1
|
Zheng Y, Chen Y, Meng X, Zhang L, Ma Y, Zhou R, Fu S, Chen H, Xuanyuan X, Jiang R, Hou P, Song X, Wang Y, Sun J, Zhang W, Li J, Liu Z, Zhang Z, Zeng H, He Y. FADD Functions as an Oncogene in Chr11q13.3-Amplified Head and Neck Squamous Cell Carcinoma. Cancer Res 2025; 85:1909-1927. [PMID: 40370064 DOI: 10.1158/0008-5472.can-24-2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/02/2024] [Accepted: 02/21/2025] [Indexed: 05/16/2025]
Abstract
Chromosomal 11q13.3 amplification is the most common gene copy-number variation event in head and neck squamous cell carcinoma (HNSCC) that corresponds with poor prognosis. Although cyclin D1, a G1/S phase cell-cycle regulatory protein at this locus, is considered as a key driver of malignant progression, further exploration is needed to develop more effective targets for cases with this amplification. Using CRISPR-based gene knockout screening of genes located in chr11q13.3, we found that loss of the gene encoding the Fas-associated death domain (FADD) protein, a well-recognized adapter to caspase-8 that induces cell apoptosis, significantly reduced cancer cell proliferation. FADD expression was elevated in chr11q13.3-amplified tumors and correlated with poor prognosis. RNA sequencing, mass spectrometry, and proteomics analyses revealed a direct relationship between FADD and the DNA helicase MCM5 in the S phase. FADD and cyclin D1 acted at different stages of the cell cycle to synergistically induce proliferation, and caspase-8 deficiency was required for the oncogenic activity of FADD. In a patient-derived xenograft model with chr11q13.3 amplification, combined administration of the DNA helicase complex inhibitor and CDK4/6 inhibitor effectively curtailed tumor growth. Overall, this study identified a nonclassic oncogenic role for FADD in mediating tumor progression in HNSCC and provided a feasible treatment option for patients with chr11q13.3 amplification. Significance: FADD promotes progression of tumors with chr11q13.3 amplification by binding to the DNA helicase complex, which can be targeted in combination with cyclin D1 as a viable therapeutic strategy for HNSCC patients.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yinan Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Meng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanni Ma
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuiting Fu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Heng Chen
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinyang Xuanyuan
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Jiang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcong Hou
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Song
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China
| | - Jingjing Sun
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonglong Liu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Zeng
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue He
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Hu Y, Zhang Y, He J, Rao H, Zhang D, Shen Z, Zhou C. ANO1: central role and clinical significance in non-neoplastic and neoplastic diseases. Front Immunol 2025; 16:1570333. [PMID: 40356890 PMCID: PMC12067801 DOI: 10.3389/fimmu.2025.1570333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
Anoctamin 1 (ANO1), also known as TMEM16A, is a multifunctional protein that serves as a calcium-activated chloride channel (CaCC). It is ubiquitously expressed across various tissues, including epithelial cells, smooth muscle cells, and neurons, where it is integral to physiological processes such as epithelial secretion, smooth muscle contraction, neural conduction, and cell proliferation and migration. Dysregulation of ANO1 has been linked to the pathogenesis of numerous diseases. Extensive research has established its involvement in non-neoplastic conditions such as asthma, hypertension, and gastrointestinal (GI) dysfunction. Moreover, ANO1 has garnered significant attention for its role in the development and progression of cancers, including head and neck cancer, breast cancer, and lung cancer, where its overexpression correlates with increased tumor growth, metastasis, and poor prognosis. Additionally, ANO1 regulates multiple signaling pathways, including the epidermal growth factor receptor (EGFR) pathway, the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, among others. These pathways are pivotal in regulating cell proliferation, migration, and invasion. Given its central role in these processes, ANO1 has emerged as a promising diagnostic biomarker and therapeutic target. Recent advancements in ANO1 research have highlighted its potential in disease diagnosis and treatment. Strategies targeting ANO1, such as small molecule modulators or gene-silencing techniques, have shown preclinical promise in both non-neoplastic and neoplastic diseases. This review explores the latest findings in ANO1 research, focusing on its mechanistic involvement in disease progression, its regulation, and its therapeutic potential. Modulating ANO1 activity may offer novel therapeutic strategies for effectively treating ANO1-associated diseases.
Collapse
Affiliation(s)
- Yanghao Hu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yifei Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiali He
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Huihuang Rao
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Duomi Zhang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Pehkonen H, Filippou A, Väänänen J, Lindfors I, Vänttinen M, Ianevski P, Mäkelä A, Munne P, Klefström J, Toppila‐Salmi S, Grénman R, Hagström J, Mäkitie AA, Karhemo P, Monni O. Liprin-α1 contributes to oncogenic MAPK signaling by counteracting ERK activity. Mol Oncol 2024; 18:662-676. [PMID: 38264964 PMCID: PMC10920090 DOI: 10.1002/1878-0261.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
PTPRF interacting protein alpha 1 (PPFIA1) encodes for liprin-α1, a member of the leukocyte common antigen-related protein tyrosine phosphatase (LAR-RPTPs)-interacting protein family. Liprin-α1 localizes to adhesive and invasive structures in the periphery of cancer cells, where it modulates migration and invasion in head and neck squamous cell carcinoma (HNSCC) and breast cancer. To study the possible role of liprin-α1 in anticancer drug responses, we screened a library of oncology compounds in cell lines with high endogenous PPFIA1 expression. The compounds with the highest differential responses between high PPFIA1-expressing and silenced cells across cell lines were inhibitors targeting mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinases (ERK) signaling. KRAS proto-oncogene, GTPase (KRAS)-mutated MDA-MB-231 cells were more resistant to trametinib upon PPFIA1 knockdown compared with control cells. In contrast, liprin-α1-depleted HNSCC cells with low RAS activity showed a context-dependent response to MEK/ERK inhibitors. Importantly, we showed that liprin-α1 depletion leads to increased p-ERK1/2 levels in all our studied cell lines independent of KRAS mutational status, suggesting a role of liprin-α1 in the regulation of MAPK oncogenic signaling. Furthermore, liprin-α1 depletion led to more pronounced redistribution of RAS proteins to the cell membrane. Our data suggest that liprin-α1 is an important contributor to oncogenic RAS/MAPK signaling, and the status of liprin-α1 may assist in predicting drug responses in cancer cells in a context-dependent manner.
Collapse
Affiliation(s)
- Henna Pehkonen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Artemis Filippou
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Iida Lindfors
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Mira Vänttinen
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Philipp Ianevski
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiFinland
| | - Anne Mäkelä
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Pauliina Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical FacultyUniversity of HelsinkiFinland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical FacultyUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Sanna Toppila‐Salmi
- Skin and Allergy HospitalHelsinki University Hospital and University of HelsinkiFinland
- Department of Otorhinolaryngology, Kuopio University Hospital and School of Medicine, Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Reidar Grénman
- Department of Otorhinolaryngology‐Head and Neck SurgeryUniversity of Turku and Turku University HospitalFinland
| | - Jaana Hagström
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalFinland
- Institute of DentistryUniversity of TurkuFinland
| | - Antti A. Mäkitie
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
- Department of Otorhinolaryngology‐Head and Neck Surgery, Research Program in Systems OncologyUniversity of Helsinki and Helsinki University HospitalFinland
| | - Piia‐Riitta Karhemo
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of MedicineUniversity of HelsinkiFinland
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
- Department of Oncology, Faculty of MedicineUniversity of HelsinkiFinland
| |
Collapse
|
4
|
Hu X, Qiu D, Jiang Q, Xu Q, Li J. Cu 2+-doped zeolitic imidazolate frameworks and gold nanoparticle (AuNPs@ZIF-8/Cu) nanocomposites enable label-free and highly sensitive electrochemical detection of oral cancer-related biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:615-623. [PMID: 38197313 DOI: 10.1039/d3ay01918g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
It is of great significance to accurately and sensitively detect oral cancer-related biomarkers (ORAOV 1) for the early diagnosis of oral cancer. Present here is a novel electrochemical biosensor based on Cu2+-doped zeolitic imidazolate frameworks and gold nanoparticle (AuNPs@ZIF-8/Cu) nanocomposites and a one-step strand displacement reaction for label-free, simple and sensitive detection of ORAOV 1 in saliva. It is worth noting that AuNPs@ZIF-8/Cu nanocomposites show large electrochemically effective surface area, good electrical conductivity and electrocatalytic activity due to the synergistic effect of metal nanoparticles (MNPs) and ZIF-8. Consequently, the newly developed electrochemical sensor displays a wide linear range of 0.1-104 pM and a low limit of detection (LOD) of 63 fM. Meanwhile, the electrochemical biosensor can distinguish single base mismatch. The relative standard deviation (RSD) of intra-assays and inter-assays is 1.46% and 1.76%, respectively, and the peak current values decline by 9.20% with a RSD value of 1.35% after being stored at 4 °C for 7 days, suggesting that the newly designed electrochemical sensor exhibits good selectivity, reproducibility and stability to detect ORAOV 1. More importantly, this novel electrochemical sensor is found to be applicable for detecting ORAOV 1 in human saliva samples with a satisfactory result. The RSD values range from 1.15% to 1.77%, and the recoveries range from 95.46% to 112.98%.
Collapse
Affiliation(s)
- Xueting Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Dengxue Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Qi Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| |
Collapse
|
5
|
Wu K, Sun Q, Liu D, Lu J, Wen D, Zang X, Gao L. Alternative Splicing Landscape of Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241272051. [PMID: 39113534 PMCID: PMC11307358 DOI: 10.1177/15330338241272051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck malignancies are a significant global health concern, with head and neck squamous cell carcinoma (HNSCC) being the sixth most common cancer worldwide accounting for > 90% of cases. In recent years, there has been growing recognition of the potential role of alternative splicing (AS) in the etiology of cancer. Increasing evidence suggests that AS is associated with various aspects of cancer progression, including tumor occurrence, invasion, metastasis, and drug resistance. Additionally, AS is involved in shaping the tumor microenvironment, which plays a crucial role in tumor development and response to therapy. AS can influence the expression of factors involved in angiogenesis, immune response, and extracellular matrix remodeling, all of which contribute to the formation of a supportive microenvironment for tumor growth. Exploring the mechanism of AS events in HNSCC could provide insights into the development and progression of this cancer, as well as its interaction with the tumor microenvironment. Understanding how AS contributes to the molecular changes in HNSCC cells and influences the tumor microenvironment could lead to the identification of new therapeutic targets. Targeted chemotherapy and immunotherapy strategies tailored to the specific AS patterns in HNSCC could potentially improve treatment outcomes and reduce side effects. This review explores the concept, types, processes, and technological advancements of AS, focusing on its role in the initiation, progression, treatment, and prognosis of HNSCC.
