1
|
Yoshimi Y, Yu L, Cresswell R, Guo X, Echevarría-Poza A, Lyczakowski JJ, Dupree R, Kotake T, Dupree P. Glucomannan engineering highlights roles of galactosyl modification in fine-tuning cellulose-glucomannan interaction in Arabidopsis cell walls. Nat Commun 2025; 16:1235. [PMID: 39890794 PMCID: PMC11785759 DOI: 10.1038/s41467-025-56626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
Widely found in most plant lineages, β-mannans are structurally diverse polysaccharides that can bind to cellulose fibrils to form the complex polysaccharide architecture of the cell wall. How changes in polysaccharide structure influence its cell wall solubility or promote appropriate interaction with cellulose fibrils is poorly understood. Glucomannan backbones acquire variable patterns of galactosyl substitutions, depending on plant developmental stage and species. Here, we show that fine-tuning of galactosyl modification on glucomannans is achieved by the differing acceptor recognition of mannan α-galactosyltransferases (MAGTs). Biochemical analysis and 13C solid-state nuclear magnetic resonance spectroscopy of Arabidopsis with cell wall glucomannan engineered by MAGTs reveal that the degree of galactosylation strongly affects the interaction with cellulose. The findings indicate that plants tailor galactosyl modification on glucomannans for constructing an appropriate cell wall architecture, paving the way to convert properties of lignocellulosic biomass for better use.
Collapse
Affiliation(s)
- Yoshihisa Yoshimi
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | - Xinyu Guo
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Alberto Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jan J Lyczakowski
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8642, Japan
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
2
|
Zhang N, Julian JD, Zabotina OA. Multiprotein Complexes of Plant Glycosyltransferases Involved in Their Function and Trafficking. PLANTS (BASEL, SWITZERLAND) 2025; 14:350. [PMID: 39942912 PMCID: PMC11820401 DOI: 10.3390/plants14030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Plant cells utilize protein oligomerization for their functions in numerous important cellular processes. Protein-protein interactions are necessary to stabilize, optimize, and activate enzymes, as well as localize proteins to specific organelles and membranes. Glycosyltransferases-enzymes that attach sugars to polysaccharides, proteins, lipids, and RNA-across multiple plant biosynthetic processes have been demonstrated to interact with one another. The mechanisms behind these interactions are still unknown, but recent research has highlighted extensive examples of protein-protein interactions, specifically in the plant cell wall hemicellulose and pectin biosynthesis that takes place in the Golgi apparatus. In this review, we will discuss what is known so far about the interactions among Golgi-localized glycosyltransferases that are important for their functioning, trafficking, as well as structural aspects.
Collapse
Affiliation(s)
| | | | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA; (N.Z.); (J.D.J.)
| |
Collapse
|
3
|
Zhang H, Xiao L, Qin S, Kuang Z, Wan M, Li Z, Li L. Heterogeneity in Mechanical Properties of Plant Cell Walls. PLANTS (BASEL, SWITZERLAND) 2024; 13:3561. [PMID: 39771259 PMCID: PMC11678144 DOI: 10.3390/plants13243561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle. While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due to the diverse polysaccharide composition and different development stages. Here, we review recent research advances, both methodological and experimental, that shed new light on the architecture of cell walls, with a focus on the mechanical heterogeneity of plant cell walls. Facilitated by advanced techniques and tools, especially atomic force microscopy (AFM), research efforts over the last decade have contributed to impressive progress in our understanding of how mechanical properties are associated with cell growth. In particular, the pivotal importance of pectin, the most complex wall polysaccharide, in wall mechanics is rapidly emerging. Pectin is regarded as an important determinant for establishing anisotropic growth patterns of elongating cells. Altogether, the diversity of plant cell walls can lead to heterogeneity in the mechanical properties, which will help to reveal how mechanical factors regulate plant cell growth and organ morphogenesis.
Collapse
Affiliation(s)
- He Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Liang Xiao
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Siying Qin
- School of Life Sciences, Peking University, Beijing 100871, China; (S.Q.); (Z.L.)
| | - Zheng Kuang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Miaomiao Wan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Zhan Li
- School of Life Sciences, Peking University, Beijing 100871, China; (S.Q.); (Z.L.)
| | - Lei Li
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| |
Collapse
|
4
|
Swaminathan S, Grover CE, Mugisha AS, Sichterman LE, Lee Y, Yang P, Mallery EL, Jareczek JJ, Leach AG, Xie J, Wendel JF, Szymanski DB, Zabotina OA. Daily glycome and transcriptome profiling reveals polysaccharide structures and correlated glycosyltransferases critical for cotton fiber growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1857-1879. [PMID: 39441672 PMCID: PMC11629744 DOI: 10.1111/tpj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Cotton fiber is the most valuable naturally available material for the textile industry and the fiber length and strength are key determinants of its quality. Dynamic changes in the pectin, xyloglucan, xylan, and cellulose polysaccharide epitope content during fiber growth contribute to complex remodeling of fiber cell wall (CW) and quality. Detailed knowledge about polysaccharide compositional and structural alteration in the fiber during fiber elongation and strengthening is important to understand the molecular dynamics of fiber development and improve its quality. Here, large-scale glycome profiling coupled with fiber phenotype and transcriptome profiling was conducted on fiber collected daily covering the most critical window of fiber development. The profiling studies with high temporal resolution allowed us to identify specific polysaccharide epitopes associated with distinct fiber phenotypes that might contribute to fiber quality. This study revealed the critical role of highly branched RG-I pectin epitopes such as β-1,4-linked-galactans, β-1,6-linked-galactans, and arabinogalactans, in addition to earlier reported homogalacturonans and xyloglucans in the formation of cotton fiber middle lamella and contributing to fiber plasticity and elongation. We also propose the essential role of heteroxylans (Xyl-MeGlcA and Xyl-3Ar), as a guiding factor for secondary CW cellulose microfibril arrangement, thus contributing to fiber strength. Correlation analysis of profiles of polysaccharide epitopes from glycome data and expression profiles of glycosyltransferase-encoding genes from transcriptome data identified several key putative glycosyltransferases that are potentially involved in synthesizing the critical polysaccharide epitopes. The findings of this study provide a foundation to identify molecular factors that dictate important fiber traits.
