1
|
Rodriguez P, Berg JS, Deng L, Vogel H, Okoniewski M, Lever MA, Magnabosco C. Persistent functional and taxonomic groups dominate an 8,000-year sedimentary sequence from Lake Cadagno, Switzerland. Front Microbiol 2025; 16:1504355. [PMID: 39990142 PMCID: PMC11843047 DOI: 10.3389/fmicb.2025.1504355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/06/2025] [Indexed: 02/25/2025] Open
Abstract
Most of our knowledge of deep sedimentary life comes from marine environments; however, despite their relatively small volume, lacustrine sediments constitute one of the largest global carbon sinks and their deep sediments are largely unexplored. Here, we reconstruct the microbial functional and taxonomic composition of an 8,000-year Holocene sedimentary succession from meromictic Lake Cadagno (Switzerland) using shotgun metagenomics and 16S rRNA gene amplicon sequencing. While younger sediments (<1,000 years) are dominated by typical anaerobic surface sedimentary bacterial taxa (Deltaproteobacteria, Acidobacteria, and Firmicutes), older layers with lower organic matter concentrations and reduced terminal electron acceptor availability are dominated by taxa previously identified as "persistent populations" within deep anoxic marine sediments (Candidatus Bathyarchaeia, Chloroflexi, and Atribacteria). Despite these dramatic changes in taxonomic community composition and sediment geochemistry throughout the sediment core, higher-order functional categories and metabolic marker gene abundances remain relatively consistent and indicate a microbial community capable of carbon fixation, fermentation, dissimilatory sulfate reduction and dissimilatory nitrate reduction to ammonium. As the conservation of these metabolic pathways through changes in microbial community compositions helps preserve the metabolic pathway connectivity required for nutrient cycling, we hypothesize that the persistence of these functional groups helps enable the Lake Cadagno sedimentary communities persist amidst changing environmental conditions.
Collapse
Affiliation(s)
- Paula Rodriguez
- Department of Earth and Planetary Sciences, ETH Zurich, Zurich, Switzerland
| | - Jasmine S. Berg
- Faculty of Geosciences and Environment, Université de Lausanne, Lausanne, Switzerland
| | - Longhui Deng
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Hendrik Vogel
- Oeschger Centre for Climate Change Research, Institute of Geological Sciences, University of Bern, Bern, Switzerland
| | | | - Mark A. Lever
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- College of Natural Sciences, Marine Science Institute, University of Texas at Austin, Austin, TX, United States
| | - Cara Magnabosco
- Department of Earth and Planetary Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Li S, Liu Y, Wang W, Liu Y, Ji M. Microbial changing patterns across lateral and vertical horizons in recently formed permafrost after the outburst of Zonag Lake, Tibetan Plateau. FEMS Microbiol Ecol 2025; 101:fiaf001. [PMID: 39762142 PMCID: PMC11774121 DOI: 10.1093/femsec/fiaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/16/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations. Dramatic changes in community structure were also observed, primarily influenced by the distance from the lake and then by sediment depth, with environmental filtering and dispersal limitations shaping the lateral and vertical distributions, respectively. Based on PICRUSt2 results, the relative abundance of genes related to carbon fixation increased along the lateral horizon, suggesting that microbial carbon fixers are counteracting the carbon loss during permafrost formation. In contrast, the genes related to denitrification also increased, which may lead to nitrogen loss and contribute to global warming by releasing nitric oxide gas. This study highlights the resilience of prokaryotic communities in drained lake basins and their ecological implications under global warming.
Collapse
Affiliation(s)
- Saifei Li
- College of Ecology, Lanzhou University, Lanzhou 730000, China
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu 860600, China
| | - Yang Liu
- College of Ecology, Lanzhou University, Lanzhou 730000, China
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Wenqiang Wang
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu 860600, China
- Key Laboratory of Pan-Third Pole Biogeochemical Cycling, Gansu Province 730000, China
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mukan Ji
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
- Chayu Monsoon Corridor Observation and Research Station for Multi-Sphere Changes, Xizang Autonomous Region, Chayu 860600, China
- Key Laboratory of Pan-Third Pole Biogeochemical Cycling, Gansu Province 730000, China
| |
Collapse
|
3
|
Vuillemin A, Ruiz-Blas F, Yang S, Bartholomäus A, Henny C, Kallmeyer J. Taxonomic and functional partitioning of Chloroflexota populations under ferruginous conditions at and below the sediment-water interface. FEMS Microbiol Ecol 2024; 100:fiae140. [PMID: 39384533 DOI: 10.1093/femsec/fiae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/11/2024] Open
Abstract
The adaptation of the phylum Chloroflexota to various geochemical conditions is thought to have originated in primitive microbial ecosystems, involving hydrogenotrophic energy conservation under ferruginous anoxia. Oligotrophic deep waters displaying anoxic ferruginous conditions, such as those of Lake Towuti, and their sediments may thus constitute a preferential ecological niche for investigating metabolic versatility in modern Chloroflexota. Combining pore water geochemistry, cell counts, sulfate reduction rates, and 16S rRNA genes with in-depth analysis of metagenome-assembled genomes, we show that Chloroflexota benefit from cross-feeding on metabolites derived from canonical respiration chains and fermentation. Detailing their genetic contents, we provide molecular evidence that Anaerolineae have metabolic potential to use unconventional electron acceptors, different cytochromes, and multiple redox metalloproteins to cope with oxygen fluctuations, and thereby effectively colonizing the ferruginous sediment-water interface. In sediments, Dehalococcoidia evolved to be acetogens, scavenging fatty acids, haloacids, and aromatic acids, apparently bypassing specific steps in carbon assimilation pathways to perform energy-conserving secondary fermentations combined with CO2 fixation via the Wood-Ljungdahl pathway. Our study highlights the partitioning of Chloroflexota populations according to alternative electron acceptors and donors available at the sediment-water interface and below. Chloroflexota would have developed analogous primeval features due to oxygen fluctuations in ancient ferruginous ecosystems.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Fatima Ruiz-Blas
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), Cibinong, 16911 Jawa Barat, Indonesia
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|
4
|
Liu L, Lian ZH, Lv AP, Salam N, Zhang JC, Li MM, Sun WM, Tan S, Luo ZH, Gao L, Yuan Y, Ming YZ, OuYang YT, Li YX, Liu ZT, Hu CJ, Chen Y, Hua ZS, Shu WS, Hedlund BP, Li WJ, Jiao JY. Insights into chemoautotrophic traits of a prevalent bacterial phylum CSP1-3, herein Sysuimicrobiota. Natl Sci Rev 2024; 11:nwae378. [PMID: 39611041 PMCID: PMC11604079 DOI: 10.1093/nsr/nwae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
Candidate bacterial phylum CSP1-3 has not been cultivated and is poorly understood. Here, we analyzed 112 CSP1-3 metagenome-assembled genomes and showed they are likely facultative anaerobes, with 3 of 5 families encoding autotrophy through the reductive glycine pathway (RGP), Wood-Ljungdahl pathway (WLP) or Calvin-Benson-Bassham (CBB), with hydrogen or sulfide as electron donors. Chemoautotrophic enrichments from hot spring sediments and fluorescence in situ hybridization revealed enrichment of six CSP1-3 genera, and both transcribed genes and DNA-stable isotope probing were consistent with proposed chemoautotrophic metabolisms. Ancestral state reconstructions showed that the ancestors of phylum CSP1-3 may have been acetogens that were autotrophic via the RGP, whereas the WLP and CBB were acquired by horizontal gene transfer. Our results reveal that CSP1-3 is a widely distributed phylum with the potential to contribute to the cycling of carbon, sulfur and nitrogen. The name Sysuimicrobiota phy. nov. is proposed.
Collapse
Affiliation(s)
- Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nimaichand Salam
- National Agri-Food Biotechnology Institute, Mohali 140306, India
| | - Jian-Chao Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei-Min Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Sha Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Ting OuYang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ying Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou 510006, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Li D, Yu J, Zhu J, Xiao W, Zou Z, Chen B, Wei C, Zhu J, Yang H. Identification of the effects of hypoxia on the liver tissues of Nile tilapia Oreochromis Niloticus. BMC Genomics 2024; 25:946. [PMID: 39379813 PMCID: PMC11463132 DOI: 10.1186/s12864-024-10700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/09/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Hypoxia stress resulted in mortality during the fish aquaculture program, affecting the sustainable development of the aquaculture industry. The Egyptian strain of O. niloticus showed a strong ability to hypoxia. In this study, a Nile tilapia strain that was kept and selected for 45 years by the author's team was used to elucidate the mechanism of the hypoxia response in the liver, including the identification of metabolic pathways and genes, involved in the hypoxia response of this strain. RESULTS The effects of hypoxia stress were detected at 0-hour, 6-hour, and 72-hour time points (0 h, 6 h, 72 h) on tilapia liver at 1 mg/L dissolved oxygen conditions. The blood triglyceride, blood glucose and cholesterol values exhibited significantly different change trends, but the hemoglobin content showed no significant differences between 0 h, 6 h and 72 h (P > 0.05). The activities of catalase (CAT), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), lactate dehydrogenase (LDH), and acid phosphatase (ACP) in the liver tissue gradually increased at 0 h, 6 h and 72 h (P < 0.05). Histological analyses revealed structural changes in intracellular lipid droplets, nuclear migration and dissolution, and cell vacuolization in liver tissues. Six pathways were identified as the main enriched metabolic pathways according to the transcriptome profiling analysis, which were protein processing in endoplasmic reticulum, steroid biosynthesis, peroxisome, PPAR signaling pathway, glycolysis/gluconeogenesis and Insulin signaling pathway. The expressions of the important differentially expressed genes were verified by qPCR analysis, including erola, LOC100692144, sqle, cratb, pipox, cpt1a2b, hik and acss2l, ehhadh, prkcz, fasn and plaa, which showed the same expressions trends as those of RNA-Seq. CONCLUSIONS The Nile tilapia strain improves the abilities of hypoxia response through energy metabolism. Antioxidant enzyme measurements in the liver indicate that these five antioxidant enzymes play important roles in protecting the body from hypoxic damage. The histological changes in liver cells indicate that the damage caused by hypoxia stress. The immune-related metabolic pathways and energy metabolism-related pathways were obtained by transcriptome profiling, and these metabolic pathways and the differentially expressed genes selected from these metabolic pathways may be involved in the mechanism of hypoxia tolerance in this strain. These findings provide a better understanding of the hypoxia response mechanism of fish, and represent a useful resource for the genetic breeding of O. niloticus.
Collapse
Affiliation(s)
- Dayu Li
- College of Marine Sciences, Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinglin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wei Xiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhiying Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Chengliang Wei
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Junquan Zhu
- College of Marine Sciences, Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Hong Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
6
|
Biester A, Grahame DA, Drennan CL. Capturing a methanogenic carbon monoxide dehydrogenase/acetyl-CoA synthase complex via cryogenic electron microscopy. Proc Natl Acad Sci U S A 2024; 121:e2410995121. [PMID: 39361653 PMCID: PMC11474084 DOI: 10.1073/pnas.2410995121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Approximately two-thirds of the estimated one-billion metric tons of methane produced annually by methanogens is derived from the cleavage of acetate. Acetate is broken down by a Ni-Fe-S-containing A-cluster within the enzyme acetyl-CoA synthase (ACS) to carbon monoxide (CO) and a methyl group (CH3+). The methyl group ultimately forms the greenhouse gas methane, whereas CO is converted to the greenhouse gas carbon dioxide (CO2) by a Ni-Fe-S-containing C-cluster within the enzyme carbon monoxide dehydrogenase (CODH). Although structures have been solved of CODH/ACS from acetogens, which use these enzymes to make acetate from CO2, no structure of a CODH/ACS from a methanogen has been reported. In this work, we use cryo-electron microscopy to reveal the structure of a methanogenic CODH and CODH/ACS from Methanosarcina thermophila (MetCODH/ACS). We find that the N-terminal domain of acetogenic ACS, which is missing in all methanogens, is replaced by a domain of CODH. This CODH domain provides a channel for CO to travel between the two catalytic Ni-Fe-S clusters. It generates the binding surface for ACS and creates a remarkably similar CO alcove above the A-cluster using residues from CODH rather than ACS. Comparison of our MetCODH/ACS structure with our MetCODH structure reveals a molecular mechanism to restrict gas flow from the CO channel when ACS departs, preventing CO escape into the cell. Overall, these long-awaited structures of a methanogenic CODH/ACS reveal striking functional similarities to their acetogenic counterparts despite a substantial difference in domain organization.
