10.1093/rheumatology/kead545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Anti-peptidyl arginine deaminase 4 (anti-PAD4) antibody has been a subject of investigation in RA in the last two decades. This meta-analysis investigated the diagnostic values, association with disease activity and possible risk factors of anti-PAD4 antibody in rheumatoid arthritis. METHOD We searched studies from five databases up to 1 December 2022. Bivariate mixed-effect models were used to pool the diagnostic accuracy indexes, and the summary receiver operating characteristics (SROC) curve was plotted. The quality of diagnostic studies was assessed using QUADAS-2. Non-diagnostic meta-analyses were conducted using the random-effects model. Sensitivity analysis, meta-regression, subgroup analyses and Deeks' funnel plot asymmetry test were used to address heterogeneity. RESULT Finally, 24 journal articles and one letter were included. Anti-PAD4 antibody had a good diagnostic value between RA and healthy individuals, but it might be lower between RA and other rheumatic diseases. Moreover, anti-PAD4 could slightly enhance RA diagnostic sensitivity with a combination of ACPA or ACPA/RF. Anti-PAD4 antibody was positively correlated with HLA-SE and negatively correlated with ever or current smoking in patients with RA. RA patients with anti-PAD4 antibody had higher DAS28, ESR, swollen joint count (SJC) and the possibility of having interstitial lung disease (ILD) and pulmonary fibrosis compared with those without. CONCLUSION Our study suggests that anti-PAD4 antibody is a potentially useful diagnostic biomarker and clinical indicator for RA. Further mechanistic studies are required to understand the impact of HLA-SE and smoking on the production of anti-PAD4 antibody.
Collapse
Affiliation(s)
- Guangyue Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayi Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Blenkinsopp HC, Seidler K, Barrow M. Microbial Imbalance and Intestinal Permeability in the Pathogenesis of Rheumatoid Arthritis: A Mechanism Review with a Focus on Bacterial Translocation, Citrullination, and Probiotic Intervention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:59-76. [PMID: 37294082 DOI: 10.1080/27697061.2023.2211129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
This review aims to investigate the role of intestinal permeability (IP) in rheumatoid arthritis (RA), following the hypotheses that leakage of intestinal microbes can influence increased citrullination of peptides leading to anti-citrullinated protein antibody (ACPA) production and inflammation in RA; and that leaked microbes can migrate to the peripheral joints, leading to immune responses and synovitis in peripheral joints. This review explored the evidence for the link between microbial dysbiosis and increased IP in the inflammatory state in RA, as well as the role of increased citrullination and bacterial translocation in the link between microbiota and immune responses in RA. Furthermore, this research aims to evaluate the potential effect of probiotics on RA symptoms and pathogenesis via proposed mechanisms, including the support of microbial balance and suppression of inflammatory factors in RA. A systematic literature search was conducted in three tranches (review, mechanism, intervention). 71 peer-reviewed papers met the inclusions criteria and are summarized in a narrative analysis. Primary studies were critically appraised, synthesized and their relevance to clinical practice evaluated. Evidence found in this mechanism review consistently supported intestinal dysbiosis and increased IP in arthritis. An altered intestinal microbiome was demonstrated in RA with specific microbes such as Collinsella and Eggerthella correlating with increased IP, mucosal inflammation, and immune responses. Hypercitrullination and ACPA production correlated with arthritic symptoms and intestinal microbes were shown to influence hypercitrullination. Some in vitro and animal studies demonstrated a link between leakage of microbes and bacterial translocation, but further research is needed to elucidate the link between IP and citrullination. Probiotic intervention studies evidenced reductions in inflammatory markers IL-6 and TNFα, associated with proliferation of synovial tissue and pain perception in RA joint inflammation. Despite some conflict in the literature, probiotics may present a promising nutritional intervention in the suppression of both, disease activity and inflammatory markers.Key teaching pointsThere is evidence for a dysbiotic profile of the RA gut with specific RA-associated microbes.Increased intestinal permeability and leakage of PAD enzyme facilitates citrullination of peptides.Hypercitrullination and ACPA production correlate to arthritic signs.Microbial leakage and translocation plays a role in the pathogenesis of RA.Probiotics (e.g. L. Casei 01) may reduce inflammation and ameliorate RA symptoms.
Collapse
Affiliation(s)
- Holly C Blenkinsopp
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Karin Seidler
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| | - Michelle Barrow
- The Centre for Nutritional Education and Lifestyle Management (CNELM), Wokingham, UK
| |
Collapse
|
7
|
Yang C, Hu Z, Wang L, Fang L, Wang X, Li Q, Xu L, Wang J, Liu C, Lin N. Porphyromonas gingivalis with collagen immunization induces ACPA-positive rheumatoid arthritis in C3H mice. Clin Immunol 2024; 258:109859. [PMID: 38065368 DOI: 10.1016/j.clim.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
The pathogenic anti-citrullinated protein antibodies (ACPA) are thought to play a vital role in the initiation and immune maintenance of rheumatoid arthritis (RA). However, it is noteworthy that ACPA is not a salient characteristic of any conventional RA animal model. Porphyromonas gingivalis (Pg) is the first microorganism identified to induce citrullination and a target of autoantibodies in early rheumatoid arthritis (RA). Thus, we employed C3H mice with specific MHC types and combined Pg infection with collagen immunity to develop an animal model of ACPA-positive RA. The resulting model exhibited citrullination characteristics, as well as pathological and immune cell changes. 1) Mice showed a significant increase in ACPA levels, and various organs and tissues exhibited elevated levels of citrullinated protein. 2) The mice experienced heightened pain, inflammation, and bone destruction. 3) The spleen and lymph nodes of the mice showed a significant increase in the proportion of Tfh-GCB cell subpopulations responsible for regulating autoantibody production. In conclusion, the C3H mouse model of Pg infection with collagen immunity demonstrated significant alterations in ACPA levels, citrullinated protein expression, and immune cell subpopulations, which could be a crucial factor leading to increased pain, inflammation, and bone destruction.
Collapse
Affiliation(s)
- Chao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhixing Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luochangting Fang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liting Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Nava-Quiroz KJ, López-Flores LA, Pérez-Rubio G, Rojas-Serrano J, Falfán-Valencia R. Peptidyl Arginine Deiminases in Chronic Diseases: A Focus on Rheumatoid Arthritis and Interstitial Lung Disease. Cells 2023; 12:2829. [PMID: 38132149 PMCID: PMC10741699 DOI: 10.3390/cells12242829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Protein citrullination is accomplished by a broad enzyme family named Peptidyl Arginine Deiminases (PADs), which makes this post-translational modification in many proteins that perform physiological and pathologic mechanisms in the body. Due to these modifications, citrullination has become a significant topic in the study of pathological processes. It has been related to some chronic and autoimmune diseases, including rheumatoid arthritis (RA), interstitial lung diseases (ILD), multiple sclerosis (MS), and certain types of cancer, among others. Antibody production against different targets, including filaggrin, vimentin, and collagen, results in an immune response if they are citrullinated, which triggers a continuous inflammatory process characteristic of autoimmune and certain chronic diseases. PAD coding genes (PADI1 to PADI4 and PADI6) harbor variations that can be important in these enzymes' folding, activity, function, and half-life. However, few studies have considered these genetic factors in the context of chronic diseases. Exploring PAD pathways and their role in autoimmune and chronic diseases is a major topic in developing new pharmacological targets and valuable biomarkers to improve diagnosis and prevention. The present review addresses and highlights genetic, molecular, biochemical, and physiopathological factors where PAD enzymes perform a major role in autoimmune and chronic diseases.
