1
|
Santana-Molina C, Williams TA, Snel B, Spang A. Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nat Ecol Evol 2025; 9:613-627. [PMID: 40033103 PMCID: PMC11976288 DOI: 10.1038/s41559-025-02648-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
The origin of eukaryotes was a key event in the history of life. Current leading hypotheses propose that a symbiosis between an asgardarchaeal host cell and an alphaproteobacterial endosymbiont represented a crucial step in eukaryotic origin and that metabolic cross-feeding between the partners provided the basis for their subsequent evolutionary integration. A major unanswered question is whether the metabolism of modern eukaryotes bears any vestige of this ancestral syntrophy. Here we systematically analyse the evolutionary origins of the eukaryotic gene repertoires mediating central carbon metabolism. Our phylogenetic and sequence analyses reveal that this gene repertoire is chimeric, with ancestral contributions from Asgardarchaeota and Alphaproteobacteria operating predominantly in glycolysis and the tricarboxylic acid cycle, respectively. Our analyses also reveal the extent to which this ancestral metabolic interplay has been remodelled via gene loss, transfer and subcellular retargeting in the >2 billion years since the origin of eukaryotic cells, and we identify genetic contributions from other prokaryotic sources in addition to the asgardarchaeal host and alphaproteobacterial endosymbiont. Our work demonstrates that, in contrast to previous assumptions, modern eukaryotic metabolism preserves information about the nature of the original asgardarchaeal-alphaproteobacterial interactions and supports syntrophy scenarios for the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Berend Snel
- Theoretical Biology & Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Magadla A. Hybrid Nanoplatforms Based on Photosensitizers and Metal/Covalent Organic Frameworks for Improved Cancer Synergistic Treatment Nano-Delivery Systems. Molecules 2025; 30:884. [PMID: 40005193 PMCID: PMC11858586 DOI: 10.3390/molecules30040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Researchers have extensively investigated photosensitizer (PS) derivatives for various applications due to their superior photophysical and electrochemical properties. However, inherent problems, such as instability and self-quenching under physiological conditions, limit their biological applications. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) represent two relatively new material types. These materials have high surface areas and permanent porosity, and they show a tremendous deal of potential for applications like these. This review summarizes key synthesis processes and highlights recent advancements in integrating PS-based COF and MOF nanocarriers for biomedical applications while addressing potential obstacles and prospects.
Collapse
Affiliation(s)
- Aviwe Magadla
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa
| |
Collapse
|
3
|
Demoulin CF, Sforna MC, Lara YJ, Cornet Y, Somogyi A, Medjoubi K, Grolimund D, Sanchez DF, Tachoueres RT, Addad A, Fadel A, Compère P, Javaux EJ. Polysphaeroides filiformis, a proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution. iScience 2024; 27:108865. [PMID: 38313056 PMCID: PMC10837632 DOI: 10.1016/j.isci.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Deciphering the fossil record of cyanobacteria is crucial to understand their role in the chemical and biological evolution of the early Earth. They profoundly modified the redox conditions of early ecosystems more than 2.4 Ga ago, the age of the Great Oxidation Event (GOE), and provided the ancestor of the chloroplast by endosymbiosis, leading the diversification of photosynthetic eukaryotes. Here, we analyze the morphology, ultrastructure, chemical composition, and metals distribution of Polysphaeroides filiformis from the 1040-1006 Ma Mbuji-Mayi Supergroup (DR Congo). We evidence trilaminar and bilayered ultrastructures for the sheath and the cell wall, respectively, and the preservation of Ni-tetrapyrrole moieties derived from chlorophyll in intracellular inclusions. This approach allows an unambiguous interpretation of P. filiformis as a branched and multiseriate photosynthetic cyanobacterium belonging to the family of Stigonemataceae. It also provides a possible minimum age for the emergence of multiseriate true branching nitrogen-fixing and probably heterocytous cyanobacteria.
Collapse
Affiliation(s)
- Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | - Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
- Centre de Biophysique Moléculaire, (UPR CNRS 4301), 45071 Orléans, France
| | - Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | - Yohan Cornet
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| | | | | | - Daniel Grolimund
- Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI, Switzerland
| | | | | | - Ahmed Addad
- Unité Matériaux et Transformations (UMR CNRS 8207), Université Lille 1 - Sciences et Technologies, 59650 Villeneuve d'Ascq, France
| | - Alexandre Fadel
- Unité Matériaux et Transformations (UMR CNRS 8207), Université Lille 1 - Sciences et Technologies, 59650 Villeneuve d'Ascq, France
| | - Philippe Compère
- Functional and Evolutive Morphology, UR FOCUS, and Center for Applied Research and Education in Microscopy (CAREM-ULiege), University of Liège, 4000 Liège, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
4
|
Hoshino Y, Nettersheim BJ, Gold DA, Hallmann C, Vinnichenko G, van Maldegem LM, Bishop C, Brocks JJ, Gaucher EA. Genetics re-establish the utility of 2-methylhopanes as cyanobacterial biomarkers before 750 million years ago. Nat Ecol Evol 2023; 7:2045-2054. [PMID: 37884688 PMCID: PMC10697835 DOI: 10.1038/s41559-023-02223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Fossilized lipids offer a rare glimpse into ancient ecosystems. 2-Methylhopanes in sedimentary rocks were once used to infer the importance of cyanobacteria as primary producers throughout geological history. However, the discovery of hopanoid C-2 methyltransferase (HpnP) in Alphaproteobacteria led to the downfall of this molecular proxy. In the present study, we re-examined the distribution of HpnP in a new phylogenetic framework including recently proposed candidate phyla and re-interpreted a revised geological record of 2-methylhopanes based on contamination-free samples. We show that HpnP was probably present in the last common ancestor of cyanobacteria, while the gene appeared in Alphaproteobacteria only around 750 million years ago (Ma). A subsequent rise of sedimentary 2-methylhopanes around 600 Ma probably reflects the expansion of Alphaproteobacteria that coincided with the rise of eukaryotic algae-possibly connected by algal dependency on microbially produced vitamin B12. Our findings re-establish 2-methylhopanes as cyanobacterial biomarkers before 750 Ma and thus as a potential tool to measure the importance of oxygenic cyanobacteria as primary producers on early Earth. Our study illustrates how genetics can improve the diagnostic value of biomarkers and refine the reconstruction of early ecosystems.
Collapse
Affiliation(s)
- Yosuke Hoshino
- GFZ German Research Centre for Geosciences, Potsdam, Germany.
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| | - Benjamin J Nettersheim
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany.