Collapse
Affiliation(s)
- Alison Biester
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David A. Grahame
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
7
|
Forterre P. The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA. J Mol Evol 2024; 92:550-583. [PMID: 39158619 DOI: 10.1007/s00239-024-10186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
The existence of LUCA in the distant past is the logical consequence of the binary mechanism of cell division. The biosphere in which LUCA and contemporaries were living was the product of a long cellular evolution from the origin of life to the second age of the RNA world. A parsimonious scenario suggests that the molecular fabric of LUCA was much simpler than those of modern organisms, explaining why the evolutionary tempo was faster at the time of LUCA than it was during the diversification of the three domains. Although LUCA was possibly equipped with a RNA genome and most likely lacked an ATP synthase, it was already able to perform basic metabolic functions and to produce efficient proteins. However, the proteome of LUCA and its inferred metabolism remains to be correctly explored by in-depth phylogenomic analyses and updated datasets. LUCA was probably a mesophile or a moderate thermophile since phylogenetic analyses indicate that it lacked reverse gyrase, an enzyme systematically present in all hyperthermophiles. The debate about the position of Eukarya in the tree of life, either sister group to Archaea or descendants of Archaea, has important implications to draw the portrait of LUCA. In the second alternative, one can a priori exclude the presence of specific eukaryotic features in LUCA. In contrast, if Archaea and Eukarya are sister group, some eukaryotic features, such as the spliceosome, might have been present in LUCA and later lost in Archaea and Bacteria. The nature of the LUCA virome is another matter of debate. I suggest here that DNA viruses only originated during the diversification of the three domains from an RNA-based LUCA to explain the odd distribution pattern of DNA viruses in the tree of life.
Collapse
|
8
|
Gyaltshen Y, Ishii Y, Charvet S, Goetz E, Maruyama S, Kim E. Molecular diversity of green-colored microbial mats from hot springs of northern Japan. Extremophiles 2024; 28:43. [PMID: 39217229 DOI: 10.1007/s00792-024-01358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
We acquired and analyzed metagenome and 16S/18S rRNA gene amplicon data of green-colored microbial mats from two hot springs within the Onikobe geothermal region (Miyagi Prefecture, Japan). The two collection sites-Tamago and Warabi-were in proximity and had the same temperature (40 °C), but the Tamago site was connected to a nearby stream, whereas the Warabi site was isolated. Both the amplicon and metagenome data suggest the bacterial, especially cyanobacterial, dominance of the mats; other abundant groups include Chloroflexota, Pseudomonadota, Bacteroidota/Chlorobiota, and Deinococcota. At finer resolution, however, the taxonomic composition entirely differed between the mats. A total of 5 and 21 abundant bacterial 16S rRNA gene OTUs were identified for Tamago and Warabi, respectively; of these, 12 are putative chlorophyll- or rhodopsin-based phototrophs. The presence of phylogenetically diverse microbial eukaryotes was noted, with ciliates and amoebozoans being the most abundant eukaryote groups for Tamago and Warabi, respectively. Fifteen metagenome-assembled genomes (MAGs) were obtained, represented by 13 bacteria, one ciliate (mitochondrion), and one giant virus. A total of 15 novel taxa, including a new deeply branching Chlorobiota species, is noted from the amplicon and MAG data, highlighting the importance of environmental sequencing in uncovering hidden microorganisms.
Collapse
Affiliation(s)
- Yangtsho Gyaltshen
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Yuu Ishii
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake Cho, Sakyo ku, Kyoto, 606-8502, Japan
- Department of Biology, Miyagi University of Education, 149, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Sophie Charvet
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Department of Biology, Susquehanna University, Selinsgrove, PA, 17870, USA
| | - Eleanor Goetz
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06511, USA
| | - Shinichiro Maruyama
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA.
- Division of EcoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| |
Collapse
|
9
|
Ji R, Wan J, Liu J, Zheng J, Xiao T, Pan Y, Lin W. Linking morphology, genome, and metabolic activity of uncultured magnetotactic Nitrospirota at the single-cell level. MICROBIOME 2024; 12:158. [PMID: 39182147 PMCID: PMC11344931 DOI: 10.1186/s40168-024-01837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Magnetotactic bacteria (MTB) are a unique group of microorganisms that sense and navigate through the geomagnetic field by biomineralizing magnetic nanoparticles. MTB from the phylum Nitrospirota (previously known as Nitrospirae) thrive in diverse aquatic ecosystems. They are of great interest due to their production of hundreds of magnetite (Fe3O4) magnetosome nanoparticles per cell, which far exceeds that of other MTB. The morphological, phylogenetic, and genomic diversity of Nitrospirota MTB have been extensively studied. However, the metabolism and ecophysiology of Nitrospirota MTB are largely unknown due to the lack of cultivation techniques. METHODS Here, we established a method to link the morphological, genomic, and metabolic investigations of an uncultured Nitrospirota MTB population (named LHC-1) at the single-cell level using nanoscale secondary-ion mass spectrometry (NanoSIMS) in combination with rRNA-based in situ hybridization and target-specific mini-metagenomics. RESULTS We magnetically separated LHC-1 from a freshwater lake and reconstructed the draft genome of LHC-1 using genome-resolved mini-metagenomics. We found that 10 LHC-1 cells were sufficient as a template to obtain a high-quality draft genome. Genomic analysis revealed that LHC-1 has the potential for CO2 fixation and NO3- reduction, which was further characterized at the single-cell level by combining stable-isotope incubations and NanoSIMS analyses over time. Additionally, the NanoSIMS results revealed specific element distributions in LHC-1, and that the heterogeneity of CO2 and NO3- metabolisms among different LHC-1 cells increased with incubation time. CONCLUSIONS To our knowledge, this study provides the first metabolic measurements of individual Nitrospirota MTB cells to decipher their ecophysiological traits. The procedure constructed in this study provides a promising strategy to simultaneously investigate the morphology, genome, and ecophysiology of uncultured microbes in natural environments. Video Abstract.
Collapse
Affiliation(s)
- Runjia Ji
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Wan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jia Liu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinbo Zheng
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Deep Resources Equipment and Technology, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Tian Xiao
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Flinkstrom Z, Bryson S, Candry P, Winkler MKH. Metagenomic clustering links specific metabolic functions to globally relevant ecosystems. mSystems 2024; 9:e0057324. [PMID: 38980052 PMCID: PMC11334424 DOI: 10.1128/msystems.00573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Metagenomic sequencing has advanced our understanding of biogeochemical processes by providing an unprecedented view into the microbial composition of different ecosystems. While the amount of metagenomic data has grown rapidly, simple-to-use methods to analyze and compare across studies have lagged behind. Thus, tools expressing the metabolic traits of a community are needed to broaden the utility of existing data. Gene abundance profiles are a relatively low-dimensional embedding of a metagenome's functional potential and are, thus, tractable for comparison across many samples. Here, we compare the abundance of KEGG Ortholog Groups (KOs) from 6,539 metagenomes from the Joint Genome Institute's Integrated Microbial Genomes and Metagenomes (JGI IMG/M) database. We find that samples cluster into terrestrial, aquatic, and anaerobic ecosystems with marker KOs reflecting adaptations to these environments. For instance, functional clusters were differentiated by the metabolism of antibiotics, photosynthesis, methanogenesis, and surprisingly GC content. Using this functional gene approach, we reveal the broad-scale patterns shaping microbial communities and demonstrate the utility of ortholog abundance profiles for representing a rapidly expanding body of metagenomic data. IMPORTANCE Metagenomics, or the sequencing of DNA from complex microbiomes, provides a view into the microbial composition of different environments. Metagenome databases were created to compile sequencing data across studies, but it remains challenging to compare and gain insight from these large data sets. Consequently, there is a need to develop accessible approaches to extract knowledge across metagenomes. The abundance of different orthologs (i.e., genes that perform a similar function across species) provides a simplified representation of a metagenome's metabolic potential that can easily be compared with others. In this study, we cluster the ortholog abundance profiles of thousands of metagenomes from diverse environments and uncover the traits that distinguish them. This work provides a simple to use framework for functional comparison and advances our understanding of how the environment shapes microbial communities.
Collapse
Affiliation(s)
- Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | | | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Mari-Karoliina H. Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Song Y, Tüysüz H. CO 2 Fixation to Prebiotic Intermediates over Heterogeneous Catalysts. Acc Chem Res 2024; 57:2038-2047. [PMID: 39024180 PMCID: PMC11308370 DOI: 10.1021/acs.accounts.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
ConspectusThe study of the origin of life requires a multifaceted approach to understanding where and how life arose on Earth. One of the most compelling hypotheses is the chemosynthetic origin of life at hydrothermal vents, as this condition has been considered viable for early forms of life. The continuous production of H2 and heat by serpentinization generates reductive conditions at hydrothermal vents, in which CO2 can be used to build large biomolecules. Although this involves surface catalysis and an autocatalytic process, in which solid minerals act as catalysts in the conversion of CO2 to metabolically important organic molecules, the systematic investigation of heterogeneous catalysis to comprehend prebiotic chemistry at hydrothermal vents has not been undertaken.In this Account, we discuss geochemical CO2 fixation to metabolic intermediates by synthetic minerals at hydrothermal vents from the perspective of heterogeneous catalysis. Ni and Fe are the most abundant transition metals at hydrothermal vents and occur in the active site of the enzymes carbon monoxide dehydrogenases/acetyl coenzyme A synthases (CODH/ACS). Synthetic free-standing NiFe alloy nanoparticles can convert CO2 to acetyl coenzyme A pathway intermediates such as formate, acetate, and pyruvate. The same alloy can further convert pyruvate to citramalate, which is essential in the biological citramalate pathway. Thermal treatment of Ni3Fe nanoparticles under NH3, which can occur in hydrothermal vents, results in Ni3FeN/Ni3Fe heterostructures. This catalyst has been demonstrated to produce prebiotic formamide and acetamide from CO2 and H2O using Ni3FeN/Ni3Fe as both substrate and catalyst. In the process of serpentinization, Co can be reduced in the vicinity of olivine, a Mg-Fe silicate mineral. This produces CoFe and CoFe2 with serpentine in nature, representing SiO2-supported CoFe alloys. In mimicking these natural minerals, synthetic SiO2-supported CoFe alloys demonstrate the same liquid products as NiFe alloys, namely, formate, acetate, and pyruvate under mild hydrothermal vent conditions. In contrast to the NiFe system, hydrocarbons up to C6 were detected in the gas phase, which is also present in hydrothermal vents. The addition of alkali and alkaline-earth metals to the catalysts results in enhanced formate concentration, playing a promotional role in CO2 reduction. Finally, Co was loaded onto ordered mesoporous SiO2 after modification with cations to simulate the minerals found in hydrothermal vents. These catalysts were then investigated under diminished H2O concentration, revealing the conversion of CO2 to CO, CH4, methanol, and acetate. Notably, the selectivity to metabolically relevant methanol was enhanced in the presence of cations that could generate and stabilize the methoxy intermediate. Calculation using the machine learning approach revealed the possibility of predicting the selectivity of CO2 fixation when modifying mesoporous SiO2 supports with heterocations. Our research demonstrates that minerals at hydrothermal vents can convert CO2 into metabolites under a variety of prebiotic conditions, potentially paving the way for modern biological CO2 fixation processes.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Wiley S, Griffith C, Eckert P, Mueller AP, Nogle R, Simpson SD, Köpke M, Can M, Sarangi R, Kubarych K, Ragsdale SW. An alcove at the acetyl-CoA synthase nickel active site is required for productive substrate CO binding and anaerobic carbon fixation. J Biol Chem 2024; 300:107503. [PMID: 38944127 PMCID: PMC11321310 DOI: 10.1016/j.jbc.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
One of the seven natural CO2 fixation pathways, the anaerobic Wood-Ljungdahl pathway (WLP) is unique in generating CO as a metabolic intermediate, operating through organometallic intermediates, and in conserving (versus utilizing) net ATP. The key enzyme in the WLP is acetyl-CoA synthase (ACS), which uses an active site [2Ni-4Fe-4S] cluster (A-cluster), a CO tunnel, and an organometallic (Ni-CO, Ni-methyl, and Ni-acetyl) reaction sequence to generate acetyl-CoA. Here, we reveal that an alcove, which interfaces the tunnel and the A-cluster, is essential for CO2 fixation and autotrophic growth by the WLP. In vitro spectroscopy, kinetics, binding, and in vivo growth experiments reveal that a Phe229A substitution at one wall of the alcove decreases CO affinity thirty-fold and abolishes autotrophic growth; however, a F229W substitution enhances CO binding 80-fold. Our results indicate that the structure of the alcove is exquisitely tuned to concentrate CO near the A-cluster; protect ACS from CO loss during catalysis, provide a haven for inhibitory CO, and stabilize the tetrahedral coordination at the Nip site where CO binds. The directing, concentrating, and protective effects of the alcove explain the inability of F209A to grow autotrophically. The alcove also could help explain current controversies over whether ACS binds CO and methyl through a random or ordered mechanism. Our work redefines what we historically refer to as the metallocenter "active site". The alcove is so crucial for enzymatic function that we propose it is part of the active site. The community should now look for such alcoves in all "gas handling" metalloenzymes.