Collapse
Affiliation(s)
- Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Luis A. López-Flores
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Jorge Rojas-Serrano
- Rheumatology Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| |
Collapse
|
9
|
Chen HM, Tsai YH, Hsu CY, Wang YY, Hsieh CE, Chen JH, Chang YS, Lin CY. Peptide-Coated Bacteriorhodopsin-Based Photoelectric Biosensor for Detecting Rheumatoid Arthritis. BIOSENSORS 2023; 13:929. [PMID: 37887122 PMCID: PMC10605345 DOI: 10.3390/bios13100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
An effective early diagnosis is important for rheumatoid arthritis (RA) management. This study reveals a novel RA detection method using bacteriorhodopsin as a photoelectric transducer, a light-driven proton pump in purple membranes (PMs). It was devised by covalently conjugating a PM monolayer-coated electrode with a citrullinated-inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3)542-556 peptide that recognizes the serum RA-associated autoantibodies. The direct serum coating decreased the photocurrents in the biosensor, with the reduction in the photocurrent caused by coating with an RA-patient serum that is significantly larger than that with a healthy-control serum (38.1% vs. 20.2%). The difference in the reduction in the photocurrent between those two serum groups widened after the serum-coated biosensor was further labeled with gold nanoparticle (AuNP)-conjugated anti-IgA (anti-IgA-AuNP) (53.6% vs. 30.6%). Both atomic force microscopic (AFM) and Raman analyses confirmed the sequential peptide, serum, and anti-IgA-AuNP coatings on the PM-coated substrates. The reductions in the photocurrent measured in both the serum and anti-IgA-AuNPs coating steps correlated well with the results using commercial enzyme-linked immunosorbent assay kits (Spearman rho = 0.805 and 0.787, respectively), with both a sensitivity and specificity close to 100% in both steps. It was shown that an RA diagnosis can be performed in either a single- or two-step mode using the developed biosensor.
Collapse
Affiliation(s)
- Hsiu-Mei Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Yi-Hsuan Tsai
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
| | - Chien-Yi Hsu
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yong-Yi Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Cheng-En Hsieh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (H.-M.C.); (Y.-Y.W.); (C.-E.H.)
| | - Jin-Hua Chen
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan;
- Office of Data Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yu Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Nava-Quiroz KJ, Rojas-Serrano J, Pérez-Rubio G, Buendia-Roldan I, Mejía M, Fernández-López JC, Rodríguez-Henríquez P, Ayala-Alcantar N, Ramos-Martínez E, López-Flores LA, Del Ángel-Pablo AD, Falfán-Valencia R. Molecular Factors in PAD2 ( PADI2) and PAD4 ( PADI4) Are Associated with Interstitial Lung Disease Susceptibility in Rheumatoid Arthritis Patients. Cells 2023; 12:2235. [PMID: 37759458 PMCID: PMC10527441 DOI: 10.3390/cells12182235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Around 50% of rheumatoid arthritis (RA) patients show some extra-articular manifestation, with the lung a usually affected organ; in addition, the presence of anti-citrullinated protein antibodies (ACPA) is a common feature, which is caused by protein citrullination modifications, catalyzed by the peptidyl arginine deiminases (PAD) enzymes. We aimed to identify single nucleotide variants (SNV) in PADI2 and PADI4 genes (PAD2 and PAD4 proteins, respectively) associated with susceptibility to interstitial lung disease (ILD) in RA patients and the PAD2 and PAD4 levels. Material and methods: 867 subjects were included: 118 RA-ILD patients, 133 RA patients, and 616 clinically healthy subjects (CHS). Allelic discrimination was performed in eight SNVs using qPCR, four in PADI2 and four in PADI4. The ELISA technique determined PAD2 and PAD4 levels in serum and bronchoalveolar lavage (BAL) samples, and the population structure was evaluated using 14 informative ancestry markers. Results: The rs1005753-GG (OR = 4.9) in PADI2 and rs11203366-AA (OR = 3.08), rs11203367-GG (OR = 2.4) in PADI4 are associated with genetic susceptibility to RA-ILD as well as the ACTC haplotype (OR = 2.64). In addition, the PAD4 protein is increased in RA-ILD individuals harboring the minor allele homozygous genotype in PADI4 SNVs. Moreover, rs1748033 in PADI4, rs2057094, and rs2076615 in PADI2 are associated with RA susceptibility. In conclusion, in RA patients, single nucleotide variants in PADI4 and PADI2 are associated with ILD susceptibility. The rs1748033 in PADI4 and two different SNVs in PADI2 are associated with RA development but not ILD. PAD4 serum levels are increased in RA-ILD patients.
Collapse
Affiliation(s)
- Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04100, Mexico
| | - Jorge Rojas-Serrano
- Rheumatology Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Mayra Mejía
- Diffuse Interstitial Lung Disease Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Juan Carlos Fernández-López
- Consorcio de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), Tlalpan, Mexico City 14610, Mexico
| | - Pedro Rodríguez-Henríquez
- Department of Rheumatology, Hospital General Dr. Manuel Gea González, Tlalpan, Mexico City 14080, Mexico
| | - Noé Ayala-Alcantar
- Banco de Sangre, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Espiridión Ramos-Martínez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06720, Mexico
| | - Luis Alberto López-Flores
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Alma D. Del Ángel-Pablo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| |
Collapse
|
11
|
Roudier J, Auger I. How does citrullination contribute to RA autoantibody development? Nat Rev Rheumatol 2023; 19:329-330. [PMID: 37016165 DOI: 10.1038/s41584-023-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Affiliation(s)
- Jean Roudier
- Inserm UMRs1097, Arthrites Autoimmunes, Aix-Marseille Université, Rheumatology, Aix Marseille University/APHM, Marseille, France.
| | - Isabelle Auger
- Inserm UMRs1097, Arthrites Autoimmunes, Aix-Marseille Université, Rheumatology, Aix Marseille University/APHM, Marseille, France
| |
Collapse
|
12
|
Anti-Protein-Arginine Deiminase 4 IgG and IgA Delineate Severe Rheumatoid Arthritis. Diagnostics (Basel) 2022; 12:diagnostics12092187. [PMID: 36140588 PMCID: PMC9497810 DOI: 10.3390/diagnostics12092187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
There is a strong need for biomarkers of rheumatoid arthritis (RA) in all phases of the patient’s journey and to enable the implementation of precision medicine strategies to improve patient care. The objective of this study was to evaluate the presence of anti-protein-arginine deiminase (PAD) 4 IgG and IgA in the sera of RA patients and disease controls, and to investigate their association with joint erosion and biological treatment use. Sera from 104 RA and 155 controls were tested for the presence of anti-PAD4 IgG and IgA using a new particle-based multi-analyte technology (PMAT). Information on the erosive disease and biological treatment use was available for 54 of the RA patients, who were also tested for anti-citrullinated protein antibodies (ACPA). An association between the autoantibodies and these clinical features was investigated. Anti-PAD4 showed sensitivity and specificity values of 25.0% and 94.2% for IgG and of 21.2% and 94.8% for IgA for RA, respectively. The levels of these antibodies were also significantly higher in RA patients vs. controls, in erosive RA vs. non-erosive disease, and in patients under biologics vs. patients that were not on this treatment regimen. The anti-PAD4 IgG and IgA levels were correlated (rho = 0.60, p < 0.0001), but individuals that were positive for only one of the two isotypes were also observed. Anti-PAD4 IgG and IgA are associated with severe RA, and they represent valuable biomarkers for prognosis prediction and patient stratification.
