1
|
Maldonado-Devincci AM, Odelade AE, Irby-Shabazz A, Jadhav V, Nepal P, Chang EM, Chang AY, Han J. Longitudinal sex-specific impacts of high-fat diet on dopaminergic dysregulation and behavior from periadolescence to late adulthood. Nutr Neurosci 2025; 28:425-438. [PMID: 39046103 PMCID: PMC11757805 DOI: 10.1080/1028415x.2024.2377471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Obesity is recognized for its adverse impact on brain health and related behaviors; however, the specific longitudinal effects of a high-fat diet (HFD) from juvenile stages of development through late adulthood remain poorly understood, particularly sex-specific outcomes. This study aimed to determine how prolonged exposure to HFD, commencing during periadolescence, would differentially predispose male and female mice to an elevated risk of dopaminergic dysregulation and associated behavioral deficits. METHODS One-month-old C57BL/6J male and female mice were subjected to either a control diet or an HFD for 5 and 9 months. Muscle strength, motor skills, sensorimotor integration, and anxiety-like behaviors were assessed at the end of the 5th and 8th months. Key dopaminergic molecules, including dopamine (DA), dopamine receptor D2 (DRD2), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2), were quantified at the end of the 5th or 9th months. RESULTS Behaviorally, male mice exposed to HFD exhibited more pronounced alterations in sensorimotor integration, anxiety-like behavior, and muscle strength after the 5th month of dietary exposure. In contrast, female mice displayed most behavioral differences after the 8th month of HFD exposure. Physiologically, there were notable sex-specific variations in the dopaminergic pathway response to HFD. Male mice exposed to HFD exhibited elevated tissue levels of VMAT2 and DRD2, whereas female mice showed reduced levels of DRD2 and DAT compared to control groups. DISCUSSION These findings indicate a general trend of altered time course susceptibility in male mice to chronic HFD consumption compared to their female counterparts, with male mice impacted earlier than females.
Collapse
Affiliation(s)
- Antoniette M. Maldonado-Devincci
- Department of Psychology, John R. and Kathy R. Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Anuoluwapo E. Odelade
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Adenike Irby-Shabazz
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Vidya Jadhav
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Pragya Nepal
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Evelyn M. Chang
- Program in Liberal Medical Education, Division of Biology and Medicine, Brown University, Providence
| | - Alex Y. Chang
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Jian Han
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| |
Collapse
|
2
|
Olivetti PR, Torres-Herraez A, Gallo ME, Raudales R, Sumerau M, Moyles S, Balsam PD, Kellendonk C. Inhibition of striatal indirect pathway during second postnatal week leads to long-lasting deficits in motivated behavior. Neuropsychopharmacology 2025; 50:651-661. [PMID: 39327472 PMCID: PMC11845773 DOI: 10.1038/s41386-024-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder with postulated neurodevelopmental etiology. Genetic and imaging studies have shown enhanced dopamine and D2 receptor occupancy in the striatum of patients with schizophrenia. However, whether alterations in postnatal striatal dopamine can lead to long-lasting changes in brain function and behavior is still unclear. Here, we approximated striatal D2R hyperfunction in mice via designer receptor-mediated activation of inhibitory Gi-protein signaling during a defined postnatal time window. We found that Gi-mediated inhibition of the indirect pathway (IP) during postnatal days 8-15 led to long-lasting decreases in locomotor activity and motivated behavior measured in the adult animal. In vivo photometry further showed that the motivational deficit was associated with an attenuated adaptation of outcome-evoked dopamine levels to changes in effort requirements. These data establish a sensitive time window of D2R-regulated striatal development with long-lasting impacts on neuronal function and behavior.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Meghan E Gallo
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Ricardo Raudales
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - MaryElena Sumerau
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Sinead Moyles
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College 3009 Broadway, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Soto PL, Young ME, Nguyen S, Federoff M, Goodson M, Morrison CD, Batdorf HM, Burke SJ, Collier JJ. Early adolescent second-generation antipsychotic exposure produces long-term, post-treatment increases in body weight and metabolism-associated gene expression. Pharmacol Biochem Behav 2025; 247:173951. [PMID: 39722423 DOI: 10.1016/j.pbb.2024.173951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
The use of second-generation antipsychotic (SGA) medications in pediatric patients raises concerns about potential long-term adverse outcomes. The current study evaluated the long-term effects of treatment with risperidone or olanzapine on body weight, caloric intake, serum insulin, blood glucose, and metabolism-associated gene expression in C57Bl/6J female mice. Compared to mice treated with vehicle, female mice treated with risperidone or olanzapine gained weight at higher rates during treatment and maintained higher body weights for months following treatment cessation. High-fat diet feeding did not produce a robust difference in weight gain in previously treated vs. control groups. Finally, female mice previously treated with olanzapine also exhibited increased expression of genes associated with inflammation and lipogenesis. These findings suggest that pediatric use of SGA medications that induce excess weight gain during treatment may exert persistent effects on body weight and gene expression and such outcomes may form an important aspect of assessing risk-to-benefit ratios in prescribing decisions.
Collapse
Affiliation(s)
- Paul L Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America.
| | - Michael E Young
- Kansas State University, Manhattan, KS 66506, United States of America
| | - Serena Nguyen
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Megan Federoff
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Mia Goodson
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | | | - Heidi M Batdorf
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| |
Collapse
|
4
|
Pais ML, Crisóstomo J, Abrunhosa A, Castelo-Branco M. Central dopamine receptors: Radiotracers unveiling the Role of dopaminergic tone in obesity. J Mol Med (Berl) 2025; 103:21-32. [PMID: 39630278 PMCID: PMC11739276 DOI: 10.1007/s00109-024-02501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
Brain dopamine type 2 and 3 receptors (D2/3R) have been postulated to play a role in obesity. However, results from molecular neuroimaging studies exploring these receptors in obesity are not consensual. These inconsistencies may be due to the distinct characteristics of radiotracers that confound the interpretation of D2/3R assessment. Only three meta-analyses reported their results across radiotracers. Although all agree that obesity severity influences D2/3R availability, results vary for [11C]raclopride. Further, D2/3R assessment has been commonly interpreted as reflecting receptor density or availability. An alternative interpretation could be related to changes in endogenous central dopaminergic tone. The main question is whether the hypothesis of a quadratic relationship between dopaminergic tone and degree of obesity is suitable for the distinct characteristics of radiotracers. To answer this question and clarify the role of dopaminergic tone in obesity, we systematically reviewed this issue across radiotracers. Out of 514 articles, 15 articles were selected for review. Besides obesity severity, this study highlights the influence of radiotracer characteristics when assessing D2/3R. The tested hypothesis proved to be more suitable for radiotracers more susceptible to endogenous dopamine or with a lower affinity to D2/3R, supporting the quadratic relationship between dopaminergic tone and degree of obesity. While the role of D2/3R density in obesity may be relevant, dopaminergic tone seems to have a greater impact on the obesity-related differences found in these receptors. Finally, neuropsychological factors should be tested in addition to body mass index, as they may better reflect altered brain dopaminergic function.