Collapse
Affiliation(s)
- Seth Wiley
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire Griffith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Eckert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Mehmet Can
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Kevin Kubarych
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
13
|
Katayama YA, Kamikawa R, Yoshida T. Phylogenetic diversity of putative nickel-containing carbon monoxide dehydrogenase-encoding prokaryotes in the human gut microbiome. Microb Genom 2024; 10:001285. [PMID: 39166974 PMCID: PMC11338639 DOI: 10.1099/mgen.0.001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Although the production of carbon monoxide (CO) within the human body has been detected, only two CO-utilizing prokaryotes (CO utilizers) have been reported in the human gut. Therefore, the phylogenetic diversity of the human gut CO-utilizing prokaryotes remains unclear. Here, we unveiled more than a thousand representative genomes containing genes for putative nickel-containing CO dehydrogenase (pCODH), an essential enzyme for CO utilization. The taxonomy of genomes encoding pCODH was expanded to include 8 phyla, comprising 82 genera and 248 species. In contrast, putative molybdenum-containing CODH genes were not detected in the human gut microbial genomes. pCODH transcripts were detected in 97.3 % (n=110) of public metatranscriptome datasets derived from healthy human faeces, suggesting the ubiquitous presence of prokaryotes bearing transcriptionally active pCODH genes in the human gut. More than half of the pCODH-encoding genomes contain a set of genes for the autotrophic Wood-Ljungdahl pathway (WLP). However, 79 % of these genomes commonly lack a key gene for the WLP, which encodes the enzyme that synthesizes formate from CO2, suggesting that potential human gut CO-utilizing prokaryotes share a degenerated gene set for WLP. In the other half of the pCODH-encoding genomes, seven genes, including putative genes for flavin adenine dinucleotide-dependent NAD(P) oxidoreductase (FNOR), ABC transporter and Fe-hydrogenase, were found adjacent to the pCODH gene. None of the putative genes associated with CO-oxidizing respiratory machinery, such as energy-converting hydrogenase genes, were found in pCODH-encoding genomes. This suggests that the human gut CO utilization is not for CO removal, but potentially for fixation and/or biosynthesis, consistent with the harmless yet continuous production of CO in the human gut. Our findings reveal the diversity and distribution of prokaryotes with pCODH in the human gut microbiome, suggesting their potential contribution to microbial ecosystems in human gut environments.
Collapse
Affiliation(s)
- Yuka Adachi Katayama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Schmidt D, Gawel A, Sanden S, Polet W, Checinski MP, Hortmann F, Pellumbi K, Junge Puring K, Siegmund D, Apfel UP. Insights into the Electrochemical CO 2RR Performance and Binding of Small Molecules on Quaternary Thiospinels Ag 2FeSn 3S 8 and Cu 2FeSn 3S 8. Inorg Chem 2024; 63:13495-13505. [PMID: 38988179 DOI: 10.1021/acs.inorgchem.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Using a mechanical synthesis method in the form of ball milling and an additional annealing step, a novel and accelerated route for the synthesis of the thiospinels toyohaite (Ag2FeSn3S8) and rhodostannite (Cu2FeSn3S8) was discovered. Both thiospinels display faradaic efficiencies of up to 73% for CO2 reduction to CO using an organic electrolyte in an H-type cell. The materials were furthermore implemented in a zero-gap electrolyzer, with toyohaite producing 22% CO and 52% H2 at 100 mA cm-2 and rhodostannite 28% CO and 37% H2. The catalytically active sites are studied using density functional theory, revealing strong CO binding interactions on both Ag and Cu, whereas Sn is found to contribute to the decomposition of Ag2FeSn3S8 and Cu2FeSn3S8 by coordination with oxygen. Postmortem analysis of the thiospinel-based electrodes by means of SEM-EDX, XRD, XPS, and Mössbauer spectroscopy showed sulfur leaching from the catalysts after applying 100 mA cm-2. These spectroscopic results-in conjunction with DFT calculations of the oxidized surfaces-suggest that the catalytically active species consists of metal oxides. As a conversion of the metal sulfides into the corresponding metallic species was observed via XRD, the decomposition pathways of both catalysts were also computed using DFT; thus, elucidating the energetically most favorable decomposition products and expanding the possible composition of the catalysts postelectrolysis.
Collapse
Affiliation(s)
- Dana Schmidt
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, Oberhausen D-46047, Germany
- Forschungszentrum Jülich, IEK-9, Ostring O10, Jülich D-52425, Germany
| | - Alina Gawel
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, Oberhausen D-46047, Germany
| | - Sebastian Sanden
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, Bochum D-44780, Germany
| | - Wigbert Polet
- CreativeQuantum GmbH, Am Studio 2, Berlin D-12489, Germany
| | | | - Florian Hortmann
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, Oberhausen D-46047, Germany
| | - Kevinjeorjios Pellumbi
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, Oberhausen D-46047, Germany
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, Oberhausen D-46047, Germany
| | - Daniel Siegmund
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, Oberhausen D-46047, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, Bochum D-44780, Germany
| | - Ulf-Peter Apfel
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, Oberhausen D-46047, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, Bochum D-44780, Germany
| |
Collapse
|
15
|
Hiralal A, Geelhoed JS, Neukirchen S, Meysman FJR. Comparative genomic analysis of nickel homeostasis in cable bacteria. BMC Genomics 2024; 25:692. [PMID: 39009997 PMCID: PMC11247825 DOI: 10.1186/s12864-024-10594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Cable bacteria are filamentous members of the Desulfobulbaceae family that are capable of performing centimetre‑scale electron transport in marine and freshwater sediments. This long‑distance electron transport is mediated by a network of parallel conductive fibres embedded in the cell envelope. This fibre network efficiently transports electrical currents along the entire length of the centimetre‑long filament. Recent analyses show that these fibres consist of metalloproteins that harbour a novel nickel‑containing cofactor, which indicates that cable bacteria have evolved a unique form of biological electron transport. This nickel‑dependent conduction mechanism suggests that cable bacteria are strongly dependent on nickel as a biosynthetic resource. Here, we performed a comprehensive comparative genomic analysis of the genes linked to nickel homeostasis. We compared the genome‑encoded adaptation to nickel of cable bacteria to related members of the Desulfobulbaceae family and other members of the Desulfobulbales order. RESULTS Presently, four closed genomes are available for the monophyletic cable bacteria clade that consists of the genera Candidatus Electrothrix and Candidatus Electronema. To increase the phylogenomic coverage, we additionally generated two closed genomes of cable bacteria: Candidatus Electrothrix gigas strain HY10‑6 and Candidatus Electrothrix antwerpensis strain GW3‑4, which are the first closed genomes of their respective species. Nickel homeostasis genes were identified in a database of 38 cable bacteria genomes (including 6 closed genomes). Gene prevalence was compared to 19 genomes of related strains, residing within the Desulfobulbales order but outside of the cable bacteria clade, revealing several genome‑encoded adaptations to nickel homeostasis in cable bacteria. Phylogenetic analysis indicates that nickel importers, nickel‑binding enzymes and nickel chaperones of cable bacteria are affiliated to organisms outside the Desulfobulbaceae family, with several proteins showing affiliation to organisms outside of the Desulfobacterota phylum. Conspicuously, cable bacteria encode a unique periplasmic nickel export protein RcnA, which possesses a putative cytoplasmic histidine‑rich loop that has been largely expanded compared to RcnA homologs in other organisms. CONCLUSION Cable bacteria genomes show a clear genetic adaptation for nickel utilization when compared to closely related genera. This fully aligns with the nickel‑dependent conduction mechanism that is uniquely found in cable bacteria.
Collapse
Affiliation(s)
- Anwar Hiralal
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | - Sinje Neukirchen
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | - Filip J R Meysman
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
16
|
Jiao JY, Ma SC, Salam N, Zhou Z, Lian ZH, Fu L, Chen Y, Peng CH, OuYang YT, Fan H, Li L, Yi Y, Zhang JY, Wang JY, Liu L, Gao L, Oren A, Woyke T, Dodsworth JA, Hedlund BP, Li WJ, Cheng L. Cultivation of novel Atribacterota from oil well provides new insight into their diversity, ecology, and evolution in anoxic, carbon-rich environments. MICROBIOME 2024; 12:123. [PMID: 38971798 PMCID: PMC11227167 DOI: 10.1186/s40168-024-01836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.