Collapse
Affiliation(s)
- Sivakumar Swaminathan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIowa50011USA
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIowa50011USA
| | - Alither S. Mugisha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIowa50011USA
| | - Lauren E. Sichterman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIowa50011USA
| | - Youngwoo Lee
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana47907USA
| | - Pengcheng Yang
- Department of StatisticsPurdue UniversityWest LafayetteIndiana47907USA
| | - Eileen L. Mallery
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana47907USA
| | - Josef J. Jareczek
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIowa50011USA
- Present address:
Norton Health Science CenterBellarmine UniversityLouisvilleKentucky40205USA
| | - Alexis G. Leach
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIowa50011USA
- Present address:
Cell and Molecular Biology Graduate GroupUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania19104USA
| | - Jun Xie
- Department of StatisticsPurdue UniversityWest LafayetteIndiana47907USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIowa50011USA
| | - Daniel B. Szymanski
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana47907USA
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIowa50011USA
| |
Collapse
|
5
|
Vuong TV, Aghajohari M, Feng X, Woodstock AK, Nambiar DM, Sleiman ZC, Urbanowicz BR, Master ER. Enzymatic Routes to Designer Hemicelluloses for Use in Biobased Materials. JACS AU 2024; 4:4044-4065. [PMID: 39610758 PMCID: PMC11600177 DOI: 10.1021/jacsau.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures. These enzymatic routes offer a precise way to tailor the properties of hemicelluloses for specific applications in biobased materials, contributing to the development of renewable alternatives to conventional materials derived from fossil fuels.
Collapse
Affiliation(s)
- Thu V. Vuong
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Mohammad Aghajohari
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Drive, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Xuebin Feng
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Amanda K. Woodstock
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Deepti M. Nambiar
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Zeina C. Sleiman
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Breeanna R. Urbanowicz
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Emma R. Master
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department
of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
6
|
Xu E, Zou Y, Yang G, Zhang P, Ha MN, Mai Le Q, Zhang W, Chen X. The Golgi-localized transporter OsPML4 contributes to manganese homeostasis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111935. [PMID: 38049038 DOI: 10.1016/j.plantsci.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Manganese (Mn), an indispensable plant micronutrient, functions as a vital enzyme co-factor in numerous biochemical reactions. In rice, the Golgi-localized PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 3 (OsPML3), a member of the UNCHARACTERIZED PROTEIN FAMILY (UPF0016), plays a pivotal role in Mn homeostasis, particularly in rapidly developing tissues. This study focused on the functional characterization of another UPF0016 family member in rice, OsPML4, to elucidate its involvement in Mn homeostasis. OsPML4 had a 73% sequence identity with OsPML3 and exhibited expression in both shoots and roots, albeit at a lower transcriptional level than OsPML3. Furthermore, subcellular localization studies confirmed that OsPML4 localizes in the Golgi apparatus. Notably, heterologous expression of OsPML4 restored growth in the Mn uptake-deficient yeast strain Δsmf1 under Mn-limited conditions. Under Mn-deficient conditions, OsPML4 knockout exacerbated the decline in shoot dry weight and intensified necrosis in young leaves of OsPML3 knockout lines, which displayed stunted growth. The Mn concentration in OsPML3PML4 double knockout lines was lower than in wild-type (WT) and OsPML3 knockout lines. At the reproductive phase, OsPML3PML4 double knockout lines exhibited reduced fertility and grain yield compared to WT and OsPML3 knockout lines. Notably, reductions were observed in the deposition of cell wall polysaccharides and the content of Lea (Lewis A structure)-containing N-glycans in the young leaves of OsPML3PML4 double knockout lines, surpassing the reductions in WT and OsPML3 knockout lines. These findings underscore the significance of OsPML4 in Mn homeostasis in the Golgi apparatus, where it co-functions with OsPML3 to regulate cell wall polysaccharide deposition and late-stage Golgi N-glycosylation.