Collapse
|
13
|
Hemon MF, Lambert NC, Roudier J, Auger I. PAD2 immunization induces ACPA in wild-type and HLA-DR4 humanized mice. Eur J Immunol 2022; 52:1464-1473. [PMID: 35712879 PMCID: PMC9545684 DOI: 10.1002/eji.202249889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Rheumatoid arthritis (RA) is associated with HLA‐DRB1 alleles expressing the "shared epitope." RA is usually preceded by the emergence of anti‐citrullinated protein autoantibodies (ACPAs). ACPAs recognize citrulline residues on numerous proteins. Conversion of arginine into citrulline is performed by enzymes called peptidyl arginine deiminases (PADs). We have previously demonstrated that C3H mice immunized with PADs can produce ACPAs by a hapten‐carrier mechanism. Here, we address the influence of HLA‐DR alleles in this model in mice expressing RA‐associated HLA‐DRB1*04:01 (KO/KI*04:01), HLA‐DRB1*04:04 (KO/KI*04:04), or non‐RA‐associated HLA‐DRB1*04:02 (KO/KI*04:02) after murine PAD2 immunization. Immunization with mPAD2 triggers production of ACPAs in wild‐type (WT) and HLA‐DR4 C57BL/6 mice. Both I‐Ab and HLA‐DR are involved in the activation of mPAD2‐specific T lymphocytes. Among HLA‐DR4 mice, mice expressing RA‐associated HLA‐DRB1*04:01 are the best responders to mPAD2 and the best anti‐citrullinated peptide antibody producers.
Collapse
Affiliation(s)
- Marie F Hemon
- INSERM UMRs 1097, Aix Marseille University, Marseille, France.,Arthritis R&D, Neuilly-sur-Seine, France
| | | | - Jean Roudier
- INSERM UMRs 1097, Aix Marseille University, Marseille, France.,APHM, Rhumatologie, Marseille, France
| | - Isabelle Auger
- INSERM UMRs 1097, Aix Marseille University, Marseille, France
| |
Collapse
|
14
|
Roudier J, Balandraud N, Auger I. How RA Associated HLA-DR Molecules Contribute to the Development of Antibodies to Citrullinated Proteins: The Hapten Carrier Model. Front Immunol 2022; 13:930112. [PMID: 35774784 PMCID: PMC9238433 DOI: 10.3389/fimmu.2022.930112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
The risk to develop ACPA positive rheumatoid arthritis (RA), the most destructive type of autoimmune arthritis, is carried by HLA-DRB1 alleles containing a 5 amino acid motif: the shared epitope (SE). RA is preceded by the emergence of disease specific anti citrullinated protein antibodies (ACPA). SE positive HLA-DRB1 alleles are associated with ACPA and ACPA positive RA, not with ACPA negative RA, suggesting that ACPA contribute to the pathogenesis of RA. Understanding how HLA-DRB1 genotypes influence ACPA could lead to a curative or preventive treatment of RA. The “Shared epitope binds citrullinated peptides “ hypothesis suggests that RA associated HLA-DR alleles present citrullinated peptides to T cells that help ACPA producing B cells. The “Hapten carrier model” suggests that PAD4 is the target of the T cells which help ACPA specific B cells through a hapten carrier mechanism in which PAD4 is the carrier and citrullinated peptides are the haptens. Direct binding assay of citrullinated peptides to purified HLA-DR molecules does not support the “shared epitope binds citrullinated peptides” hypothesis. The Odds Ratios to develop ACPA positive RA associated with each of 12 common HLA-DRB1 genotypes match the probability that the two HLA-DR molecules they encode can bind at least one peptide from PAD4, not from citrullinated fibrinogen. Thus, PAD4 tolerization might stop the carrier effect and switch off production of ACPA.
Collapse
Affiliation(s)
- Jean Roudier
- Faculté de Médecine, Aix Marseille Université, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Marseille, France
- INSERM U1097 Immunogénétique de la Polyarthrite Rhumatoïde, Marseille, France
- *Correspondence: Jean Roudier,
| | - Nathalie Balandraud
- Assistance Publique Hôpitaux de Marseille, Marseille, France
- INSERM U1097 Immunogénétique de la Polyarthrite Rhumatoïde, Marseille, France
| | - Isabelle Auger
- INSERM U1097 Immunogénétique de la Polyarthrite Rhumatoïde, Marseille, France
- Faculté des Sciences, Aix Marseille Université, Marseille, France
| |
Collapse
|
15
|
Chang P, Li Y. Editorial: Targeting Protein Post-Translational Modifications (PTMs) for Diagnosis and Treatment of Sepsis. Front Immunol 2022; 13:856146. [PMID: 35185940 PMCID: PMC8851232 DOI: 10.3389/fimmu.2022.856146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China.,National Center for Trauma Medicine of China, Beijing, China
| | - Yongqing Li
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Hemon MF, Lambert NC, Arnoux F, Roudier J, Auger I. PAD4 Immunization Triggers Anti-Citrullinated Peptide Antibodies in Normal Mice: Analysis With Peptide Arrays. Front Immunol 2022; 13:840035. [PMID: 35432329 PMCID: PMC9008206 DOI: 10.3389/fimmu.2022.840035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The critical immunological event in rheumatoid arthritis (RA) is the production of antibodies to citrullinated proteins (ACPAs), ie proteins on which arginines have been transformed into citrullines by peptidyl arginine deiminases (PAD). In C3H mice, immunization with PAD4 triggers the production of ACPAs. Here, we developed a peptide array to analyze the fine specificity of anti-citrullinated peptide antibodies and used it to characterize the ACPA response after hPAD4 immunization in mice expressing different H-2 haplotypes. Sera from C3H, DBA/2, BALB/c and C57BL/6 mice immunized with human PAD4 (hPAD4) or control-matched mice immunized with phosphate buffered saline (PBS) were used to screen peptide arrays containing 169 peptides from collagen, filaggrin, EBNA, proteoglycan, enolase, alpha and beta fibrinogen, histon and vimentin. Human PAD4 immunization induced antibodies directed against numerous citrullinated peptides from fibrinogen, histon 4 and vimentin. Most peptides were recognized under their arginine and citrullinated forms. DBA/2 and BALB/c mice (H-2d) had the lowest anti-citrullinated peptide IgG responses. C3H (H-2k) and BL6 mice (H-2b) had the highest anti-citrullinated peptide IgG responses. The newly developed peptide array allows us to characterize the ACPA production after hPAD4 immunization in mice on the H-2d, H-2k or H-2b backgrounds. This sensitive tool will be useful for further studies on mice for prevention of ACPA production by PAD tolerization.