Collapse
Affiliation(s)
- Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shi-Chun Ma
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- National Agri-Food Biotechnology Institute, Sector-81 (Knowledge City), Mohali, 140306, Punjab, India
| | - Zhuo Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Cheng-Hui Peng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Yu-Ting OuYang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hui Fan
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Ling Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Yue Yi
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Jing-Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jing-Yuan Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | | | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
17
|
Wang YL, Ikuma K, Brown AMV, Deonarine A. Global survey of hgcA-carrying genomes in marine and freshwater sediments: Insights into mercury methylation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124117. [PMID: 38714231 DOI: 10.1016/j.envpol.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024]
Abstract
Mercury (Hg) methylation is a microbially mediated process that produces methylmercury (MeHg), a bioaccumulative neurotoxin. A highly conserved gene pair, hgcAB, is required for Hg methylation, which provides a basis for identifying Hg methylators and evaluating their genomic composition. In this study, we conducted a large-scale omics analysis in which 281 metagenomic freshwater and marine sediment samples from 46 geographic locations across the globe were queried. Specific objectives were to examine the prevalence of Hg methylators, to identify horizontal gene transfer (HGT) events involving hgcAB within Hg methylator communities, and to identify associations between hgcAB and microbial biochemical functions/genes. Hg methylators from the phyla Desulfobacterota and Bacteroidota were dominant in both freshwater and marine sediments while Firmicutes and methanogens belonging to Euryarchaeota were identified only in freshwater sediments. Novel Hg methylators were found in the Phycisphaerae and Planctomycetia classes within the phylum Planctomycetota, including potential hgcA-carrying anammox metagenome-assembled genomes (MAGs) from Candidatus Brocadiia. HGT of hgcA and hgcB were identified in both freshwater and marine methylator communities. Spearman's correlation analysis of methylator genomes suggested that in addition to sulfide, thiosulfate, sulfite, and ammonia may be important parameters for Hg methylation processes in sediments. Overall, our results indicated that the biochemical drivers of Hg methylation vary between marine and freshwater sites, lending insight into the influence of environmental perturbances, such as a changing climate, on Hg methylation processes.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amrika Deonarine
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
18
|
Zhang S, Chen Y, Wang S, Yang Q, Leng H, Zhao P, Guo L, Dai L, Bai L, Cha G. The novel regulator HdrR controls the transcription of the heterodisulfide reductase operon hdrBCA in Methanosarcina barkeri. Appl Environ Microbiol 2024; 90:e0069124. [PMID: 38809047 PMCID: PMC11218639 DOI: 10.1128/aem.00691-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Methanogenic archaea play a key role in the global carbon cycle because these microorganisms remineralize organic compounds in various anaerobic environments. The microorganism Methanosarcina barkeri is a metabolically versatile methanogen, which can utilize acetate, methanol, and H2/CO2 to synthesize methane. However, the regulatory mechanisms underlying methanogenesis for different substrates remain unknown. In this study, RNA-seq analysis was used to investigate M. barkeri growth and gene transcription under different substrate regimes. According to the results, M. barkeri showed the best growth under methanol, followed by H2/CO2 and acetate, and these findings corresponded well with the observed variations in genes transcription abundance for different substrates. In addition, we identified a novel regulator, MSBRM_RS03855 (designated as HdrR), which specifically activates the transcription of the heterodisulfide reductase hdrBCA operon in M. barkeri. HdrR was able to bind to the hdrBCA operon promoter to regulate transcription. Furthermore, the structural model analyses revealed a helix-turn-helix domain, which is likely involved in DNA binding. Taken together, HdrR serves as a model to reveal how certain regulatory factors control the expression of key enzymes in the methanogenic pathway.IMPORTANCEThe microorganism Methanosarcina barkeri has a pivotal role in the global carbon cycle and contributes to global temperature homeostasis. The consequences of biological methanogenesis are far-reaching, including impacts on atmospheric methane and CO2 concentrations, agriculture, energy production, waste treatment, and human health. As such, reducing methane emissions is crucial to meeting set climate goals. The methanogenic activity of certain microorganisms can be drastically reduced by inhibiting the transcription of the hdrBCA operon, which encodes heterodisulfide reductases. Here, we provide novel insight into the mechanisms regulating hdrBCA operon transcription in the model methanogen M. barkeri. The results clarified that HdrR serves as a regulator of heterodisulfide reductase hdrBCA operon transcription during methanogenesis, which expands our understanding of the unique regulatory mechanisms that govern methanogenesis. The findings presented in this study can further our understanding of how genetic regulation can effectively reduce the methane emissions caused by methanogens.
Collapse
Affiliation(s)
- Sicheng Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yi Chen
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Shuxin Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qing Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Huan Leng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Pengyan Zhao
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Leizhou Guo
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lirong Dai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Guihong Cha
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
19
|
Ma Y, Qu Y, Yao X, Xia C, Lv M, Lin X, Zhang L, Zhang M, Hu B. Unveiling the unique role of iron in the metabolism of methanogens: A review. ENVIRONMENTAL RESEARCH 2024; 250:118495. [PMID: 38367837 DOI: 10.1016/j.envres.2024.118495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Methanogens are the main participants in the carbon cycle, catalyzing five methanogenic pathways. Methanogens utilize different iron-containing functional enzymes in different methanogenic processes. Iron is a vital element in methanogens, which can serve as a carrier or reactant in electron transfer. Therefore, iron plays an important role in the growth and metabolism of methanogens. In this paper, we cast light on the types and functions of iron-containing functional enzymes involved in different methanogenic pathways, and the roles iron play in energy/substance metabolism of methanogenesis. Furthermore, this review provides certain guiding significance for lowering CH4 emissions, boosting the carbon sink capacity of ecosystems and promoting green and low-carbon development in the future.
Collapse
Affiliation(s)
- Yuxin Ma
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Qu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chujun Xia
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengjie Lv
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Zhang
- Beijing Enterprises Water Group Limited, Beijing, China
| | - Meng Zhang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Musat F, Kjeldsen KU, Rotaru AE, Chen SC, Musat N. Archaea oxidizing alkanes through alkyl-coenzyme M reductases. Curr Opin Microbiol 2024; 79:102486. [PMID: 38733792 DOI: 10.1016/j.mib.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX-SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.
Collapse
Affiliation(s)
- Florin Musat
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.
| | - Kasper U Kjeldsen
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Amelia E Rotaru
- Department of Biology, Nordic Center for Earth Evolution, University of Southern Denmark, Odense, Denmark
| | - Song-Can Chen
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna A-1030, Austria
| | - Niculina Musat
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Benito Merino D, Lipp JS, Borrel G, Boetius A, Wegener G. Anaerobic hexadecane degradation by a thermophilic Hadarchaeon from Guaymas Basin. THE ISME JOURNAL 2024; 18:wrad004. [PMID: 38365230 PMCID: PMC10811742 DOI: 10.1093/ismejo/wrad004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 02/18/2024]
Abstract
Hadarchaeota inhabit subsurface and hydrothermally heated environments, but previous to this study, they had not been cultured. Based on metagenome-assembled genomes, most Hadarchaeota are heterotrophs that grow on sugars and amino acids, or oxidize carbon monoxide or reduce nitrite to ammonium. A few other metagenome-assembled genomes encode alkyl-coenzyme M reductases (Acrs), β-oxidation, and Wood-Ljungdahl pathways, pointing toward multicarbon alkane metabolism. To identify the organisms involved in thermophilic oil degradation, we established anaerobic sulfate-reducing hexadecane-degrading cultures from hydrothermally heated sediments of the Guaymas Basin. Cultures at 70°C were enriched in one Hadarchaeon that we propose as Candidatus Cerberiarchaeum oleivorans. Genomic and chemical analyses indicate that Ca. C. oleivorans uses an Acr to activate hexadecane to hexadecyl-coenzyme M. A β-oxidation pathway and a tetrahydromethanopterin methyl branch Wood-Ljungdahl (mWL) pathway allow the complete oxidation of hexadecane to CO2. Our results suggest a syntrophic lifestyle with sulfate reducers, as Ca. C. oleivorans lacks a sulfate respiration pathway. Comparative genomics show that Acr, mWL, and β-oxidation are restricted to one family of Hadarchaeota, which we propose as Ca. Cerberiarchaeaceae. Phylogenetic analyses further indicate that the mWL pathway is basal to all Hadarchaeota. By contrast, the carbon monoxide dehydrogenase/acetyl-coenzyme A synthase complex in Ca. Cerberiarchaeaceae was horizontally acquired from Bathyarchaeia. The Acr and β-oxidation genes of Ca. Cerberiarchaeaceae are highly similar to those of other alkane-oxidizing archaea such as Ca. Methanoliparia and Ca. Helarchaeales. Our results support the use of Acrs in the degradation of petroleum alkanes and suggest a role of Hadarchaeota in oil-rich environments.
Collapse
Affiliation(s)
- David Benito Merino
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2, 428359, Bremen, Germany
| | - Julius S Lipp
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
| | - Guillaume Borrel
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
| |
Collapse
|
22
|
Luo ZH, Li Q, Xie YG, Lv AP, Qi YL, Li MM, Qu YN, Liu ZT, Li YX, Rao YZ, Jiao JY, Liu L, Narsing Rao MP, Hedlund BP, Evans PN, Fang Y, Shu WS, Huang LN, Li WJ, Hua ZS. Temperature, pH, and oxygen availability contributed to the functional differentiation of ancient Nitrososphaeria. THE ISME JOURNAL 2024; 18:wrad031. [PMID: 38365241 PMCID: PMC10833072 DOI: 10.1093/ismejo/wrad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/18/2024]
Abstract
Ammonia-oxidizing Nitrososphaeria are among the most abundant archaea on Earth and have profound impacts on the biogeochemical cycles of carbon and nitrogen. In contrast to these well-studied ammonia-oxidizing archaea (AOA), deep-branching non-AOA within this class remain poorly characterized because of a low number of genome representatives. Here, we reconstructed 128 Nitrososphaeria metagenome-assembled genomes from acid mine drainage and hot spring sediment metagenomes. Comparative genomics revealed that extant non-AOA are functionally diverse, with capacity for carbon fixation, carbon monoxide oxidation, methanogenesis, and respiratory pathways including oxygen, nitrate, sulfur, or sulfate, as potential terminal electron acceptors. Despite their diverse anaerobic pathways, evolutionary history inference suggested that the common ancestor of Nitrososphaeria was likely an aerobic thermophile. We further surmise that the functional differentiation of Nitrososphaeria was primarily shaped by oxygen, pH, and temperature, with the acquisition of pathways for carbon, nitrogen, and sulfur metabolism. Our study provides a more holistic and less biased understanding of the diversity, ecology, and deep evolution of the globally abundant Nitrososphaeria.