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
| | | | - Galina Vinnichenko
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lennart M van Maldegem
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Caleb Bishop
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jochen J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
5
|
Zheng W, Zhou A, Sahoo SK, Nolan MR, Ostrander CM, Sun R, Anbar AD, Xiao S, Chen J. Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran. Nat Commun 2023; 14:3920. [PMID: 37400445 DOI: 10.1038/s41467-023-39427-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
The Ediacaran Period (~635-539 Ma) is marked by the emergence and diversification of complex metazoans linked to ocean redox changes, but the processes and mechanism of the redox evolution in the Ediacaran ocean are intensely debated. Here we use mercury isotope compositions from multiple black shale sections of the Doushantuo Formation in South China to reconstruct Ediacaran oceanic redox conditions. Mercury isotopes show compelling evidence for recurrent and spatially dynamic photic zone euxinia (PZE) on the continental margin of South China during time intervals coincident with previously identified ocean oxygenation events. We suggest that PZE was driven by increased availability of sulfate and nutrients from a transiently oxygenated ocean, but PZE may have also initiated negative feedbacks that inhibited oxygen production by promoting anoxygenic photosynthesis and limiting the habitable space for eukaryotes, hence abating the long-term rise of oxygen and restricting the Ediacaran expansion of macroscopic oxygen-demanding animals.
Collapse
Affiliation(s)
- Wang Zheng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Anwen Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
- Department of Earth, Ocean and Atmospheric Science and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Morrison R Nolan
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chadlin M Ostrander
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ruoyu Sun
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Brocks JJ, Nettersheim BJ, Adam P, Schaeffer P, Jarrett AJM, Güneli N, Liyanage T, van Maldegem LM, Hallmann C, Hope JM. Lost world of complex life and the late rise of the eukaryotic crown. Nature 2023:10.1038/s41586-023-06170-w. [PMID: 37286610 DOI: 10.1038/s41586-023-06170-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.
Collapse
Affiliation(s)
- Jochen J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Benjamin J Nettersheim
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia.
- MARUM-Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany.
| | - Pierre Adam
- Université de Strasbourg, CNRS, Institut de Chimie de Strasbourg UMR 7177, Strasbourg, France
| | - Philippe Schaeffer
- Université de Strasbourg, CNRS, Institut de Chimie de Strasbourg UMR 7177, Strasbourg, France
| | - Amber J M Jarrett
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Northern Territory Geological Survey, Darwin, Northern Territory, Australia
| | - Nur Güneli
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tharika Liyanage
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lennart M van Maldegem
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Janet M Hope
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
7
|
Neubauer C, Kantnerová K, Lamothe A, Savarino J, Hilkert A, Juchelka D, Hinrichs KU, Elvert M, Heuer V, Elsner M, Bakkour R, Julien M, Öztoprak M, Schouten S, Hattori S, Dittmar T. Discovering Nature's Fingerprints: Isotope Ratio Analysis on Bioanalytical Mass Spectrometers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:525-537. [PMID: 36971362 DOI: 10.1021/jasms.2c00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.
Collapse
Affiliation(s)
- Cajetan Neubauer
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Kristýna Kantnerová
- University of Colorado Boulder & Institute for Arctic and Alpine Research (INSTAAR), Boulder, Colorado 80303, United States
| | - Alexis Lamothe
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | - Joel Savarino
- University Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, IGE, Grenoble 38400, France
| | | | | | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Verena Heuer
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Martin Elsner
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Rani Bakkour
- Department of Chemistry, Technical University of Munich, D-85748 Garching, Germany
| | - Maxime Julien
- GFZ German Research Center for Geosciences, 14473 Potsdam, Germany
| | - Merve Öztoprak
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Texel 1797 SZ, Netherlands
| | - Shohei Hattori
- International Center for Isotope Effects Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
8
|
Sharma VK, Assaraf YG, Gross Z. Hallmarks of anticancer and antimicrobial activities of corroles. Drug Resist Updat 2023; 67:100931. [PMID: 36739808 DOI: 10.1016/j.drup.2023.100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
9
|
Le Maître J, Maillard JF, Hubert-Roux M, Afonso C, Giusti P. Prediction of Structures of Compounds Encountered in Complex Organic Matter with Highly Flexible Alkyl Chains Using Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2024-2031. [PMID: 36178343 DOI: 10.1021/jasms.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chemical structure of an organic molecule has a direct influence on its three-dimensional conformation. One way to obtain information on this conformation is to use ion mobility spectrometry. This technique allows the separation of different isomers according to their collision cross section (CCS) with an inert gas. Smaller or more compact molecules will have lower collision cross section values than larger molecules. The CCS is an intrinsic ion parameter for a specific gas and is thus predictable. Today, calculations of rigid molecules are commonly performed to obtain additional structural information on an ion. However, calculations are more complex with very flexible molecules. In particular, molecules presenting long alkyl chains can yield a high number of conformers. Each conformer is then associated with a CCS value that is specific to it. We report, here, a methodology to predict CCS of flexible molecules. The used approach is based on automatic conformers research followed by geometry optimization and CCS calculations. Determination of theoretical and experimental CCS values for a rigid polycyclic aromatic hydrocarbons (PAHs) standard was used to calibrate the Mobcal software. Then, 13 standard molecules ranging from 4 to 19 carbon alkyl chains, including three long alkyl chain isomers of C22H38, were analyzed on a TWIMS-ToF and calculated using our methodology. CCS deviations between experimental and theoretical values were found to be less than 1.5% over the whole studied CCS range. This method was finally applied for structural analysis of petroleum compounds refractory to the hydro-denitrogenation process.
Collapse
Affiliation(s)
- Johann Le Maître
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- TotalEnergies OneTech R&D, Total Research & Technology Gonfreville, BP 27, 76700Harfleur, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Julien F Maillard
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Marie Hubert-Roux
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Carlos Afonso
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| | - Pierre Giusti
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen, INSA de Rouen-Normandie, CNRS, IRCOF, 76130Mont Saint Aignan Cedex, France
- TotalEnergies OneTech R&D, Total Research & Technology Gonfreville, BP 27, 76700Harfleur, France
- International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, BP 27, 76700Harfleur, France
| |
Collapse
|
10
|
Villa F, Wu YL, Zerboni A, Cappitelli F. In Living Color: Pigment-Based Microbial Ecology At the Mineral-Air Interface. Bioscience 2022; 72:1156-1175. [PMID: 36451971 PMCID: PMC9699719 DOI: 10.1093/biosci/biac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pigment-based color is one of the most important phenotypic traits of biofilms at the mineral-air interface (subaerial biofilms, SABs), because it reflects the physiology of the microbial community. Because color is the hallmark of all SABs, we argue that pigment-based color could convey the mechanisms that drive microbial adaptation and coexistence across different terrestrial environments and link phenotypic traits to community fitness and ecological dynamics. Within this framework, we present the most relevant microbial pigments at the mineral-air interface and discuss some of the evolutionary landscapes that necessitate pigments as adaptive strategies for resource allocation and survivability. We report several pigment features that reflect SAB communities' structure and function, as well as pigment ecology in the context of microbial life-history strategies and coexistence theory. Finally, we conclude the study of pigment-based ecology by presenting its potential application and some of the key challenges in the research.