Collapse
Affiliation(s)
- Marta Lapo Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Marinescu AM, Labouesse MA. The nucleus accumbens shell: a neural hub at the interface of homeostatic and hedonic feeding. Front Neurosci 2024; 18:1437210. [PMID: 39139500 PMCID: PMC11319282 DOI: 10.3389/fnins.2024.1437210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Feeding behavior is a complex physiological process regulated by the interplay between homeostatic and hedonic feeding circuits. Among the neural structures involved, the nucleus accumbens (NAc) has emerged as a pivotal region at the interface of these two circuits. The NAc comprises distinct subregions and in this review, we focus mainly on the NAc shell (NAcSh). Homeostatic feeding circuits, primarily found in the hypothalamus, ensure the organism's balance in energy and nutrient requirements. These circuits monitor peripheral signals, such as insulin, leptin, and ghrelin, and modulate satiety and hunger states. The NAcSh receives input from these homeostatic circuits, integrating information regarding the organism's metabolic needs. Conversely, so-called hedonic feeding circuits involve all other non-hunger and -satiety processes, i.e., the sensory information, associative learning, reward, motivation and pleasure associated with food consumption. The NAcSh is interconnected with hedonics-related structures like the ventral tegmental area and prefrontal cortex and plays a key role in encoding hedonic information related to palatable food seeking or consumption. In sum, the NAcSh acts as a crucial hub in feeding behavior, integrating signals from both homeostatic and hedonic circuits, to facilitate behavioral output via its downstream projections. Moreover, the NAcSh's involvement extends beyond simple integration, as it directly impacts actions related to food consumption. In this review, we first focus on delineating the inputs targeting the NAcSh; we then present NAcSh output projections to downstream structures. Finally we discuss how the NAcSh regulates feeding behavior and can be seen as a neural hub integrating homeostatic and hedonic feeding signals, via a functionally diverse set of projection neuron subpopulations.
Collapse
Affiliation(s)
- Alina-Măriuca Marinescu
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marie A. Labouesse
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Li Y, Usman M, Sapp E, Ke Y, Wang Z, Boudi A, DiFiglia M, Li X. Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome. JCI Insight 2024; 9:e181339. [PMID: 38889014 PMCID: PMC11383600 DOI: 10.1172/jci.insight.181339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Loss-of-function mutations of the gene encoding the trafficking protein particle complex subunit 9 (Trappc9) cause autosomal recessive intellectual disability and obesity by unknown mechanisms. Genome-wide analysis links Trappc9 to nonalcoholic fatty liver disease (NAFLD). Trappc9-deficient mice have been shown to appear overweight shortly after weaning. Here, we analyzed serum biochemistry and histology of adipose and liver tissues to determine the incidence of obesity and NAFLD in Trappc9-deficient mice and combined transcriptomic and proteomic analyses, pharmacological studies, and biochemical and histological examinations of postmortem mouse brains to unveil mechanisms involved. We found that Trappc9-deficient mice presented with systemic glucose homeostatic disturbance, obesity, and NAFLD, which were relieved upon chronic treatment combining dopamine receptor D2 (DRD2) agonist quinpirole and DRD1 antagonist SCH23390. Blood glucose homeostasis in Trappc9-deficient mice was restored upon administering quinpirole alone. RNA-sequencing analysis of DRD2-containing neurons and proteomic study of brain synaptosomes revealed signs of impaired neurotransmitter secretion in Trappc9-deficient mice. Biochemical and histological studies of mouse brains showed that Trappc9-deficient mice synthesized dopamine normally, but their dopamine-secreting neurons had a lower abundance of structures for releasing dopamine in the striatum. Our study suggests that Trappc9 loss of function causes obesity and NAFLD by constraining dopamine synapse formation.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
7
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Hervé D, Gambardella N, Roussarie JP, Girault JA. Operant Training for Highly Palatable Food Alters Translating Messenger RNA in Nucleus Accumbens D 2 Neurons and Reveals a Modulatory Role of Ncdn. Biol Psychiatry 2024; 95:926-937. [PMID: 37579933 PMCID: PMC11059129 DOI: 10.1016/j.biopsych.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
Affiliation(s)
- Enrica Montalban
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| | - Albert Giralt
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Lieng Taing
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Assunta Pelosi
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Mallory Brown
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Benoit de Pins
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Miquel Martin
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, Spain; Instituto de investigaciones médicas Hospital del Mar, Barcelona, Spain
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Denis Hervé
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France
| | | | - Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York
| | - Jean-Antoine Girault
- Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche-S 1270, Paris, France; Faculty of Sciences and Engineering, Sorbonne Université, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
8
|
Walle R, Petitbon A, Fois GR, Varin C, Montalban E, Hardt L, Contini A, Angelo MF, Potier M, Ortole R, Oummadi A, De Smedt-Peyrusse V, Adan RA, Giros B, Chaouloff F, Ferreira G, de Kerchove d'Exaerde A, Ducrocq F, Georges F, Trifilieff P. Nucleus accumbens D1- and D2-expressing neurons control the balance between feeding and activity-mediated energy expenditure. Nat Commun 2024; 15:2543. [PMID: 38514654 PMCID: PMC10958053 DOI: 10.1038/s41467-024-46874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.
Collapse
Affiliation(s)
- Roman Walle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| | - Anna Petitbon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Giulia R Fois
- Univ. Bordeaux, CNRS, IMN, UMR5293 F-33000, Bordeaux, France
| | - Christophe Varin
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Enrica Montalban
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Lola Hardt
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Andrea Contini
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Mylène Potier
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
- Bordeaux Sciences Agro, F-, 33175, Gradignan, France
| | - Rodrigue Ortole
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Asma Oummadi
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Roger A Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
- Université de Paris Cité, INCC UMR 8002, CNRS; F-75006, Paris, France
| | - Francis Chaouloff
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077, Bordeaux, France
- Université de Bordeaux, 33077, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
9
|
Castell L, Le Gall V, Cutando L, Petit CP, Puighermanal E, Makrini-Maleville L, Kim HR, Jercog D, Tarot P, Tassou A, Harrus AG, Rubinstein M, Nouvian R, Rivat C, Besnard A, Trifilieff P, Gangarossa G, Janak PH, Herry C, Valjent E. Dopamine D2 receptors in WFS1-neurons regulate food-seeking and avoidance behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110883. [PMID: 37858736 DOI: 10.1016/j.pnpbp.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.