Collapse
Affiliation(s)
- Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000 Talca, Chile
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, United States
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Yuan Fang
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou 510006, PR China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences, Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
23
|
Zhang RY, Wang YR, Liu RL, Rhee SK, Zhao GP, Quan ZX. Metagenomic characterization of a novel non-ammonia-oxidizing Thaumarchaeota from hadal sediment. MICROBIOME 2024; 12:7. [PMID: 38191433 PMCID: PMC10773090 DOI: 10.1186/s40168-023-01728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND The hadal sediment, found at an ocean depth of more than 6000 m, is geographically isolated and under extremely high hydrostatic pressure, resulting in a unique ecosystem. Thaumarchaeota are ubiquitous marine microorganisms predominantly present in hadal environments. While there have been several studies on Thaumarchaeota there, most of them have primarily focused on ammonia-oxidizing archaea (AOA). However, systematic metagenomic research specifically targeting heterotrophic non-AOA Thaumarchaeota is lacking. RESULTS In this study, we explored the metagenomes of Challenger Deep hadal sediment, focusing on the Thaumarchaeota. Functional analysis of sequence reads revealed the potential contribution of Thaumarchaeota to recalcitrant dissolved organic matter degradation. Metagenome assembly binned one new group of hadal sediment-specific and ubiquitously distributed non-AOA Thaumarchaeota, named Group-3.unk. Pathway reconstruction of this new type of Thaumarchaeota also supports heterotrophic characteristics of Group-3.unk, along with ABC transporters for the uptake of amino acids and carbohydrates and catabolic utilization of these substrates. This new clade of Thaumarchaeota also contains aerobic oxidation of carbon monoxide-related genes. Complete glyoxylate cycle is a distinctive feature of this clade in supplying intermediates of anabolic pathways. The pan-genomic and metabolic analyses of metagenome-assembled genomes belonging to Group-3.unk Thaumarchaeota have highlighted distinctions, including the dihydroxy phthalate decarboxylase gene associated with the degradation of aromatic compounds and the absence of genes related to the synthesis of some types of vitamins compared to AOA. Notably, Group-3.unk shares a common feature with deep ocean AOA, characterized by their high hydrostatic pressure resistance, potentially associated with the presence of V-type ATP and di-myo-inositol phosphate syntheses-related genes. The enrichment of organic matter in hadal sediments might be attributed to the high recruitment of sequence reads of the Group-3.unk clade of heterotrophic Thaumarchaeota in the trench sediment. Evolutionary and genetic dynamic analyses suggest that Group-3 non-AOA consists of mesophilic Thaumarchaeota organisms. These results indicate a potential role in the transition from non-AOA to AOA Thaumarchaeota and from thermophilic to mesophilic Thaumarchaeota, shedding light on recent evolutionary pathways. CONCLUSIONS One novel clade of heterotrophic non-AOA Thaumarchaeota was identified through metagenome analysis of sediments from Challenger Deep. Our study provides insight into the ecology and genomic characteristics of the new sub-group of heterotrophic non-AOA Thaumarchaeota, thereby extending the knowledge of the evolution of Thaumarchaeota. Video Abstract.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- Fudan Microbiome Center, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan-Ren Wang
- Fudan Microbiome Center, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Ru-Long Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea
| | - Guo-Ping Zhao
- Fudan Microbiome Center, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhe-Xue Quan
- Fudan Microbiome Center, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
25
|
Mosley OE, Gios E, Handley KM. Implications for nitrogen and sulphur cycles: phylogeny and niche-range of Nitrospirota in terrestrial aquifers. ISME COMMUNICATIONS 2024; 4:ycae047. [PMID: 38650708 PMCID: PMC11033732 DOI: 10.1093/ismeco/ycae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Increasing evidence suggests Nitrospirota are important contributors to aquatic and subsurface nitrogen and sulphur cycles. We determined the phylogenetic and ecological niche associations of Nitrospirota colonizing terrestrial aquifers. Nitrospirota compositions were determined across 59 groundwater wells. Distributions were strongly influenced by oxygen availability in groundwater, marked by a trade-off between aerobic (Nitrospira, Leptospirillum) and anaerobic (Thermodesulfovibrionia, unclassified) lineages. Seven Nitrospirota metagenome-assembled genomes (MAGs), or populations, were recovered from a subset of wells, including three from the recently designated class 9FT-COMBO-42-15. Most were relatively more abundant and transcriptionally active in dysoxic groundwater. These MAGs were analysed with 743 other Nitrospirota genomes. Results illustrate the predominance of certain lineages in aquifers (e.g. non-nitrifying Nitrospiria, classes 9FT-COMBO-42-15 and UBA9217, and Thermodesulfovibrionales family UBA1546). These lineages are characterized by mechanisms for nitrate reduction and sulphur cycling, and, excluding Nitrospiria, the Wood-Ljungdahl pathway, consistent with carbon-limited, low-oxygen, and sulphur-rich aquifer conditions. Class 9FT-COMBO-42-15 is a sister clade of Nitrospiria and comprises two families spanning a transition in carbon fixation approaches: f_HDB-SIOIB13 encodes rTCA (like Nitrospiria) and f_9FT-COMBO-42-15 encodes Wood-Ljungdahl CO dehydrogenase (like Thermodesulfovibrionia and UBA9217). The 9FT-COMBO-42-15 family is further differentiated by its capacity for sulphur oxidation (via DsrABEFH and SoxXAYZB) and dissimilatory nitrate reduction to ammonium, and gene transcription indicated active coupling of nitrogen and sulphur cycles by f_9FT-COMBO-42-15 in dysoxic groundwater. Overall, results indicate that Nitrospirota are widely distributed in groundwater and that oxygen availability drives the spatial differentiation of lineages with ecologically distinct roles related to nitrogen and sulphur metabolism.
Collapse
Affiliation(s)
- Olivia E Mosley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Present address: NatureMetrics Ltd, Surrey Research Park, Guildford GU2 7HJ, United Kingdom
| | - Emilie Gios
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Present address: NINA, Norwegian Institute for Nature Research, Trondheim 7034, Norway
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
26
|
Ruiz-Blas F, Bartholomäus A, Yang S, Wagner D, Henny C, Russell JM, Kallmeyer J, Vuillemin A. Metabolic features that select for Bathyarchaeia in modern ferruginous lacustrine subsurface sediments. ISME COMMUNICATIONS 2024; 4:ycae112. [PMID: 39660009 PMCID: PMC11631310 DOI: 10.1093/ismeco/ycae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 12/12/2024]
Abstract
Ferruginous conditions prevailed through Earth's early oceans history, yet our understanding of biogeochemical cycles in anoxic iron-rich, sulfate-poor sediments remains elusive in terms of redox processes and organic matter remineralization. Using comprehensive geochemistry, cell counts, and metagenomic data, we investigated the taxonomic and functional distribution of the microbial subsurface biosphere in Lake Towuti, a stratified ferruginous analogue. Below the zone in which pore water becomes depleted in electron acceptors, cell densities exponentially decreased while microbial assemblages shifted from iron- and sulfate-reducing bacterial populations to fermentative anaerobes and methanogens, mostly selecting Bathyarchaeia below the sulfate reduction zone. Bathyarchaeia encode metabolic machinery to cycle and assimilate polysulfides via sulfhydrogenase, sulfide dehydrogenase, and heterodisulfide reductase, using dissimilatory sulfite reductase subunit E and rubredoxin as carriers. Their metagenome-assembled genomes showed that carbon fixation could proceed through the complete methyl-branch Wood-Ljungdahl pathway, conducting (homo)acetogenesis in the absence of methyl coenzyme M reductase. Further, their partial carbonyl-branch, assumed to act in tetrahydrofolate interconversions of C1 and C2 compounds, could support close interactions with methylotrophic methanogens in the fermentation zone. Thus, Bathyarchaeia appeared capable of coupling sulfur-redox reactions with fermentative processes, using electron bifurcation in a redox-conserving (homo)acetogenic Wood-Ljungdahl pathway, and revealing geochemical ferruginous conditions at the transition between the sulfate reduction and fermentation zone as their preferential niche.
Collapse
Affiliation(s)
- Fátima Ruiz-Blas
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
- University of Potsdam, Institute of Geosciences, Karl-Liebknecht-Str. 24-25, Potsdam 14476, Germany
| | - Cynthia Henny
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46 Cibinong, Bogor 16911, West Java, Republic of Indonesia
| | - James M Russell
- Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Providence, RI 02912, United States
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|
27
|
Jiang H, Luo J, Liu Q, Ogunyemi SO, Ahmed T, Li B, Yu S, Wang X, Yan C, Chen J, Li B. Rice bacterial leaf blight drives rhizosphere microbial assembly and function adaptation. Microbiol Spectr 2023; 11:e0105923. [PMID: 37846986 PMCID: PMC10715139 DOI: 10.1128/spectrum.01059-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Our results suggest that rhizosphere bacteria are more sensitive to bacterial leaf blight (BLB) than fungi. BLB infection decreased the diversity of the rhizosphere bacterial community but increased the complexity and size of the rhizosphere microbial community co-occurrence networks. In addition, the relative abundance of the genera Streptomyces, Chitinophaga, Sphingomonas, and Bacillus increased significantly. Finally, these findings contribute to the understanding of plant-microbiome interactions by providing critical insight into the ecological mechanisms by which rhizosphere microbes respond to phyllosphere diseases. In addition, it also lays the foundation and provides data to support the use of plant microbes to promote plant health in sustainable agriculture, providing critical insight into ecological mechanisms.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai, China
| | - Quanhong Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Bing Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo , China
| | - Chenqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou , China
| |
Collapse
|
28
|
Liu S, Hu R, Peng N, Zhou Z, Chen R, He Z, Wang C. Phylogenetic and ecophysiological novelty of subsurface mercury methylators in mangrove sediments. THE ISME JOURNAL 2023; 17:2313-2325. [PMID: 37880540 PMCID: PMC10689504 DOI: 10.1038/s41396-023-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Mangrove sediment is a crucial component in the global mercury (Hg) cycling and acts as a hotspot for methylmercury (MeHg) production. Early evidence has documented the ubiquity of well-studied Hg methylators in mangrove superficial sediments; however, their diversity and metabolic adaptation in the more anoxic and highly reduced subsurface sediments are lacking. Through MeHg biogeochemical assay and metagenomic sequencing, we found that mangrove subsurface sediments (20-100 cm) showed a less hgcA gene abundance but higher diversity of Hg methylators than superficial sediments (0-20 cm). Regional-scale investigation of mangrove subsurface sediments spanning over 1500 km demonstrated a prevalence and family-level novelty of Hg-methylating microbial lineages (i.e., those affiliated to Anaerolineae, Phycisphaerae, and Desulfobacterales). We proposed the candidate phylum Zixibacteria lineage with sulfate-reducing capacity as a currently understudied Hg methylator across anoxic environments. Unlike other Hg methylators, the Zixibacteria lineage does not use the Wood-Ljungdahl pathway but has unique capabilities of performing methionine synthesis to donate methyl groups. The absence of cobalamin biosynthesis pathway suggests that this Hg-methylating lineage may depend on its syntrophic partners (i.e., Syntrophobacterales members) for energy in subsurface sediments. Our results expand the diversity of subsurface Hg methylators and uncover their unique ecophysiological adaptations in mangrove sediments.
Collapse
Affiliation(s)
- Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Nenglong Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruihan Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Rubin-Blum M, Yudkovsky Y, Marmen S, Raveh O, Amrani A, Kutuzov I, Guy-Haim T, Rahav E. Tar patties are hotspots of hydrocarbon turnover and nitrogen fixation during a nearshore pollution event in the oligotrophic southeastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 197:115747. [PMID: 37995430 DOI: 10.1016/j.marpolbul.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Weathered oil, that is, tar, forms hotspots of hydrocarbon degradation by complex biota in marine environment. Here, we used marker gene sequencing and metagenomics to characterize the communities of bacteria, archaea and eukaryotes that colonized tar patties and control samples (wood, plastic), collected in the littoral following an offshore spill in the warm, oligotrophic southeastern Mediterranean Sea (SEMS). We show potential aerobic and anaerobic hydrocarbon catabolism niches on tar interior and exterior, linking carbon, sulfur and nitrogen cycles. Alongside aromatics and larger alkanes, short-chain alkanes appear to fuel dominant populations, both the aerobic clade UBA5335 (Macondimonas), anaerobic Syntropharchaeales, and facultative Mycobacteriales. Most key organisms, including the hydrocarbon degraders and cyanobacteria, have the potential to fix dinitrogen, potentially alleviating the nitrogen limitation of hydrocarbon degradation in the SEMS. We highlight the complexity of these tar-associated communities, where bacteria, archaea and eukaryotes co-exist, likely exchanging metabolites and competing for resources and space.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Yana Yudkovsky
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Sophi Marmen
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Alon Amrani
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilya Kutuzov
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
30
|
Vulcano F, Hribovšek P, Denny EO, Steen IH, Stokke R. Potential for homoacetogenesis via the Wood-Ljungdahl pathway in Korarchaeia lineages from marine hydrothermal vents. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:698-707. [PMID: 37218095 PMCID: PMC10667645 DOI: 10.1111/1758-2229.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
The Wood-Ljungdahl pathway (WLP) is a key metabolic component of acetogenic bacteria where it acts as an electron sink. In Archaea, despite traditionally being linked to methanogenesis, the pathway has been found in several Thermoproteota and Asgardarchaeota lineages. In Bathyarchaeia and Lokiarchaeia, its presence has been linked to a homoacetogenic metabolism. Genomic evidence from marine hydrothermal genomes suggests that lineages of Korarchaeia could also encode the WLP. In this study, we reconstructed 50 Korarchaeia genomes from marine hydrothermal vents along the Arctic Mid-Ocean Ridge, substantially expanding the Korarchaeia class with several taxonomically novel genomes. We identified a complete WLP in several deep-branching lineages, showing that the presence of the WLP is conserved at the root of the Korarchaeia. No methyl-CoM reductases were encoded by genomes with the WLP, indicating that the WLP is not linked to methanogenesis. By assessing the distribution of hydrogenases and membrane complexes for energy conservation, we show that the WLP is likely used as an electron sink in a fermentative homoacetogenic metabolism. Our study confirms previous hypotheses that the WLP has evolved independently from the methanogenic metabolism in Archaea, perhaps due to its propensity to be combined with heterotrophic fermentative metabolisms.