Collapse
Affiliation(s)
- Marie F. Hemon
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
- Arthritis R&D, Neuilly-sur-Seine, France
| | - Nathalie C. Lambert
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
| | - Fanny Arnoux
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
| | - Jean Roudier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
- Assistance Publique Hôpitaux de Marseille (APHM), Rhumatologie, Marseille, France
| | - Isabelle Auger
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097, Aix Marseille University, Marseille, France
- *Correspondence: Isabelle Auger,
| |
Collapse
|
17
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
18
|
Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-Mediated Carbamylation As a Hapten Model Applied to the Origin of Antibodies to Modified Proteins in Rheumatoid Arthritis. Antioxid Redox Signal 2022; 36:389-409. [PMID: 33906423 PMCID: PMC8982126 DOI: 10.1089/ars.2021.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Significance: The production of antibodies to posttranslationally modified antigens is a hallmark in rheumatoid arthritis (RA). In particular, the presence of citrullination-associated antibodies, targeting both citrullinating enzymes (the peptidylarginine deiminases [PADs]) and citrullinated antigens (anticitrullinated protein antibodies [ACPAs]), has suggested that dysregulated citrullination is relevant for disease pathogenesis. Antibodies to other protein modifications with physicochemical similarities to citrulline, such as carbamylated-lysine and acetylated-lysine, have also gained interest in RA, but their mechanistic relation to ACPAs remains unclear. Recent Advances: Recent studies using RA-derived monoclonal antibodies have found that ACPAs are cross-reactive to carbamylated and acetylated peptides, challenging our understanding of the implications of such cross-reactivity. Critical Issues: Analogous to the classic antibody response to chemically modified proteins, we examine the possibility that antibodies to modified proteins in RA are more likely to resemble antihapten antibodies rather than autoantibodies. This potential shift in the autoantibody paradigm in RA offers the opportunity to explore new mechanisms involved in the origin and cross-reactivity of pathogenic antibodies in RA. In contrast to citrullination, carbamylation is a chemical modification associated with oxidative stress, it is highly immunogenic, and is considered in the group of posttranslational modification-derived products. We discuss the possibility that carbamylated proteins are antigenic drivers of cross-reacting antihapten antibodies that further create the ACPA response, and that ACPAs may direct the production of antibodies to PAD enzymes. Future Directions: Understanding the complexity of autoantibodies in RA is critical to develop tools to clearly define their origin, identify drivers of disease propagation, and develop novel therapeutics. Antioxid. Redox Signal. 36, 389-409.
Collapse
Affiliation(s)
| | - Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Lin CY, Nhat Nguyen UT, Hsieh HY, Tahara H, Chang YS, Wang BY, Gu BC, Dai YH, Wu CC, Tsai IJ, Fan YJ. Peptide-based electrochemical sensor with nanogold enhancement for detecting rheumatoid arthritis. Talanta 2022; 236:122886. [PMID: 34635266 DOI: 10.1016/j.talanta.2021.122886] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/12/2021] [Accepted: 09/12/2021] [Indexed: 01/30/2023]
Abstract
Rheumatoid arthritis (RA), an autoimmune and chronic inflammatory disorder, is an incurable disease. We developed a peptide-based electrochemical sensor using electrochemical impedance spectroscopy that can be used to detect autoantibodies for RA diagnostics. We first validated that the developed peptide showed high sensitivity and could compliment the current gold standard method of an anti-cyclic citrullinated peptide antibody (anti-CCP) ELISA. The developed peptide can be modified on the nanogold surface of the working electrode of sensing chips through the method of a self-assembling monolayer. The sensing process was first optimized using a positive control cohort and a healthy control cohort. Subsequently, 10 clinically confirmed samples from RA patients and five healthy control samples were used to find the threshold value of the impedance between RA and healthy subjects. Furthermore, 10 clinically confirmed samples but with low values of anti-CCP autoantibodies were used to evaluate the sensitivity of the present method compared to the conventional method. The proposed method showed better sensitivity than the current conventional anti-CCP ELISA method.
Collapse
Affiliation(s)
- Ching-Yu Lin
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan
| | - Uyen Thi Nhat Nguyen
- International PhD Program for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan
| | - Han-Yun Hsieh
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kausmi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan; Institute of Applied Mechanics, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei, 10617, Taiwan
| | - Hidetoshi Tahara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Kausmi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Shuang Ho Hospital, 291 Zhongzheng Rd., Zhonghe District, New Taipei City, 23561, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan
| | - Bing-Yu Wang
- Department of Mechanical Engineering, National Chung-Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Bing-Chen Gu
- Vida BioTechnology Co., Ltd. Taiwan, 145 Xingda Rd., South Dist., Taichung, 402, Taiwan
| | - Yu-Han Dai
- Vida BioTechnology Co., Ltd. Taiwan, 145 Xingda Rd., South Dist., Taichung, 402, Taiwan
| | - Chia-Che Wu
- Department of Mechanical Engineering, National Chung-Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - I-Jung Tsai
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan
| | - Yu-Jui Fan
- International PhD Program for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan; International PhD Program for Biomedical Engineering, School of Biomedical Engineering, Taipei Medical University, 250 Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
20
|
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, Brockmueller A, Shakibaei M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021; 10:cells10113017. [PMID: 34831240 PMCID: PMC8616543 DOI: 10.3390/cells10113017] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Children’s Medical Center, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf 1967365271, Iraq;
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran;
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
21
|
Wu Z, Li P, Tian Y, Ouyang W, Ho JWY, Alam HB, Li Y. Peptidylarginine Deiminase 2 in Host Immunity: Current Insights and Perspectives. Front Immunol 2021; 12:761946. [PMID: 34804050 PMCID: PMC8599989 DOI: 10.3389/fimmu.2021.761946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Peptidylarginine deiminases (PADs) are a group of enzymes that catalyze post-translational modifications of proteins by converting arginine residues into citrullines. Among the five members of the PAD family, PAD2 and PAD4 are the most frequently studied because of their abundant expression in immune cells. An increasing number of studies have identified PAD2 as an essential factor in the pathogenesis of many diseases. The successes of preclinical research targeting PAD2 highlights the therapeutic potential of PAD2 inhibition, particularly in sepsis and autoimmune diseases. However, the underlying mechanisms by which PAD2 mediates host immunity remain largely unknown. In this review, we will discuss the role of PAD2 in different types of cell death signaling pathways and the related immune disorders contrasted with functions of PAD4, providing novel therapeutic strategies for PAD2-associated pathology.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Infectious Diseases, Xiangya 2 Hospital, Central South University, Changsha, China
| | - Patrick Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Internal Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Yuzi Tian
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlu Ouyang
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Infectious Diseases, Xiangya 2 Hospital, Central South University, Changsha, China
| | - Jessie Wai-Yan Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hasan B. Alam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,*Correspondence: Yongqing Li,
| |
Collapse
|
22
|
Wenhart C, Holthoff HP, Reimann A, Li Z, Faßbender J, Ungerer M. A fructosylated peptide derived from a collagen II T cell epitope for long-term treatment of arthritis (FIA-CIA) in mice. Sci Rep 2021; 11:17345. [PMID: 34462464 PMCID: PMC8405725 DOI: 10.1038/s41598-021-95193-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease which affects primarily the joints. Peptides of several proteins have shown an effect in some experimental animal models of RA. We investigated arthritis development in male DBA/1 mice which were injected with bovine collagen II (bCII) and human fibrinogen (hFib) on days 0 and 21, leading to stable and reproducible disease induction in 100% of immunized mice (FIA-CIA). In a second study, two bCII-derived peptides were given three times in the course of 6 weeks after FIA-CIA induction to test for impact on arthritis. Mice were scored weekly for arthritis and anti-citrullinated peptide antibodies (ACPAs) were determined in the sera taken on days 0, 14, 35, 56 and 84. Histology of the hind paws was performed at the end of the experiment. Intravenous administration of peptide 90578, a novel fructosylated peptide derived from the immunodominant T cell epitope of bCII, at a dosage of 1 mg/kg resulted in significant beneficial effects on clinical outcome parameters and on the arthritis histology scores which was sustained over 12 weeks. Survival tended to be improved in peptide 90578-treated mice. Intravenous administration of pure soluble peptide 90578 without adjuvants is a promising approach to treat RA, with treatment starting at a time when ACPAs are already present. The results complement existing data on peptide "vaccination" of healthy animals, or on treatment using recombinant peptide expressing virus or complex biological compounds.