Collapse
Affiliation(s)
- Kehan Wu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Qianhui Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Dongxu Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiayi Lu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Deyu Wen
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiyan Zang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
6
|
Wang X, Hao A, Song G, Elena V, Sun Y, Zhang H, Zhan Y, An H, Chen Y. Inhibitory effect of daidzein on the calcium-activated chloride channel TMEM16A and its anti-lung adenocarcinoma activity. Int J Biol Macromol 2023; 253:127261. [PMID: 37802433 DOI: 10.1016/j.ijbiomac.2023.127261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
TMEM16A is highly expressed in a variety of tumor cells and is involved in the growth and metastasis of malignancies. It has been established that down-regulation of TMEM16A expression or functional activity can inhibit tumor cells growth. However, there is a lack of targeted inhibitors with high efficiency and low toxicity. Here, we identified a novel inhibitor daidzein from dozens of natural product molecules. Whole-cell patch clamp data indicated that daidzein inhibits TMEM16A channel in a dose-dependent manner, with IC50 of 1.39 ± 0.59 μM. Western blot result showed that daidzein can also reduce the expression of TMEM16A protein in LA795 cells. These results indicated that the inhibitory effects of daidzein exert on TMEM16A in two ways, both inhibiting TMEM16A current and decreasing its protein expression. In addition, the putative binding sites of daidzein on TMEM16A are G608, G628, and K839 through molecular docking. Moreover, daidzein concentration-dependently reduced cell viability and cell migration, causing G1/S cell cycle arrest in vitro. It was also confirmed that daidzein can effectively inhibit the growth of LA795 lung adenocarcinoma cells implanted nude mice in vivo. In conclusion, daidzein can be used as a lead compound for the development of therapeutic drugs for lung adenocarcinoma.
Collapse
Affiliation(s)
- Xuzhao Wang
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Anqi Hao
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Guoqiang Song
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Vorobeva Elena
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yiming Sun
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Hailin Zhang
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yong Zhan
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Hebei Provincial Key Laboratory of Molecular Biophysics, Hebei University of Technology, Tianjin 300401, China; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
7
|
Xiu R, Jia J, Zhang Q, Liu F, Jia Y, Zhang Y, Song B, Liu X, Chen J, Huang D, Zhang F, Ma J, Li H, Zhang X, Geng Y. Three sesquiterpene lactones suppress lung adenocarcinoma by blocking TMEM16A-mediated Ca 2+-activated Cl - channels. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:521-531. [PMID: 37884284 PMCID: PMC10613571 DOI: 10.4196/kjpp.2023.27.6.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 10/28/2023]
Abstract
Transmembrane protein TMEM16A, which encodes calcium-activated chloride channel has been implicated in tumorigenesis. Overexpression of TMEM16A is associated with poor prognosis and low overall survival in multiple cancers including lung adenocarcinoma, making it a promising biomarker and therapeutic target. In this study, three structure-related sesquiterpene lactones (mecheliolide, costunolide and dehydrocostus lactone) were extracted from the traditional Chinese medicine Aucklandiae Radix and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on the proliferation and migration of lung adenocarcinoma cells were examined. Whole-cell patch clamp experiments showed that these sesquiterpene lactones potently inhibited recombinant TMEM16A currents in a concentration-dependent manner. The half-maximal concentration (IC50) values for three tested sesquiterpene lactones were 29.9 ± 1.1 μM, 19.7 ± 0.4 μM, and 24.5 ± 2.1 μM, while the maximal effect (Emax) values were 100.0% ± 2.8%, 85.8% ± 0.9%, and 88.3% ± 4.6%, respectively. These sesquiterpene lactones also significantly inhibited the endogenous TMEM16A currents and proliferation, and migration of LA795 lung cancer cells. These results demonstrate that mecheliolide, costunolide and dehydrocostus lactone are novel TMEM16A inhibitors and potential candidates for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Ruilian Xiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Jie Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Qing Zhang
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fengjiao Liu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Yaxin Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Beibei Song
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiaodan Liu
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Dongyang Huang
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Zhang
- Hebei Higher Education Applied Technology Research Center of TCM Development and Industrialization, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Juanjuan Ma
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Honglin Li
- Department of Pharmacy, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang 050000, China
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Higher Education Applied Technology Research Center of TCM Development and Industrialization, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunyun Geng
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| |
Collapse
|
8
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
9
|
Marquez MD, Greth C, Buzuk A, Liu Y, Blinn CM, Beller S, Leiskau L, Hushka A, Wu K, Nur K, Netz DJA, Perlstein DL, Pierik AJ. Cytosolic iron-sulfur protein assembly system identifies clients by a C-terminal tripeptide. Proc Natl Acad Sci U S A 2023; 120:e2311057120. [PMID: 37883440 PMCID: PMC10623007 DOI: 10.1073/pnas.2311057120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The eukaryotic cytosolic Fe-S protein assembly (CIA) machinery inserts iron-sulfur (Fe-S) clusters into cytosolic and nuclear proteins. In the final maturation step, the Fe-S cluster is transferred to the apo-proteins by the CIA-targeting complex (CTC). However, the molecular recognition determinants of client proteins are unknown. We show that a conserved [LIM]-[DES]-[WF]-COO- tripeptide is present at the C-terminus of more than a quarter of clients or their adaptors. When present, this targeting complex recognition (TCR) motif is necessary and sufficient for binding to the CTC in vitro and for directing Fe-S cluster delivery in vivo. Remarkably, fusion of this TCR signal enables engineering of cluster maturation on a nonnative protein via recruitment of the CIA machinery. Our study advances our understanding of Fe-S protein maturation and paves the way for bioengineering novel pathways containing Fe-S enzymes.
Collapse
Affiliation(s)
| | - Carina Greth
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | | | - Yaxi Liu
- Department of Chemistry, Boston University, Boston, MA02215
| | - Catharina M. Blinn
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Simone Beller
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Laura Leiskau
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Anthony Hushka
- Department of Chemistry, Boston University, Boston, MA02215
| | - Kassandra Wu
- Department of Chemistry, Boston University, Boston, MA02215
| | - Kübra Nur
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Daili J. A. Netz
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | | | - Antonio J. Pierik
- Department of Chemistry, University of Kaiserslautern-Landau, Kaiserslautern67663, Germany
| |
Collapse
|
10
|
Kulkarni S, Li Q, Singhi AD, Liu S, Monga SP, Feranchak AP. TMEM16A partners with mTOR to influence pathways of cell survival, proliferation, and migration in cholangiocarcinoma. Am J Physiol Gastrointest Liver Physiol 2023; 325:G122-G134. [PMID: 37219012 PMCID: PMC10390053 DOI: 10.1152/ajpgi.00270.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Expression of transmembrane protein 16 A (TMEM16A), a calcium activated chloride channel, is elevated in some human cancers and impacts tumor cell proliferation, metastasis, and patient outcome. Evidence presented here uncovers a molecular synergy between TMEM16A and mechanistic/mammalian target of rapamycin (mTOR), a serine-threonine kinase that is known to promote cell survival and proliferation in cholangiocarcinoma (CCA), a lethal cancer of the secretory cells of bile ducts. Analysis of gene and protein expression in human CCA tissue and CCA cell line detected elevated TMEM16A expression and Cl- channel activity. The Cl- channel activity of TMEM16A impacted the actin cytoskeleton and the ability of cells to survive, proliferate, and migrate as revealed by pharmacological inhibition studies. The basal activity of mTOR, too, was elevated in the CCA cell line compared with the normal cholangiocytes. Molecular inhibition studies provided further evidence that TMEM16A and mTOR were each able to influence the regulation of the other's activity or expression respectively. Consistent with this reciprocal regulation, combined TMEM16A and mTOR inhibition produced a greater loss of CCA cell survival and migration than their individual inhibition alone. Together these data reveal that the aberrant TMEM16A expression and cooperation with mTOR contribute to a certain advantage in CCA.NEW & NOTEWORTHY This study points to the dysregulation of transmembrane protein 16 A (TMEM16A) expression and activity in cholangiocarcinoma (CCA), the inhibition of which has functional consequences. Dysregulated TMEM16A exerts an influence on the regulation of mechanistic/mammalian target of rapamycin (mTOR) activity. Moreover, the reciprocal regulation of TMEM16A by mTOR demonstrates a novel connection between these two protein families. These findings support a model in which TMEM16A intersects the mTOR pathway to regulate cell cytoskeleton, survival, proliferation, and migration in CCA.
Collapse
Affiliation(s)
- Sucheta Kulkarni
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Qin Li
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Aatur D Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Satdarshan P Monga
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Andrew P Feranchak
- Division of Gastroenterology, Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
11
|
Lai TY, Ko YC, Chen YL, Lin SF. The Way to Malignant Transformation: Can Epigenetic Alterations Be Used to Diagnose Early-Stage Head and Neck Cancer? Biomedicines 2023; 11:1717. [PMID: 37371812 PMCID: PMC10296077 DOI: 10.3390/biomedicines11061717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Identifying and treating tumors early is the key to secondary prevention in cancer control. At present, prevention of oral cancer is still challenging because the molecular drivers responsible for malignant transformation of the 11 clinically defined oral potentially malignant disorders are still unknown. In this review, we focused on studies that elucidate the epigenetic alterations demarcating malignant and nonmalignant epigenomes and prioritized findings from clinical samples. Head and neck included, the genomes of many cancer types are largely hypomethylated and accompanied by focal hypermethylation on certain specific regions. We revisited prior studies that demonstrated that sufficient uptake of folate, the primary dietary methyl donor, is associated with oral cancer reduction. As epigenetically driven phenotypic plasticity, a newly recognized hallmark of cancer, has been linked to tumor initiation, cell fate determination, and drug resistance, we discussed prior findings that might be associated with this hallmark, including gene clusters (11q13.3, 19q13.43, 20q11.2, 22q11-13) with great potential for oral cancer biomarkers, and successful examples in screening early-stage nasopharyngeal carcinoma. Although one-size-fits-all approaches have been shown to be ineffective in most cancer therapies, the rapid development of epigenome sequencing methods raises the possibility that this nonmutagenic approach may be an exception. Only time will tell.