Collapse
Affiliation(s)
- Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China; Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
7
|
Hrmova M, Zimmer J, Bulone V, Fincher GB. Enzymes in 3D: Synthesis, remodelling, and hydrolysis of cell wall (1,3;1,4)-β-glucans. PLANT PHYSIOLOGY 2023; 194:33-50. [PMID: 37594400 PMCID: PMC10762513 DOI: 10.1093/plphys/kiad415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 08/19/2023]
Abstract
Recent breakthroughs in structural biology have provided valuable new insights into enzymes involved in plant cell wall metabolism. More specifically, the molecular mechanism of synthesis of (1,3;1,4)-β-glucans, which are widespread in cell walls of commercially important cereals and grasses, has been the topic of debate and intense research activity for decades. However, an inability to purify these integral membrane enzymes or apply transgenic approaches without interpretative problems associated with pleiotropic effects has presented barriers to attempts to define their synthetic mechanisms. Following the demonstration that some members of the CslF sub-family of GT2 family enzymes mediate (1,3;1,4)-β-glucan synthesis, the expression of the corresponding genes in a heterologous system that is free of background complications has now been achieved. Biochemical analyses of the (1,3;1,4)-β-glucan synthesized in vitro, combined with 3-dimensional (3D) cryogenic-electron microscopy and AlphaFold protein structure predictions, have demonstrated how a single CslF6 enzyme, without exogenous primers, can incorporate both (1,3)- and (1,4)-β-linkages into the nascent polysaccharide chain. Similarly, 3D structures of xyloglucan endo-transglycosylases and (1,3;1,4)-β-glucan endo- and exohydrolases have allowed the mechanisms of (1,3;1,4)-β-glucan modification and degradation to be defined. X-ray crystallography and multi-scale modeling of a broad specificity GH3 β-glucan exohydrolase recently revealed a previously unknown and remarkable molecular mechanism with reactant trajectories through which a polysaccharide exohydrolase can act with a processive action pattern. The availability of high-quality protein 3D structural predictions should prove invaluable for defining structures, dynamics, and functions of other enzymes involved in plant cell wall metabolism in the immediate future.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, and the Waite Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Jochen Zimmer
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vincent Bulone
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Alba Nova University Centre, 106 91 Stockholm, Sweden
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, and the Waite Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
8
|
Vicente JB, Guerreiro ACL, Felgueiras B, Chapla D, Tehrani D, Moremen KW, Costa J. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) is a UDP-dependent galactosyltransferase. Sci Rep 2023; 13:21684. [PMID: 38066107 PMCID: PMC10709319 DOI: 10.1038/s41598-023-48605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze the formation of glycosidic bonds and hundreds of GTs have been identified so far in humans. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) has been associated with central nervous system diseases and cancer. However, evidence on its enzymatic properties, including its substrates, has been scarcely described. In this paper, we have produced and purified recombinant secretory GLT8D1. The enzyme was found to be N-glycosylated. Differential scanning fluorimetry was employed to analyze the stabilization of GLT8D1 by Mn2+ and nucleotides, revealing UDP as the most stabilizing nucleotide scaffold. GLT8D1 displayed glycosyltransferase activity from UDP-galactose onto N-acetylgalactosamine but with a low efficiency. Modeling of the structure revealed similarities with other GT-A fold enzymes in CAZy family GT8 and glycosyltransferases in other families with galactosyl-, glucosyl-, and xylosyltransferase activities, each with retaining catalytic mechanisms. Our study provides novel structural and functional insights into the properties of GLT8D1 with implications in pathological processes.
Collapse
Affiliation(s)
- João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Ana Catarina L Guerreiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Beatriz Felgueiras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Tehrani
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
9
|
Zhang N, Julian JD, Yap CE, Swaminathan S, Zabotina OA. The Arabidopsis xylosyltransferases, XXT3, XXT4, and XXT5, are essential to complete the fully xylosylated glucan backbone XXXG-type structure of xyloglucans. THE NEW PHYTOLOGIST 2023; 238:1986-1999. [PMID: 36856333 DOI: 10.1111/nph.18851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/18/2023] [Indexed: 05/04/2023]
Abstract
Although most xyloglucans (XyGs) biosynthesis enzymes have been identified, the molecular mechanism that defines XyG branching patterns is unclear. Four out of five XyG xylosyltransferases (XXT1, XXT2, XXT4, and XXT5) are known to add the xylosyl residue from UDP-xylose onto a glucan backbone chain; however, the function of XXT3 has yet to be demonstrated. Single xxt3 and triple xxt3xxt4xxt5 mutant Arabidopsis (Arabidopsis thaliana) plants were generated using CRISPR-Cas9 technology to determine the specific function of XXT3. Combined biochemical, bioinformatic, and morphological data conclusively established for the first time that XXT3, together with XXT4 and XXT5, adds xylosyl residue specifically at the third glucose in the glucan chain to synthesize XXXG-type XyGs. We propose that the specificity of XXT3, XXT4, and XXT5 is directed toward the prior synthesis of the acceptor substrate by the other two enzymes, XXT1 and XXT2. We also conclude that XXT5 plays a dominant role in the synthesis of XXXG-type XyGs, while XXT3 and XXT4 complementarily contribute their activities in a tissue-specific manner. The newly generated xxt3xxt4xxt5 mutant produces only XXGG-type XyGs, which further helps to understand the impact of structurally deficient polysaccharides on plant cell wall organization, growth, and development.
Collapse
Affiliation(s)
- Ning Zhang
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jordan D Julian
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cheng Ern Yap
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
10
|
Kosuth T, Leskova A, Castaings L, Curie C. Golgi in and out: multifaceted role and journey of manganese. THE NEW PHYTOLOGIST 2023; 238:1795-1800. [PMID: 36856330 DOI: 10.1111/nph.18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/09/2023] [Indexed: 05/04/2023]
Abstract
Manganese (Mn) is pivotal for plant growth and development but little is known about the processes that control its homeostasis in the cell. A spotlight on the pools of intracellular manganese and their cellular function has recently been gained through the characterization of new Mn transporters. In particular, transporters catalyzing the ins and outs of Mn at the various Golgi membranes have revealed the central role of the Golgi pool of Mn in the synthesis of the cell wall and as a reservoir for the numerous cellular Mn-dependent pathways whose calibration relies on a set of Golgi-resident transporters of the BICAT and NRAMP families.
Collapse
Affiliation(s)
- Thibault Kosuth
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alexandra Leskova
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Loren Castaings
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
11
|
McFarlane HE. Open questions in plant cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad110. [PMID: 36961357 DOI: 10.1093/jxb/erad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Plant cells are surrounded by strong yet flexible polysaccharide-based cell walls that support the cell while also allowing growth by cell expansion. Plant cell wall research has advanced tremendously in recent years. Sequenced genomes of many model and crop plants have facilitated cataloging and characterization of many enzymes involved in cell wall synthesis. Structural information has been generated for several important cell wall synthesizing enzymes. Important tools have been developed including antibodies raised against a variety of cell wall polysaccharides and glycoproteins, collections of enzyme clones and synthetic glycan arrays for characterizing enzymes, herbicides that specifically affect cell wall synthesis, live-cell imaging probes to track cell wall synthesis, and an inducible secondary cell wall synthesis system. Despite these advances, and often because of the new information they provide, many open questions about plant cell wall polysaccharide synthesis persist. This article highlights some of the key questions that remain open, reviews the data supporting different hypotheses that address these questions, and discusses technological developments that may answer these questions in the future.