Collapse
Affiliation(s)
| | | | | | - Zhongmin Li
- Advancecor, 82152, Planegg-Martinsried, Germany
| | | | - Martin Ungerer
- ISAR Bioscience, Semmelweisstr. 5, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
23
|
Alghamdi MF, Redwan EM. Advances in the diagnosis of autoimmune diseases based on citrullinated peptides/proteins. Expert Rev Mol Diagn 2021; 21:685-702. [PMID: 34024239 DOI: 10.1080/14737159.2021.1933946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Autoimmune diseases are still one of the hard obstacles associated with humanity. There are many exogenous and endogenous etiological factors behind autoimmune diseases, which may be combined or dispersed to stimulate the autoimmune responses. Protein citrullination represents one of these factors. Harnessing specific citrullinated proteins/peptides could early predict and/or diagnose some of the autoimmune diseases. Many generations of diagnostic tools based on citrullinated peptides with comparable specificity/sensitivity are available worldwide.Areas covered: In this review, we discuss the deimination reaction behind the citrullination of most known autoantigens targeted, different generations of diagnostic tools based on citrullinated probes with specificity/sensitivity of each as well as newly developed assays. Furthermore, the most advanced molecular analytical tools to detect the citrullinated residues in the biological fluid and their performance are also evaluated, providing new avenues to early detect autoimmune diseases with high accuracy.Expert opinion: With the current specificity/sensitivity tools available for autoimmune disease detection, emphasis must be placed on developing more advance and effective, early, rapid, and simple diagnostic devices for autoimmune disease monitoring (similar to a portable device for sugar test at home). The molecular analytical devices with dual and/or multiplexe functions should be more simplified and invested in clinical laboratories.
Collapse
Affiliation(s)
- Mohammed F Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
24
|
Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 2021; 7:e001228. [PMID: 33771834 PMCID: PMC8006837 DOI: 10.1136/rmdopen-2020-001228] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Epidemiological findings suggest a potential role for anti-citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) pathogenesis. ACPA-positive RA is associated with unique genetical and environmental risk factors, in contrast to seronegative RA. ACPA-positive healthy individuals are at risk of developing RA and can develop joint pain and bone loss already before disease onset. ACPA injection triggered bone loss and pain-like behaviour in mice and, in the presence of additional arthritis inducers, exacerbated joint inflammation. In cell culture experiments, ACPAs could bind to and modulate a variety of cellular targets, such as macrophages, osteoclasts, synovial fibroblasts, neutrophil granulocytes, mast cells, dendritic cells and platelets, further underlying a potential role for these autoantibodies in triggering pathogenic pathways and providing clues for their mechanisms of action. Patient-derived ACPA clones have been characterised by unique cellular effects and multiple ways to act on the target cells. ACPAs might directly induce stimulatory signals by ligating key citrullinated cell surface molecules or, alternatively, act as immune complexes on Fc receptors and potentially other molecules that recognise carbohydrate moieties. On the contrary to experimentally manufactured ACPA clones, patient-derived ACPAs are highly promiscuous and cross-reactive, suggesting a simultaneous binding to a range of functionally relevant and irrelevant targets. Moreover, several ACPA clones recognise carbamylated or acetylated targets as well. These features complicate the identification and description of ACPA-induced pathogenic mechanisms. In the current review, we summarise recent data on the functional properties of patient-derived ACPAs and present mechanistic models on how these antibodies might contribute to RA pathogenesis.
Collapse
Affiliation(s)
- Anca Catrina
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Akilan Krishnamurthy
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Bence Rethi
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Rotondo C, Corrado A, Cici D, Berardi S, Cantatore FP. Anti-cyclic-citrullinated-protein-antibodies in psoriatic arthritis patients: how autoimmune dysregulation could affect clinical characteristics, retention rate of methotrexate monotherapy and first line biotechnological drug survival. A single center retrospective study. Ther Adv Chronic Dis 2021; 12:2040622320986722. [PMID: 33796242 PMCID: PMC7970688 DOI: 10.1177/2040622320986722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
AIM Occasional findings of anti-cyclic-citrullinated-protein-antibodies (anti-CCP) were rarely observed in psoriatic arthritis (PsA). The aim of our study is to evaluate whether the presence of anti-CCP can determine different clinical subsets and influence methotrexate monotherapy survival, and biotechnological drug retention rate. METHODS We conducted a retrospective study on PsA patients. All patients were required to fulfill the CASPAR criteria for PsA, and to present juxta-articular osteo-proliferative signs at X-ray. The exclusion criteria were age less than 18 years old, satisfaction of rheumatoid arthritis classification criteria, and seropositivity for rheumatoid factor. Clinical characteristics, anti-CCP titer, drug survival and comorbidities information were recorded for each patient. Statistical significance was set at p ⩽ 0.05. RESULTS Of 407 patients with PsA screened 113 were recruited. Twelve patients were anti-CCP positive. Methotrexate monotherapy survival was shorter in patients with anti-CCP (150 ± 48.3 weeks versus 535.3 ± 65.3 weeks; p = 0.026) [discontinuation risk hazard ratio (HR) = 2.389, 95% confidence interval (CI) 1.043, 5.473; p = 0.039] than those without. Significant shorter survival of first-line biotechnological drugs (b-DMARDs) was observed in the anti-CCP positive group than in that without (102.05 ± 24.4 weeks versus 271.6 ± 41.7 weeks; p = 0.005) with higher discontinuation risk (HR = 3.230, 95% CI 1.299, 8.028; p = 0.012). A significant higher rate of multi-failure (more than second-line b-DMARDs) was found in anti-CCP positive patients than in those without (50% versus 14%, p = 0.035). CONCLUSION Anti-CCP in PsA could be suggestive of more severe disease, with worse drug survival of both methotrexate monotherapy and first-line b-DMARDs, and higher chance to be b-DMARDs multi-failure. So, they can be considered for more intensive clinical management of these patients.