Collapse
Affiliation(s)
- Ting-Yu Lai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (Y.-C.K.); (Y.-L.C.)
| | - Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (Y.-C.K.); (Y.-L.C.)
| | - Yu-Lian Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (Y.-C.K.); (Y.-L.C.)
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan; (Y.-C.K.); (Y.-L.C.)
| |
Collapse
|
12
|
Clements CM, Henen MA, Vögeli B, Shellman YG. The Structural Dynamics, Complexity of Interactions, and Functions in Cancer of Multi-SAM Containing Proteins. Cancers (Basel) 2023; 15:3019. [PMID: 37296980 PMCID: PMC10252437 DOI: 10.3390/cancers15113019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
SAM domains are crucial mediators of diverse interactions, including those important for tumorigenesis or metastasis of cancers, and thus SAM domains can be attractive targets for developing cancer therapies. This review aims to explore the literature, especially on the recent findings of the structural dynamics, regulation, and functions of SAM domains in proteins containing more than one SAM (multi-SAM containing proteins, MSCPs). The topics here include how intrinsic disorder of some SAMs and an additional SAM domain in MSCPs increase the complexity of their interactions and oligomerization arrangements. Many similarities exist among these MSCPs, including their effects on cancer cell adhesion, migration, and metastasis. In addition, they are all involved in some types of receptor-mediated signaling and neurology-related functions or diseases, although the specific receptors and functions vary. This review also provides a simple outline of methods for studying protein domains, which may help non-structural biologists to reach out and build new collaborations to study their favorite protein domains/regions. Overall, this review aims to provide representative examples of various scenarios that may provide clues to better understand the roles of SAM domains and MSCPs in cancer in general.
Collapse
Affiliation(s)
- Christopher M. Clements
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.A.H.); (B.V.)
| | - Yiqun G. Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Charles C. Gates Regenerative Medicine and Stem Cell Biology Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
ANO4 Expression Is a Potential Prognostic Biomarker in Non-Metastasized Clear Cell Renal Cell Carcinoma. J Pers Med 2023; 13:jpm13020295. [PMID: 36836529 PMCID: PMC9965005 DOI: 10.3390/jpm13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Over the past decade, transcriptome profiling has elucidated many pivotal pathways involved in oncogenesis. However, a detailed comprehensive map of tumorigenesis remains an enigma to solve. Propelled research has been devoted to investigating the molecular drivers of clear cell renal cell carcinoma (ccRCC). To add another piece to the puzzle, we evaluated the role of anoctamin 4 (ANO4) expression as a potential prognostic biomarker in non-metastasized ccRCC. Methods: A total of 422 ccRCC patients with the corresponding ANO4 expression and clinicopathological data were obtained from The Cancer Genome Atlas Program (TCGA). Differential expression across several clinicopathological variables was performed. The Kaplan-Meier method was used to assess the impact of ANO4 expression on the overall survival (OS), progression-free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS). Univariate and multivariate Cox logistic regression analyses were conducted to identify independent factors modulating the aforementioned outcomes. Gene set enrichment analysis (GSEA) was used to discern a set of molecular mechanisms involved in the prognostic signature. Tumor immune microenvironment was estimated using xCell. Results: ANO4 expression was upregulated in tumor samples compared to normal kidney tissue. Albeit the latter finding, low ANO4 expression is associated with advanced clinicopathological variables such as tumor grade, stage, and pT. In addition, low ANO4 expression is linked to shorter OS, PFI, and DSS. Multivariate Cox logistic regression analysis identified ANO4 expression as an independent prognostic variable in OS (HR: 1.686, 95% CI: 1.120-2.540, p = 0.012), PFI (HR: 1.727, 95% CI: 1.103-2.704, p = 0.017), and DSS (HR: 2.688, 95% CI: 1.465-4.934, p = 0.001). GSEA identified the following pathways to be enriched within the low ANO4 expression group: epithelial-mesenchymal transition, G2-M checkpoint, E2F targets, estrogen response, apical junction, glycolysis, hypoxia, coagulation, KRAS, complement, p53, myogenesis, and TNF-α signaling via NF-κB pathways. ANO4 expression correlates significantly with monocyte (ρ = -0.1429, p = 0.0033) and mast cell (ρ = 0.1598, p = 0.001) infiltration. Conclusions: In the presented work, low ANO4 expression is portrayed as a potential poor prognostic factor in non-metastasized ccRCC. Further experimental studies should be directed to shed new light on the exact molecular mechanisms involved.
Collapse
|
14
|
Li B, Fan Q, Zheng L, Liu P, Fang N. Significance of Anoctamin 6 in progression and prognostic prediction of gastric adenocarcinoma. Histol Histopathol 2022; 37:1007-1017. [PMID: 35548923 DOI: 10.14670/hh-18-469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gastric cancer is one of the most lethal malignancies worldwide with surgery as the only curative therapy. However, postoperative overall survival of gastric cancer is far from satisfactory although significant improvement has been made in adjuvant therapies. Gastric cancer is characterized as highly heterogeneous and illustrating the molecular mechanisms is invaluable for both identification of novel prognostic biomarkers and development of therapeutic drugs. Here we aimed to investigate the participation of Anoctamin 6 (ANO6) in gastric adenocarcinoma. METHODS Immunohistochemical (IHC) staining was used to explore the expression pattern of ANO6 in tumor tissues from gastric adenocarcinoma patients (n=108). Clinicopathological data was subjected to Kaplan-Meier survival and Cox multivariate analyses to evaluate prognostic predictors. Overexpression and silencing procedures were performed on gastric cancer cell lines to investigate the functional mechanisms of ANO6 in regulating tumor development. RESULTS Higher ANO6 expression showed a positive correlation with advanced tumor stage of gastric cancer. Univariate and multivariate analyses revealed that ANO6 was an independent prognostic factor for overall survival of gastric cancer. An in vitro study demonstrated that ANO6 can promote cell proliferation while silencing ANO6 significantly downregulated cell viability. CONCLUSION High ANO6 expression in gastric cancer indicates poor clinical outcomes, and ANO6 may act as a potential target for novel therapy development targeting gastric cancer.
Collapse
Affiliation(s)
- Bin Li
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China
| | - Qiong Fan
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China
| | - Li Zheng
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China
| | - Peng Liu
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China
| | - Nian Fang
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University (Nanchang First Hospital), Nanchang, Jiangxi Province, China.
| |
Collapse
|
15
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
16
|
Chaudhary CL, Lim D, Chaudhary P, Guragain D, Awasthi BP, Park HD, Kim JA, Jeong BS. 6-Amino-2,4,5-trimethylpyridin-3-ol and 2-amino-4,6-dimethylpyrimidin-5-ol derivatives as selective fibroblast growth factor receptor 4 inhibitors: design, synthesis, molecular docking, and anti-hepatocellular carcinoma efficacy evaluation. J Enzyme Inhib Med Chem 2022; 37:844-856. [PMID: 35296193 PMCID: PMC8933034 DOI: 10.1080/14756366.2022.2048378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A novel series of aminotrimethylpyridinol and aminodimethylpyrimidinol derivatives were designed and synthesised for FGFR4 inhibitors. Structure-activity relationship on the FGFR4 inhibitory activity of the new compounds was clearly elucidated by an intensive molecular docking study. Anti-cancer activity of the compounds was evaluated using hepatocellular carcinoma (HCC) cell lines and a chick chorioallantoic membrane (CAM) tumour model. Compound 6O showed FGFR4 inhibitory activity over FGFR1 - 3. Compared to the positive control BLU9931, compound 6O exhibited at least 8 times higher FGFR4 selectivity. Strong anti-proliferative activity of compound 6O was observed against Hep3B, an HCC cell line which was a much more sensitive cell line to BLU9931. In vivo anti-tumour activity of compound 6O against Hep3B-xenografted CAM tumour model was almost similar to BLU9931. Overall, compound 6O, a novel derivative of aminodimethylpyrimidinol, was a selective FGFR4 kinase inhibitor blocking HCC tumour growth.
Collapse
Affiliation(s)
| | - Dongchul Lim
- Innovo Therapeutics Inc, Daejeon, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Diwakar Guragain
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
17
|
Zafirlukast inhibits the growth of lung adenocarcinoma via inhibiting TMEM16A channel activity. J Biol Chem 2022; 298:101731. [PMID: 35176281 PMCID: PMC8931426 DOI: 10.1016/j.jbc.2022.101731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/05/2023] Open
Abstract
Lung cancer has the highest mortality among cancers worldwide due to its high incidence and lack of the effective cures. We have previously demonstrated that the membrane ion channel TMEM16A is a potential drug target for the treatment of lung adenocarcinoma and have identified a pocket of inhibitor binding that provides the basis for screening promising new inhibitors. However, conventional drug discovery strategies are lengthy and costly, and the unpredictable side effects lead to a high failure rate in drug development. Therefore, finding new therapeutic directions for already marketed drugs may be a feasible strategy to obtain safe and effective therapeutic drugs. Here, we screened a library of over 1400 Food and Drug Administration-approved drugs through virtual screening and activity testing. We identified a drug candidate, Zafirlukast (ZAF), clinically approved for the treatment of asthma, that could inhibit the TMEM16A channel in a concentration-dependent manner. Molecular dynamics simulations and site-directed mutagenesis experiments showed that ZAF can bind to S387/N533/R535 in the nonselective inhibitor binding pocket, thereby blocking the channel pore. Furthermore, we demonstrate ZAF can target TMEM16A channel to inhibit the proliferation and migration of lung adenocarcinoma LA795 cells. In vivo experiments showed that ZAF can significantly inhibit lung adenocarcinoma tumor growth in mice. Taken together, we identified ZAF as a novel TMEM16A channel inhibitor with excellent anticancer activity, and as such, it represents a promising candidate for future preclinical and clinical studies.