Collapse
Affiliation(s)
- Laia Castell
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France; Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Valentine Le Gall
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Laura Cutando
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Chloé P Petit
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Emma Puighermanal
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | | | - Ha-Rang Kim
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Daniel Jercog
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Pauline Tarot
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Adrien Tassou
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | | | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET; FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Régis Nouvian
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Cyril Rivat
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Antoine Besnard
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Pierre Trifilieff
- Université, Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux F-33000, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris F-75013, France; Institut Universitaire de France, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cyril Herry
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Emmanuel Valjent
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France.
| |
Collapse
|
10
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
11
|
Montalban E, Walle R, Castel J, Ansoult A, Hassouna R, Foppen E, Fang X, Hutelin Z, Mickus S, Perszyk E, Petitbon A, Berthelet J, Rodrigues-Lima F, Cebrian-Serrano A, Gangarossa G, Martin C, Trifilieff P, Bosch-Bouju C, Small DM, Luquet S. The Addiction-Susceptibility TaqIA/Ankk1 Controls Reward and Metabolism Through D 2 Receptor-Expressing Neurons. Biol Psychiatry 2023; 94:424-436. [PMID: 36805080 DOI: 10.1016/j.biopsych.2023.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to 40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The mechanisms by which the variant influences dopamine signaling and behavior are unknown. METHODS Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of activity and functions of the striatum. RESULTS We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential nutrient partitioning in humans with or without the A1 allele. CONCLUSIONS Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions and reveal a new role for Ankk1 in the regulation of body metabolism.
Collapse
Affiliation(s)
- Enrica Montalban
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France.
| | - Roman Walle
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Anthony Ansoult
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Rim Hassouna
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Ewout Foppen
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Xi Fang
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Sophie Mickus
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Emily Perszyk
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Unité Epigenetique et Destin Cellulaire, Paris, France
| | | | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Claire Martin
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France; Modern Diet and Physiology Research Center, New Haven, Connecticut.
| |
Collapse
|
12
|
Montalban E, Giralt A, Taing L, Nakamura Y, Pelosi A, Brown M, de Pins B, Valjent E, Martin M, Nairn AC, Greengard P, Flajolet M, Herv D, Gambardella N, Roussarie JP, Girault JA. Operant training for highly palatable food alters translating mRNA in nucleus accumbens D2 neurons and reveals a modulatory role of Neurochondrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531496. [PMID: 36945487 PMCID: PMC10028890 DOI: 10.1101/2023.03.07.531496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Highly palatable food triggers behavioral alterations reminiscent of those induced by addictive drugs. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the effects of highly palatable food on feeding behavior are poorly understood. METHODS We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral effects and dendritic spine modifications in the NAc. We compared the translating mRNA in NAc neurons identified by the type of dopamine receptors they express, depending on the type of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn (Neurochondrin). RESULTS Operant conditioning for highly palatable food increases motivation for food even in well-fed mice. In control mice, free access to regular or highly palatable food results in increased weight as compared to regular food only. Highly palatable food increases spine density in the NAc. In animals trained for highly palatable food, translating mRNAs are modified in NAc dopamine D2-receptor-expressing neurons, mostly corresponding to striatal projection neurons, but not in those expressing D1-receptors. Knock-out of Ncdn, an abundant down-regulated gene, opposes the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting down-regulation may be a compensatory mechanism. CONCLUSIONS Our results emphasize the importance of mRNA alterations D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.
Collapse
|
13
|
Herrero F, Mueller FS, Gruchot J, Küry P, Weber-Stadlbauer U, Meyer U. Susceptibility and resilience to maternal immune activation are associated with differential expression of endogenous retroviral elements. Brain Behav Immun 2023; 107:201-214. [PMID: 36243285 DOI: 10.1016/j.bbi.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into the mammalian genome through germline infections and insertions during evolution. While increased ERV expression has been repeatedly implicated in psychiatric and neurodevelopmental disorders, recent evidence suggests that aberrant endogenous retroviral activity may contribute to biologically defined subgroups of psychotic disorders with persisting immunological dysfunctions. Here, we explored whether ERV expression is altered in a mouse model of maternal immune activation (MIA), a transdiagnostic environmental risk factor of psychiatric and neurodevelopmental disorders. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Murine ERV transcripts were quantified in the placentae and fetal brains shortly after poly(I:C)-induced MIA, as well as in adult offspring that were stratified according to their behavioral profiles. We found that MIA increased and reduced levels of class II ERVs and syncytins, respectively, in placentae and fetal brain tissue. We also revealed abnormal ERV expression in MIA-exposed offspring depending on whether they displayed overt behavioral anomalies or not. Taken together, our findings provide a proof of concept that an inflammatory stimulus, even when initiated in prenatal life, has the potential of altering ERV expression across fetal to adult stages of development. Moreover, our data highlight that susceptibility and resilience to MIA are associated with differential ERV expression, suggesting that early-life exposure to inflammatory factors may play a role in determining disease susceptibility by inducing persistent alterations in the expression of endogenous retroviral elements.
Collapse
Affiliation(s)
- Felisa Herrero
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Dai KZ, Choi IB, Levitt R, Blegen MB, Kaplan AR, Matsui A, Shin JH, Bocarsly ME, Simpson EH, Kellendonk C, Alvarez VA, Dobbs LK. Dopamine D2 receptors bidirectionally regulate striatal enkephalin expression: Implications for cocaine reward. Cell Rep 2022; 40:111440. [PMID: 36170833 PMCID: PMC9620395 DOI: 10.1016/j.celrep.2022.111440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Low dopamine D2 receptor (D2R) availability in the striatum can predispose for cocaine abuse; though how low striatal D2Rs facilitate cocaine reward is unclear. Overexpression of D2Rs in striatal neurons or activation of D2Rs by acute cocaine suppresses striatal Penk mRNA. Conversely, low D2Rs in D2-striatal neurons increases striatal Penk mRNA and enkephalin peptide tone, an endogenous mu-opioid agonist. In brain slices, met-enkephalin and inhibition of enkephalin catabolism suppresses intra-striatal GABA transmission. Pairing cocaine with intra-accumbens met-enkephalin during place conditioning facilitates acquisition of preference, while mu-opioid receptor antagonist blocks preference in wild-type mice. We propose that heightened striatal enkephalin potentiates cocaine reward by suppressing intra-striatal GABA to enhance striatal output. Surprisingly, a mu-opioid receptor antagonist does not block cocaine preference in mice with low striatal D2Rs, implicating other opioid receptors. The bidirectional regulation of enkephalin by D2R activity and cocaine offers insights into mechanisms underlying the vulnerability for cocaine abuse. Low striatal D2 receptor levels are associated with cocaine abuse. Dai et al. bidirectionally alter striatal D2 receptor levels to probe the downstream mechanisms underlying this abuse liability. They provide evidence that enhanced enkephalin tone resulting from low D2 receptors is associated with suppressed intra-striatal GABA and potentiated cocaine reward.