Collapse
|
11
|
Baqué M, Backhaus T, Meeßen J, Hanke F, Böttger U, Ramkissoon N, Olsson-Francis K, Baumgärtner M, Billi D, Cassaro A, de la Torre Noetzel R, Demets R, Edwards H, Ehrenfreund P, Elsaesser A, Foing B, Foucher F, Huwe B, Joshi J, Kozyrovska N, Lasch P, Lee N, Leuko S, Onofri S, Ott S, Pacelli C, Rabbow E, Rothschild L, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wagner D, Westall F, Zucconi L, de Vera JPP. Biosignature stability in space enables their use for life detection on Mars. SCIENCE ADVANCES 2022; 8:eabn7412. [PMID: 36070383 PMCID: PMC9451166 DOI: 10.1126/sciadv.abn7412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/20/2022] [Indexed: 06/14/2023]
Abstract
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.
Collapse
Affiliation(s)
- Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Theresa Backhaus
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joachim Meeßen
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Nisha Ramkissoon
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Michael Baumgärtner
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz-28850, Madrid, Spain
| | - René Demets
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),, Noordwijk, Netherlands
| | - Howell Edwards
- University of Bradford, University Analytical Centre, Division of Chemical and Forensic Sciences, Raman Spectroscopy Group, West Yorkshire, UK
| | - Pascale Ehrenfreund
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- George Washington University, Space Policy Institute, Washington, DC 20052, USA
| | - Andreas Elsaesser
- Freie Universitaet Berlin, Experimental Biophysics and Space Sciences, Institute of Experimental Physics; Arnimallee 14, 14195 Berlin, Germany
| | - Bernard Foing
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV, Amsterdam, Netherlands
| | - Frédéric Foucher
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Björn Huwe
- Biodiversity Research/Systematic Botany, University of Potsdam, Maulbeerallee 1, D-14469 Potsdam, Germany
- Department Technology Assessment and Substance Cycles, Leibniz- Institute for Agriculture Engineering and Bioeconomy, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Jasmin Joshi
- Institute for Landscape and Open Space, Eastern Switzerland University of Applied Sciences, Seestrasse 10, 8640 Rapperswil, Switzerland
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str.150, 03680, Kyiv Ukraine
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens (ZBS 6), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Natuschka Lee
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Sieglinde Ott
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Research and Science Department, Italian Space Agency (ASI), Via del Politecnico snc, 00133, Rome, Italy
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Lynn Rothschild
- NASA Ames Research Center, Mail Stop 239-20, P.O. Box 1, Moffett Field, CA 94035-0001, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Dirk Schulze-Makuch
- Technical University Berlin, ZAA, Hardenbergstr. 36, D-10623 Berlin, Germany
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), 16121 Genoa, Italy
| | - Paloma Serrano
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Telegrafenberg, 14473 Potsdam, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Environmental Microbiology, Technical University Berlin, Ernst-Reuter-Platz 1, Berlin, 10587 Berlin, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359, Bremen, Germany
| | - Dirk Wagner
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24, 14476, Potsdam, Germany
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR), Microgravity User Support Center (MUSC), Linder Höhe, 51147 Köln, Germany
| |
Collapse
|
12
|
Pleyer HL, Moeller R, Fujimori A, Fox S, Strasdeit H. Chemical, Thermal, and Radiation Resistance of an Iron Porphyrin: A Model Study of Biosignature Stability. ASTROBIOLOGY 2022; 22:776-799. [PMID: 35647896 PMCID: PMC9298530 DOI: 10.1089/ast.2021.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 06/15/2023]
Abstract
Metal complexes of porphyrins and porphyrin-type compounds are ubiquitous in all three domains of life, with hemes and chlorophylls being the best-known examples. Their diagenetic transformation products are found as geoporphyrins, in which the characteristic porphyrin core structure is retained and which can be up to 1.1 billion years old. Because of this, and their relative ease of detection, metalloporphyrins appear attractive as chemical biosignatures in the search for extraterrestrial life. In this study, we investigated the stability of solid chlorido(2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(III) [FeCl(oep)], which served as a model for heme-like molecules and iron geoporphyrins. [FeCl(oep)] was exposed to a variety of astrobiologically relevant extreme conditions, namely: aqueous acids and bases, oxidants, heat, and radiation. Key results are: (1) the [Fe(oep)]+ core is stable over the pH range 0.0-13.5 even at 80°C; (2) the oxidizing power follows the order ClO- > H2O2 > ClO3- > HNO3 > ClO4-; (3) in an inert atmosphere, the iron porphyrin is thermally stable to near 250°C; (4) at high temperatures, carbon dioxide gas is not inert but acts as an oxidant, forming carbon monoxide; (5) a decomposition layer is formed on ultraviolet irradiation and protects the [FeCl(oep)] underneath; (6) an NaCl/NaHCO3 salt mixture has a protective effect against X-rays; and (7) no such effect is observed when [FeCl(oep)] is exposed to iron ion particle radiation. The relevance to potential iron porphyrin biosignatures on Mars, Europa, and Enceladus is discussed.