Collapse
|
18
|
Zhou Z, Zhang C, Ma Z, Wang H, Tuo B, Cheng X, Liu X, Li T. Pathophysiological role of ion channels and transporters in HER2-positive breast cancer. Cancer Gene Ther 2022; 29:1097-1104. [PMID: 34997219 DOI: 10.1038/s41417-021-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
The incidence of breast cancer (BC) has been increasing each year, and BC is now the most common malignant tumor in women. Among the numerous BC subtypes, HER2-positive BC can be treated with a variety of strategies based on targeting HER2. Although there has been great progress in the treatment of HER2-positive BC, recurrence, metastasis and drug resistance remain considerable challenges. The dysfunction of ion channels and transporters can affect the development and progression of HER2-positive BC, so these entities are expected to be new therapeutic targets. This review summarizes various ion channels and transporters associated with HER2-positive BC and suggests potential targets for the development of new and effective therapies.
Collapse
Affiliation(s)
- Zhengxing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Chengmin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
19
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
20
|
Papenberg BW, Ingles J, Gao S, Feng J, Allen JL, Markwell SM, Interval ET, Montague PA, Wen S, Weed SA. Copy number alterations identify a smoking-associated expression signature predictive of poor outcome in head and neck squamous cell carcinoma. Cancer Genet 2021; 256-257:136-148. [PMID: 34130230 PMCID: PMC8273756 DOI: 10.1016/j.cancergen.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Cigarette smoking is a risk factor for the development of head and neck squamous cell carcinoma (HNSCC), partially due to tobacco-induced large-scale chromosomal copy-number alterations (CNAs). Identifying CNAs caused by smoking is essential in determining how gene expression from such regions impact tumor progression and patient outcome. We utilized The Cancer Genome Atlas (TCGA) whole genome sequencing data for HNSCC to directly identify amplified or deleted genes correlating with smoking pack-year based on linear modeling. Internal cross-validation identified 35 CNAs that significantly correlated with patient smoking, independent of human papillomavirus (HPV) status. The most abundant CNAs were chromosome 11q13.3-q14.4 amplification and 9p23.1/9p24.1 deletion. Evaluation of patient amplicons reveals four different patterns of 11q13 gene amplification in HNSCC resulting from breakage-fusion-bridge (BFB) events. . Predictive modeling identified 16 genes from these regions that denote poorer overall and disease-free survival with increased pack-year use, constituting a smoking-associated expression signature (SAES). Patients with altered expression of signature genes have increased risk of death and enhanced cervical lymph node involvement. The identified SAES can be utilized as a novel predictor of increased disease aggressiveness and poor outcome in smoking-associated HNSCC.
Collapse
Affiliation(s)
| | | | - Si Gao
- Department of Biostatistics USA
| | | | - Jessica L Allen
- Department of Biochemistry, Program in Cancer Cell Biology USA
| | | | - Erik T Interval
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, 26506 USA
| | - Phillip A Montague
- Department of Otolaryngology, Head and Neck Surgery, West Virginia University, Morgantown, West Virginia, 26506 USA
| | | | - Scott A Weed
- Department of Biochemistry, Program in Cancer Cell Biology USA.
| |
Collapse
|
21
|
Alhalabi OT, Fletcher MNC, Hielscher T, Kessler T, Lokumcu T, Baumgartner U, Wittmann E, Schlue S, Göttmann M, Rahman S, Hai L, Hansen-Palmus L, Puccio L, Nakano I, Herold-Mende C, Day BW, Wick W, Sahm F, Phillips E, Goidts V. A novel patient stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. Neuro Oncol 2021; 24:39-51. [PMID: 34232320 DOI: 10.1093/neuonc/noab158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common primary malignancy of the central nervous system with dismal prognosis. Genomic signatures classify isocitrate dehydrogenase 1 (IDH)-wildtype glioblastoma into three subtypes: proneural, mesenchymal and classical. Dasatinib, an inhibitor of proto-oncogene kinase Src (SRC), is one of many therapeutics which, despite promising preclinical results, has failed to improve overall survival in glioblastoma patients in clinical trials. We examined whether glioblastoma subtypes differ in their response to dasatinib and could hence be evaluated for patient enrichment strategies in clinical trials. METHODS We carried out in silico analyses on glioblastoma gene expression (TCGA) and single-cell RNA-Seq data. In addition, in vitro experiments using glioblastoma stem-like cells (GSCs) derived from primary patient tumors were performed, with complementary gene expression profiling and immunohistochemistry analysis of tumor samples. RESULTS Patients with the mesenchymal subtype of glioblastoma showed higher SRC pathway activation based on gene expression profiling. Accordingly, mesenchymal GSCs were more sensitive to SRC inhibition by dasatinib compared to proneural and classical GSCs. Notably, SRC phosphorylation status did not predict response to dasatinib treatment. Furthermore, serpin peptidase inhibitor clade H member 1 (SERPINH1), a collagen related heat-shock protein associated with cancer progression, was shown to correlate with dasatinib response and with the mesenchymal subtype. CONCLUSION This work highlights further molecular-based patient selection strategies in clinical trials and suggests the mesenchymal subtype as well as SERPINH1 to be associated with response to dasatinib. Our findings indicate that stratification based on gene expression subtyping should be considered in future dasatinib trials.
Collapse
Affiliation(s)
- Obada T Alhalabi
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael N C Fletcher
- Division of Molecular Genetics, Heidelberg Center for Personalized Oncology, German Cancer Research Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tobias Kessler
- Department of Neurology and Neurooncology Program; National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tolga Lokumcu
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Baumgartner
- Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Sid Faithfull Brain Cancer Laboratory, Brisbane, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Elena Wittmann
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Silja Schlue
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mona Göttmann
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shaman Rahman
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ling Hai
- Junior Research Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lea Hansen-Palmus
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Puccio
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, USA
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Bryan W Day
- Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Sid Faithfull Brain Cancer Laboratory, Brisbane, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program; National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Emma Phillips
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Violaine Goidts
- Brain Tumor Translational Targets, DKFZ Junior Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Diethylstilbestrol, a Novel ANO1 Inhibitor, Exerts an Anticancer Effect on Non-Small Cell Lung Cancer via Inhibition of ANO1. Int J Mol Sci 2021; 22:ijms22137100. [PMID: 34281152 PMCID: PMC8269135 DOI: 10.3390/ijms22137100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality; thus, therapeutic targets continue to be developed. Anoctamin1 (ANO1), a novel drug target considered for the treatment of NSCLC, is a Ca2+-activated chloride channel (CaCC) overexpressed in various carcinomas. It plays an important role in the development of cancer; however, the role of ANO1 in NSCLC is unclear. In this study, diethylstilbestrol (DES) was identified as a selective ANO1 inhibitor using high-throughput screening. We found that DES inhibited yellow fluorescent protein (YFP) fluorescence reduction caused by ANO1 activation but did not inhibit cystic fibrosis transmembrane conductance regulator channel activity or P2Y activation-related cytosolic Ca2+ levels. Additionally, electrophysiological analyses showed that DES significantly reduced ANO1 channel activity, but it more potently reduced ANO1 protein levels. DES also inhibited the viability and migration of PC9 cells via the reduction in ANO1, phospho-ERK1/2, and phospho-EGFR levels. Moreover, DES induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage in PC9 cells, but it did not affect the viability of hepatocytes. These results suggest that ANO1 is a crucial target in the treatment of NSCLC, and DES may be developed as a potential anti-NSCLC therapeutic agent.
Collapse
|
23
|
Luo X, Jiang Y, Chen F, Wei Z, Qiu Y, Xu H, Tian G, Gong W, Yuan Y, Feng H, Zhong L, Ji N, Xu X, Sun C, Li T, Li J, Feng X, Deng P, Zeng X, Zhou M, Zhou Y, Dan H, Jiang L, Chen Q. ORAOV1-B Promotes OSCC Metastasis via the NF-κB-TNFα Loop. J Dent Res 2021; 100:858-867. [PMID: 33655785 DOI: 10.1177/0022034521996339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metastasis, a powerful prognostic indicator of oral squamous cell carcinoma (OSCC), is chiefly responsible for poor cancer outcomes. Despite an increasing number of studies examining the mechanisms underlying poor outcomes, the development of potent strategies is hindered by insufficient characterization of the crucial regulators. Long noncoding RNAs (lncRNAs) have recently been gaining interest as significant modulators of OSCC metastasis; however, the detailed mechanisms underlying lncRNA-mediated OSCC metastasis remain relatively uncharacterized. Here, we identified a novel alternative splice variant of oral cancer overexpressed 1 (ORAOV1), named as ORAOV1-B, which was subsequently validated as an lncRNA and correlated with OSCC lymph node metastasis; significantly increased invasion and migration were observed in ORAOV1-B-overexpressing OSCC cells. RNA pulldown and mass spectrometry identified Hsp90 as a direct target of ORAOV1-B, and cDNA microarrays suggested TNFα as a potential downstream target of ORAOV1-B. ORAOV1-B was shown to directly bind to and stabilize Hsp90, which maintains the function of client proteins, receptor-interaction protein, and IκB kinase beta, thus activating the NF-κB pathway and inducing TNFα. Additionally, TNFα reciprocally enhanced p-NF-κB-p65 and the downstream epithelial-mesenchymal transition. ORAOV1-B effects were reversed by a TNFα inhibitor, demonstrating that TNFα is essential for ORAOV1-B-regulated metastatic ability. Consistent epithelial-mesenchymal transition in the ORAOV1-B group was demonstrated via an orthotopic model. In the metastatic model, ORAOV1-B significantly contributed to OSCC-related lung metastasis. In summary, the novel splice variant ORAOV1-B is an lncRNA, which significantly potentiates OSCC invasion and metastasis by binding to Hsp90 and activating the NF-κB-TNFα loop. These findings demonstrate the versatile role of ORAOV1 family members and the significance of genes located within 11q13 in promoting OSCC. ORAOV1-B might serve as an attractive OSCC metastasis intervention target.