Collapse
Affiliation(s)
- Kathy Z Dai
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - In Bae Choi
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ryan Levitt
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mariah B Blegen
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Alanna R Kaplan
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - J Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA
| | - Miriam E Bocarsly
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Rutgers Brain Health Institute, Newark, NJ, USA
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, IRP, NIH, Bethesda, MD, USA; Center on Compulsive Behaviors, IRP, NIH, Bethesda, MD, USA
| | - Lauren K Dobbs
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Tsuneoka Y, Atsumi Y, Makanae A, Yashiro M, Funato H. Fluorescence quenching by high-power LEDs for highly sensitive fluorescence in situ hybridization. Front Mol Neurosci 2022; 15:976349. [PMID: 36117911 PMCID: PMC9479452 DOI: 10.3389/fnmol.2022.976349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Recent technical advances have made fluorescent in situ hybridization (ISH) a pivotal method to analyze neural tissue. In a highly sensitive ISH, it is important to reduce tissue autofluorescence. We developed a photobleaching device using a light-emitting diode (LED) illuminator to quench autofluorescence in neural tissue. This device was equipped with 12 high-power LEDs (30 W per single LED) and an evaporative cooling system, and these features achieved highly efficient bleaching of autofluorescence and minimized tissue damage. Even after 60 min of photobleaching with evaporative cooling, the temperature gain of the tissue slide was suppressed almost completely. The autofluorescence of lipofuscin-like granules completely disappeared after 60 min of photobleaching, as did other background autofluorescence observed in the mouse cortex and hippocampus. In combination with the recently developed fluorescent ISH method using the hybridization chain reaction (HCR), high signal/noise ratio imaging was achieved without reduction of ISH sensitivity to visualize rare mRNA at single copy resolution by quenching autofluorescence. Photobleaching by the LED illuminator was also effective in quenching the fluorescent staining of ISH-HCR. We performed multiround ISH by repeating the cycle of HCR staining, confocal imaging, and photobleaching. In addition to the two-round ISH, fluorescent immunohistochemistry or fluorescent Nissl staining was conducted on the same tissue. This LED illuminator provides a quick and simple way to reduce autofluorescence and quench fluorescent dyes for multiround ISH with minimum tissue degradation.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- *Correspondence: Yousuke Tsuneoka Hiromasa Funato
| | - Yusuke Atsumi
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Aki Makanae
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Mitsuru Yashiro
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
- *Correspondence: Yousuke Tsuneoka Hiromasa Funato
| |
Collapse
|
16
|
Chen PY, Chiu CC, Hsieh TH, Liu YR, Chen CH, Huang CY, Lu ML, Huang MC. The relationship of antipsychotic treatment with reduced brown adipose tissue activity in patients with schizophrenia. Psychoneuroendocrinology 2022; 142:105775. [PMID: 35594830 DOI: 10.1016/j.psyneuen.2022.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Antipsychotic drug (APD) treatment has been associated with metabolic abnormalities. Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and secretes various metabolism-improving factors known as batokines. We explored the association of BAT activity with APD treatment and metabolic abnormalities in patients with schizophrenia by measuring the blood levels of bone morphogenetic protein 8b (BMP8b), a batokine secreted by mature BAT. METHODS BMP8b levels were compared among 50 drug-free, 32 aripiprazole-treated, and 91 clozapine-treated patients with schizophrenia. Regression analysis was used to explore factors, including APD types, that might be associated with BMP8b levels and the potential effect of BMP8b on metabolic syndrome (MS). RESULTS APD-treated patients had decreased BMP8b levels relative to drug-free patients. The difference still existed after adjustment for body mass index and Brief Psychiatric Rating Scale scores. Among APD-treated group, clozapine was associated with even lower BMP8b levels than the less obesogenic APD, aripiprazole. Furthermore, higher BMP8b levels were associated with lower risks of MS after adjustment for BMI and APD treatment. CONCLUSION Using drug-free patients as the comparison group to understand the effect of APDs, this is the first study to show APD treatment is associated with reduced BAT activity that is measured by BMP8b levels, with clozapine associated a more significant reduction than aripiprazole treatment. BMP8b might have a beneficial effect against metabolic abnormalities and this effect is independent of APD treatment. Future studies exploring the causal relationship between APD treatment and BMP8b levels and the underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Po-Yu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychology, National Cheng-chi University, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cho-Yin Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, 250 Wu-Hsing Street, 110 Taipei, Taiwan.
| |
Collapse
|
17
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
18
|
Luquet S, Gangarossa G. Dopamine drives food craving during pregnancy. Nat Metab 2022; 4:410-411. [PMID: 35379971 DOI: 10.1038/s42255-022-00555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Serge Luquet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| | - Giuseppe Gangarossa
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
19
|
Simpson EH, Gallo EF, Balsam PD, Javitch JA, Kellendonk C. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry 2022; 27:436-444. [PMID: 34385603 PMCID: PMC8837728 DOI: 10.1038/s41380-021-01253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
It was first posited, more than five decades ago, that the etiology of schizophrenia involves overstimulation of dopamine receptors. Since then, advanced clinical research methods, including brain imaging, have refined our understanding of the relationship between striatal dopamine and clinical phenotypes as well as disease trajectory. These studies point to striatal dopamine D2 receptors, the main target for all current antipsychotic medications, as being involved in both positive and negative symptoms. Simultaneously, animal models have been central to investigating causal relationships between striatal dopamine D2 receptors and behavioral phenotypes relevant to schizophrenia. We begin this article by reviewing the circuit, cell-type and subcellular locations of dopamine D2 receptors and their downstream signaling pathways. We then summarize results from several mouse models in which D2 receptor levels were altered in various brain regions, cell-types and developmental periods. Behavioral, electrophysiological and anatomical consequences of these D2 receptor perturbations are reviewed with a selective focus on striatal circuit function and alterations in motivated behavior, a core negative symptom of schizophrenia. These studies show that D2 receptors serve distinct physiological roles in different cell types and at different developmental time points, regulating motivated behaviors in sometimes opposing ways. We conclude by considering the clinical implications of this complex regulation of striatal circuit function by D2 receptors.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY 10458
| | - Peter D. Balsam
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027,Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032,Department of Molecular Pharmacology and Therapeutics, Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA. .,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. .,Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
de Andrade Silva SC, da Silva AI, Braz GRF, da Silva Pedroza AA, de Lemos MDT, Sellitti DF, Lagranha C. Overfeeding during development induces temporally-dependent changes in areas controlling food intake in the brains of male Wistar rats. Life Sci 2021; 285:119951. [PMID: 34516994 DOI: 10.1016/j.lfs.2021.119951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
AIMS We sought to evaluate the effects of overfeeding during lactation on the feeding behavior and expression of specific regulatory genes in brain areas associated with food intake in 22- and 60-day old male rats. METHODS We evaluated body weight, food intake of standard and palatable diet, and mRNA expression of dopamine receptor D1 (DDR1), dopamine receptor (DDR2), melanocortin 4 receptor (MC4R), the μ-opioid receptor (MOR), neuropeptide Y (NPY), agouti-related protein (AGRP), proopiomelanocortin (POMC), cocaine-and amphetamine-regulated transcript (CART), serotonin (5-hydroxytryptamine; 5-HT) transporter (SERT), 5-hydroxytryptamine receptor 1B (5-HT1B), 5-hydroxytryptamine receptor 2C receptor (5-HT2C), Clock (CLOK), cryptochrome protein 1 (Cry1) and period circadian protein homolog 2 (Per2) in the striatum, hypothalamus and brainstem of male rats at post-natal days (PND) 22 and 60. KEY FINDINGS Overfeeding resulted in significantly increased body weight through PND60, and a 2-fold increase in palatable food intake at PND22, but not at PND60. We observed significant increases in DDR1, DDR2, and MC4R gene expression in the striatum and brainstem and POMC/CART in the hypothalamus of the OF group at PND22 that were reversed by PND60. Hypothalamic levels of 5-HT1B, 5-HT2C and NPY/AGRP on the other hand were decreased at PND22 and increased at PND60 in OF animals. Clock genes were unaffected by OF at PND22, but were significantly elevated at PND60. SIGNIFICANCE Overfeeding during early development of the rat brain results in obesity and altered feeding behavior in early adulthood. The altered behavior might be the consequence of the changes in food intake and reward gene expression.