Collapse
Affiliation(s)
- Hannes Lukas Pleyer
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba, Japan
| | - Stefan Fox
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Henry Strasdeit
- Department of Bioinorganic Chemistry and Chemical Evolution, Institute of Chemistry, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
Lara YJ, McCann A, Malherbe C, François C, Demoulin CF, Sforna MC, Eppe G, De Pauw E, Wilmotte A, Jacques P, Javaux EJ. Characterization of the Halochromic Gloeocapsin Pigment, a Cyanobacterial Biosignature for Paleobiology and Astrobiology. ASTROBIOLOGY 2022; 22:735-754. [PMID: 35333546 DOI: 10.1089/ast.2021.0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV)-screening compounds represent a substantial asset for the survival of cyanobacteria in extreme environments exposed to high doses of UV radiations on modern and early Earth. Among these molecules, the halochromic pigment gloeocapsin remains poorly characterized and studied. In this study, we identified a gloeocapsin-producing cultivable cyanobacteria: the strain Phormidesmis nigrescens ULC007. We succeeded to extract, to partially purify, and to compare the dark blue pigment from both the ULC007 culture and an environmental Gloeocapsa alpina dominated sample. FT-IR and Raman spectra of G. alpina and P. nigrescens ULC007 pigment extracts strongly suggested a common backbone structure. The high-pressure liquid chromatography-UV-MS/MS analysis of the ULC007 pigment extract allowed to narrow down the molecular formula of gloeocapsin to potentially five candidates within three classes of halochromic molecules: anthraquinone derivatives, coumarin derivatives, and flavonoids. With the discovery of gloeocapsin in P. nigrescens, the production of this pigment is now established for three lineages of cyanobacteria (including G. alpina, P. nigrescens, and Solentia paulocellulare) that belong to three distinct orders (Chroococcales, Pleurocapsales, Synechoccocales), inhabiting very diverse environments. This suggests that gloeocapsin production was a trait of their common ancestor or was acquired by lateral gene transfer. This work represents an important step toward the elucidation of the structure of this enigmatic pigment and its biosynthesis, and it potentially provides a new biosignature for ancient cyanobacteria. It also gives a glimpse on the evolution of UV protection strategies, which are relevant for early phototrophic life on Earth and possibly beyond.
Collapse
Affiliation(s)
- Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Andréa McCann
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Cédric Malherbe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Gauthier Eppe
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Edwin De Pauw
- MolSys Research Unit, Mass Spectrometry Laboratory, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-CIP, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Philippe Jacques
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro UMRt 1158, University of Liège, Gembloux, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Tahoun M, Engeser M, Namasivayam V, Sander PM, Müller CE. Chemistry and Analysis of Organic Compounds in Dinosaurs. BIOLOGY 2022; 11:670. [PMID: 35625398 PMCID: PMC9138232 DOI: 10.3390/biology11050670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
This review provides an overview of organic compounds detected in non-avian dinosaur fossils to date. This was enabled by the development of sensitive analytical techniques. Non-destructive methods and procedures restricted to the sample surface, e.g., light and electron microscopy, infrared (IR) and Raman spectroscopy, as well as more invasive approaches including liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), time-of-flight secondary ion mass spectrometry, and immunological methods were employed. Organic compounds detected in samples of dinosaur fossils include pigments (heme, biliverdin, protoporphyrin IX, melanin), and proteins, such as collagens and keratins. The origin and nature of the observed protein signals is, however, in some cases, controversially discussed. Molecular taphonomy approaches can support the development of suitable analytical methods to confirm reported findings and to identify further organic compounds in dinosaur and other fossils in the future. The chemical properties of the various organic compounds detected in dinosaurs, and the techniques utilized for the identification and analysis of each of the compounds will be discussed.
Collapse
Affiliation(s)
- Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany;
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Paul Martin Sander
- Institute of Geosciences, Section Paleontology, University of Bonn, D-53113 Bonn, Germany;
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| |
Collapse
|
15
|
|
16
|
Sforna MC, Loron CC, Demoulin CF, François C, Cornet Y, Lara YJ, Grolimund D, Ferreira Sanchez D, Medjoubi K, Somogyi A, Addad A, Fadel A, Compère P, Baudet D, Brocks JJ, Javaux EJ. Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae. Nat Commun 2022; 13:146. [PMID: 35013306 PMCID: PMC8748435 DOI: 10.1038/s41467-021-27810-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
The acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of their metabolisms. Here, we report a new integrative methodology using synchrotron-based X-ray fluorescence and absorption. We evidence bound nickel-geoporphyrins moieties in low-grade metamorphic rocks, preserved in situ within cells of a ~1 Gyr-old multicellular eukaryote, Arctacellularia tetragonala. We identify these moieties as chlorophyll derivatives, indicating that A. tetragonala was a phototrophic eukaryote, one of the first unambiguous algae. This new approach, applicable to overmature rocks, creates a strong new proxy to understand the evolution of phototrophy and diversification of early ecosystems.
Collapse
Affiliation(s)
- Marie Catherine Sforna
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium.
| | - Corentin C Loron
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Catherine F Demoulin
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium.,Commission for the Geological Map of the World, Paris, France
| | - Yohan Cornet
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Daniel Grolimund
- Paul Scherrer Institut, Swiss Light Source, CH-5232, Villigen PSI, Switzerland
| | | | | | | | - Ahmed Addad
- Unité Matériaux et Transformations (UMR CNRS 8207), Université Lille 1 - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Alexandre Fadel
- Unité Matériaux et Transformations (UMR CNRS 8207), Université Lille 1 - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Philippe Compère
- Functional and Evolutive Morphology, Department of Biology, Ecology and Evolution, UR FOCUS, and Center for Applied Research and Education in Microscopy (CAREM-ULiege), University of Liège, Liège, Belgium
| | - Daniel Baudet
- Geodynamics & Mineral Resources Service, Royal Museum for Central Africa, Tervuren, Belgium
| | - Jochen J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra ACT, Australia
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium.
| |
Collapse
|
17
|
Naafs BDA, Bianchini G, Monteiro FM, Sánchez-Baracaldo P. The occurrence of 2-methylhopanoids in modern bacteria and the geological record. GEOBIOLOGY 2022; 20:41-59. [PMID: 34291867 DOI: 10.1111/gbi.12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The 2-methylhopanes (2-MeHops) are molecular fossils of 2-methylbacteriohopanepolyols (2-MeBHPs) and among the oldest biomarkers on Earth. However, these biomarkers' specific sources are currently unexplained, including whether they reflect an expansion of marine cyanobacteria. Here, we study the occurrence of 2-MeBHPs and the genes involved in their synthesis in modern bacteria and explore the occurrence of 2-MeHops in the geological record. We find that the gene responsible for 2-MeBHP synthesis (hpnP) is widespread in cyano- and ⍺-proteobacteria, but absent or very limited in other classes/phyla of bacteria. This result is consistent with the dominance of 2-MeBHP in cyano- and ⍺-proteobacterial cultures. The review of their geological occurrence indicates that 2-MeHops are found from the Paleoproterozoic onwards, although some Precambrian samples might be biased by drilling contamination. During the Phanerozoic, high 2-MeHops' relative abundances (index >15%) are associated with climatic and biogeochemical perturbations such as the Permo/Triassic boundary and the Oceanic Anoxic Events. We analyzed the modern habitat of all hpnP-containing bacteria and find that the only one species coming from an undisputed open marine habitat is an ⍺-proteobacterium acting upon the marine nitrogen cycle. Although organisms can change their habitat in response to environmental stress and evolutionary pressure, we speculate that the high sedimentary 2-MeHops' occurrence observed during the Phanerozoic reflect ⍺-proteobacteria expansion and marine N-cycle perturbations in response to climatic and environmental change.