Collapse
Affiliation(s)
- Francesca Vulcano
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
| | - Petra Hribovšek
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
- Department of Earth Science, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
| | - Emily Olesin Denny
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
- Department of Informatics, Computational Biological UnitUniversity of BergenBergenNorway
| | - Ida H. Steen
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
| | - Runar Stokke
- Department of Biological Sciences, Centre for Deep Sea ResearchUniversity of BergenBergenNorway
| |
Collapse
|
31
|
Bährle R, Böhnke S, Englhard J, Bachmann J, Perner M. Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications. BIORESOUR BIOPROCESS 2023; 10:84. [PMID: 38647803 PMCID: PMC10992861 DOI: 10.1186/s40643-023-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/16/2023] [Indexed: 04/25/2024] Open
Abstract
Anthropogenic carbon dioxide (CO2) levels are rising to alarming concentrations in earth's atmosphere, causing adverse effects and global climate changes. In the last century, innovative research on CO2 reduction using chemical, photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural CO2 conversion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions involving CO2 have already been conducted. In this review we focus on the enzymatic conversion of CO2 to carbon monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key intermediate. We briefly discuss the different currently known natural autotrophic CO2 fixation pathways, focusing on the reversible reaction of CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehydrogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical cells to harness CO2 from the environment transforming it into commodity chemicals.
Collapse
Affiliation(s)
- Rebecca Bährle
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Stefanie Böhnke
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Jonas Englhard
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Mirjam Perner
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany.
| |
Collapse
|
32
|
Grégoire DS, George NA, Hug LA. Microbial methane cycling in a landfill on a decadal time scale. Nat Commun 2023; 14:7402. [PMID: 37973978 PMCID: PMC10654671 DOI: 10.1038/s41467-023-43129-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Landfills generate outsized environmental footprints due to microbial degradation of organic matter in municipal solid waste, which produces the potent greenhouse gas methane. With global solid waste production predicted to increase substantially in the next few decades, there is a pressing need to better understand the temporal dynamics of biogeochemical processes that control methane cycling in landfills. Here, we use metagenomic approaches to characterize microbial methane cycling in waste that was landfilled over 39 years. Our analyses indicate that newer waste supports more diverse communities with similar composition compared to older waste, which contains lower diversity and more varied communities. Older waste contains primarily autotrophic organisms with versatile redox metabolisms, whereas newer waste is dominated by anaerobic fermenters. Methane-producing microbes are more abundant, diverse, and metabolically versatile in new waste compared to old waste. Our findings indicate that predictive models for methane emission in landfills overlook methane oxidation in the absence of oxygen, as well as certain microbial lineages that can potentially contribute to methane sinks in diverse habitats.
Collapse
Affiliation(s)
- Daniel S Grégoire
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Nikhil A George
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
33
|
Chen X, Liu J, Zhu XY, Xue CX, Yao P, Fu L, Yang Z, Sun K, Yu M, Wang X, Zhang XH. Phylogenetically and metabolically diverse autotrophs in the world's deepest blue hole. ISME COMMUNICATIONS 2023; 3:117. [PMID: 37964026 PMCID: PMC10645885 DOI: 10.1038/s43705-023-00327-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
The world's deepest yongle blue hole (YBH) is characterized by sharp dissolved oxygen (DO) gradients, and considerably low-organic-carbon and high-inorganic-carbon concentrations that may support active autotrophic communities. To understand metabolic strategies of autotrophic communities for obtaining carbon and energy spanning redox gradients, we presented finer characterizations of microbial community, metagenome and metagenome-assembled genomes (MAGs) in the YBH possessing oxic, hypoxic, essentially anoxic and completely anoxic zones vertically. Firstly, the YBH microbial composition and function shifted across the four zones, linking to different biogeochemical processes. The recovery of high-quality MAGs belonging to various uncultivated lineages reflected high novelty of the YBH microbiome. Secondly, carbon fixation processes and associated energy metabolisms varied with the vertical zones. The Calvin-Benson-Bassham (CBB) cycle was ubiquitous but differed in affiliated taxa at different zones. Various carbon fixation pathways were found in the hypoxic and essentially anoxic zones, including the 3-hyroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle affiliated to Nitrososphaeria, and Wood-Ljungdahl (WL) pathway affiliated to Planctomycetes, with sulfur oxidation and dissimilatory nitrate reduction as primary energy-conserving pathways. The completely anoxic zone harbored diverse taxa (Dehalococcoidales, Desulfobacterales and Desulfatiglandales) utilizing the WL pathway coupled with versatile energy-conserving pathways via sulfate reduction, fermentation, CO oxidation and hydrogen metabolism. Finally, most of the WL-pathway containing taxa displayed a mixotrophic lifestyle corresponding to flexible carbon acquisition strategies. Our result showed a vertical transition of microbial lifestyle from photo-autotrophy, chemoautotrophy to mixotrophy in the YBH, enabling a better understanding of carbon fixation processes and associated biogeochemical impacts with different oxygen availability.
Collapse
Affiliation(s)
- Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute, Sansha, 573199, China
| | - Zuosheng Yang
- College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China
| | - Kai Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
34
|
Li Y, Xiong L, Zeng K, Wei Y, Li H, Ji X. Microbial-driven carbon fixation in natural wetland. J Basic Microbiol 2023; 63:1115-1127. [PMID: 37440152 DOI: 10.1002/jobm.202300273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
With the development of global industrialization, carbon neutrality has become an issue that we must be paid attention to. Microorganisms not only have an important impact on the carbon chemical cycle between the Earth's biosphere and biogeography but also play a key role in maintaining the global organic carbon balance. Wetlands are the main reservoir of organic carbon in the mainland of China, and wetland carbon sinks are indispensable for China to achieve the goal of "dual carbon," and China has taken the consolidation and improvement of wetland carbon sink capacity as an important part of the carbon peaking action plan. As a unique low-latitude, high-altitude seasonal plateau wetland in China, Napahai shows high research value. However, the role of microbes in maintaining dissolved organic carbon balance in this area has not been reported. In the study, six carbon fixation genes, accA, aclB, acsA, acsB, cbbL, and rbcL, were analyzed based on metagenomics to elucidate the rich genetic diversity, uniqueness and differences in the Napahai plateau wetland. It was found that the microbial diversity in the Napahai plateau wetland was different from other habitats. In addition, the aclB gene, a rare taxon with high genetic diversity and rich species in the Napahai plateau wetland, played a key role in the microbial metabolic pathway. Finally, the construction of a metabolic pathway through the Kyoto encyclopedia for genes and genomes revealed the contribution of microbes to carbon fixation and the role of microbes in maintaining the organic carbon balance of the Napahai plateau wetland.
Collapse
Affiliation(s)
- Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Kun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
35
|
Fujishiro T, Takaoka K. Class III hybrid cluster protein homodimeric architecture shows evolutionary relationship with Ni, Fe-carbon monoxide dehydrogenases. Nat Commun 2023; 14:5609. [PMID: 37709776 PMCID: PMC10502027 DOI: 10.1038/s41467-023-41289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Hybrid cluster proteins (HCPs) are Fe-S-O cluster-containing metalloenzymes in three distinct classes (class I and II: monomer, III: homodimer), all of which structurally related to homodimeric Ni, Fe-carbon monoxide dehydrogenases (CODHs). Here we show X-ray crystal structure of class III HCP from Methanothermobacter marburgensis (Mm HCP), demonstrating its homodimeric architecture structurally resembles those of CODHs. Also, despite the different architectures of class III and I/II HCPs, [4Fe-4S] and hybrid clusters are found in equivalent positions in all HCPs. Structural comparison of Mm HCP and CODHs unveils some distinct features such as the environments of their homodimeric interfaces and the active site metalloclusters. Furthermore, structural analysis of Mm HCP C67Y and characterization of several Mm HCP variants with a Cys67 mutation reveal the significance of Cys67 in protein structure, metallocluster binding and hydroxylamine reductase activity. Structure-based bioinformatics analysis of HCPs and CODHs provides insights into the structural evolution of the HCP/CODH superfamily.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570, Japan.
| | - Kyosei Takaoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
36
|
Pan J, Zhang X, Xu W, Liu Y, Liu L, Luo Z, Li M. Wood-Ljungdahl pathway found in novel marine Korarchaeota groups illuminates their evolutionary history. mSystems 2023; 8:e0030523. [PMID: 37458475 PMCID: PMC10469681 DOI: 10.1128/msystems.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023] Open
Abstract
Korarchaeota, due to its rarity in common environments, is one of the archaeal phyla that has received the least attention from researchers. It was previously thought to consist solely of strict thermophiles. However, our study provides genetic evidence for the presence of korarchaeal members in temperate subsurface seawater. Furthermore, a systematic reclassification of the Korarchaeota based on 16S rRNA genes and genomes has revealed three novel marine groups (Kor-6 to Kor-8) at the root of the Korarchaeota branch. Kor-6 contains microbes that are present in moderate temperatures. All three novel marine phyla possess genes for the Wood-Ljungdahl pathway, and Kor-7 and Kor-8 possess fewer genes encoding oxygen resistance traits than other korarchaeal groups, suggesting a distinct lifestyle for these novel phyla. Our results, together with estimations of Korarchaeota divergence times, suggest that oxygen availability may be one of the important factors that have influenced the evolution of Korarchaeota. IMPORTANCE Korarchaeota were previously thought to inhabit exclusively high-temperature environments. However, our study provides genetic evidence for their unexpected presence in temperate marine waters. Through analysis of publicly available korarchaeal reference data, we have systematically reclassified Korarchaeota and identified the existence of three previously unknown marine groups (Kor-6, Kor-7, and Kor-8) at the root of the Korarchaeota branch. Comparative analysis of their gene content revealed that these novel groups exhibit a lifestyle distinct from other Korarchaeota. Specifically, they have the ability to fix carbon exclusively via the Wood-Ljungdahl (WL) pathway, and the genomes within Kor-7 and Kor-8 contain few genes encoding antioxidant enzymes, indicating their strictly anaerobic lifestyle. Further studies suggest that the genes related to methane metabolism and the WL pathway may have been inherited from a common ancestor of the Korarchaeota and that oxygen availability may be one of the important evolutionary factors that shaped the diversification of this archaeal phylum.