Collapse
Affiliation(s)
- Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord St., Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
12
|
Prabhakar PK, Pereira JH, Taujale R, Shao W, Bharadwaj VS, Chapla D, Yang JY, Bomble YJ, Moremen KW, Kannan N, Hammel M, Adams PD, Scheller HV, Urbanowicz BR. Structural and biochemical insight into a modular β-1,4-galactan synthase in plants. NATURE PLANTS 2023; 9:486-500. [PMID: 36849618 PMCID: PMC10115243 DOI: 10.1038/s41477-023-01358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/25/2023] [Indexed: 05/18/2023]
Abstract
Rhamnogalacturonan I (RGI) is a structurally complex pectic polysaccharide with a backbone of alternating rhamnose and galacturonic acid residues substituted with arabinan and galactan side chains. Galactan synthase 1 (GalS1) transfers galactose and arabinose to either extend or cap the β-1,4-galactan side chains of RGI, respectively. Here we report the structure of GalS1 from Populus trichocarpa, showing a modular protein consisting of an N-terminal domain that represents the founding member of a new family of carbohydrate-binding module, CBM95, and a C-terminal glycosyltransferase family 92 (GT92) catalytic domain that adopts a GT-A fold. GalS1 exists as a dimer in vitro, with stem domains interacting across the chains in a 'handshake' orientation that is essential for maintaining stability and activity. In addition to understanding the enzymatic mechanism of GalS1, we gained insight into the donor and acceptor substrate binding sites using deep evolutionary analysis, molecular simulations and biochemical studies. Combining all the results, a mechanism for GalS1 catalysis and a new model for pectic galactan side-chain addition are proposed.
Collapse
Affiliation(s)
- Pradeep Kumar Prabhakar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, USA
| | - Jose Henrique Pereira
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Wanchen Shao
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Breeanna R Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, USA.
| |
Collapse
|
13
|
Grieß-Osowski A, Voiniciuc C. Branched mannan and xyloglucan as a dynamic duo in plant cell walls. Cell Surf 2023; 9:100098. [PMID: 36756196 PMCID: PMC9900609 DOI: 10.1016/j.tcsw.2023.100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Affiliation(s)
- Annika Grieß-Osowski
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany,Department of Biological Data Science, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany,Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States,Corresponding author at: Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Structural basis for matriglycan synthesis by the LARGE1 dual glycosyltransferase. PLoS One 2022; 17:e0278713. [PMID: 36512577 PMCID: PMC9746966 DOI: 10.1371/journal.pone.0278713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
LARGE1 is a bifunctional glycosyltransferase responsible for generating a long linear polysaccharide termed matriglycan that links the cytoskeleton and the extracellular matrix and is required for proper muscle function. This matriglycan polymer is made with an alternating pattern of xylose and glucuronic acid monomers. Mutations in the LARGE1 gene have been shown to cause life-threatening dystroglycanopathies through the inhibition of matriglycan synthesis. Despite its major role in muscle maintenance, the structure of the LARGE1 enzyme and how it assembles in the Golgi are unknown. Here we present the structure of LARGE1, obtained by a combination of X-ray crystallography and single-particle cryo-EM. We found that LARGE1 homo-dimerizes in a configuration that is dictated by its coiled-coil stem domain. The structure shows that this enzyme has two canonical GT-A folds within each of its catalytic domains. In the context of its dimeric structure, the two types of catalytic domains are brought into close proximity from opposing monomers to allow efficient shuttling of the substrates between the two domains. Together, with putative retention of matriglycan by electrostatic interactions, this dimeric organization offers a possible mechanism for the ability of LARGE1 to synthesize long matriglycan chains. The structural information further reveals the mechanisms in which disease-causing mutations disrupt the activity of LARGE1. Collectively, these data shed light on how matriglycan is synthesized alongside the functional significance of glycosyltransferase oligomerization.
Collapse
|
16
|
He J, Yang B, Hause G, Rössner N, Peiter-Volk T, Schattat MH, Voiniciuc C, Peiter E. The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis. PLANT PHYSIOLOGY 2022; 190:2579-2600. [PMID: 35993897 PMCID: PMC9706472 DOI: 10.1093/plphys/kiac387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 05/11/2023]
Abstract
Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi. In agreement with a role in Mn2+ and Ca2+ homeostasis, BICAT3 rescued yeast (Saccharomyces cerevisiae) mutants defective in their translocation. Arabidopsis (Arabidopsis thaliana) knockout mutants of BICAT3 were sensitive to low Mn2+ and high Ca2+ availability and showed altered accumulation of these cations. Despite reduced cell expansion and leaf size in Mn2+-deficient bicat3 mutants, their photosynthesis was improved, accompanied by an increased Mn content of chloroplasts. Growth defects of bicat3 corresponded with an impaired glycosidic composition of matrix polysaccharides synthesized in the trans-Golgi. In addition to the vegetative growth defects, pollen tube growth of bicat3 was heterogeneously aberrant. This was associated with a severely reduced and similarly heterogeneous pectin deposition and caused diminished seed set and silique length. Double mutant analyses demonstrated that the physiological relevance of BICAT3 is distinct from that of ER-TYPE CA2+-ATPASE 3, a Golgi-localized Mn2+/Ca2+-ATPase. Collectively, BICAT3 is a principal Mn2+ transporter in the trans-Golgi whose activity is critical for specific glycosylation reactions in this organelle and for the allocation of Mn2+ between Golgi apparatus and chloroplasts.