Collapse
Affiliation(s)
- B D A Naafs
- Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, University of Bristol, Bristol, UK
| | - G Bianchini
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - F M Monteiro
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
18
|
Siljeström S, Li X, Brinckerhoff W, van Amerom F, Cady SL. ExoMars Mars Organic Molecule Analyzer (MOMA) Laser Desorption/Ionization Mass Spectrometry (LDI-MS) Analysis of Phototrophic Communities from a Silica-Depositing Hot Spring in Yellowstone National Park, USA. ASTROBIOLOGY 2021; 21:1515-1525. [PMID: 33733826 DOI: 10.1089/ast.2020.2368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Mars Organic Molecule Analyzer (MOMA) is a key scientific instrument on the ExoMars Rover mission. MOMA is designed to detect and characterize organic compounds, over a wide range of volatility and molecular weight, in samples obtained from up to 2 m below the martian surface. Thorough analog sample studies are required to best prepare to interpret MOMA data collected on Mars. We present here the MOMA characterization of Mars analog samples, microbial streamer communities composed primarily of oxygenic and anoxygenic phototrophs, collected from an alkaline silica-depositing hot spring in Yellowstone National Park, Wyoming, USA. Samples of partly mineralized microbial streamers and their total lipid extract (TLE) were measured on a MOMA Engineering Test Unit (ETU) instrument by using its laser desorption/ionization mass spectrometry (LDI-MS) mode. MOMA LDI-MS detected a variety of lipids and pigments such as chlorophyll a, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, diacylglycerols, and β-carotene in the TLE sample. Only chlorophyll a was detected in the untreated streamer samples when using mass isolation, which was likely due to the higher background signal of this sample and the relative high ionization potential of the chlorophyll a compared with other compounds in unextracted samples. The results add to the LDI-MS sample characterization database and demonstrate the benefit of using mass isolation on the MOMA instrument to reveal the presence of complex organics and potential biomarkers preserved in a natural sample. This will also provide guidance to in situ analysis of surface samples during Mars operations.
Collapse
Affiliation(s)
- Sandra Siljeström
- RISE Research Institutes of Sweden, Department of Chemistry, Biomaterials and Textiles, Stockholm, Sweden
| | - Xiang Li
- Center for Research and Exploration in Space Science & Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | | | - Sherry L Cady
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
19
|
Stasiuk R, Matlakowska R. Postdiagenetic Bacterial Transformation of Nickel and Vanadyl Sedimentary Porphyrins of Organic-Rich Shale Rock (Fore-Sudetic Monocline, Poland). Front Microbiol 2021; 12:772007. [PMID: 34917054 PMCID: PMC8669743 DOI: 10.3389/fmicb.2021.772007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Nickel and vanadyl porphyrins belong to the so-called fossil geo- or sedimentary porphyrins. They occur in different types of organic matter-rich sediments but mostly occur in crude oils and their source rocks, oil shales, coals, and oil sands. In this study, we aimed to understand the process of bacterial transformation of geoporphyrins occurring in the subsurface shale rock (Fore-Sudetic Monocline, SW Poland). We studied these transformations in rock samples directly obtained from the field; in rock samples treated with bacterial strain isolated from shale rock (strain LM27) in the laboratory; and using synthetic nickel and vanadyl porphyrins treated with LM27. Our results demonstrate the following: (i) cleavage and/or degradation of aliphatic and aromatic substituents of porphyrins; (ii) degradation of porphyrin (tetrapyrrole) ring; (iii) formation of organic compounds containing 1, 2, or 3 pyrrole rings; (iv) formation of nickel- or vanadium-containing organic compounds; and (v) mobilization of nickel and vanadium. Our results also showed that the described bacterial processes change the composition and content of geoporphyrins, composition of extractable organic matter, as well as nickel and vanadium content in shale rock.
Collapse
Affiliation(s)
| | - Renata Matlakowska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Schierwater B, Osigus HJ, Bergmann T, Blackstone NW, Hadrys H, Hauslage J, Humbert PO, Kamm K, Kvansakul M, Wysocki K, DeSalle R. The enigmatic Placozoa part 1: Exploring evolutionary controversies and poor ecological knowledge. Bioessays 2021; 43:e2100080. [PMID: 34472126 DOI: 10.1002/bies.202100080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
The placozoan Trichoplax adhaerens is a tiny hairy plate and more simply organized than any other living metazoan. After its original description by F.E. Schulze in 1883, it attracted attention as a potential model for the ancestral state of metazoan organization, the "Urmetazoon". Trichoplax lacks any kind of symmetry, organs, nerve cells, muscle cells, basal lamina, and extracellular matrix. Furthermore, the placozoan genome is the smallest (not secondarily reduced) genome of all metazoan genomes. It harbors a remarkably rich diversity of genes and has been considered the best living surrogate for a metazoan ancestor genome. The phylum Placozoa presently harbors three formally described species, while several dozen "cryptic" species are yet awaiting their description. The phylogenetic position of placozoans has recently become a contested arena for modern phylogenetic analyses and view-driven claims. Trichoplax offers unique prospects for understanding the minimal requirements of metazoan animal organization and their corresponding malfunctions.
Collapse
Affiliation(s)
- Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tjard Bergmann
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Heike Hadrys
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Hauslage
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marc Kvansakul
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kathrin Wysocki
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Rob DeSalle
- American Museum of Natural History, New York, New York, USA
| |
Collapse
|
21
|
Block KR, O'Brien JM, Edwards WJ, Marnocha CL. Vertical structure of the bacterial diversity in meromictic Fayetteville Green Lake. Microbiologyopen 2021; 10:e1228. [PMID: 34459548 PMCID: PMC8330806 DOI: 10.1002/mbo3.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
The permanently stratified water columns in euxinic meromictic lakes produce niche environments for phototrophic sulfur oxidizers and diverse sulfur metabolisms. While Green Lake (Fayetteville, New York, NY) is known to host a diverse community of ecologically important sulfur bacteria, analyses of its microbial communities, to date, have been largely based on pigment analysis and smaller datasets from Sanger sequencing techniques. Here, we present the results of next-generation sequencing of the eubacterial community in the context of the water column geochemistry. We observed abundant purple and green sulfur bacteria, as well as anoxygenic photosynthesis-capable cyanobacteria within the upper monimolimnion. Amidst the phototrophs, we found other sulfur-cycling bacteria including sulfur disproportionators and chemotrophic sulfur oxidizers, further detailing our understanding of the sulfur cycle and microbial ecology of euxinic, meromictic lakes.