Collapse
Affiliation(s)
| | - Aline Isabel da Silva
- Neuropsychiatry and Behavior Science Graduate Program, Universidade Federal de Pernambuco -UFPE-Recife, PE, Brazil
| | - Glauber Rudá Feitoza Braz
- Neuropsychiatry and Behavior Science Graduate Program, Universidade Federal de Pernambuco -UFPE-Recife, PE, Brazil
| | | | | | - Donald F Sellitti
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Claudia Lagranha
- Neuropsychiatry and Behavior Science Graduate Program, Universidade Federal de Pernambuco -UFPE-Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil.
| |
Collapse
|
21
|
Zhou H, Hou T, Gao Z, Guo X, Wang C, Wang J, Liu Y, Liang X. Discovery of eight alkaloids with D1 and D2 antagonist activity in leaves of Nelumbo nucifera Gaertn. Using FLIPR assays. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114335. [PMID: 34139281 DOI: 10.1016/j.jep.2021.114335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dopamine receptors are long-standing primary targets in the treatment of mental diseases and there is growing evidence that suggests relationships between obesity and the dopamine system, especially dopamine D1 and D2 receptors. Leaves of Nelumbo nucifera Gaertn. (lotus leaves) have been medically used for helping long-term maintenance of weight loss. Whether and how components of lotus leaves function through the dopamine receptors remains unclear. AIM OF THE STUDY This work aimed to discover dopamine receptor-active alkaloids isolated from the lotus leaves, to evaluate their potencies and to analyze their structure activity relationship. MATERIALS AND METHODS Dried lotus leaves were prepared and total extract was divided into alkaloids and flavones. Eight alkaloids were separated and characterized by a combination of high-performance liquid chromatography, quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance, and assayed by a fluorometric imaging plate reader platform. Human embryonic kidney 239 cell lines expressing dopamine D1, D2 and serotonin 2A (5-HT2A) receptors, respectively, were cultured and used in the assay. RESULTS Alkaloids in the lotus leaves were the bioactive phytochemicals and inhibited dopamine from accessing the D1 and D2 receptors. All eight compounds functioned as D1-receptor antagonists and except N-nornuciferine, seven alkaloids functioned as D2-receptor antagonists. (S)-coclaurine and (R)-coclaurine are optical isomers and antagonized both D1 and D2 with equivalent potencies, suggesting that the optical rotation of the methylene linker in the monobenzyl isoquinoline backbone did not influence their activity. Among the eight alkaloids, O-nornuciferine was the potent antagonist to both receptors (the lowest IC50 values, D1: 2.09 ± 0.65 μM and D2: 1.14 ± 0.10 μM) while N-nornuciferine was found to be the least potent as it moderately antagonized D1 and was inactive on D2. O-nornuciferine was also a 5-HT2A antagonist (IC50~20 μM) while N-nornuciferine had no activity. These hinted the importance of a methyl group attached to the nitrogen atom in the aporphine backbone. Armepavine showed a nearly 10-fold selectivity to D2. CONCLUSIONS In this work, eight alkaloids were isolated from the leaves of Nelumbo nucifera Gaertn. and assayed on the D1 and D2 receptors. They were D1/D2 antagonists with IC50 values in the mid- to low-micromolar range and O-nornuciferine was the most potent alkaloid among the eight. This family of alkaloids was biochemically evaluated on the dopamine receptors by the same platform for the first time.
Collapse
Affiliation(s)
- Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Zhenhua Gao
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Xiujie Guo
- DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China.
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
22
|
Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab 2021; 32:693-705. [PMID: 34148784 DOI: 10.1016/j.tem.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023]
Abstract
The abundance of energy-dense and palatable diets in the modern food environment tightly contributes to the obesity pandemic. The reward circuit participates to the regulation of body homeostasis by integrating energy-related signals with neural substrates encoding cognitive and motivational components of feeding behaviors. Obesity and lipid-rich diets alter dopamine (DA) transmission leading to reward dysfunctions and food overconsumption. Recent reports indicate that dietary lipids can act, directly and indirectly, as functional modulators of the DA circuit. This raises the possibility that nutritional or genetic conditions affecting 'lipid sensing' mechanisms might lead to maladaptations of the DA system. Here, we discuss the most recent findings connecting dietary lipid sensing with DA signaling and its multimodal influence on circuits regulating food-reward processes.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; Department of Medicine, The Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Dana M Small
- Department of Psychiatry, and the Modern Diet and Physiology Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
23
|
Acetaldehyde Excitation of Lateral Habenular Neurons via Multiple Cellular Mechanisms. J Neurosci 2021; 41:7532-7545. [PMID: 34326141 DOI: 10.1523/jneurosci.2913-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/26/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Acetaldehyde (ACD), the first metabolite of ethanol, is implicated in several of ethanol's actions, including the reinforcing and aversive effects. The neuronal mechanisms underlying ACD's aversive effect, however, are poorly understood. The lateral habenula (LHb), a regulator of midbrain monoaminergic centers, is activated by negative valence events. Although the LHb has been linked to the aversive responses of several abused drugs, including ethanol, little is known about ACD. We, therefore, assessed ACD's action on LHb neurons in rats. The results showed that intraperitoneal injection of ACD increased cFos protein expression within the LHb and that intra-LHb infusion of ACD induced conditioned place aversion in male rats. Furthermore, electrophysiological recording in brain slices of male and female rats showed that bath application of ACD facilitated spontaneous firing and glutamatergic transmission. This effect of ACD was potentiated by an aldehyde dehydrogenase (ALDH) inhibitor, disulfiram (DS), but attenuated by the antagonists of dopamine (DA) receptor (DAR) subtype 1 (SCH23390) and subtype 2 (raclopride), and partly abolished by the pretreatment of DA or DA reuptake blocker (GBR12935; GBR). Moreover, application of ACD initiated a depolarizing inward current (I ACD) and enhanced the hyperpolarizing-activated currents in LHb neurons. Bath application of Rp-cAMPs, a selective cAMP-PKA inhibitor, attenuated ACD-induced potentiation of EPSCs and I ACD Finally, bath application of ZD7288, a selective blocker of hyperpolarization-activated cyclic nucleotide-gated channels, attenuated ACD-induced potentiation of firing, EPSCs, and I ACD These results show that ACD exerts its aversive property by exciting LHb neurons via multiple cellular mechanisms, and new treatments targeting the LHb may be beneficial for alcoholism.SIGNIFICANCE STATEMENT Acetaldehyde (ACD) has been considered aversive peripherally and rewarding centrally. However, whether ACD has a central aversive property is unclear. Here, we report that ACD excites the lateral habenula (LHb), a brain region associated with aversion and negative valence, through multiple cellular and molecular mechanisms. Intra-LHb ACD produces significant conditioned place aversion. These results suggest that ACD's actions on the LHb neurons might contribute to its central aversive property and new treatments targeting the LHb may be beneficial for alcoholism.