Collapse
Affiliation(s)
- Jie He
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Bo Yang
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Gerd Hause
- Biocentre, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Nico Rössner
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Tina Peiter-Volk
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Martin H Schattat
- Plant Physiology, Institute of Biology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group—Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
17
|
Ishida K, Yokoyama R. Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family. JOURNAL OF PLANT RESEARCH 2022; 135:145-156. [PMID: 35000024 DOI: 10.1007/s10265-021-01361-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/21/2021] [Indexed: 05/21/2023]
Abstract
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
18
|
Zhang N, Zabotina OA. Critical Determinants in ER-Golgi Trafficking of Enzymes Involved in Glycosylation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030428. [PMID: 35161411 PMCID: PMC8840164 DOI: 10.3390/plants11030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 05/03/2023]
Abstract
All living cells generate structurally complex and compositionally diverse spectra of glycans and glycoconjugates, critical for organismal evolution, development, functioning, defense, and survival. Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are distributed among more than 130 gene families and are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations, the glycosylation sites, in the cell is essential and involves numerous secretory pathway components. This review presents the current state of knowledge about the mechanisms of protein trafficking between ER and Golgi. It describes what is known about the primary components of protein sorting machinery and trafficking, which are recognition sites on the proteins that are important for their interaction with the critical components of this machinery.
Collapse
|
19
|
Julian JD, Zabotina OA. Xyloglucan Biosynthesis: From Genes to Proteins and Their Functions. FRONTIERS IN PLANT SCIENCE 2022; 13:920494. [PMID: 35720558 PMCID: PMC9201394 DOI: 10.3389/fpls.2022.920494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 05/12/2023]
Abstract
The plant's recalcitrant cell wall is composed of numerous polysaccharides, including cellulose, hemicellulose, and pectin. The most abundant hemicellulose in dicot cell walls is xyloglucan, which consists of a β-(1- > 4) glucan backbone with α-(1- > 6) xylosylation producing an XXGG or XXXG pattern. Xylose residues of xyloglucan are branched further with different patterns of arabinose, fucose, galactose, and acetylation that varies between species. Although xyloglucan research in other species lag behind Arabidopsis thaliana, significant advances have been made into the agriculturally relevant species Oryza sativa and Solanum lycopersicum, which can be considered model organisms for XXGG type xyloglucan. In this review, we will present what is currently known about xyloglucan biosynthesis in A. thaliana, O. sativa, and S. lycopersicum and discuss the recent advances in the characterization of the glycosyltransferases involved in this complex process and their organization in the Golgi.
Collapse
Affiliation(s)
- Jordan D Julian
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Ehrlich JJ, Weerts RM, Shome S, Culbertson AT, Honzatko RB, Jernigan RL, Zabotina OA. Xyloglucan Xylosyltransferase 1 Displays Promiscuity Toward Donor Substrates During in Vitro Reactions. PLANT & CELL PHYSIOLOGY 2021; 62:1890-1901. [PMID: 34265062 DOI: 10.1093/pcp/pcab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Glycosyltransferases (GTs) are a large family of enzymes that add sugars to a broad range of acceptor substrates, including polysaccharides, proteins and lipids, by utilizing a wide variety of donor substrates in the form of activated sugars. Individual GTs have generally been considered to exhibit a high level of substrate specificity, but this has not been thoroughly investigated across the extremely large set of GTs. Here we investigate xyloglucan xylosyltransferase 1 (XXT1), a GT involved in the synthesis of the plant cell wall polysaccharide, xyloglucan. Xyloglucan has a glucan backbone, with initial side chain substitutions exclusively composed of xylose from uridine diphosphate (UDP)-xylose. While this conserved substitution pattern suggests a high substrate specificity for XXT1, our in vitro kinetic studies elucidate a more complex set of behavior. Kinetic studies demonstrate comparable kcat values for reactions with UDP-xylose and UDP-glucose, while reactions with UDP-arabinose and UDP-galactose are over 10-fold slower. Using kcat/KM as a measure of efficiency, UDP-xylose is 8-fold more efficient as a substrate than the next best alternative, UDP-glucose. To the best of our knowledge, we are the first to demonstrate that not all plant XXTs are highly substrate specific and some do show significant promiscuity in their in vitro reactions. Kinetic parameters alone likely do not explain the high substrate selectivity in planta, suggesting that there are additional control mechanisms operating during polysaccharide biosynthesis. Improved understanding of substrate specificity of the GTs will aid in protein engineering, development of diagnostic tools, and understanding of biological systems.
Collapse
Affiliation(s)
- Jacqueline J Ehrlich
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
- Department of Molecular Biology & Genetics, 107 Biotechnology Building, 526 Campus Road, Cornell University, Ithaca, NY 14853-2703, USA
| | - Richard M Weerts
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| | - Sayane Shome
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| | - Alan T Culbertson
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Richard B Honzatko
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| | - Robert L Jernigan
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, 2437 Pammel Drive, Ames IA 50011-1079, USA
| |
Collapse
|
21
|
He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. PLANT PHYSIOLOGY 2021; 187:1940-1972. [PMID: 35235665 PMCID: PMC8890496 DOI: 10.1093/plphys/kiab122] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments (Golgi apparatus, trans-Golgi network, pre-vacuolar compartment), vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g. glutamate receptor-likes (GLR), cyclic nucleotide-gated channels (CNGC), mitochondrial conductivity units (MCU), and two-pore channel1 (TPC1)], transporters (e.g. natural resistance-associated macrophage proteins (NRAMP), Ca2+ exchangers (CAX), metal tolerance proteins (MTP), and bivalent cation transporters (BICAT)], and pumps [autoinhibited Ca2+-ATPases (ACA) and ER Ca2+-ATPases (ECA)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular, with respect to tunable molecular mechanisms of Ca2+ versus Mn2+ selectivity.