Collapse
Affiliation(s)
| | - Joy M. O'Brien
- Department of BiologyNiagara UniversityLewistonNew YorkUSA
| | | | | |
Collapse
|
22
|
Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol 2021; 30:143-157. [PMID: 34229911 DOI: 10.1016/j.tim.2021.05.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis, transforming the biology and chemistry of our planet. Genomic and evolutionary studies have revolutionized our understanding of early oxygenic phototrophs, complementing and dramatically extending inferences from the geologic record. Molecular clock estimates point to a Paleoarchean origin (3.6-3.2 billion years ago, bya) of the core proteins of Photosystem II (PSII) involved in oxygenic photosynthesis and a Mesoarchean origin (3.2-2.8 bya) for the last common ancestor of modern cyanobacteria. Nonetheless, most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis. Throughout their evolutionary history, cyanobacteria have played a key role in the global carbon cycle.
Collapse
|
23
|
Synthesis of 20-substituted chlorophyll derivatives with F-ring and optical properties of their less distorted chlorin π-systems. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Tahoun M, Gee CT, McCoy VE, Sander PM, Müller CE. Chemistry of porphyrins in fossil plants and animals. RSC Adv 2021; 11:7552-7563. [PMID: 35423242 PMCID: PMC8695116 DOI: 10.1039/d0ra10688g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Porphyrins are macrocyclic tetrapyrrole derivatives that are widely distributed in nature. They are often complexed with a metal ion located in the center of the ring system and may be modified by various substituents including additional rings, or by ring opening, which leads to a plethora of different functions. Due to their extended conjugated aromatic ring system, porphyrins absorb light in the visible range and therefore show characteristic colors. Well-known natural porphyrins include the red-colored heme present in hemoglobin, which is responsible for blood oxygen transport, and the chlorophylls in some bacteria and in plants which are utilized for photosynthesis. Porphyrins are mostly lipophilic pigments that display relatively high chemical stability. Therefore, they can even survive hundreds of millions of years. The present review article provides an overview of natural porphyrins, their chemical structures, and properties. A special focus is put on porphyrins discovered in the fossil record. Examples will be highlighted, and information on their chemical analysis will be provided. We anticipate that the development of novel analytical methods with increased sensitivity will prompt new discoveries of porphyrins in fossils.
Collapse
Affiliation(s)
- Mariam Tahoun
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Carole T Gee
- Institute of Geosciences, Division of Paleontology, University of Bonn Nussallee 8 53115 Bonn Germany
- Huntington Botanical Gardens 1151 Oxford Road San Marino California 91108 USA
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee 3209 N Maryland Ave Milwaukee WI 53211 USA
| | - P Martin Sander
- Institute of Geosciences, Division of Paleontology, University of Bonn Nussallee 8 53115 Bonn Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
25
|
Hurley SJ, Wing BA, Jasper CE, Hill NC, Cameron JC. Carbon isotope evidence for the global physiology of Proterozoic cyanobacteria. SCIENCE ADVANCES 2021; 7:7/2/eabc8998. [PMID: 33893090 PMCID: PMC7787495 DOI: 10.1126/sciadv.abc8998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/11/2020] [Indexed: 05/03/2023]
Abstract
Ancestral cyanobacteria are assumed to be prominent primary producers after the Great Oxidation Event [≈2.4 to 2.0 billion years (Ga) ago], but carbon isotope fractionation by extant marine cyanobacteria (α-cyanobacteria) is inconsistent with isotopic records of carbon fixation by primary producers in the mid-Proterozoic eon (1.8 to 1.0 Ga ago). To resolve this disagreement, we quantified carbon isotope fractionation by a wild-type planktic β-cyanobacterium (Synechococcus sp. PCC 7002), an engineered Proterozoic analog lacking a CO2-concentrating mechanism, and cyanobacterial mats. At mid-Proterozoic pH and pCO2 values, carbon isotope fractionation by the wild-type β-cyanobacterium is fully consistent with the Proterozoic carbon isotope record, suggesting that cyanobacteria with CO2-concentrating mechanisms were apparently the major primary producers in the pelagic Proterozoic ocean, despite atmospheric CO2 levels up to 100 times modern. The selectively permeable microcompartments central to cyanobacterial CO2-concentrating mechanisms ("carboxysomes") likely emerged to shield rubisco from O2 during the Great Oxidation Event.
Collapse
Affiliation(s)
- Sarah J Hurley
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80302, USA.
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80302, USA
| | - Claire E Jasper
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80302, USA
| | - Nicholas C Hill
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Jeffrey C Cameron
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA.
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| |
Collapse
|
26
|
Vinnichenko G, Jarrett AJM, Hope JM, Brocks JJ. Discovery of the oldest known biomarkers provides evidence for phototrophic bacteria in the 1.73 Ga Wollogorang Formation, Australia. GEOBIOLOGY 2020; 18:544-559. [PMID: 32216165 DOI: 10.1111/gbi.12390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The discovery of mid-Proterozoic (1.8-0.8 billion years ago, Ga) indigenous biomarkers is a challenge, since biologically informative molecules of such antiquity are commonly destroyed by metamorphism or overprinted by drilling fluids and other anthropogenic petroleum products. Previously, the oldest clearly indigenous biomarkers were reported from the 1.64 Ga Barney Creek Formation in the northern Australian McArthur Basin. In this study, we present the discovery of biomarker molecules from carbonaceous shales of the 1.73 Ga Wollogorang Formation in the southern McArthur Basin, extending the biomarker record back in time by ~90 million years. The extracted hydrocarbons illustrate typical mid-Proterozoic signatures with a large unresolved complex mixture, high methyl alkane/n-alkane ratios and the absence of eukaryotic steranes. Acyclic isoprenoids, saturated carotenoid derivatives, bacterial hopanes and aromatic hopanoids and steroids also were below detection limits. However, continuous homologous series of low molecular weight C14 -C19 2,3,4- and 2,3,6-trimethyl aryl isoprenoids (AI) were identified, and C20 -C22 AI homologues were tentatively identified. Based on elevated abundances relative to abiogenic isomers, we interpret the 2,3,6-AI isomer series as biogenic molecules and the 2,3,4-AI series as possibly biogenic. The biological sources for the 2,3,6-AI series include carotenoids of cyanobacteria and/or green sulphur bacteria (Chlorobiaceae). The lower concentrated 2,3,4-AI series may be derived from purple sulphur bacteria (Chromatiaceae). These degradation products of carotenoids are the oldest known clearly indigenous molecules of likely biogenic origin.