Collapse
|
24
|
Mehranfard N, Halabian A, Alaei H, Radahmadi M, Bahari Z, Ghasemi M. Possible involvement of the dopamine D2 receptors of ventromedial hypothalamus in the control of free- and scheduled-feeding and plasma ghrelin level in rat. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:711-717. [PMID: 33979902 DOI: 10.1515/jcim-2020-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We investigated effect of the ventromedial hypothalamus (VMH) dopamine D2 receptor inhibition on food intake and plasma ghrelin following chronic free or scheduled meal with different caloric intakes. METHODS Male Wistar rats (220-250 g) were fed diets containing free (control) or three scheduled diets of standard, restricted and high-fat for 1 month. The animals stereotaxically received an intra VMH single dose of sulpiride (0.005 µg)/or saline (0.5 µL) before meal time. Thirty minutes later, food intake and circulating ghrelin were measured. RESULTS Sulpiride significantly reduced food intake and ghrelin concentration in freely fed and scheduled-standard diet (p<0.05), while increased food intake, with ghrelin level on fasted level in scheduled-restricted group (p<0.01) compared to control. Food intake and ghrelin concentration between scheduled-high fat and freely fed or scheduled-standard diets did not show significant changes. CONCLUSIONS The VMH D2 receptors are possibly involved in controlling scheduled eating behavior, depending on energy balance context.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Halabian
- Department of Biology, School of Science, Isfahan University, Isfahan, Iran
| | - Hojatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Legget KT, Wylie KP, Cornier MA, Berman BD, Tregellas JR. Altered between-network connectivity in individuals prone to obesity. Physiol Behav 2021; 229:113242. [PMID: 33157075 PMCID: PMC7775284 DOI: 10.1016/j.physbeh.2020.113242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Investigating intrinsic brain functional connectivity may help identify the neurobiology underlying cognitive patterns and biases contributing to obesity propensity. To address this, the current study used a novel whole-brain, data-driven approach to examine functional connectivity differences in large-scale network interactions between obesity-prone (OP) and obesity-resistant (OR) individuals. METHODS OR (N = 24) and OP (N = 25) adults completed functional magnetic resonance imaging (fMRI) during rest. Large-scale brain networks were identified using independent component analysis (ICA). Voxel-specific between-network connectivity analysis assessed correlations between ICA component time series' and individual voxel time series, identifying regions strongly connected to many networks, i.e., "hubs". RESULTS Significant group differences in between-network connectivity (OP vs. OR; FDR-corrected) were observed in bilateral basal ganglia (left: q = 0.009; right: q = 0.010) and right dorsolateral prefrontal cortex (dlPFC; q = 0.026), with OP>OR. Basal ganglia differences were largely driven by a more strongly negative correlation with a lateral sensorimotor network in OP, with dlPFC differences driven by a more strongly negative correlation with an inferior visual network in OP. CONCLUSIONS Greater between-network connectivity was observed in the basal ganglia and dlPFC in OP, driven by stronger associations with lateral sensorimotor and inferior visual networks, respectively. This may reflect a disrupted balance between goal-directed and habitual control systems and between internal/external monitoring processes.
Collapse
Affiliation(s)
- Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States.
| | - Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Marc-Andre Cornier
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of Geriatric Medicine, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| | - Brian D Berman
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Department of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Neurology Section, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States; Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| |
Collapse
|
26
|
Labouesse MA, Cola RB, Patriarchi T. GPCR-Based Dopamine Sensors-A Detailed Guide to Inform Sensor Choice for In vivo Imaging. Int J Mol Sci 2020; 21:E8048. [PMID: 33126757 PMCID: PMC7672611 DOI: 10.3390/ijms21218048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how dopamine (DA) encodes behavior depends on technologies that can reliably monitor DA release in freely-behaving animals. Recently, red and green genetically encoded sensors for DA (dLight, GRAB-DA) were developed and now provide the ability to track release dynamics at a subsecond resolution, with submicromolar affinity and high molecular specificity. Combined with rapid developments in in vivo imaging, these sensors have the potential to transform the field of DA sensing and DA-based drug discovery. When implementing these tools in the laboratory, it is important to consider there is not a 'one-size-fits-all' sensor. Sensor properties, most importantly their affinity and dynamic range, must be carefully chosen to match local DA levels. Molecular specificity, sensor kinetics, spectral properties, brightness, sensor scaffold and pharmacology can further influence sensor choice depending on the experimental question. In this review, we use DA as an example; we briefly summarize old and new techniques to monitor DA release, including DA biosensors. We then outline a map of DA heterogeneity across the brain and provide a guide for optimal sensor choice and implementation based on local DA levels and other experimental parameters. Altogether this review should act as a tool to guide DA sensor choice for end-users.
Collapse
Affiliation(s)
- Marie A. Labouesse
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Reto B. Cola
- Anatomy and Program in Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland;
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
27
|
Nettleton JE, Cho NA, Klancic T, Nicolucci AC, Shearer J, Borgland SL, Johnston LA, Ramay HR, Noye Tuplin E, Chleilat F, Thomson C, Mayengbam S, McCoy KD, Reimer RA. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut 2020; 69:1807-1817. [PMID: 31996393 PMCID: PMC7497576 DOI: 10.1136/gutjnl-2018-317505] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We examined the impact of maternal low-dose aspartame and stevia consumption on adiposity, glucose tolerance, gut microbiota and mesolimbic pathway in obese dams and their offspring. DESIGN Following obesity induction, female Sprague-Dawley rats were allocated during pregnancy and lactation to: (1) high fat/sucrose diet (HFS) +water (obese-WTR); (2) HFS +aspartame (obese-APM; 5-7 mg/kg/day); (3) HFS +stevia (obese-STV; 2-3 mg/kg/day). Offspring were weaned onto control diet and water and followed until 18 weeks. Gut microbiota and metabolic outcomes were measured in dams and offspring. Cecal matter from offspring at weaning was used for faecal microbiota transplant (FMT) into germ-free (GF) mice. RESULTS Maternal APM and STV intake with a HFS diet increased body fat in offspring at weaning and body weight long-term with APM. Maternal APM/HFS consumption impaired glucose tolerance in male offspring at age 8 weeks and both APM and STV altered faecal microbiota in dams and offspring. Maternal obesity/HFS diet affected offspring adiposity and glucose tolerance more so than maternal LCS consumption at age 12 and 18 weeks. APM and STV altered expression of genes in the mesolimbic reward system that may promote consumption of a palatable diet. GF mice receiving an FMT from obese-APM and obese-STV offspring had greater weight gain and body fat and impaired glucose tolerance compared with obese-WTR. CONCLUSION Maternal low-calorie sweetener consumption alongside HFS may disrupt weight regulation, glucose control and gut microbiota in dams and their offspring most notably in early life despite no direct low-calorie sweetener consumption by offspring.