Collapse
Affiliation(s)
- Jie He
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nico Rössner
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Minh T T Hoang
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Santiago Alejandro
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
22
|
Zhong R, Phillips DR, Ye ZH. A Single Xyloglucan Xylosyltransferase Is Sufficient for Generation of the XXXG Xylosylation Pattern of Xyloglucan. PLANT & CELL PHYSIOLOGY 2021; 62:1589-1602. [PMID: 34264339 DOI: 10.1093/pcp/pcab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Xyloglucan is the most abundant hemicellulose in the primary cell walls of dicots. Dicot xyloglucan is the XXXG type consisting of repeating units of three consecutive xylosylated Glc residues followed by one unsubstituted Glc. Its xylosylation is catalyzed by xyloglucan 6-xylosyltransferases (XXTs) and there exist five XXTs (AtXXT1-5) in Arabidopsis. While AtXXT1 and AtXXT2 have been shown to add the first two Xyl residues in the XXXG repeat, which XXTs are responsible for the addition of the third Xyl residue remains elusive although AtXXT5 was a proposed candidate. In this report, we generated recombinant proteins of all five Arabidopsis XXTs and one rice XXT (OsXXT1) in the mammalian HEK293 cells and investigated their ability to sequentially xylosylate Glc residues to generate the XXXG xylosylation pattern. We found that like AtXXT1/2, AtXXT4 and OsXXT1 could efficiently xylosylate the cellohexaose (G6) acceptor to produce mono- and di-xylosylated G6, whereas AtXXT5 was only barely capable of adding one Xyl onto G6. When AtXXT1-catalyzed products were used as acceptors, AtXXT1/2/4 and OsXXT1, but not AtXXT5, were able to xylosylate additional Glc residues to generate tri- and tetra-xylosylated G6. Further characterization of the tri- and tetra-xylosylated G6 revealed that they had the sequence of GXXXGG and GXXXXG with three and four consecutive xylosylated Glc residues, respectively. In addition, we have found that although tri-xylosylation occurred on G6, cello-oligomers with a degree of polymerization of 3 to 5 could only be mono- and di-xylosylated. Together, these results indicate that each of AtXXT1/2/4 and OsXXT1 is capable of sequentially adding Xyl onto three contiguous Glc residues to generate the XXXG xylosylation pattern and these findings provide new insight into the biochemical mechanism underlying xyloglucan biosynthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
23
|
Iyer A, Guerrier L, Leveque S, Bestwick CS, Duncan SH, Russell WR. High throughput method development and optimised production of leaf protein concentrates with potential to support the agri-industry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01136-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractInvasive plants offer an interesting and unconventional source of protein and the considerable investment made towards their eradication can potentially be salvaged through their revalorisation. To identify viable sources, effective and high-throughput screening methods are required, as well as efficient procedures to isolate these components. Rigorous assessment of low-cost, high-throughput screening assays for total sugar, phenolics and protein was performed, and ninhydrin, Lever and Fast Blue assays were found to be most suitable owing to high reliability scores and false positive errors less than 1%. These assays were used to characterise invasive Scottish plants such as Gorse (Ulex europeans), Broom (Cystisus scoparius) and Fireweed (Chamaenerion angustifolium). Protein extraction (alkali-, heat- and enzyme assisted) were tested on these plants, and further purification (acid and ethanol precipitation, as well as ultrafiltration) procedures were tested on Gorse, based on protein recovery values. Cellulase treatment and ethanol precipitation gave the highest protein recovery (64.0 ± 0.5%) and purity (96.8 ± 0.1%) with Gorse. The amino acid profile of the purified protein revealed high levels of essential amino acids (34.8 ± 0.0%). Comparison of results with preceding literature revealed a strong association between amino acid profiles and overall protein recovery with the extraction method employed. The final purity of the protein concentrates was closely associated to the protein content of the initial plant mass. Leaf protein extraction technology can effectively raise crop harvest indices, revalorise underutilised plants and waste streams.
Collapse
|
24
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
25
|
Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans. Viruses 2021; 13:v13010087. [PMID: 33435207 PMCID: PMC7826918 DOI: 10.3390/v13010087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/04/2022] Open
Abstract
The structures of the four N-linked glycans from the prototype chlorovirus PBCV-1 major capsid protein do not resemble any other glycans in the three domains of life. All known chloroviruses and antigenic variants (or mutants) share a unique conserved central glycan core consisting of five sugars, except for antigenic mutant virus P1L6, which has four of the five sugars. A combination of genetic and structural analyses indicates that the protein coded by PBCV-1 gene a111/114r, conserved in all chloroviruses, is a glycosyltransferase with three putative domains of approximately 300 amino acids each. Here, in addition to in silico sequence analysis and protein modeling, we measured the hydrolytic activity of protein A111/114R. The results suggest that domain 1 is a galactosyltransferase, domain 2 is a xylosyltransferase and domain 3 is a fucosyltransferase. Thus, A111/114R is the protein likely responsible for the attachment of three of the five conserved residues of the core region of this complex glycan, and, if biochemically corroborated, it would be the second three-domain protein coded by PBCV-1 that is involved in glycan synthesis. Importantly, these findings provide additional support that the chloroviruses do not use the canonical host endoplasmic reticulum–Golgi glycosylation pathway to glycosylate their glycoproteins; instead, they perform glycosylation independent of cellular organelles using virus-encoded enzymes.
Collapse
|
26
|
Zabotina OA, Zhang N, Weerts R. Polysaccharide Biosynthesis: Glycosyltransferases and Their Complexes. FRONTIERS IN PLANT SCIENCE 2021; 12:625307. [PMID: 33679837 PMCID: PMC7933479 DOI: 10.3389/fpls.2021.625307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.