Collapse
Affiliation(s)
- X Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - F Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- The Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Z Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - H Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - G Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- XiangYa Stomatological Hospital, Central South University, Changsha, China
| | - L Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - N Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - C Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - P Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
ANO1 regulates the maintenance of stemness in glioblastoma stem cells by stabilizing EGFRvIII. Oncogene 2021; 40:1490-1502. [PMID: 33452454 DOI: 10.1038/s41388-020-01612-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) or glioblastoma is the most deadly malignant brain tumor in adults. GBM is difficult to treat mainly due to the presence of glioblastoma stem cells (GSCs). Epidermal growth factor receptor variant III (EGFRvIII) has been linked to stemness and malignancy of GSCs; however, the regulatory mechanism of EGFRvIII is largely unknown. Here, we demonstrated that Anoctamin-1 (ANO1), a Ca2+-activated Cl- channel, interacts with EGFRvIII, increases its protein stability, and supports the maintenance of stemness and tumor progression in GSCs. Specifically, shRNA-mediated knockdown and pharmacological inhibition of ANO1 suppressed the self-renewal, invasion activities, and expression of EGFRvIII and related stem cell factors, including NOTCH1, nestin, and SOX2 in GSCs. Conversely, ANO1 overexpression enhanced the above phenomena. Mechanistically, ANO1 protected EGFRvIII from proteasomal degradation by directly binding to it. ANO1 knockdown significantly increased survival in mice and strongly suppressed local invasion of GSCs in an in vivo intracranial mouse model. Collectively, these results suggest that ANO1 plays a crucial role in the maintenance of stemness and invasiveness of GSCs by regulating the expression of EGFRvIII and related signaling molecules, and can be considered a promising therapeutic target for GBM treatment.
Collapse
|
25
|
Soave A, Kluwe L, Yu H, Rink M, Gild P, Vetterlein MW, Marks P, Sauter G, Fisch M, Meyer CP, Ludwig T, Dahlem R, Minner S, Pantel K, Steinbach B, Schwarzenbach H. Copy number variations in primary tumor, serum and lymph node metastasis of bladder cancer patients treated with radical cystectomy. Sci Rep 2020; 10:21562. [PMID: 33298978 PMCID: PMC7725833 DOI: 10.1038/s41598-020-75869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to analyze copy number variations (CNV) of multiple oncogenes and tumor suppressor genes in genomic DNA from primary tumor tissue, lymph node metastasis and cell-free DNA (cfDNA) from serum of 72 urothelial carcinoma of bladder (UCB) patients treated with radical cystectomy (RC), using multiplex ligation-dependent probe amplification (MLPA). We hypothesized that primary tumor and lymph node metastasis show similar CNV profiles, and CNV are more present in lymph node metastasis compared to primary tumor tissue. Samples from 43 (59.7%) patients could be analyzed. In total, 35 (83%), 26 (68%) and 8 (42%) patients had CNV in primary tumor, serum and lymph node metastasis, respectively. MYC, CCND1, ERBB2 and CCNE1 displayed the most frequent amplifications. In particular, CNV in ERBB2 was associated with aggressive tumor characteristics. CNV in both ERBB2 and TOP2A were risk factors for disease recurrence. The current findings show that CNV are present in various oncogenes and tumor suppressor genes in genomic DNA from primary tumor, lymph node metastasis and cfDNA from serum. CNV were more present in genomic DNA from primary tumor tissue compared to cfDNA from serum and genomic DNA from lymph node metastasis. Patients with CNV in ERBB2 and TOP2A are at increased risk for disease recurrence following RC. Further studies are necessary to validate, whether these genes may represent promising candidates for targeted-therapy.
Collapse
Affiliation(s)
- Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lan Kluwe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hang Yu
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Gild
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte W Vetterlein
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Marks
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian P Meyer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Ludwig
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Bettina Steinbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
26
|
Ha SY, Yeo SY, Lee KW, Kim SH. Validation of ORAOV1 as a new treatment target in hepatocellular carcinoma. J Cancer Res Clin Oncol 2020; 147:423-433. [PMID: 33161447 DOI: 10.1007/s00432-020-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Chromosome 11q13.2, which contains genes cyclin D1 (CCND1), fibroblast growth factor 19 (FGF19), and Oral Cancer Overexpressed 1 (ORAOV1), is the most highly amplified peak in hepatocellular carcinoma (HCC). CCND1 and FGF19 have been already suggested as therapeutic targets of HCC, but the role of ORAOV1 in carcinogenesis of HCCs has not been reported. METHODS This retrospective study investigated ORAOV1 expression using immunohistochemistry performed on tissue microarray blocks obtained from 259 HCC patients with curative resection, between 2000 and 2006. We assessed the prognostic significance of ORAOV1 expression by Kaplan-Meier method with log-rank test and Cox proportional hazards model. Also, we performed invasion, migration, apoptosis, and cell cycle assays in HCC cell lines, and evaluated the tumorigenicity of HCC xenografts in nude mice, after knockdown of ORAOV1. RESULTS High expression of ORAOV1 protein was observed in 80% of HCC tissues. The ORAOV1 high expression group showed shorter recurrence free survival (RFS) (p < 0.001) and shorter disease-specific survival (DSS) than the low expression group. It was an independent prognostic factor for predicting early recurrence [Odds ratio 2.74 (95% confidence interval (CI) 1.27-5.93), p = 0.01] as well as short RFS [hazard ratio 2.23 (95% CI 1.40-3.54), p = 0.001] and DSS [hazard ratio 2.30 (95% CI 1.27-4.17), p = 0.006]. Knockdown of ORAOV1 induced significant decreases in migration, invasion, and tumorigenicity of HCC cells in in-vitro model, and inhibited the growth of HCC xenografts in nude mice. CONCLUSION We demonstrated unfavorable prognostic effect of ORAOV1 expression with supporting experimental data in HCC. ORAOV1 may be used as a biomarker for predicting HCC prognosis and is a potential candidate for targeted therapy.
Collapse
Affiliation(s)
- Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - So-Young Yeo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Keun-Woo Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea. .,Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Kothapalli KSD, Park HG, Brenna JT. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID-19 ✰,✰✰,★,★★. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102183. [PMID: 33038834 PMCID: PMC7527828 DOI: 10.1016/j.plefa.2020.102183] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms vary from silence to rapid death, the latter mediated by both a cytokine storm and a thrombotic storm. SARS-CoV (2003) induces Cox-2, catalyzing the synthesis, from highly unsaturated fatty acids (HUFA), of eicosanoids and docosanoids that mediate both inflammation and thrombosis. HUFA balance between arachidonic acid (AA) and other HUFA is a likely determinant of net signaling to induce a healthy or runaway physiological response. AA levels are determined by a non-protein coding regulatory polymorphisms that mostly affect the expression of FADS1, located in the FADS gene cluster on chromosome 11. Major and minor haplotypes in Europeans, and a specific functional insertion-deletion (Indel), rs66698963, consistently show major differences in circulating AA (>50%) and in the balance between AA and other HUFA (47-84%) in free living humans; the indel is evolutionarily selective, probably based on diet. The pattern of fatty acid responses is fully consistent with specific genetic modulation of desaturation at the FADS1-mediated 20:3→20:4 step. Well established principles of net tissue HUFA levels indicate that the high linoleic acid and low alpha-linoleic acid in populations drive the net balance of HUFA for any individual. We predict that fast desaturators (insertion allele at rs66698963; major haplotype in Europeans) are predisposed to higher risk and pathological responses to SARS-CoV-2 could be reduced with high dose omega-3 HUFA.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, United States; Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
28
|
Levine KM, Ding K, Chen L, Oesterreich S. FGFR4: A promising therapeutic target for breast cancer and other solid tumors. Pharmacol Ther 2020; 214:107590. [PMID: 32492514 PMCID: PMC7494643 DOI: 10.1016/j.pharmthera.2020.107590] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The fibroblast growth factor receptor (FGFR) signaling pathway has long been known to cancer researchers because of its role in cell survival, proliferation, migration, and angiogenesis. Dysregulation of FGFR signaling is frequently reported in cancer studies, but most of these studies focus on FGFR1-3. However, there is growing evidence implicating an important and unique role of FGFR4 in oncogenesis, tumor progression, and resistance to anti-tumor therapy in multiple types of cancer. Importantly, there are several novel FGFR4-specific inhibitors in clinical trials, making FGFR4 an attractive target for further research. In this review, we focus on assessing the role of FGFR4 in cancer, with an emphasis on breast cancer. First, the structure, physiological functions and downstream signaling pathways of FGFR4 are introduced. Next, different mechanisms reported to cause aberrant FGFR4 activation and their functions in cancer are discussed, including FGFR4 overexpression, FGF ligand overexpression, FGFR4 somatic hotspot mutations, and the FGFR4 G388R single nucleotide polymorphism. Finally, ongoing and recently completed clinical trials targeting FGFRs in cancer are reviewed, highlighting the therapeutic potential of FGFR4 inhibition for the treatment of breast cancer.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Molecular Targeted Therapy
- Mutation
- Polymorphism, Single Nucleotide
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lyuqin Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, Zhang Y, Nagata K, Li Z, Zhou BP, Xu R. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A 2020; 117:3748-3758. [PMID: 32015106 PMCID: PMC7035603 DOI: 10.1073/pnas.1911951117] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Increased expression of extracellular matrix (ECM) proteins in circulating tumor cells (CTCs) suggests potential function of cancer cell-produced ECM in initiation of cancer cell colonization. Here, we showed that collagen and heat shock protein 47 (Hsp47), a chaperone facilitating collagen secretion and deposition, were highly expressed during the epithelial-mesenchymal transition (EMT) and in CTCs. Hsp47 expression induced mesenchymal phenotypes in mammary epithelial cells (MECs), enhanced platelet recruitment, and promoted lung retention and colonization of cancer cells. Platelet depletion in vivo abolished Hsp47-induced cancer cell retention in the lung, suggesting that Hsp47 promotes cancer cell colonization by enhancing cancer cell-platelet interaction. Using rescue experiments and functional blocking antibodies, we identified type I collagen as the key mediator of Hsp47-induced cancer cell-platelet interaction. We also found that Hsp47-dependent collagen deposition and platelet recruitment facilitated cancer cell clustering and extravasation in vitro. By analyzing DNA/RNA sequencing data generated from human breast cancer tissues, we showed that gene amplification and increased expression of Hsp47 were associated with cancer metastasis. These results suggest that targeting the Hsp47/collagen axis is a promising strategy to block cancer cell-platelet interaction and cancer colonization in secondary organs.