Collapse
Affiliation(s)
- Jodi E Nettleton
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nicole A Cho
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Teja Klancic
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Leah A Johnston
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Noye Tuplin
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Faye Chleilat
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada .,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Tsuneoka Y, Funato H. Modified in situ Hybridization Chain Reaction Using Short Hairpin DNAs. Front Mol Neurosci 2020; 13:75. [PMID: 32477063 PMCID: PMC7235299 DOI: 10.3389/fnmol.2020.00075] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
The visualization of multiple gene expressions in well-preserved tissues is crucial for the elucidation of physiological and pathological processes. In situ hybridization chain reaction (HCR) is a method to visualize specific mRNAs in diverse organisms by applying a HCR that is an isothermal enzyme-free nucleotide polymerization method using hairpin DNAs. Although in situ HCR is a versatile method, this method is not widely used by researchers because of their higher cost than conventional in situ hybridization (ISH). Here, we redesigned hairpin DNAs so that their lengths were half the length of commonly used hairpin DNAs. We also optimized the conjugated fluorophores and linkers. Modified in situ HCR showed sufficient fluorescent signals to detect various mRNAs such as Penk, Oxtr, Vglut2, Drd1, Drd2, and Moxd1 in mouse neural tissues with a high signal-to-noise ratio. The sensitivity of modified in situ HCR in detecting the Oxtr mRNA was better than that of fluorescent ISH using tyramide signal amplification. Notably, the modified in situ HCR does not require proteinase K treatment so that it enables the preservation of morphological structures and antigenicity. The modified in situ HCR simultaneously detected the distributions of c-Fos immunoreactivity and Vglut2 mRNA, and detected multiple mRNAs with a high signal-noise ratio at subcellular resolution in mouse brains. These results suggest that the modified in situ HCR using short hairpin DNAs is cost-effective and useful for the visualization of multiple mRNAs and proteins.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Reichelt AC, Gibson GD, Abbott KN, Hare DJ. A high-fat high-sugar diet in adolescent rats impairs social memory and alters chemical markers characteristic of atypical neuroplasticity and parvalbumin interneuron depletion in the medial prefrontal cortex. Food Funct 2019; 10:1985-1998. [PMID: 30900711 DOI: 10.1039/c8fo02118j] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain plasticity is a multifaceted process that is dependent on both neurons and extracellular matrix (ECM) structures, including perineuronal nets (PNNs). In the medial prefrontal cortex (mPFC) PNNs primarily surround fast-spiking parvalbumin (PV)-containing GABAergic interneurons and are central to regulation of neuroplasticity. In addition to the development of obesity, high-fat and high-sugar (HFHS) diets are also associated with alterations in brain plasticity and emotional behaviours in humans. To examine the underlying involvement of PNNs and cortical plasticity in the mPFC in diet-evoked social behaviour deficits (in this case social recognition), we exposed adolescent (postnatal days P28-P56) rats to a HFHS-supplemented diet. At P56 HFHS-fed animals and age-matched controls fed standard chow were euthanized and co-localization of PNNs with PV neurons in the prelimbic (PrL) and infralimbic (IL) and anterior cingulate (ACC) sub regions of the PFC were examined by dual fluorescence immunohistochemistry. ΔFosB expression was also assessed as a measure of chronic activity and behavioural addiction marker. Consumption of the HFHS diet reduced the number of PV+ neurons and PNNs in the infralimbic (IL) region of the mPFC by -21.9% and -16.5%, respectively. While PV+ neurons and PNNs were not significantly decreased in the ACC or PrL, the percentage of PV+ and PNN co-expressing neurons was increased in all assessed regions of the mPFC in HFHS-fed rats (+33.7% to +41.3%). This shows that the population of PV neurons remaining are those surrounded by PNNs, which may afford some protection against HFHS diet-induced mPFC-dysregulation. ΔFosB expression showed a 5-10-fold increase (p < 0.001) in each mPFC region, supporting the hypothesis that a HFHS diet induces mPFC dysfunction and subsequent behavioural deficits. The data presented shows a potential neurophysiological mechanism and response to specific diet-evoked social recognition deficits as a result of hypercaloric intake in adolescence.
Collapse
Affiliation(s)
- Amy C Reichelt
- BrainsCAN and Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
30
|
Lost in Translation? On the Need for Convergence in Animal and
Human Studies on the Role of Dopamine in Diet-Induced Obesity. CURRENT ADDICTION REPORTS 2019. [DOI: 10.1007/s40429-019-00268-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Folgueira C, Beiroa D, Porteiro B, Duquenne M, Puighermanal E, Fondevila MF, Barja-Fernández S, Gallego R, Hernández-Bautista R, Castelao C, Senra A, Seoane P, Gómez N, Aguiar P, Guallar D, Fidalgo M, Romero-Pico A, Adan R, Blouet C, Labandeira-García JL, Jeanrenaud F, Kallo I, Liposits Z, Salvador J, Prevot V, Dieguez C, Lopez M, Valjent E, Frühbeck G, Seoane LM, Nogueiras R. Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat Metab 2019; 1:811-829. [PMID: 31579887 PMCID: PMC6774781 DOI: 10.1038/s42255-019-0099-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.
Collapse
Affiliation(s)
- Cintia Folgueira
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Daniel Beiroa
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Begoña Porteiro
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Manon Duquenne
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm UMR-S 1172, Lille, France
| | | | - Marcos F Fondevila
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Silvia Barja-Fernández
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rosalia Gallego
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, S. Francisco s/n, 15782 Santiago de Compostela (A Coruña), Spain
| | - René Hernández-Bautista
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Cecilia Castelao
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ana Senra
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Patricia Seoane
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Noemi Gómez
- Molecular Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782 Spain; Molecular Imaging Group. Health Research Institute of Santiago de Compostela (IDIS). Travesía da Choupana s/n Santiago de Compostela. Zip Code: 15706. Spain; Nuclear Medicine Department University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía Choupana s/n. Santiago de Compostela 15706 Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782 Spain; Molecular Imaging Group. Health Research Institute of Santiago de Compostela (IDIS). Travesía da Choupana s/n Santiago de Compostela. Zip Code: 15706. Spain; Nuclear Medicine Department University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía Choupana s/n. Santiago de Compostela 15706 Spain
| | - Diana Guallar
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Amparo Romero-Pico
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Roger Adan
- Brain Center Rudolf Magnus, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Clemence Blouet
- MRC Metabolic Disease Unit. Institute of Metabolic Science. University of Cambridge, UK
| | - Jose Luís Labandeira-García
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases, CIBERNED, Madrid, Spain
| | - Françoise Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Imre Kallo
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra & IdiSNA, Pamplona, Spain
| | - Vincent Prevot
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm UMR-S 1172, Lille, France
| | - Carlos Dieguez
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Miguel Lopez
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Emmanuel Valjent
- IGF, Inserm, CNRS, Univ. Montpellier, F-34094 Montpellier, France
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra & IdiSNA, Pamplona, Spain
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
32
|
Olivetti PR, Balsam PD, Simpson EH, Kellendonk C. Emerging roles of striatal dopamine D2 receptors in motivated behaviour: Implications for psychiatric disorders. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:47-55. [PMID: 31188541 DOI: 10.1111/bcpt.13271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Impaired motivation has been a long recognized negative symptom of schizophrenia, as well as a common feature of non-psychotic psychiatric disorders, responsible for a significant share of functional burden, and with limited treatment options. The striatum and dopamine signalling system play a central role in extracting motivationally relevant information from the environment, selecting which behavioural direction the animal should follow, and the vigour with which to engage it. Much of this function relies on striatal projection neurons, known as medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs), or D2-MSNs. However, determining the precise nature of D2-MSNs in regulating motivated behaviour in both healthy individuals and experimental manipulations of D2-MSN function has at times yielded a somewhat confusing picture since their activity has been linked to either enhancement or dampening of motivation in animal models. In this MiniReview, we describe the latest data from rodent studies that investigated how D2Rs exert their modulatory effect on motivated behaviour by regulating striatal indirect pathway neuronal activity. We will include a discussion about how functional selectivity of D2Rs towards G protein-dependent or β-arrestin-dependent signalling differentially affects motivated behaviour. Lastly, we will describe a recent preclinical attempt to improve motivation by exploiting serotonin receptor-mediated modulation of dopamine transmission in the striatum.