Collapse
|
27
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Zhang Q, Liu H, Wu X, Wang W. Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. BMC PLANT BIOLOGY 2020; 20:315. [PMID: 32620139 PMCID: PMC7350183 DOI: 10.1186/s12870-020-02526-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Frequently occurring drought stress negatively affects the production of maize worldwide. Numerous efforts have been made to develop drought-tolerant maize lines and to explore drought tolerant mechanisms in maize. However, there is a lack of comparative studies on transcriptomic changes between drought-tolerant and control maize lines. RESULTS In the present study, we have developed a drought-tolerant maize mutant (C7-2t) by irradiating the seeds of maize inbred line ChangC7-2 (C7-2) with 60Co-γ. Compared to its wild type C7-2, C7-2t exhibited a significantly delayed wilting and higher drought tolerance under both the controlled and field conditions, indicating its high water-holding ability. Transcriptomic profiling was performed to identify differentially expressed genes (DEGs) between C7-2 and C7-2t during drought. As a result, a total of 4552 DEGs were implied in drought tolerance of C7-2 and C7-2t. In particular, the expression of photosynthesis-related genes in C7-2 was inhibited, whereas these genes in C7-2t were almost unaffected under drought. Moreover, a specific set of the DEGs were involved in phenylpropanoid biosynthesis and taurine (hypotaurine) metabolism in C7-2t; these DEGs were enriched in cell components associated with membrane systems and cell wall biosynthesis. CONCLUSIONS The drought tolerance of C7-2t was largely due to its high water-holding ability, stable photosynthesis (for supporting osmoregulation) and strengthened biosynthesis of cell walls under drought conditions.
Collapse
Affiliation(s)
- Qinbin Zhang
- College of Life Sciences, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Hui Liu
- College of Life Sciences, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- College of Life Sciences, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- College of Life Sciences, National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
29
|
Lunin VV, Wang HT, Bharadwaj VS, Alahuhta M, Peña MJ, Yang JY, Archer-Hartmann SA, Azadi P, Himmel ME, Moremen KW, York WS, Bomble YJ, Urbanowicz BR. Molecular Mechanism of Polysaccharide Acetylation by the Arabidopsis Xylan O-acetyltransferase XOAT1. THE PLANT CELL 2020; 32:2367-2382. [PMID: 32354790 PMCID: PMC7346548 DOI: 10.1105/tpc.20.00028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 05/03/2023]
Abstract
Xylans are a major component of plant cell walls. O-Acetyl moieties are the dominant backbone substituents of glucuronoxylan in dicots and play a major role in the polymer-polymer interactions that are crucial for wall architecture and normal plant development. Here, we describe the biochemical, structural, and mechanistic characterization of Arabidopsis (Arabidopsis thaliana) xylan O-acetyltransferase 1 (XOAT1), a member of the plant-specific Trichome Birefringence Like (TBL) family. Detailed characterization of XOAT1-catalyzed reactions by real-time NMR confirms that it exclusively catalyzes the 2-O-acetylation of xylan, followed by nonenzymatic acetyl migration to the O-3 position, resulting in products that are monoacetylated at both O-2 and O-3 positions. In addition, we report the crystal structure of the catalytic domain of XOAT1, which adopts a unique conformation that bears some similarities to the α/β/α topology of members of the GDSL-like lipase/acylhydrolase family. Finally, we use a combination of biochemical analyses, mutagenesis, and molecular simulations to show that XOAT1 catalyzes xylan acetylation through formation of an acyl-enzyme intermediate, Ac-Ser-216, by a double displacement bi-bi mechanism involving a Ser-His-Asp catalytic triad and unconventionally uses an Arg residue in the formation of an oxyanion hole.
Collapse
Affiliation(s)
- Vladimir V Lunin
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Hsin-Tzu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Vivek S Bharadwaj
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Markus Alahuhta
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Michael E Himmel
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William S York
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Yannick J Bomble
- Bioscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
30
|
Prabhakar PK, Wang HT, Smith PJ, Yang JY, Barnes WJ, Peña MJ, Moremen KW, Urbanowicz BR. Heterologous expression of plant glycosyltransferases for biochemistry and structural biology. Methods Cell Biol 2020; 160:145-165. [PMID: 32896313 PMCID: PMC7593805 DOI: 10.1016/bs.mcb.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Much of the carbon captured by photosynthesis is converted into the polysaccharides that constitute plant cell walls. These complex macrostructures are composed of cellulose, hemicellulose, and pectins, together with small amounts of structural proteins, minerals, and in many cases lignin. Wall components assemble and interact with one another to produce dynamic structures with many capabilities, including providing mechanical support to plant structures and determining plant cell shape and size. Despite their abundance, major gaps in our knowledge of the synthesis of the building blocks of these polymers remain, largely due to ineffective methods for expression and purification of active synthetic enzymes for in vitro biochemical analyses. The hemicellulosic polysaccharide, xyloglucan, comprises up to 25% of the dry weight of primary cell walls in plants. Most of the knowledge about the glycosyltransferases (GTs) involved in the xyloglucan biosynthetic pathway has been derived from the identification and carbohydrate analysis of knockout mutants, lending little information on how the catalytic biosynthesis of xyloglucan occurs in planta. In this chapter we describe methods for the heterologous expression of plant GTs using the HEK293 expression platform. As a demonstration of the utility of this platform, nine xyloglucan-relevant GTs from three different CAZy families were evaluated, and methods for expression, purification, and construct optimization are described for biochemical and structural characterization.