Collapse
Affiliation(s)
- Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Jie Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Guoying Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536
| | - Shike Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Kunito Kawasaki
- Department of Molecular and Cellular Biology, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Jieqing Zhu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| | - Yan Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536
| | - Kazuhiro Nagata
- Department of Molecular and Cellular Biology, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Zhenyu Li
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536
| | - Binhua P Zhou
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
30
|
Vanoni S, Zeng C, Marella S, Uddin J, Wu D, Arora K, Ptaschinski C, Que J, Noah T, Waggoner L, Barski A, Kartashov A, Rochman M, Wen T, Martin L, Spence J, Collins M, Mukkada V, Putnam P, Naren A, Chehade M, Rothenberg ME, Hogan SP. Identification of anoctamin 1 (ANO1) as a key driver of esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol 2020; 145:239-254.e2. [PMID: 31647967 PMCID: PMC7366251 DOI: 10.1016/j.jaci.2019.07.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The pathology of eosinophilic esophagitis (EoE) is characterized by eosinophil-rich inflammation, basal zone hyperplasia (BZH), and dilated intercellular spaces, and the underlying processes that drive the pathologic manifestations of the disease remain largely unexplored. OBJECTIVE We sought to investigate the involvement of the calcium-activated chloride channel anoctamin 1 (ANO1) in esophageal proliferation and the histopathologic features of EoE. METHODS We examined mRNA and protein expression of ANO1 in esophageal biopsy samples from patients with EoE and in mice with EoE. We performed molecular and cellular analyses and ion transport assays on an in vitro esophageal epithelial 3-dimensional model system (EPC2-ALI) and murine models of EoE to define the relationship between expression and function of ANO1 and esophageal epithelial proliferation in patients with EoE. RESULTS We observed increased ANO1 expression in esophageal biopsy samples from patients with EoE and in mice with EoE. ANO1 was expressed within the esophageal basal zone, and expression correlated positively with disease severity (eosinophils/high-power field) and BZH. Using an in vitro esophageal epithelial 3-dimensional model system revealed that ANO1 undergoes chromatin modification and rapid upregulation of expression after IL-13 stimulation, that ANO1 is the primary apical IL-13-induced Cl- transport mechanism within the esophageal epithelium, and that loss of ANO1-dependent Cl- transport abrogated esophageal epithelial proliferation. Mechanistically, ANO1-dependent regulation of basal cell proliferation was associated with modulation of TP63 expression and phosphorylated cyclin-dependent kinase 2 levels. CONCLUSIONS These data identify a functional role for ANO1 in esophageal cell proliferation and BZH in patients with EoE and provide a rationale for pharmacologic intervention of ANO1 function in patients with EoE.
Collapse
Affiliation(s)
- Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; PharmGenetix Gmbh, Niederalm-Anif, Austria
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sahiti Marella
- Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - Jazib Uddin
- Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kavisha Arora
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Taeko Noah
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrey Kartashov
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason Spence
- Departments of Biomedical Engineering, Internal Medicine and Cell and Developmental Biology, University of Michigan, Ann Arbor, Mich
| | - Margaret Collins
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vincent Mukkada
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Phillip Putnam
- Division of Gastroenterology, Nutrition and Hepatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anjaparavanda Naren
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center and Department of Pathology, Ann Arbor, Mich.
| |
Collapse
|
31
|
Park YR, Lee ST, Kim SL, Zhu SM, Lee MR, Kim SH, Kim IH, Lee SO, Seo SY, Kim SW. Down-regulation of miR-9 promotes epithelial mesenchymal transition via regulating anoctamin-1 (ANO1) in CRC cells. Cancer Genet 2019; 231-232:22-31. [PMID: 30803553 DOI: 10.1016/j.cancergen.2018.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022]
Abstract
MicroRNA-9 (miR-9) has been reported to play a suppressive or promoting role according to cancer type. In this study, we investigated the effects of anoctamin-1 (ANO1) and miR-9 on colorectal cancer (CRC) cell proliferation, migration, and invasion and determined the underlying molecular mechanisms. Thirty-two paired CRC tissues and adjacent normal tissues were analyzed for ANO1 expression using quantitative real-time PCR (qRT-PCR). HCT116 cells were transiently transfected with miR-9 mimic, miR-9 inhibitor, or si-ANO1. Cell proliferation was determined by MTT, and flow cytometric analysis, while cell migration and invasion were assayed by trans-well migration and invasion assay in HCT116 cells. ANO1 was validated as a target of miR-9 using luciferase reporter assay and bioinformatics algorithms. We found that ANO1 expression was up-regulated in CRC tissues compared with adjacent normal tissues. ANO1 expression was associated with advanced tumor stage and lymph node metastasis, and there was an inverse relationship between miR-9 and ANO1 mRNA expression in CRC specimens, but no significant difference was found between miR-9 and ANO1 expression. ANO1 is a direct target of miR-9, and overexpression of miR-9 suppressed both mRNA and protein expression of ANO1 and inhibited cell proliferation, migration, and invasion of HCT116 cells. We also showed that overexpression of miR-9 suppressed expression of p-AKT, cyclin D1, and p-ERK in HCT116 cells. We conclude that miR-9 inhibits CRC cell proliferation, migration, and invasion by directly targeting ANO1, and miR-9/ANO1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Young Ran Park
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Se Lim Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Shi Mao Zhu
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min Ro Lee
- Department of Surgery, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong Hun Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - In Hee Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung Young Seo
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
32
|
Fibroblast Growth Factor Receptor 4 Targeting in Cancer: New Insights into Mechanisms and Therapeutic Strategies. Cells 2019; 8:cells8010031. [PMID: 30634399 PMCID: PMC6356571 DOI: 10.3390/cells8010031] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4), a tyrosine kinase receptor for FGFs, is involved in diverse cellular processes, including the regulation of cell proliferation, differentiation, migration, metabolism, and bile acid biosynthesis. High activation of FGFR4 is strongly associated with the amplification of its specific ligand FGF19 in many types of solid tumors and hematologic malignancies, where it acts as an oncogene driving the cancer development and progression. Currently, the development and therapeutic evaluation of FGFR4-specific inhibitors, such as BLU9931 and H3B-6527, in animal models and cancer patients, are paving the way to suppress hyperactive FGFR4 signaling in cancer. This comprehensive review not only covers the recent discoveries in understanding FGFR4 regulation and function in cancer, but also reveals the therapeutic implications and applications regarding emerging anti-FGFR4 agents. Our aim is to pinpoint the potential of FGFR4 as a therapeutic target and identify new avenues for advancing future research in the field.
Collapse
|
33
|
Toraih EA, Ellawindy A, Fala SY, Al Ageeli E, Gouda NS, Fawzy MS, Hosny S. Oncogenic long noncoding RNA MALAT1 and HCV-related hepatocellular carcinoma. Biomed Pharmacother 2018; 102:653-669. [PMID: 29604585 DOI: 10.1016/j.biopha.2018.03.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/11/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. The oncogenic function of the long non-coding RNA; metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HCC remains unclear. We aimed to evaluate MALAT1 serum expression profile in HCC and explore its relation to the clinicopathological features. Quantitative Real Time-Polymerase Chain Reaction was applied in 70 cohorts (30 HCC, 20 HCV, 20 controls). Further meta-analysis of clinical studies and in vitro validated experiments was employed. Serum MALAT1 showed area under the curve of 0.79 and 0.70 to distinguish patients with cancer from normal and cirrhotic individuals at fold change of 1.0 and 1.26, respectively. Expression level was significantly higher in males (P <0.001) and patients with massive ascites (P = 0.005). Correlation analysis showed positive correlation of MALAT1 with total bilirubin (r = 0.456, P <0.001) and AST (r = 0.280, P = 0.019), and negative correlation with the hemoglobin level (r = 0.312, P = 0.009). Meta-analysis showed that the over-expressed MALAT1 was linked to tumor number [Cohen's d = 0.450, 95% CI (0.21 to 0.68)], clinical stage [Cohen's d = 0.048, 95% CI (-0.83 to 0.74)], and AFP level [Cohen's d = 0.354, 95% CI (0.1 to 0.57)]. In silico data analysis and systematic review confirmed MALAT1 oncogenic function in cancer development and progression. In conclusion, circulatory MALAT1 might represent a putative non-invasive prognostic biomarker indicating worse liver failure score in HCV-related HCC patients with traditional markers. Large-scale verification is warranted in future studies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- Computer Simulation
- Demography
- Female
- Gene Expression Regulation, Neoplastic
- Hepacivirus/physiology
- Humans
- Liver Cirrhosis/diagnosis
- Liver Cirrhosis/genetics
- Liver Neoplasms/blood
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Male
- Middle Aged
- Prognosis
- Publication Bias
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcriptome/genetics
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt.
| | - Alia Ellawindy
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Salma Y Fala
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, P.O. 45142, Saudi Arabia
| | - Nawal S Gouda
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura, Mansoura University, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, P.O. 41522, Egypt; Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Somaya Hosny
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt; Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
34
|
Ibrahim FH, Abd Latip N, Abdul‐Wahab MF. Heat Shock Protein 47 (
HSP47
). ELS 2018:1-7. [DOI: 10.1002/9780470015902.a0028005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
35
|
Guan L, Song Y, Gao J, Gao J, Wang K. Inhibition of calcium-activated chloride channel ANO1 suppresses proliferation and induces apoptosis of epithelium originated cancer cells. Oncotarget 2018; 7:78619-78630. [PMID: 27732935 PMCID: PMC5346664 DOI: 10.18632/oncotarget.12524] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/01/2016] [Indexed: 11/25/2022] Open
Abstract
ANO1, a calcium-activated chloride channel, has been reported to be amplified or overexpressed in tissues of several cancers. However, reports on its roles in tumor progression obtained from cancer cell lines are inconsistent, suggesting that the role of ANO1 in tumorigenesis is likely dependent on either its expression level or cell-type expressing ANO1. To investigate the biological roles of ANO1 in different tumor cells, we, in this study, selected several cancer cell lines and a normal HaCaT cell line with high expression levels of ANO1, and examined the function of ANO1 in these cells using approaches of lentiviral knockdown and pharmacological inhibition. We found that ANO1 knockdown significantly inhibited cell proliferation and induced cell apoptosis in either tumor cell lines or normal HaCaT cell line. Moreover, silencing ANO1 arrested cancer cells at G1 phase of cell cycle. Treatment with ANO1 inhibitor CaCCinh-A01 reduced cell viability in a dose-dependent manner. Furthermore, both ANO1 inhibitors CaCCinh-A01 and T16Ainh-A01 significantly suppressed cell migration. Our findings show that ANO1 overexpression promotes cancer cell proliferation and migration; and genetic or pharmacological inhibition of ANO1 induces apoptosis and cell cycle arrest at G1 phase in different types of epithelium-originated cancer cells.