Collapse
Affiliation(s)
- Cinzia Rotondo
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia viale Luigi Pinto 1, Foggia, 71122, Italy
| | - Addolorata Corrado
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia, Italy
| | - Daniela Cici
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia, Italy
| | - Stefano Berardi
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia, Italy
| | - Francesco Paolo Cantatore
- Department of Medical and Surgical Sciences – Rheumatology Unit, University of Foggia, Foggia, Italy
| |
Collapse
|
26
|
Song W, Ye J, Pan N, Tan C, Herrmann M. Neutrophil Extracellular Traps Tied to Rheumatoid Arthritis: Points to Ponder. Front Immunol 2021; 11:578129. [PMID: 33584645 PMCID: PMC7878527 DOI: 10.3389/fimmu.2020.578129] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, neutrophil extracellular traps at the forefront of neutrophil biology have proven to help capture and kill pathogens involved in the inflammatory process. There is growing evidence that persistent neutrophil extracellular traps drive the pathogenesis of autoimmune diseases. In this paper, we summarize the potential of neutrophil extracellular traps to drive the pathogenesis of rheumatoid arthritis and experimental animal models. We also describe the diagnosis and treatment of rheumatoid arthritis in association with neutrophil extracellular traps.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Nanfang Pan
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology, West China Hospital of Sichuan University, Chengdu, China
| | - Martin Herrmann
- Department of Internal Medicine 3, Universitätsklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Balandraud N, Auger I, Roudier J. Do RA associated HLA-DR molecules bind citrullinated peptides or peptides from PAD4 to help the development of RA specific antibodies to citrullinated proteins? J Autoimmun 2020; 116:102542. [PMID: 32928608 DOI: 10.1016/j.jaut.2020.102542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Rheumatoid arthritis (RA) is associated with HLA-DRB1 genes encoding a five amino acid basic motive, the shared epitope SE). Each HLA-DRB1 genotype defines a genotype specific risk of developing RA. RA is preceded by the emergence of anti citrullinated protein antibodies (ACPAs). Citrullin is a neutral version of arginin, a basic amino acid, formed after post translational modification by Peptidyl Arginyl Deiminases (PADs). HLA-DRB1 genes associated with RA are also associated with ACPAs. Two models might explain this association. Here we tested both models for prediction of HLA-DRB1 genotypic risks of developing RA. METHODS We calculated the likelihoods for the 2 HLA-DR molecules encoded by 12 common HLA-DRB1 genotypes to bind at least one randomly chosen peptide from PAD4 or fibrinogen(native or citrullinatd) and compared them with the 12 respective HLA-DRB1genotypic risks of developing RA. RESULTS HLA-DRB1 Genotypic risks of developing RA correlate with likelihoods of binding PAD4 peptides, not citrullinated Fibrinogen peptides. Thus, the molecular basis for the association of HLA-DR and ACPA positive RA is most likely the capability for RA associated HLA-DR molecules to bind peptides(s) from PAD4.
Collapse
Affiliation(s)
- Nathalie Balandraud
- Aix Marseille University, INSERM, UMRs1097, Marseille Luminy, France; APHM, Rheumatology, IML, Marseille, France
| | - Isabelle Auger
- Aix Marseille University, INSERM, UMRs1097, Marseille Luminy, France
| | - Jean Roudier
- Aix Marseille University, INSERM, UMRs1097, Marseille Luminy, France; APHM, Rheumatology, IML, Marseille, France.
| |
Collapse
|
28
|
Wu CY, Yang HY, Lai JH. Anti-Citrullinated Protein Antibodies in Patients with Rheumatoid Arthritis: Biological Effects and Mechanisms of Immunopathogenesis. Int J Mol Sci 2020; 21:ijms21114015. [PMID: 32512739 PMCID: PMC7312469 DOI: 10.3390/ijms21114015] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with high anti-citrullinated protein antibody (ACPA) titers have an increased risk of developing rheumatoid arthritis (RA). Although our knowledge of the generation and production of ACPAs has continuously advanced during the past decade, our understanding on the pathogenic mechanisms of how ACPAs interact with immune cells to trigger articular inflammation is relatively limited. Citrullination disorders drive the generation and maintenance of ACPAs, with profound clinical significance in patients with RA. The loss of tolerance to citrullinated proteins, however, is essential for ACPAs to exert their pathogenicity. N-linked glycosylation, cross-reactivity and the structural interactions of ACPAs with their citrullinated antigens further direct their biological functions. Although questions remain in the pathogenicity of ACPAs acting as agonists for a receptor-mediated response, immune complex (IC) formation, complement system activation, crystallizable fragment gamma receptor (FcγR) activation, cross-reactivity to joint cartilage and neutrophil extracellular trap (NET)-related mechanisms have all been suggested recently. This paper presents a critical review of the characteristics and possible biological effects and mechanisms of the immunopathogenesis of ACPAs in patients with RA.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
| | - Huang-Yu Yang
- Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8791-8382; Fax: +886-2-8791-8382
| |
Collapse
|
29
|
Curran AM, Naik P, Giles JT, Darrah E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol 2020; 16:301-315. [PMID: 32341463 DOI: 10.1038/s41584-020-0409-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) have an important role in the pathogenesis of rheumatoid arthritis (RA) owing to their ability to generate citrullinated proteins - the hallmark autoantigens of RA. Of the five PAD enzyme isoforms, PAD2 and PAD4 are the most strongly implicated in RA at both genetic and cellular levels, and PAD inhibitors have shown therapeutic efficacy in mouse models of inflammatory arthritis. PAD2 and PAD4 are additionally targeted by autoantibodies in distinct clinical subsets of patients with RA, suggesting anti-PAD antibodies as possible biomarkers for RA diagnosis and prognosis. This Review weighs the evidence that supports a pathogenic role for PAD enzymes in RA as both promoters and targets of the autoimmune response, as well as discussing the mechanistic and therapeutic implications of these findings in the wider context of RA pathogenesis. Understanding the origin and consequences of dysregulated PAD enzyme activity and immune responses against PAD enzymes will be important to fully comprehend the pathogenic mechanisms involved in this disease and for the development of novel strategies to treat and prevent RA.
Collapse
Affiliation(s)
- Ashley M Curran
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pooja Naik
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jon T Giles
- Division of Rheumatology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Erika Darrah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Auger I, Balandraud N, Massy E, Hemon MF, Peen E, Arnoux F, Mariot C, Martin M, Lafforgue P, Busnel JM, Roudier J. Peptidylarginine Deiminase Autoimmunity and the Development of Anti-Citrullinated Protein Antibody in Rheumatoid Arthritis: The Hapten-Carrier Model. Arthritis Rheumatol 2020; 72:903-911. [PMID: 31820586 PMCID: PMC7317357 DOI: 10.1002/art.41189] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/05/2019] [Indexed: 11/21/2022]
Abstract
Objective The presence of autoantibodies to citrullinated proteins (ACPAs) often precedes the development of rheumatoid arthritis (RA). Citrullines are arginine residues that have been modified by peptidylarginine deiminases (PADs). PAD4 is the target of autoantibodies in RA. ACPAs could arise because PAD4 is recognized by T cells, which facilitate the production of autoantibodies to proteins bound by PAD4. We previously found evidence for this hapten–carrier model in mice. This study was undertaken to investigate whether there is evidence for this model in humans. Methods We analyzed antibody response to PAD4 and T cell proliferation in response to PAD4 in 41 RA patients and 36 controls. We tested binding of 65 PAD4 peptides to 5 HLA–DR alleles (DRB1*04:01, *04:02, *04:04, *01:01, and *07:01) and selected 11 PAD4 peptides for proliferation studies using samples from 22 RA patients and 27 controls. Peripheral blood lymphocytes from an additional 10 RA patients and 7 healthy controls were analyzed by flow cytometry for CD3, CD4, CD154, and tumor necrosis factor expression after PAD4 stimulation. Results Only patients with RA had both antibodies and T cell responses to PAD4. T cell response to peptide 8, a PAD4 peptide, was associated with RA (P = 0.02), anti‐PAD4 antibodies (P = 0.057), and the shared epitope (P = 0.05). Conclusion ACPA immunity is associated with antibodies to PAD4 and T cell responses to PAD4 and PAD4 peptides. These findings are consistent with a hapten–carrier model in which PAD4 is the carrier and citrullinated proteins are the haptens.