Collapse
Affiliation(s)
- Pradeep K Prabhakar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States
| | - Hsin-Tzu Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States
| | - Peter J Smith
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States
| | - Jeong-Yeh Yang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - William J Barnes
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Breeanna R Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States; Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, United States.
| |
Collapse
|
31
|
Zhong R, Cui D, Phillips DR, Richardson EA, Ye ZH. A Group of O-Acetyltransferases Catalyze Xyloglucan Backbone Acetylation and Can Alter Xyloglucan Xylosylation Pattern and Plant Growth When Expressed in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:1064-1079. [PMID: 32167545 PMCID: PMC7295396 DOI: 10.1093/pcp/pcaa031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/08/2020] [Indexed: 05/23/2023]
Abstract
Xyloglucan is a major hemicellulose in plant cell walls and exists in two distinct types, XXXG and XXGG. While the XXXG-type xyloglucan from dicot species only contains O-acetyl groups on side-chain galactose (Gal) residues, the XXGG-type xyloglucan from Poaceae (grasses) and Solanaceae bears O-acetyl groups on backbone glucosyl (Glc) residues. Although O-acetyltransferases responsible for xyloglucan Gal acetylation have been characterized, the biochemical mechanism underlying xyloglucan backbone acetylation remains to be elucidated. In this study, we showed that recombinant proteins of a group of DUF231 members from rice and tomato were capable of transferring acetyl groups onto O-6 of Glc residues in cello-oligomer acceptors, indicating that they are xyloglucan backbone 6-O-acetyltransferases (XyBATs). We further demonstrated that XyBAT-acetylated cellohexaose oligomers could be readily xylosylated by AtXXT1 (Arabidopsis xyloglucan xylosyltransferase 1) to generate acetylated, xylosylated cello-oligomers, whereas AtXXT1-xylosylated cellohexaose oligomers were much less effectively acetylated by XyBATs. Heterologous expression of a rice XyBAT in Arabidopsis led to a severe reduction in cell expansion and plant growth and a drastic alteration in xyloglucan xylosylation pattern with the formation of acetylated XXGG-type units, including XGG, XGGG, XXGG, XXGG,XXGGG and XXGGG (G denotes acetylated Glc). In addition, recombinant proteins of two Arabidopsis XyBAT homologs also exhibited O-acetyltransferase activity toward cellohexaose, suggesting their possible role in mediating xyloglucan backbone acetylation in vivo. Our findings provide new insights into the biochemical mechanism underlying xyloglucan backbone acetylation and indicate the importance of maintaining the regular xyloglucan xylosylation pattern in cell wall function.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
32
|
Pauly M, Gawenda N, Wagner C, Fischbach P, Ramírez V, Axmann IM, Voiniciuc C. The Suitability of Orthogonal Hosts to Study Plant Cell Wall Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E516. [PMID: 31744209 PMCID: PMC6918405 DOI: 10.3390/plants8110516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Plant cells are surrounded by an extracellular matrix that consists mainly of polysaccharides. Many molecular components involved in plant cell wall polymer synthesis have been identified, but it remains largely unknown how these molecular players function together to define the length and decoration pattern of a polysaccharide. Synthetic biology can be applied to answer questions beyond individual glycosyltransferases by reconstructing entire biosynthetic machineries required to produce a complete wall polysaccharide. Recently, this approach was successful in establishing the production of heteromannan from several plant species in an orthogonal host-a yeast-illuminating the role of an auxiliary protein in the biosynthetic process. In this review we evaluate to what extent a selection of organisms from three kingdoms of life (Bacteria, Fungi and Animalia) might be suitable for the synthesis of plant cell wall polysaccharides. By identifying their key attributes for glycoengineering as well as analyzing the glycosidic linkages of their native polymers, we present a valuable comparison of their key advantages and limitations for the production of different classes of plant polysaccharides.
Collapse
Affiliation(s)
- Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Niklas Gawenda
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Christine Wagner
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Patrick Fischbach
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Cătălin Voiniciuc
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| |
Collapse
|
33
|
Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol 2019; 15:853-864. [PMID: 31427814 DOI: 10.1038/s41589-019-0350-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology.
Collapse
|
34
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
35
|
Amos RA, Mohnen D. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:915. [PMID: 31379900 PMCID: PMC6646851 DOI: 10.3389/fpls.2019.00915] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/02/2023]
Abstract
The life cycle and development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix polysaccharides. The structures of the diverse cell wall matrix polysaccharides influence commercially important properties of plant cells, including growth, biomass recalcitrance, organ abscission, and the shelf life of fruits. This review is a comprehensive summary of the matrix polysaccharide glycosyltransferase (GT) activities that have been verified using in vitro assays following heterologous GT protein expression. Plant cell wall (PCW) biosynthetic GTs are primarily integral transmembrane proteins localized to the endoplasmic reticulum and Golgi of the plant secretory system. The low abundance of these enzymes in plant tissues makes them particularly difficult to purify from native plant membranes in quantities sufficient for enzymatic characterization, which is essential to study the functions of the different GTs. Numerous activities in the synthesis of the major cell wall matrix glycans, including pectins, xylans, xyloglucan, mannans, mixed-linkage glucans (MLGs), and arabinogalactan components of AGP proteoglycans have been mapped to specific genes and multi-gene families. Cell wall GTs include those that synthesize the polymer backbones, those that elongate side branches with extended glycosyl chains, and those that add single monosaccharide linkages onto polysaccharide backbones and/or side branches. Three main strategies have been used to identify genes encoding GTs that synthesize cell wall linkages: analysis of membrane fractions enriched for cell wall biosynthetic activities, mutational genetics approaches investigating cell wall compositional phenotypes, and omics-directed identification of putative GTs from sequenced plant genomes. Here we compare the heterologous expression systems used to produce, purify, and study the enzyme activities of PCW GTs, with an emphasis on the eukaryotic systems Nicotiana benthamiana, Pichia pastoris, and human embryonic kidney (HEK293) cells. We discuss the enzymatic properties of GTs including kinetic rates, the chain lengths of polysaccharide products, acceptor oligosaccharide preferences, elongation mechanisms for the synthesis of long-chain polymers, and the formation of GT complexes. Future directions in the study of matrix polysaccharide biosynthesis are proposed.
Collapse
Affiliation(s)
- Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Debra Mohnen
| |
Collapse
|