Collapse
Affiliation(s)
- Galina Vinnichenko
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| | | | - Janet M Hope
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| | - Jochen J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
27
|
Niche expansion for phototrophic sulfur bacteria at the Proterozoic-Phanerozoic transition. Proc Natl Acad Sci U S A 2020; 117:17599-17606. [PMID: 32647063 PMCID: PMC7395447 DOI: 10.1073/pnas.2006379117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carotenoid pigments afford valuable clues about the chemistry and biology of both modern and ancient aquatic environments. This study reveals that fossil aromatic carotenoids—long considered biomarkers for anoxygenic, phototrophic sulfur bacteria and their physiological requirement for hydrogen sulfide and illumination—can also be biosynthesized by oxygen-producing cyanobacteria. Cyanobacterial aromatic carotenoids, which are distinct in their chemical structures and occurrence patterns, are the most commonly encountered compounds in Proterozoic marine settings as well as in lakes from more recent eras. In contrast, carotenoids diagnostic for green sulfur bacteria of the family Chlorobiaceae became both prevalent and abundant in marine paleoenvironments beginning in the Phanerozoic Eon. This expansion occurs as marine sulfate inventories increased toward the end of the Proterozoic Eon. Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C40 diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C39 and C38 carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic–Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.
Collapse
|
28
|
Zumberge JA, Rocher D, Love GD. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities. GEOBIOLOGY 2020; 18:326-347. [PMID: 31865640 PMCID: PMC7233469 DOI: 10.1111/gbi.12378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/30/2019] [Indexed: 05/23/2023]
Abstract
Lipid biomarker assemblages preserved within the bitumen and kerogen phases of sedimentary rocks from the ca. 780-729 Ma Chuar and Visingsö Groups facilitate paleoenvironmental reconstructions and reveal fundamental aspects of emerging mid-Neoproterozoic marine communities. The Chuar and Visingsö Groups were deposited offshore of two distinct paleocontinents (Laurentia and Baltica, respectively) during the Tonian Period, and the rock samples used had not undergone excessive metamorphism. The major polycyclic alkane biomarkers detected in the rock bitumens and kerogen hydropyrolysates consist of tricyclic terpanes, hopanes, methylhopanes, and steranes. Major features of the biomarker assemblages include detectable and significant contribution from eukaryotes, encompassing the first robust occurrences of kerogen-bound regular steranes from Tonian rocks, including 21-norcholestane, 27-norcholestane, cholestane, ergostane, and cryostane, along with a novel unidentified C30 sterane series from our least thermally mature Chuar Group samples. Appreciable values for the sterane/hopane (S/H) ratio are found for both the free and kerogen-bound biomarker pools for both the Chuar Group rocks (S/H between 0.09 and 1.26) and the Visingsö Group samples (S/H between 0.03 and 0.37). The more organic-rich rock samples generally yield higher S/H ratios than for organic-lean substrates, which suggests a marine nutrient control on eukaryotic abundance relative to bacteria. A C27 sterane (cholestane) predominance among total C26 -C30 steranes is a common feature found for all samples investigated, with lower amounts of C28 steranes (ergostane and crysotane) also present. No traces of known ancient C30 sterane compounds; including 24-isopropylcholestanes, 24-n-propylcholestanes, or 26-methylstigmastanes, are detectable in any of these pre-Sturtian rocks. These biomarker characteristics support the view that the Tonian Period was a key interval in the history of life on our planet since it marked the transition from a bacterially dominated marine biosphere to an ocean system which became progressively enriched with eukaryotes. The eukaryotic source organisms likely encompassed photosynthetic primary producers, marking a rise in red algae, and consumers in a revamped trophic structure predating the Sturtian glaciation.
Collapse
Affiliation(s)
- J. Alex Zumberge
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| | | | - Gordon D. Love
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
29
|
Bobrovskiy I, Hope JM, Golubkova E, Brocks JJ. Food sources for the Ediacara biota communities. Nat Commun 2020; 11:1261. [PMID: 32152319 PMCID: PMC7062841 DOI: 10.1038/s41467-020-15063-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
The Ediacara biota represents the first complex macroscopic organisms in the geological record, foreshadowing the radiation of eumetazoan animals in the Cambrian explosion. However, little is known about the contingencies that lead to their emergence, including the possible roles of nutrient availability and the quality of food sources. Here we present information on primary producers in the Ediacaran based on biomarker molecules that were extracted from sediments hosting Ediacaran macrofossils. High relative abundances of algal steranes over bacterial hopanes suggest that the Ediacara biota inhabited nutrient replete environments with an abundance of algal food sources comparable to Phanerozoic ecosystems. Thus, organisms of the Ediacara biota inhabited nutrient-rich environments akin to those that later fuelled the Cambrian explosion.
Collapse
Affiliation(s)
- Ilya Bobrovskiy
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Janet M Hope
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Elena Golubkova
- Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Jochen J Brocks
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
30
|
Doi M, Tamiaki H. Synthesis of Sedimentary Porphyrin-like Chlorophyll- a Derivatives Lacking the 3-Substituent. CHEM LETT 2020. [DOI: 10.1246/cl.190911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marie Doi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
31
|
Reinhard CT, Planavsky NJ, Ward BA, Love GD, Le Hir G, Ridgwell A. The impact of marine nutrient abundance on early eukaryotic ecosystems. GEOBIOLOGY 2020; 18:139-151. [PMID: 32065509 DOI: 10.1111/gbi.12384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The rise of eukaryotes to ecological prominence represents one of the most dramatic shifts in the history of Earth's biosphere. However, there is an enigmatic temporal lag between the emergence of eukaryotic organisms in the fossil record and their much later ecological expansion. In parallel, there is evidence for a secular increase in the availability of the key macronutrient phosphorus (P) in Earth's oceans. Here, we use an Earth system model equipped with a size-structured marine ecosystem to explore relationships between plankton size, trophic complexity, and the availability of marine nutrients. We find a strong dependence of planktonic ecosystem structure on ocean nutrient abundance, with a larger ocean nutrient inventory leading to greater overall biomass, broader size spectra, and increasing abundance of large Zooplankton. If existing estimates of Proterozoic marine nutrient levels are correct, our results suggest that increases in the ecological impact of eukaryotic algae and trophic complexity in eukaryotic ecosystems were directly linked to restructuring of the global P cycle associated with the protracted rise of surface oxygen levels. Our results thus suggest an indirect but potentially important mechanism by which ocean oxygenation may have acted to shape marine ecological function during late Proterozoic time.