Collapse
Affiliation(s)
- Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, Guangdong, China
| | - Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Lirui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Zhang ZF, Liu LR, Pan YP, Pan J, Li M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. MICROBIOME 2023; 11:188. [PMID: 37612768 PMCID: PMC10464287 DOI: 10.1186/s40168-023-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Mangrove wetlands are coastal ecosystems with important ecological features and provide habitats for diverse microorganisms with key roles in nutrient and biogeochemical cycling. However, the overall metabolic potentials and ecological roles of microbial community in mangrove sediment are remained unanswered. In current study, the microbial and metabolic profiles of prokaryotic and fungal communities in mangrove sediments were investigated using metagenomic analysis based on PacBio single-molecule real time (SMRT) and Illumina sequencing techniques. RESULTS Comparing to Illumina short reads, the incorporation of PacBio long reads significantly contributed to more contiguous assemblies, yielded more than doubled high-quality metagenome-assembled genomes (MAGs), and improved the novelty of the MAGs. Further metabolic reconstruction for recovered MAGs showed that prokaryotes potentially played an essential role in carbon cycling in mangrove sediment, displaying versatile metabolic potential for degrading organic carbons, fermentation, autotrophy, and carbon fixation. Mangrove fungi also functioned as a player in carbon cycling, potentially involved in the degradation of various carbohydrate and peptide substrates. Notably, a new candidate bacterial phylum named as Candidatus Cosmopoliota with a ubiquitous distribution is proposed. Genomic analysis revealed that this new phylum is capable of utilizing various types of organic substrates, anaerobic fermentation, and carbon fixation with the Wood-Ljungdahl (WL) pathway and the reverse tricarboxylic acid (rTCA) cycle. CONCLUSIONS The study not only highlights the advantages of HiSeq-PacBio Hybrid assembly for a more complete profiling of environmental microbiomes but also expands our understanding of the microbial diversity and potential roles of distinct microbial groups in biogeochemical cycling in mangrove sediment. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Present Address: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Li-Rui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
38
|
Li W, Zhu L, Wu B, Liu Y, Li J, Xu L, Huangfu X, Shi D, Gu L, Chen C. Improving mesophilic anaerobic digestion of food waste by side-stream thermophilic reactor: Activation of methanogenic, key enzymes and metabolism. WATER RESEARCH 2023; 241:120167. [PMID: 37290195 DOI: 10.1016/j.watres.2023.120167] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is a favorable way to convert organic pollutants, such as food waste (FW), into clean energy through microbial action. This work adopted a side-stream thermophilic anaerobic digestion (STA) strategy to improve a digestive system's efficiency and stability. Results showed that the STA strategy brought higher methane production as well as higher system stability. It quickly adapted to thermal stimulation and increased the specific methane production from 359 mL CH4/g·VS to 439 mL CH4/g·VS, which was also higher than 317 mL CH4/g·VS from single-stage thermophilic anaerobic digestion. Further exploration of the mechanism of STA using metagenomic and metaproteomic analysis revealed enhanced activity of key enzymes. The main metabolic pathway was up-regulated, while the dominant bacteria were concentrated, and the multifunctional Methanosarcina was enriched. These results indicate that STA optimized organic metabolism patterns, comprehensively promoted methane production pathways, and formed various energy conservation mechanisms. Further, the system's limited heating avoided adverse effects from thermal stimulation, and activated enzyme activity and heat shock proteins through circulating slurries, which improved the metabolic process, showing great application potential.
Collapse
Affiliation(s)
- Wen Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Lirong Zhu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xiaoliu Huangfu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Cong Chen
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|
39
|
Song YC, Holland SI, Lee M, Chen G, Löffler FE, Manefield MJ, Hugenholtz P, Kappler U. A comparative genome analysis of the Bacillota ( Firmicutes) class Dehalobacteriia. Microb Genom 2023; 9:mgen001039. [PMID: 37294008 PMCID: PMC10327494 DOI: 10.1099/mgen.0.001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Dehalobacterium formicoaceticum is recognized for its ability to anaerobically ferment dichloromethane (DCM), and a catabolic model has recently been proposed. D. formicoaceticum is currently the only axenic representative of its class, the Dehalobacteriia, according to the Genome Taxonomy Database. However, substantial additional diversity has been revealed in this lineage through culture-independent exploration of anoxic habitats. Here we performed a comparative analysis of 10 members of the Dehalobacteriia, representing three orders, and infer that anaerobic DCM degradation appears to be a recently acquired trait only present in some members of the order Dehalobacteriales. Inferred traits common to the class include the use of amino acids as carbon and energy sources for growth, energy generation via a remarkable range of putative electron-bifurcating protein complexes and the presence of S-layers. The ability of D. formicoaceticum to grow on serine without DCM was experimentally confirmed and a high abundance of the electron-bifurcating protein complexes and S-layer proteins was noted when this organism was grown on DCM. We suggest that members of the Dehalobacteriia are low-abundance fermentative scavengers in anoxic habitats.
Collapse
Affiliation(s)
- Young C. Song
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, Queensland, 4072, Australia
| | - Sophie I. Holland
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Present address: School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Matthew Lee
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Gao Chen
- Center for Environmental Biotechnology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Frank E. Löffler
- Center for Environmental Biotechnology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Department of Microbiology, Department of Bioengineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, Tennessee, USA
| | - Michael J. Manefield
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, Queensland, 4072, Australia
| | - Ulrike Kappler
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
40
|
Dent MR, Weaver BR, Roberts MG, Burstyn JN. Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression. J Bacteriol 2023; 205:e0033222. [PMID: 37154694 PMCID: PMC10210986 DOI: 10.1128/jb.00332-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Carbon monoxide (CO) serves as a source of energy and carbon for a diverse set of microbes found in anaerobic and aerobic environments. The enzymes that bacteria and archaea use to oxidize CO depend upon complex metallocofactors that require accessory proteins for assembly and proper function. This complexity comes at a high energetic cost and necessitates strict regulation of CO metabolic pathways in facultative CO metabolizers to ensure that gene expression occurs only when CO concentrations and redox conditions are appropriate. In this review, we examine two known heme-dependent transcription factors, CooA and RcoM, that regulate inducible CO metabolism pathways in anaerobic and aerobic microorganisms. We provide an analysis of the known physiological and genomic contexts of these sensors and employ this analysis to contextualize known biochemical properties. In addition, we describe a growing list of putative transcription factors associated with CO metabolism that potentially use cofactors other than heme to sense CO.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian R. Weaver
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Madeleine G. Roberts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Frolov EN, Elcheninov AG, Gololobova AV, Toshchakov SV, Novikov AA, Lebedinsky AV, Kublanov IV. Obligate autotrophy at the thermodynamic limit of life in a new acetogenic bacterium. Front Microbiol 2023; 14:1185739. [PMID: 37250036 PMCID: PMC10213532 DOI: 10.3389/fmicb.2023.1185739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
One of the important current issues of bioenergetics is the establishment of the thermodynamic limits of life. There is still no final understanding of what is the minimum value of the energy yield of a reaction that is sufficient to be used by an organism (the so-called "biological quantum of energy"). A reasonable model for determination of the minimal energy yield would be microorganisms capable of living on low-energy substrates, such as acetogenic prokaryotes. The most prominent metabolic feature of acetogens is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates, which is hardly competitive in environments. Most probably, that is why only facultative autotrophic acetogens have been known so far. Here, we describe the first obligately autotrophic acetogenic bacterium Aceticella autotrophica gen. nov., sp. nov., strain 3443-3AcT. Phylogenetically, the new genus falls into a monophyletic group of heterotrophic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, and Caldanaerobacter (hereinafter referred to as TTC group), where the sole acetogenic representative has so far been the facultatively autotrophic Thermoanaerobacter kivui. A. autotrophica and T. kivui both are acetogens employing energy-converting hydrogenase (Ech-acetogens) that are likely to have inherited the acetogenesis capacity vertically from common ancestor. However, their acetogenic machineries have undergone different adjustments by gene replacements due to horizontal gene transfers from different donors. Obligate autotrophy of A. autotrophica is associated with the lack of many sugar transport systems and carbohydrate catabolism enzymes that are present in other TTC group representatives, including T. kivui.
Collapse
Affiliation(s)
- Evgenii N. Frolov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Elcheninov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra V. Gololobova
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V. Toshchakov
- Kurchatov Center for Genome Research, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Andrei A. Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, Moscow, Russia
| | - Alexander V. Lebedinsky
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kublanov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Lin H, Moody ERR, Williams TA, Moreau JW. On the Origin and Evolution of Microbial Mercury Methylation. Genome Biol Evol 2023; 15:evad051. [PMID: 36951100 PMCID: PMC10083202 DOI: 10.1093/gbe/evad051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
The origin of microbial mercury methylation has long been a mystery. Here, we employed genome-resolved phylogenetic analyses to decipher the evolution of the mercury-methylating gene, hgcAB, constrain the ancestral origin of the hgc operon, and explain the distribution of hgc in Bacteria and Archaea. We infer the extent to which vertical inheritance and horizontal gene transfer have influenced the evolution of mercury methylators and hypothesize that evolution of this trait bestowed the ability to produce an antimicrobial compound (MeHg+) on a potentially resource-limited early Earth. We speculate that, in response, the evolution of MeHg+-detoxifying alkylmercury lyase (encoded by merB) reduced a selective advantage for mercury methylators and resulted in widespread loss of hgc in Bacteria and Archaea.
Collapse
Affiliation(s)
- Heyu Lin
- School of Geographical, Atmospheric and Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Tom A Williams
- School of Biological Sciences, University of Bristol, United Kingdom
| | - John W Moreau
- School of Geographical, Atmospheric and Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
- School of Geographical and Earth Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
43
|
Yao Y, Fu B, Han D, Zhang Y, Wei Z, Liu H. Reduction, evolutionary pattern and positive selection of genes encoding formate dehydrogenase in Wood-Ljungdahl pathway of gastrointestinal acetogens suggests their adaptation to formate-rich habitats. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:129-141. [PMID: 36779246 PMCID: PMC10103890 DOI: 10.1111/1758-2229.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/23/2022] [Indexed: 05/20/2023]
Abstract
Acetogens are anaerobes using Wood-Ljungdahl pathway (WLP) as the terminal electron acceptor for both assimilation and dissimilation of CO2 and widely distributed in diverse habitats. However, their habitat adaptation is often unclear. Given that bacterial genome evolution is often the result of environmental selective pressure, hereby we analysed gene copy number, phylogeny and selective pressure of genes involved in WLP within known genomes of 43 species to study the habitat adaption of gastrointestinal acetogens. The gene copy number of formate dehydrogenase (FDH) in gastrointestinal acetogens was much lower than that of non-gastrointestinal acetogens, and in five cases, no FDH genes were found in the genomes of five gastrointestinal acetogens, but that of the other WLP genes showed no difference. The evolutionary pattern of FDH genes was significantly different from that of the other enzymes. Additionally, seven positively selected sites were only identified in the fdhF genes, which means fdhF mutations favoured their adaptation. Collectively, reduction or loss of FDH genes and their evolutionary pattern as well as positive selection in gastrointestinal acetogens indicated their adaptation to formate-rich habitats, implying that FDH genes catalysing CO2 reduction to formate as the first step of methyl branch of WLP may have evolved independently.
Collapse
Affiliation(s)
- Ye Yao
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxiChina
| | - Bo Fu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxiChina
- Jiangsu Collaborative Innovation Center of Technology and Material of Water TreatmentSuzhouChina
| | - Dongfei Han
- School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouPeople's Republic of China
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxiChina
- Jiangsu Collaborative Innovation Center of Technology and Material of Water TreatmentSuzhouChina
| | - Zhiyuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - He Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction TechnologyJiangnan UniversityWuxiChina
- Jiangsu Collaborative Innovation Center of Technology and Material of Water TreatmentSuzhouChina
| |
Collapse
|
44
|
Microbial community structure and exploration of bioremediation enzymes: functional metagenomics insight into Arabian Sea sediments. Mol Genet Genomics 2023; 298:627-651. [PMID: 36933058 DOI: 10.1007/s00438-023-01995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/28/2023] [Indexed: 03/19/2023]
Abstract
Deep-sea sediments provide important information on oceanic biogeochemical processes mediated by the microbiome and their functional roles which could be unravelled using genomic tools. The present study aimed to delineate microbial taxonomic and functional profiles from Arabian Sea sediment samples through whole metagenome sequencing using Nanopore technology. Arabian Sea is considered as a major microbial reservoir with significant bio-prospecting potential which needs to be explored extensively using recent advances in genomics. Assembly, co-assembly, and binning methods were used to predict Metagenome Assembled Genomes (MAGs) which were further characterized by their completeness and heterogeneity. Nanopore sequencing of Arabian Sea sediment samples generated around 1.73 tera basepairs of data. Proteobacteria (78.32%) was found to be the most dominant phylum followed by Bacteroidetes (9.55%) and Actinobacteria (2.14%) in the sediment metagenome. Further, 35 MAGs from assembled and 38 MAGs of co-assembled reads were generated from long-read sequence dataset with major representations from the genera Marinobacter, Kangiella, and Porticoccus. RemeDB analysis revealed a high representation of pollutant-degrading enzymes involved in hydrocarbon, plastic and dye degradation. Validation of enzymes with long nanopore reads using BlastX resulted in better characterization of complete gene signatures involved in hydrocarbon (6-monooxygenase and 4-hydroxyacetophenone monooxygenase) and dye degradation (Arylsulfatase). Enhancing the cultivability of deep-sea microbes predicted from the uncultured WGS approaches by I-tip method resulted in isolation of facultative extremophiles. This study presents a comprehensive insight into the taxonomic and functional profiles of Arabian Sea sediments, indicating a potential hotspot for bioprospection.