Collapse
Affiliation(s)
- Isabelle Auger
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Nathalie Balandraud
- INSERM UMRs 1097, Aix-Marseille University, and Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Emmanuel Massy
- INSERM UMRs 1097, Aix-Marseille University, and Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Marie F Hemon
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Elisa Peen
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Fanny Arnoux
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Charlotte Mariot
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | - Marielle Martin
- INSERM UMRs 1097 and Aix-Marseille University, Marseille, France
| | | | | | - Jean Roudier
- INSERM UMRs 1097, Aix-Marseille University, and Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
31
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 457] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
32
|
Martinez-Prat L, Palterer B, Vitiello G, Parronchi P, Robinson WH, Mahler M. Autoantibodies to protein-arginine deiminase (PAD) 4 in rheumatoid arthritis: immunological and clinical significance, and potential for precision medicine. Expert Rev Clin Immunol 2019; 15:1073-1087. [DOI: 10.1080/1744666x.2020.1668778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Martinez-Prat
- Research and Development, Inova Diagnostics, San Diego, CA, USA
- Department of Experimental Science, Francisco de Vitoria University, Madrid, Spain
| | - Boaz Palterer
- specialist in Allergy and Clinical Immunology, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - Gianfranco Vitiello
- resident in Allergy and Clinical Immunology, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - Paola Parronchi
- (Allergy and Clinical Immunology), Laboratory Head, Experimental and Clinical Medicine Department, University of Florence, Florence, Italy
| | - William H. Robinson
- (Immunology and Rheumatology), Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- Geriatric Research Education and Clinical [GRECC] Division, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michael Mahler
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| |
Collapse
|
33
|
Citrullination facilitates cross-reactivity of rheumatoid factor with non-IgG1 Fc epitopes in rheumatoid arthritis. Sci Rep 2019; 9:12068. [PMID: 31427662 PMCID: PMC6700074 DOI: 10.1038/s41598-019-48176-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs) are the two most prevalent autoantibodies in rheumatoid arthritis (RA), and are thought to have distinct autoantigen targets. Whilst RF targets the Fc region of antibodies, ACPAs target a far broader spectrum of citrullinated peptides. Here we demonstrate significant sequence and structural homology between proposed RF target epitopes in IgG1 Fc and the ACPA target fibrinogen. Two of the three homologous sequences were susceptible to citrullination, and this modification, which occurs extensively in RA, permitted significant cross-reactivity of RF+ patient sera with fibrinogen in both western blots and ELISAs. Crucially, this reactivity was specific to RF as it was absent in RF− patient and healthy control sera, and could be inhibited by pre-incubation with IgG1 Fc. These studies establish fibrinogen as a common target for both RF and ACPAs, and suggest a new mechanism in RF-mediated autoimmune diseases wherein RF may act as a precursor from which the ACPA response evolves.
Collapse
|
34
|
Ge C, Holmdahl R. The structure, specificity and function of anti-citrullinated protein antibodies. Nat Rev Rheumatol 2019; 15:503-508. [PMID: 31253945 DOI: 10.1038/s41584-019-0244-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 01/14/2023]
Abstract
In this Perspectives article, we outline a proposed model for understanding the specificity and function of anti-citrullinated protein antibodies (ACPAs). We suggest that ACPAs vary in specificity between two extremes: some are 'promiscuous' in that they are highly specific for the citrulline side chain, but cross-react with a range of citrullinated peptides, whereas others are 'private' in that their recognition of citrulline as well as proximal amino acid side chains enables protein-specific interactions. Promiscuous ACPAs tend to dominate in the sera both before and after the onset of rheumatoid arthritis, but their functional role has not been clarified. No firm evidence exists that these ACPAs are pathogenic. By contrast, private ACPAs encompass antibodies that specifically recognize citrullinated epitopes on joint proteins or that cross-react with joint proteins, thereby opening up the possibility that these private ACPAs are arthritogenic. These joint-reactive antibodies are more likely to target joints by binding to joint tissues and to promote the formation of local immune complexes leading to bone erosions, pain and arthritis.
Collapse
Affiliation(s)
- Changrong Ge
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
35
|
Multiple hit infection and autoimmunity: the dysbiotic microbiota-ACPA connection in rheumatoid arthritis. Curr Opin Rheumatol 2019. [PMID: 29538012 DOI: 10.1097/bor.0000000000000503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW This review highlights the most recent data obtained in this field and provides clues toward the better understanding of the close interplay between microbiota and host, leading to autoimmune diseases. RECENT FINDINGS A well-described model of microbiota/host interaction of relevance to autoimmunity is linking anti-citrullinated peptide antibody positive rheumatoid arthritis and alterations of microbiota largely concentrating on Porphyromonas gingivalis and more recently of Aggregatibacter actinomycetemcomitans and Prevotella copri. SUMMARY The perception of the classical link between microbial infection and development of autoimmune disease has evolved to the more recent concept of the connection between the microbiome/dysbiosis and breaking of immunological tolerance.
Collapse
|
36
|
Courbon G, Rinaudo-Gaujous M, Blasco-Baque V, Auger I, Caire R, Mijola L, Vico L, Paul S, Marotte H. Porphyromonas gingivalis experimentally induces periodontis and an anti-CCP2-associated arthritis in the rat. Ann Rheum Dis 2019; 78:594-599. [PMID: 30700425 DOI: 10.1136/annrheumdis-2018-213697] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Association between periodontal disease (PD) and rheumatoid arthritis (RA) has been extensively described, but direct evidence of causal involvement of PD in RA is missing. We investigated the priming role of oral Porphyromonas gingivalis (P. gingivalis) in PD and subsequent RA and we assessed biomarkers of bone resorption and arthritis development in rats. METHODS Lewis rats were orally exposed to either P. gingivalis, Prevotella intermedia or control gel for 1 month and then followed for 8 months. The onset and development of PD was assessed by serology, gingivitis severity and micro-CT (µCT). We investigated arthritis development using circulating proinflammatory markers, anticyclic citrullinated peptide (CCP), anticitrullinated protein antibody (ACPA), ankle histology and µCT. RESULTS PD was only observed in the P. gingivalis treated rats, as early as 1 month postexposure. Joint and systemic inflammation were detected only in the P. gingivalis group after 4 and 8 months. At 8 months, inflammatory cell infiltrate was observed in ankle joints and paralleled cortical erosions and overall cortical bone reduction. Furthermore, anti-CCP2 correlated with local and systemic bone loss. CONCLUSIONS In our long-term study, PD induced by oral exposure to P. gingivalis triggered seropositive arthritis, with systemic inflammation and bone erosions. This is the first in vivo demonstration of arthritis induced by oral priming with P. gingivalis.