Collapse
Affiliation(s)
- Lizhao Guan
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Yan Song
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Jian Gao
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Jianjun Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
| | - KeWei Wang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China.,Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China
| |
Collapse
|
36
|
DNA methylation regulates TMEM16A/ANO1 expression through multiple CpG islands in head and neck squamous cell carcinoma. Sci Rep 2017; 7:15173. [PMID: 29123240 PMCID: PMC5680248 DOI: 10.1038/s41598-017-15634-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 01/22/2023] Open
Abstract
ANO1 is a calcium-activated chloride channel that is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) and other cancers. While ANO1 expression negatively correlates with survival in several cancers, its epigenetic regulation is poorly understood. We analyzed HNSCC samples from TCGA and a separate dataset of HPV+ oropharyngeal squamous cell carcinoma (OPSCC) samples to identify differentially methylated regions. E6 and E7 transfected normal oral keratinocytes (NOK) were used to induce hypermethylation of the ANO1 promoter. We found three CpG islands that correlated with ANO1 expression, including two positively correlated with expression. Using two HNSCC datasets with differential expression of ANO1, we showed hypermethylation of positively correlated CpG islands potentiates ANO1 expression. E7 but not E6 transfection of NOK cells led to hypermethylation of a positively correlated CpG island without a change in ANO1 expression. ANO1 promoter methylation was also correlated with patient survival. Our results are the first to show the contribution of positively correlated CpG’s for regulating gene expression in HNSCC. Hypermethylation of the ANO1 promoter was strongly correlated with but not sufficient to increase ANO1 expression, suggesting methylation of positively correlated CpG’s likely serves as an adjunct to other mechanisms of ANO1 activation.
Collapse
|
37
|
Wang H, Zou L, Ma K, Yu J, Wu H, Wei M, Xiao Q. Cell-specific mechanisms of TMEM16A Ca 2+-activated chloride channel in cancer. Mol Cancer 2017; 16:152. [PMID: 28893247 PMCID: PMC5594453 DOI: 10.1186/s12943-017-0720-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
TMEM16A (known as anoctamin 1) Ca2+-activated chloride channel is overexpressed in many tumors. TMEM16A overexpression can be caused by gene amplification in many tumors harboring 11q13 amplification. TMEM16A expression is also controlled in many cancer cells via transcriptional regulation, epigenetic regulation and microRNAs. In addition, TMEM16A activates different signaling pathways in different cancers, e.g. the EGFR and CAMKII signaling in breast cancer, the p38 and ERK1/2 signaling in hepatoma, the Ras-Raf-MEK-ERK1/2 signaling in head and neck squamous cell carcinoma and bladder cancer, and the NFκB signaling in glioma. Furthermore, TMEM16A overexpression has been reported to promote, inhibit, or produce no effects on cell proliferation and migration in different cancer cells. Since TMEM16A exerts different roles in different cancer cells via activation of distinct signaling pathways, we try to develop the idea that TMEM16A regulates cancer cell proliferation and migration in a cell-dependent mechanism. The cell-specific role of TMEM16A may depend on the cellular environment that is predetermined by TMEM16A overexpression mechanisms specific for a particular cancer type. TMEM16A may exert its cell-specific role via its associated protein networks, phosphorylation by different kinases, and involvement of different signaling pathways. In addition, we discuss the role of TMEM16A channel activity in cancer, and its clinical use as a prognostic and predictive marker in different cancers. This review highlights the cell-type specific mechanisms of TMEM16A in cancer, and envisions the promising use of TMEM16A inhibitors as a potential treatment for TMEM16A-overexpressing cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Liang Zou
- Department of Anesthesiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Jiankun Yu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122 China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 China
| |
Collapse
|
38
|
Relevance of chromosomal band 11q13 in oral carcinogenesis: An update of current knowledge. Oral Oncol 2017; 72:7-16. [DOI: 10.1016/j.oraloncology.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
|
39
|
Lu G, Zhou L, Song W, Wu S, Zhu B, Wang D. Expression of ORAOV1, CD133 and WWOX correlate with metastasis and prognosis in gastric adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8916-8924. [PMID: 31966760 PMCID: PMC6965444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/27/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Oral cancer overexpressed 1 (ORAOV1) which is a novel candidate oncogene is a useful biomarker of metastasis and prognosis in various cancers. CD133 which is a biomarker of cancer stem cells is overexpressed in many cancers and promotes cancer cells growth and metastasis. WW domain-containing oxidoreductase (WWOX) which is a suppressor gene of tumor can inhibit proliferation and promote apoptosis in various cancers. However, associations among ORAOV1, CD133, and WWOX and their clinicopathological significance in gastric adenocarcionma (GAC) are unclear. In this study, we analyzed associations among ORAOV1, CD133, and WWOX in GAC, and their respective associations with clinicopathological characteristics and survival in GAC. METHOD Positive expression of ORAOV1, CD133, and WWOX in 236 whole GAC tissue samples were detected by immunohistochemistry staining. Patients' clinical data were also collected. RESULTS Levels of ORAOV1 and CD133 were significantly higher, and levels of WWOX significantly lower, in GAC tissues than in normal gastric tissues. Levels of ORAOV1 and CD133 were positively associated with tumor grade, invasion of depth, lymph node metastasis (LNM), and tumor-node metastasis (TNM) stages, and inversely with patients overall survival time; levels of WWOX was negatively correlated with tumor grade, invasion of depth, LNM, and TNM stages, and the WWOX-positive subgroup had significantly longer overall survival time than did the WWOX-negative subgroup. In multivariate analysis, high expression of ORAOV1 and CD133, invasion of depth, and TNM stages, and low expression of WWOX were potential to be independent prognostic factors for overall survival time in patients with GAC. CONCLUSIONS The expression of ORAOV1, CD133, and WWOX represent promising biomarkers for metastasis and prognosis, and potential therapeutic targets for GAC.
Collapse
Affiliation(s)
- Guoyu Lu
- Department of Emergence, The First Affiliated Hospital of Bengbu Medical CollegeAnhui, China
| | - Lei Zhou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui, China
- Department of Pathology, Bengbu Medical CollegeAnhui, China
| | - Wenqing Song
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui, China
- Department of Pathology, Bengbu Medical CollegeAnhui, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui, China
- Department of Pathology, Bengbu Medical CollegeAnhui, China
| | - Bo Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui, China
- Department of Pathology, Bengbu Medical CollegeAnhui, China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui, China
- Department of Pathology, Bengbu Medical CollegeAnhui, China
| |
Collapse
|
40
|
Qin Y, Xu Z, Wang Y, Li X, Cao H, Zheng SJ. VP2 of Infectious Bursal Disease Virus Induces Apoptosis via Triggering Oral Cancer Overexpressed 1 (ORAOV1) Protein Degradation. Front Microbiol 2017; 8:1351. [PMID: 28769911 PMCID: PMC5515827 DOI: 10.3389/fmicb.2017.01351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/04/2017] [Indexed: 01/30/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by IBD virus (IBDV). Cell apoptosis triggered by IBDV contributes to the dysfunction of immune system in host. VP2 of IBDV is known to induce cell death but the underlying mechanism remains unclear. Here we demonstrate that VP2 interacts with the oral cancer overexpressed 1 (ORAOV1), a potential oncoprotein. Infection by IBDV or ectopic expression of VP2 causes a reduction of cellular ORAOV1 and induction of apoptosis, so does knockdown of ORAOV1. In contrast, over-expression of ORAOV1 leads to the inhibition of VP2- or IBDV-induced apoptosis, accompanied with the decreased viral release (p < 0.05). Thus, VP2-induced apoptosis during IBDV infection is mediated by interacting with and reducing ORAOV1, a protein that appears to act as an antiapoptotic molecule and restricts viral release early during IBDV infection.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Zhichao Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
41
|
Kulkarni S, Bill A, Godse NR, Khan NI, Kass JI, Steehler K, Kemp C, Davis K, Bertrand CA, Vyas AR, Holt DE, Grandis JR, Gaither LA, Duvvuri U. TMEM16A/ANO1 suppression improves response to antibody-mediated targeted therapy of EGFR and HER2/ERBB2. Genes Chromosomes Cancer 2017; 56:460-471. [PMID: 28177558 DOI: 10.1002/gcc.22450] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
TMEM16A, a Ca2+ -activated Cl- channel, contributes to tumor growth in breast cancer and head and neck squamous cell carcinoma (HNSCC). Here, we investigated whether TMEM16A influences the response to EGFR/HER family-targeting biological therapies. Inhibition of TMEM16A Cl- channel activity in breast cancer cells with HER2 amplification induced a loss of viability. Cells resistant to trastuzumab, a monoclonal antibody targeting HER2, showed an increase in TMEM16A expression and heightened sensitivity to Cl- channel inhibition. Treatment of HNSCC cells with cetuximab, a monoclonal antibody targeting EGFR, and simultaneous TMEM16A suppression led to a pronounced loss of viability. Biochemical analyses of cells subjected to TMEM16A inhibitors or expressing chloride-deficient forms of TMEM16A provide further evidence that TMEM16A channel function may play a role in regulating EGFR/HER2 signaling. These data demonstrate that TMEM16A regulates EGFR and HER2 in growth and survival pathways. Furthermore, in the absence of TMEM16A cotargeting, tumor cells may acquire resistance to EGFR/HER inhibitors. Finally, targeting TMEM16A improves response to biological therapies targeting EGFR/HER family members.