Collapse
|
45
|
Prioretti L, D’Ermo G, Infossi P, Kpebe A, Lebrun R, Bauzan M, Lojou E, Guigliarelli B, Giudici-Orticoni MT, Guiral M. Carbon Fixation in the Chemolithoautotrophic Bacterium Aquifex aeolicus Involves Two Low-Potential Ferredoxins as Partners of the PFOR and OGOR Enzymes. Life (Basel) 2023; 13:life13030627. [PMID: 36983784 PMCID: PMC10052474 DOI: 10.3390/life13030627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Aquifex aeolicus is a microaerophilic hydrogen- and sulfur -oxidizing bacterium that assimilates CO2 via the reverse tricarboxylic acid cycle (rTCA). Key enzymes of this pathway are pyruvate:ferredoxin oxidoreductase (PFOR) and 2-oxoglutarate:ferredoxin oxidoreductase (OGOR), which are responsible, respectively, for the reductive carboxylation of acetyl-CoA to pyruvate and of succinyl-CoA to 2-oxoglutarate, two energetically unfavorable reactions that require a strong reduction potential. We have confirmed, by biochemistry and proteomics, that A. aeolicus possesses a pentameric version of these enzyme complexes ((αβγδε)2) and that they are highly abundant in the cell. In addition, we have purified and characterized, from the soluble fraction of A. aeolicus, two low redox potential and oxygen-stable [4Fe-4S] ferredoxins (Fd6 and Fd7, E0 = −440 and −460 mV, respectively) and shown that they can physically interact and exchange electrons with both PFOR and OGOR, suggesting that they could be the physiological electron donors of the system in vivo. Shotgun proteomics indicated that all the enzymes assumed to be involved in the rTCA cycle are produced in the A. aeolicus cells. A number of additional enzymes, previously suggested to be part of a putative partial Wood-Ljungdahl pathway used for the synthesis of serine and glycine from CO2 were identified by mass spectrometry, but their abundance in the cell seems to be much lower than that of the rTCA cycle. Their possible involvement in carbon assimilation is discussed.
Collapse
Affiliation(s)
- Laura Prioretti
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMM, 13009 Marseille, France
| | - Giulia D’Ermo
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMM, 13009 Marseille, France
| | - Pascale Infossi
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMM, 13009 Marseille, France
| | - Arlette Kpebe
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMM, 13009 Marseille, France
| | - Régine Lebrun
- CNRS, Aix Marseille Université, IMM, 13009 Marseille, France
| | - Marielle Bauzan
- CNRS, Aix Marseille Université, IMM, 13009 Marseille, France
| | - Elisabeth Lojou
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMM, 13009 Marseille, France
| | - Bruno Guigliarelli
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMM, 13009 Marseille, France
| | | | - Marianne Guiral
- CNRS, Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, IMM, 13009 Marseille, France
- Correspondence:
| |
Collapse
|
46
|
Perchlorate-Coupled Carbon Monoxide (CO) Oxidation by Moorella glycerini, an Obligately Anaerobic, Thermophilic, Nickel-Dependent Carboxydotroph. Microorganisms 2023; 11:microorganisms11020462. [PMID: 36838427 PMCID: PMC9964509 DOI: 10.3390/microorganisms11020462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Many facultative and obligate anaerobes reduce perchlorate. Likewise, carbon monoxide (CO) oxidation has been documented in many aerobes, facultative anaerobes, and obligate anaerobes. A molybdenum-dependent CO dehydrogenase (Mo-CODH) and a nickel-dependent CO dehydrogenase (Ni-CODH) distinguish the former from the latter. Some Mo-dependent CO oxidizers (Mo-COX) couple CO oxidation to perchlorate reduction, but only at low concentrations of both under conditions that do not support growth in cultures. In contrast, CO-coupled perchlorate reduction has not been documented in Ni-dependent CO oxidizers (Ni-COX). To assess the potential for Ni-COX to reduce perchlorate, a model, obligately anaerobic homoacetogen, Moorella glycerini DSM 11254T, was cultivated with or without perchlorate, usiing CO or glycerol as its sole carbon and energy source. It grew with glycerol with or without perchlorate, and its maximum cell densities were only weakly affected by the perchlorate. However, when CO (at a 30% headspace concentration) was used as a carbon and energy source, perchlorate reduction supported greater cell densities and more rapid growth rates. The stoichiometry of CO uptake, perchlorate reduction, and chloride production were consistent with the cryptic pathway for perchlorate reduction with chlorite as an end product. Chloride production occurred abiologically in the medium due to a reaction between chlorite and the sulfide used as a reducing agent. These results provide the first demonstration of CO-coupled perchlorate reduction supporting growth in Ni-COX, and they provide constraints on the potential for perchlorate-coupled, anaerobic CO oxidation in engineered systems as well as terrestrial systems and hypothetical, sub-surface, serpentinite-hosted systems on Mars.
Collapse
|
47
|
Xu H, Guan D, Ma L. The bio-inspired heterogeneous single-cluster catalyst Ni100-Fe 4S 4 for enhanced electrochemical CO 2 reduction to CH 4. NANOSCALE 2023; 15:2756-2766. [PMID: 36656066 DOI: 10.1039/d2nr06665c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical conversion of CO2-to-CH4 is a process of converting the inert greenhouse gas into energy molecules. It offers great promise for the transformation of carbon-neutral economy. However, achieving high CH4 activity and selectivity remains a major challenge because the electrochemical reduction of CO2-to-CH4 is accompanied by various C1 intermediates at the catalytic site, involving multiple proton-coupled electron transfer processes. Herein, different from the traditional designing strategy, we propose a bio-inspired theoretical design approach to construct a heterogeneous single-cluster catalyst Ni100-Fe4S4 at the atomic level, which may show high CO2 electroreduction performance. Combined with the crystallographic data and theoretical calculations, Ni100-Fe4S4 and CO dehydrogenase exhibit highly similar catalytic geometric active centers and CO2 binding modes. By exploring the origin of the catalytic activity of this biomimetic structure, we found that the activation of CO2 on Ni100-Fe4S4 theoretically exceeds that on natural CO dehydrogenase. Density functional theory calculations reveal that the dehydrogenase enzyme-liked Fe-Ni active site serves as an electron enrichment 'electro-bridge' (an electron-rich highly active catalytic site), which can activate CO2 molecules efficiently and stabilize various intermediates in multistep elementary reactions to selectively produce CH4 at a low overpotential (0.13 eV). The calculated CO2 electroreduction pathways are well consistent with the nickel-based catalytic materials reported in experimental studies. Our work showcases and highlights the rational design of high-performance catalytic materials via the biomimetic methodology at the atomic level.
Collapse
Affiliation(s)
- Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Daqin Guan
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
48
|
Chen S, Xu Z, Ding B, Zhang Y, Liu S, Cai C, Li M, Dale BE, Jin M. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery. SCIENCE ADVANCES 2023; 9:eadd8835. [PMID: 36724227 PMCID: PMC9891696 DOI: 10.1126/sciadv.add8835] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023]
Abstract
The isomerization of xylose to xylulose is considered the most promising approach to initiate xylose bioconversion. Here, phylogeny-guided big data mining, rational modification, and ancestral sequence reconstruction strategies were implemented to explore new active xylose isomerases (XIs) for Saccharomyces cerevisiae. Significantly, 13 new active XIs for S. cerevisiae were mined or artificially created. Moreover, the importance of the amino-terminal fragment for maintaining basic XI activity was demonstrated. With the mined XIs, four efficient xylose-utilizing S. cerevisiae were constructed and evolved, among which the strain S. cerevisiae CRD5HS contributed to ethanol titers as high as 85.95 and 94.76 g/liter from pretreated corn stover and corn cob, respectively, without detoxifying or washing pretreated biomass. Potential genetic targets obtained from adaptive laboratory evolution were further analyzed by sequencing the high-performance strains. The combined XI mining methods described here provide practical references for mining other scarce and valuable enzymes.
Collapse
Affiliation(s)
- Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuangmei Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chenggu Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Centre (GLBRC), Michigan State University, East Lansing, MI, 48824 USA
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
49
|
Mei R, Kaneko M, Imachi H, Nobu MK. The origin and evolution of methanogenesis and Archaea are intertwined. PNAS NEXUS 2023; 2:pgad023. [PMID: 36874274 PMCID: PMC9982363 DOI: 10.1093/pnasnexus/pgad023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Methanogenesis has been widely accepted as an ancient metabolism, but the precise evolutionary trajectory remains hotly debated. Disparate theories exist regarding its emergence time, ancestral form, and relationship with homologous metabolisms. Here, we report the phylogenies of anabolism-involved proteins responsible for cofactor biosynthesis, providing new evidence for the antiquity of methanogenesis. Revisiting the phylogenies of key catabolism-involved proteins further suggests that the last Archaea common ancestor (LACA) was capable of versatile H2-, CO2-, and methanol-utilizing methanogenesis. Based on phylogenetic analyses of the methyl/alkyl-S-CoM reductase family, we propose that, in contrast to current paradigms, substrate-specific functions emerged through parallel evolution traced back to a nonspecific ancestor, which likely originated from protein-free reactions as predicted from autocatalytic experiments using cofactor F430. After LACA, inheritance/loss/innovation centered around methanogenic lithoautotrophy coincided with ancient lifestyle divergence, which is clearly reflected by genomically predicted physiologies of extant archaea. Thus, methanogenesis is not only a hallmark metabolism of Archaea, but the key to resolve the enigmatic lifestyle that ancestral archaea took and the transition that led to physiologies prominent today.
Collapse
Affiliation(s)
- Ran Mei
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Masanori Kaneko
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan
| | - Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.,Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
50
|
Zhang C, Chen Z, Zhang M, Jia S. KEGG_Extractor: An Effective Extraction Tool for KEGG Orthologs. Genes (Basel) 2023; 14:genes14020386. [PMID: 36833314 PMCID: PMC9956942 DOI: 10.3390/genes14020386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The KEGG Orthology (KO) database is a widely used molecular function reference database which can be used to conduct functional annotation of most microorganisms. At present, there are many KEGG tools based on the KO entries for annotating functional orthologs. However, determining how to efficiently extract and sort the annotation results of KEGG still hinders the subsequent genome analysis. There is a lack of effective measures used to quickly extract and classify the gene sequences and species information of the KEGG annotations. Here, we present a supporting tool: KEGG_Extractor for species-specific genes extraction and classification, which can output the results through an iterative keyword matching algorithm. It can not only extract and classify the amino acid sequences, but also the nucleotide sequences, and it has proved to be fast and efficient for microbial analysis. Analysis of the ancient Wood Ljungdahl (WL) pathway through the KEGG_Extractor reveals that ~226 archaeal strains contained the WL pathway-related genes. Most of them were Methanococcus maripaludis, Methanosarcina mazei and members of the Methanobacterium, Thermococcus and Methanosarcina genus. Using the KEGG_Extractor, the ARWL database was constructed, which had a high accuracy and complement. This tool helps to link genes with the KEGG pathway and promote the reconstruction of molecular networks. Availability and implementation: KEGG_Extractor is freely available from the GitHub.
Collapse
Affiliation(s)
- Chao Zhang
- Marine Sustainable Development Research Center, Third Institute of Oceanography, Xiamen 361102, China
| | - Zhongwei Chen
- Nantong Marine Environmental Monitoring Center, Ministry of Natural Resources, Nantong 226002, China
| | - Miming Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shulei Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence:
| |
Collapse
|