Collapse
Affiliation(s)
| | - Mélanie Rinaudo-Gaujous
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Etienne, France
- Laboratory of Immunology and Immunomonitoring, University Hospital of Saint-Etienne, Saint-Etienne, France
- GIMAP EA3064, University of Lyon, Saint-Etienne, France
| | - Vincent Blasco-Baque
- INSERM U1048, Toulouse, France
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
- Faculté de Chirurgie Dentaire de Toulouse, Université Paul Sabatier, Toulouse, France
- CHU Toulouse, Service Odontologie, Toulouse, France
| | - Isabelle Auger
- INSERM UMR 1097, Aix Marseille University, Marseille, France
| | - Robin Caire
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Etienne, France
| | - Lambert Mijola
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Etienne, France
- Department of Rheumatology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Laurence Vico
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Etienne, France
| | - Stéphane Paul
- Laboratory of Immunology and Immunomonitoring, University Hospital of Saint-Etienne, Saint-Etienne, France
- GIMAP EA3064, University of Lyon, Saint-Etienne, France
| | - Hubert Marotte
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Etienne, France
- Department of Rheumatology, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
37
|
Martinez-Prat L, Lucia D, Ibarra C, Mahler M, Dervieux T. Antibodies targeting protein-arginine deiminase 4 (PAD4) demonstrate diagnostic value in rheumatoid arthritis. Ann Rheum Dis 2019; 78:434-436. [PMID: 30297325 DOI: 10.1136/annrheumdis-2018-213818] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 11/04/2022]
Affiliation(s)
| | - David Lucia
- Research and Development, Inova Diagnostics, San Diego, California, USA
| | - Claudia Ibarra
- Laboratory Operations, Exagen Diagnostics, Vista, California, United States
| | - Michael Mahler
- Research and Development, Inova Diagnostics, San Diego, California, USA
| | - Thierry Dervieux
- Research and Development and Laboratory Operations, Exagen Diagnostics, , Vista, California, USA
| |
Collapse
|
38
|
Roudier J, Balandraud N, Auger I. HLA-DRB1 polymorphism, anti-citrullinated protein antibodies, and rheumatoid arthritis. J Biol Chem 2019; 293:7038. [PMID: 29728532 DOI: 10.1074/jbc.l118.002761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jean Roudier
- From INSERM UMRs1097, Marseille-Luminy 13009, France, .,Aix Marseille Université, Marseille 13007, France, and.,Department of Rheumatology, Institut du Mouvement et de l'appareil Locomoteur, Assistance Publique Hôpitaux de Marseille, Marseille 13005, France
| | - Nathalie Balandraud
- From INSERM UMRs1097, Marseille-Luminy 13009, France.,Aix Marseille Université, Marseille 13007, France, and.,Department of Rheumatology, Institut du Mouvement et de l'appareil Locomoteur, Assistance Publique Hôpitaux de Marseille, Marseille 13005, France
| | - Isabelle Auger
- From INSERM UMRs1097, Marseille-Luminy 13009, France.,Aix Marseille Université, Marseille 13007, France, and
| |
Collapse
|
39
|
Degboé Y, Rauwel B, Baron M, Boyer JF, Ruyssen-Witrand A, Constantin A, Davignon JL. Polarization of Rheumatoid Macrophages by TNF Targeting Through an IL-10/STAT3 Mechanism. Front Immunol 2019; 10:3. [PMID: 30713533 PMCID: PMC6345709 DOI: 10.3389/fimmu.2019.00003] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Macrophages contribute to the pathogenesis of rheumatoid arthritis (RA). They can display different states of activation or “polarization,” notably the so-called inflammatory “M1” and the various alternative “M2” polarizations, characterized by distinct functions. Data regarding the effects of RA anti-cytokine biological disease-modifying anti-rheumatic drugs (bDMARDs) on macrophage polarization are scarce. We aimed to assess in vitro modulation of macrophage polarization by bDMARDs targeting pro-inflammatory cytokines in RA. We generated monocyte derived macrophages using blood samples from 20 RA patients with active RA and 30 healthy controls. We evaluated in vitro the impact on M1 inflammatory macrophages of: etanercept (ETA), adalimumab (ADA), certolizumab (CZP), tocilizumab (TCZ), and rituximab (RTX). We assessed the impact on macrophage polarization using flow cytometry and RTqPCR to study the expression of surface markers and perform functional studies of cytokine production, phagocytosis, and negative feedback control of inflammation. Among evaluated bDMARDs, anti-TNF agents modulated the polarization of inflammatory macrophages by decreasing inflammatory surface markers (CD40, CD80) and favoring alternative markers (CD16, CD163, MerTK). Anti-TNF agents also induced alternative functions in macrophages activated in inflammatory condition with (i) the inhibition of inflammatory cytokines (TNF, IL-6, IL-12), (ii) an increase in phagocytosis. These findings were mechanistically related to an increase in early IL-10 production, responsible for higher negative feedback control of inflammation involving SOCS3 and Gas6. This IL-10 effect was STAT3-dependent. Anti-TNF agents not only inhibit in vitro inflammatory functions of macrophages, but also favor resolution of inflammation through polarization toward alternative features specifically involving the IL-10/STAT3 axis.
Collapse
Affiliation(s)
- Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Michel Baron
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France
| | - Jean-Frédéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| | - Adeline Ruyssen-Witrand
- Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France.,UMR1027, INSERM-Université Paul Sabatier Toulouse III, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France.,Centre de Rhumatologie, CHU de Toulouse, Toulouse, France
| |
Collapse
|
40
|
Asteriou E, Gkoutzourelas A, Mavropoulos A, Katsiari C, Sakkas LI, Bogdanos DP. Curcumin for the Management of Periodontitis and Early ACPA-Positive Rheumatoid Arthritis: Killing Two Birds with One Stone. Nutrients 2018; 10:908. [PMID: 30012973 PMCID: PMC6073415 DOI: 10.3390/nu10070908] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
We propose curcumin as a preventive measure to avoid/manage periodontitis (PD), and as a natural immunosuppressant for rheumatoid arthritis (RA). PD, mainly caused by Porphyromonas gingivalis forming biofilm and leading to tooth decay, is a major public health issue and a risk factor for the development of RA in humans. P. gingivalis is able to trigger experimental autoimmune arthritis in animal models and in humans can induce citrullinated peptides, which not only are a source of anti-citrullinated antibodies (ACPAs), but also participate in autoreactive responses and disease development. Curcumin appears to have efficient anti-bacterial activity against P. gingivalis infection and biofilm formation. In addition to antibacterial, anti-oxidant, and anti-inflammatory action, curcumin exerts unique immunosuppressant properties via the inhibition of Th17 pro-inflammatory responses and promotion of regulatory T cells, thus suppressing autoimmunity. We introduce curcumin as a natural product for the management of both PD and RA-related autoreactivity, possibly also as a preventive measure in early RA or individuals at high risk to develop RA.
Collapse
Affiliation(s)
- Eleni Asteriou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly and University General Hospital of Larissa, 41110 Larissa, Greece.
| |
Collapse
|
41
|
|