Collapse
Affiliation(s)
- Sucheta Kulkarni
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Anke Bill
- Novartis Institute for Biomedical Research, Cambridge, MA, 02139
| | - Neal R Godse
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Nayel I Khan
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jason I Kass
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kevin Steehler
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Carolyn Kemp
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Kara Davis
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Carol A Bertrand
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Avani R Vyas
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Douglas E Holt
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - L Alex Gaither
- Novartis Institute for Biomedical Research, Cambridge, MA, 02139
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health System, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Ramos-García P, Gil-Montoya JA, Scully C, Ayén A, González-Ruiz L, Navarro-Triviño FJ, González-Moles MA. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis 2017; 23:897-912. [DOI: 10.1111/odi.12620] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Affiliation(s)
- P Ramos-García
- School of Dentistry; University of Granada; Granada Spain
| | - JA Gil-Montoya
- School of Dentistry; University of Granada; Granada Spain
- Instituto de Biomedicina; University of Granada; Granada Spain
| | - C Scully
- University College of London; London UK
| | - A Ayén
- School of Medicine; University of Granada; Granada Spain
| | - L González-Ruiz
- Servicio de Dermatología; Hospital General Universitario de Ciudad Real; Ciudad Real Spain
| | - FJ Navarro-Triviño
- Servicio de Dermatología; Complejo Hospitalario San Cecilio; Granada Spain
| | - MA González-Moles
- School of Dentistry; University of Granada; Granada Spain
- Instituto de Biomedicina; University of Granada; Granada Spain
| |
Collapse
|
43
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Pattle SB, Utjesanovic N, Togo A, Wells L, Conn B, Monaghan H, Junor E, Johannessen I, Cuschieri K, Talbot S. Copy number gain of 11q13.3 genes associates with pathological stage in hypopharyngeal squamous cell carcinoma. Genes Chromosomes Cancer 2016; 56:185-198. [DOI: 10.1002/gcc.22425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Samuel B. Pattle
- Division of Infection and Pathway Medicine; The University of Edinburgh, Little France Crescent, Scotland
| | - Natasa Utjesanovic
- Division of Infection and Pathway Medicine; The University of Edinburgh, Little France Crescent, Scotland
| | - Athena Togo
- Department of Otolaryngology, The Laurieston Building; NHS Lothian, Edinburgh
| | - Lucy Wells
- Western General Hospital; The Edinburgh Cancer Centre; NHS Lothian, Edinburgh
| | - Brendan Conn
- Department of Pathology; Royal Infirmary of Edinburgh; NHS Lothian, Edinburgh
| | - Hannah Monaghan
- Department of Pathology; Royal Infirmary of Edinburgh; NHS Lothian, Edinburgh
| | - Elizabeth Junor
- Western General Hospital; The Edinburgh Cancer Centre; NHS Lothian, Edinburgh
| | | | - Kate Cuschieri
- Scottish HPV Reference Laboratory; Royal Infirmary of Edinburgh; NHS Lothian, Edinburgh
| | - Simon Talbot
- Division of Infection and Pathway Medicine; The University of Edinburgh, Little France Crescent, Scotland
| |
Collapse
|
45
|
Jiang Y, Yu B, Yang H, Ma T. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea. Front Pharmacol 2016; 7:270. [PMID: 27601995 PMCID: PMC4993765 DOI: 10.3389/fphar.2016.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023] Open
Abstract
Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.
Collapse
Affiliation(s)
- Yu Jiang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| |
Collapse
|
46
|
Kawaguchi K, Honda M, Yamashita T, Okada H, Shirasaki T, Nishikawa M, Nio K, Arai K, Sakai Y, Yamashita T, Mizukoshi E, Kaneko S. Jagged1 DNA Copy Number Variation Is Associated with Poor Outcome in Liver Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2055-2067. [PMID: 27315779 DOI: 10.1016/j.ajpath.2016.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/10/2016] [Accepted: 04/09/2016] [Indexed: 12/21/2022]
Abstract
Notch signaling abnormalities are reported to be involved in the acceleration of malignancy in solid tumors and stem cell formation or regeneration in various organs. We analyzed specific genes for DNA copy number variations in liver cancer cells and investigated whether these factors relate to clinical outcome. Chromosome 20p, which includes the ligand for Notch pathways, Jagged1, was found to be amplified in several types of hepatoma cells, and its mRNA was up-regulated according to α-fetoprotein gene expression levels. Notch inhibition using Jagged1 shRNA and γ-secretase inhibitors produced significant suppression of cell growth in α-fetoprotein-producing cells with suppression of downstream genes. Using in vivo hepatoma models, the administration of γ-secretase inhibitors resulted in reduced tumor sizes and effective Notch inhibition with widespread apoptosis and necrosis of viable tumor cells. The γ-secretase inhibitors suppressed cell growth of the epithelial cell adhesion molecule-positive fraction in hepatoma cells, indicating that Notch inhibitors could suppress the stem cell features of liver cancer cells. Even in clinical liver cancer samples, the expression of α-fetoprotein and Jagged1 showed significant correlation, and amplification of the copy number of Jagged1 was associated with Jagged1 mRNA expression and poor survival after liver cancer surgical resection. In conclusion, amplification of Jagged1 contributed to mRNA expression that activates the Jagged1-Notch signaling pathway in liver cancer and led to poor outcome.
Collapse
Affiliation(s)
- Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masashi Nishikawa
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| |
Collapse
|
47
|
Lee YS, Lee JK, Bae Y, Lee BS, Kim E, Cho CH, Ryoo K, Yoo J, Kim CH, Yi GS, Lee SG, Lee CJ, Kang SS, Hwang EM, Park JY. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells. Sci Rep 2016; 6:26413. [PMID: 27212225 PMCID: PMC4876403 DOI: 10.1038/srep26413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/03/2016] [Indexed: 01/03/2023] Open
Abstract
Anoctamin-1 (ANO1) acts as a Ca2+-activated Cl− channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis.
Collapse
Affiliation(s)
- Young-Sun Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea.,Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.,Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jae Kwang Lee
- Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eunju Kim
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea.,Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chang-Hoon Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Kanghyun Ryoo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, College of Korean Medicine, KHU-KIST department of Convergging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - C Justin Lee
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
48
|
Zhao X, Liu D, Wang L, Wu R, Zeng X, Dan H, Ji N, Jiang L, Zhou Y, Chen Q. RNAi-mediated downregulation of oral cancer overexpressed 1 (ORAOV1) inhibits vascular endothelial cell proliferation, migration, invasion, and tube formation. J Oral Pathol Med 2016; 45:256-61. [PMID: 26449957 DOI: 10.1111/jop.12371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the top ten tumors threatening human health. Oral cancer overexpressed 1 (ORAOV1) identified within chromosomal region 11q13, one of the most frequently amplified regions in OSCC, has been suggested as a novel candidate oncogene in OSCC, regulating cell cycle, apoptosis, and angiogenesis. In this study, we investigated the role of ORAOV1 in OSCC-induced angiogenesis in vitro. METHODS EA.hy926 human endothelial cells were co-cultured with OSCC cells (HSC-3 and SCC-25) transfected with ORAOV1-specific shRNA to downregulate ORAOV1 expression, and analyzed for proliferation, migration, invasion, and tube formation by specific assays. RESULTS EA.hy926 endothelial cells co-cultured with ORAOV1-deficient OSCC cells exhibited significantly lower proliferation, migration, and invasion, as well as the activity in tube formation compared to that in the control cells. CONCLUSIONS Our results show, for the first time, that ORAOV1 expressed by OSCC cells promotes tube formation by endothelial cells, indicating its involvement in OSCC angiogenesis. Considering the importance of neovascularization in tumor development and metastasis, these findings suggest that targeting ORAOV1 may be a potential therapeutic strategy against OSCC.
Collapse
MESH Headings
- Base Sequence
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Down-Regulation
- Endothelial Cells/cytology
- Endothelial Cells/pathology
- Head and Neck Neoplasms/blood supply
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Mouth Neoplasms/blood supply
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Squamous Cell Carcinoma of Head and Neck
- Transfection
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Dongjuan Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Lili Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Ruiqing Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Histone deacetylase inhibitor abexinostat affects chromatin organization and gene transcription in normal B cells and in mantle cell lymphoma. Gene 2016; 580:134-143. [DOI: 10.1016/j.gene.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
|
50
|
Bill A, Gutierrez A, Kulkarni S, Kemp C, Bonenfant D, Voshol H, Duvvuri U, Gaither LA. ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget 2016; 6:9173-88. [PMID: 25823819 PMCID: PMC4496210 DOI: 10.18632/oncotarget.3277] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/07/2015] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to the pathogenesis of head&neck squamous cell carcinoma (HNSCC). However, only a subset of HNSCC patients benefit from anti-EGFR targeted therapy. By performing an unbiased proteomics screen, we found that the calcium-activated chloride channel ANO1 interacts with EGFR and facilitates EGFR-signaling in HNSCC. Using structural mutants of EGFR and ANO1 we identified the trans/juxtamembrane domain of EGFR to be critical for the interaction with ANO1. Our results show that ANO1 and EGFR form a functional complex that jointly regulates HNSCC cell proliferation. Expression of ANO1 affected EGFR stability, while EGFR-signaling elevated ANO1 protein levels, establishing a functional and regulatory link between ANO1 and EGFR. Co-inhibition of EGFR and ANO1 had an additive effect on HNSCC cell proliferation, suggesting that co-targeting of ANO1 and EGFR could enhance the clinical potential of EGFR-targeted therapy in HNSCC and might circumvent the development of resistance to single agent therapy. HNSCC cell lines with amplification and high expression of ANO1 showed enhanced sensitivity to Gefitinib, suggesting ANO1 overexpression as a predictive marker for the response to EGFR-targeting agents in HNSCC therapy. Taken together, our results introduce ANO1 as a promising target and/or biomarker for EGFR-directed therapy in HNSCC.
Collapse
Affiliation(s)
- Anke Bill
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Abraham Gutierrez
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Sucheta Kulkarni
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA
| | - Carolyn Kemp
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA
| | - Debora Bonenfant
- Novartis Institutes for Biomedical Research, Basel, CH-4002, Switzerland
| | - Hans Voshol
- Novartis Institutes for Biomedical Research, Basel, CH-4002, Switzerland
| | - Umamaheswar Duvvuri
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA.,VA Pittsburgh HealthCare System, Pittsburgh, PA 15213, USA
| | - L Alex Gaither
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| |
Collapse
|