Collapse
Affiliation(s)
- Pedro R Olivetti
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA
| | - Peter D Balsam
- New York State Psychiatric Institute, New York City, New York, USA.,Barnard College, Columbia University, New York City, New York, USA
| | - Eleanor H Simpson
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA
| | - Christoph Kellendonk
- New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, Columbia University, New York City, New York, USA.,Department of Pharmacology, Columbia University, New York City, New York, USA
| |
Collapse
|
33
|
Formolo DA, Gaspar JM, Melo HM, Eichwald T, Zepeda RJ, Latini A, Okun MS, Walz R. Deep Brain Stimulation for Obesity: A Review and Future Directions. Front Neurosci 2019; 13:323. [PMID: 31057350 PMCID: PMC6482165 DOI: 10.3389/fnins.2019.00323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
The global prevalence of obesity has been steadily increasing. Although pharmacotherapy and bariatric surgeries can be useful adjuvants in the treatment of morbid obesity, they may lose long-term effectiveness. Obesity result largely from unbalanced energy homeostasis. Palatable and densely caloric foods may affect the brain overlapped circuits involved with homeostatic hypothalamus and hedonic feeding. Deep brain stimulation (DBS) consists of delivering electrical impulses to specific brain targets to modulate a disturbed neuronal network. In selected patients, DBS has been shown to be safe and effective for movement disorders. We review all the cases reports and series of patients treated with DBS for obesity using a PubMed search and will address the following obesity-related issues: (i) the hypothalamic regulation of homeostatic feeding; (ii) the reward mesolimbic circuit and hedonic feeding; (iii) basic concepts of DBS as well as the rationale for obesity treatment; (iv) perspectives and challenges in obesity DBS. The small number of cases provides preliminary evidence for the safety and the tolerability of a potential DBS approach. The ventromedial (n = 2) and lateral (n = 8) hypothalamic nuclei targets have shown mixed and disappointing outcomes. Although nucleus accumbens (n = 7) targets were more encouraging for the outcomes of body weight reduction and behavioral control for eating, there was one suicide reported after 27 months of follow-up. The authors did not attribute the suicide to DBS therapy. The identification of optimal brain targets, appropriate programming strategies and the development of novel technologies will be important as next steps to move DBS closer to a clinical application. The identification of electrical control signals may provide an opportunity for closed-loop adaptive DBS systems to address obesity. Metabolic and hormonal sensors such as glycemic levels, leptin, and ghrelin levels are candidate control signals for DBS. Focused excitation or alternatively inhibition of regions of the hypothalamus may provide better outcomes compared to non-selective DBS. Utilization of the NA delta oscillation or other physiological markers from one or multiple regions in obesity-related brain network is a promising approach. Experienced multidisciplinary team will be critical to improve the risk-benefit ratio for this approach.
Collapse
Affiliation(s)
- Douglas A Formolo
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Joana M Gaspar
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Hiago M Melo
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ramiro Javier Zepeda
- Department of Neuroscience, Faculty of Medicine, Chile University and Health Science Institute, O'Higgins University, Santiago, Chile
| | - Alexandra Latini
- Laboratory of Bioenergetics and Oxidative Stress, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Roger Walz
- Center for Applied Neuroscience, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil.,Graduate Program in Neuroscience, Federal University of Santa Catarina, Florianópolis, Brazil.,Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, United States.,Graduate Program in Medical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.,Department of Internal Medicine, University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
34
|
Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int 2019; 125:35-46. [PMID: 30716356 DOI: 10.1016/j.neuint.2019.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Dopamine D2 receptors (D2Rs) mediate many of the actions of dopamine in the striatum, ranging from movement to the effortful pursuit of reward. Yet despite significant advances in linking D2Rs to striatal functions with pharmacological and genetic strategies in animals, how dopamine orchestrates its myriad actions on different cell populations -each expressing D2Rs- remains unclear. Furthermore, brain imaging and genetic studies in humans have consistently associated striatal D2R alterations with various neurological and neuropsychiatric disorders, but how and which D2Rs are involved in each case is poorly understood. Therefore, a critical first step is to engage in a refined and systematic investigation of the impact of D2R function on specific striatal cells, circuits, and behaviors. Here, I will review recent efforts, primarily in animal models, aimed at unlocking the complex and heterogeneous roles of D2Rs in striatum.
Collapse
Affiliation(s)
- Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
35
|
LeSauter J, Balsam PD, Simpson EH, Silver R. Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity. Eur J Neurosci 2018; 51:71-81. [PMID: 30362616 DOI: 10.1111/ejn.14219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor-overexpressing (D2R-OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R-OE mice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayed FAA. In contrast, under 8-hr food availability, control mice showed FAA, but D2R-OE mice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescued FAA under 8-hr restricted food. We next tested for circadian regulation of FAA. When given ad libitum access to food, neither D2R-OE nor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R-OE mice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reduces FAA by modulating motivation and not by acting on a clock mechanism.
Collapse
Affiliation(s)
- Joseph LeSauter
- Department of Psychology, Barnard College, New York City, New York
| | - Peter D Balsam
- Department of Psychology, Barnard College, New York City, New York.,Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Eleanor H Simpson
- Department of Psychiatry, Columbia University, New York City, New York.,New York State Psychiatric Institute, New York City, New York
| | - Rae Silver
- Department of Psychology, Barnard College, New York City, New York.,Departments of Psychology and of Pathology and Cell Biology, Columbia University, New York City, New York
| |
Collapse
|