Collapse
Affiliation(s)
- Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
| | - Noah J Planavsky
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Geology and Geophysics, Yale University, New Haven, Connecticut
| | - Ben A Ward
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gordon D Love
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth and Planetary Sciences, University of California, Riverside, California
| | | | - Andy Ridgwell
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, California
- Department of Earth and Planetary Sciences, University of California, Riverside, California
- School of Geographical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
32
|
Kipp MA, Stüeken EE, Gehringer MM, Sterelny K, Scott JK, Forster PI, Strömberg CAE, Buick R. Exploring cycad foliage as an archive of the isotopic composition of atmospheric nitrogen. GEOBIOLOGY 2020; 18:152-166. [PMID: 31769156 DOI: 10.1111/gbi.12374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Molecular nitrogen (N2 ) constitutes the majority of Earth's modern atmosphere, contributing ~0.79 bar of partial pressure (pN2 ). However, fluctuations in pN2 may have occurred on 107 -109 year timescales in Earth's past, perhaps altering the isotopic composition of atmospheric nitrogen. Here, we explore an archive that may record the isotopic composition of atmospheric N2 in deep time: the foliage of cycads. Cycads are ancient gymnosperms that host symbiotic N2 -fixing cyanobacteria in modified root structures known as coralloid roots. All extant species of cycads are known to host symbionts, suggesting that this N2 -fixing capacity is perhaps ancestral, reaching back to the early history of cycads in the late Paleozoic. Therefore, if the process of microbial N2 fixation records the δ15 N value of atmospheric N2 in cycad foliage, the fossil record of cycads may provide an archive of atmospheric δ15 N values. To explore this potential proxy, we conducted a survey of wild cycads growing in a range of modern environments to determine whether cycad foliage reliably records the isotopic composition of atmospheric N2 . We find that neither biological nor environmental factors significantly influence the δ15 N values of cycad foliage, suggesting that they provide a reasonably robust record of the δ15 N of atmospheric N2 . Application of this proxy to the record of carbonaceous cycad fossils may not only help to constrain changes in atmospheric nitrogen isotope ratios since the late Paleozoic, but also could shed light on the antiquity of the N2 -fixing symbiosis between cycads and cyanobacteria.
Collapse
Affiliation(s)
- Michael A Kipp
- Department of Earth & Space Sciences, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory - NASA Nexus for Exoplanet System Science, Seattle, WA, USA
| | - Eva E Stüeken
- Virtual Planetary Laboratory - NASA Nexus for Exoplanet System Science, Seattle, WA, USA
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, UK
| | - Michelle M Gehringer
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Kim Sterelny
- School of Philosophy, Australian National University, Canberra, ACT, Australia
- School of History, Philosophy, Political Science & International Relations, Victoria University of Wellington, Wellington, New Zealand
| | - John K Scott
- CSIRO Land and Water, Wembley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Paul I Forster
- Department of Environment & Science, Queensland Herbarium, Toowong, Qld, Australia
| | - Caroline A E Strömberg
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - Roger Buick
- Department of Earth & Space Sciences, University of Washington, Seattle, WA, USA
- Virtual Planetary Laboratory - NASA Nexus for Exoplanet System Science, Seattle, WA, USA
| |
Collapse
|
33
|
Tang Q, Pang K, Yuan X, Xiao S. A one-billion-year-old multicellular chlorophyte. Nat Ecol Evol 2020; 4:543-549. [PMID: 32094536 PMCID: PMC8668152 DOI: 10.1038/s41559-020-1122-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
Chlorophytes (representing a clade within the Viridiplantae and a sister group of the Streptophyta) probably dominated marine export bioproductivity and played a key role in facilitating ecosystem complexity before the Mesozoic diversification of phototrophic eukaryotes such as diatoms, coccolithophorans and dinoflagellates. Molecular clock and biomarker data indicate that chlorophytes diverged in the Mesoproterozoic or early Neoproterozoic, followed by their subsequent phylogenetic diversification, multicellular evolution and ecological expansion in the late Neoproterozoic and Palaeozoic. This model, however, has not been rigorously tested with palaeontological data because of the scarcity of Proterozoic chlorophyte fossils. Here we report abundant millimetre-sized, multicellular and morphologically differentiated macrofossils from rocks approximately 1,000 million years ago. These fossils are described as Proterocladus antiquus new species and are interpreted as benthic siphonocladalean chlorophytes, suggesting that chlorophytes acquired macroscopic size, multicellularity and cellular differentiation nearly a billion years ago, much earlier than previously thought.
Collapse
Affiliation(s)
- Qing Tang
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, USA.
| | - Ke Pang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xunlai Yuan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuhai Xiao
- Department of Geosciences and Global Change Center, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
34
|
Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ. Cyanobacteria evolution: Insight from the fossil record. Free Radic Biol Med 2019; 140:206-223. [PMID: 31078731 PMCID: PMC6880289 DOI: 10.1016/j.freeradbiomed.2019.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Accepted: 05/05/2019] [Indexed: 11/07/2022]
Abstract
Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably earlier. They are also major primary producers in past and present oceans, and the ancestors of the chloroplast. Nevertheless, the identification of cyanobacteria in the early fossil record remains ambiguous because the morphological criteria commonly used are not always reliable for microfossil interpretation. Recently, new biosignatures specific to cyanobacteria were proposed. Here, we review the classic and new cyanobacterial biosignatures. We also assess the reliability of the previously described cyanobacteria fossil record and the challenges of molecular approaches on modern cyanobacteria. Finally, we suggest possible new calibration points for molecular clocks, and strategies to improve our understanding of the timing and pattern of the evolution of cyanobacteria and oxygenic photosynthesis.
Collapse
Affiliation(s)
- Catherine F Demoulin
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium.
| | - Yannick J Lara
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| | - Luc Cornet
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium; Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| | - Denis Baurain
- Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBioS-CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| |
Collapse
|
35
|
Braakman R. Evolution of cellular metabolism and the rise of a globally productive biosphere. Free Radic Biol Med 2019; 140:172-187. [PMID: 31082508 DOI: 10.1016/j.freeradbiomed.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
Metabolic processes in cells and chemical processes in the environment are fundamentally intertwined and have evolved in concert for most of Earth's existence. Here I argue that intrinsic properties of cellular metabolism imposed central constraints on the historical trajectories of biopsheric productivity and atmospheric oxygenation. Photosynthesis depends on iron, but iron is highly insoluble under the aerobic conditions produced by oxygenic photosynthesis. These counteracting constraints led to two major stages of Earth oxygenation. After a cyanobacteria-driven biospheric expansion near the Archean-Proterozoic boundary, productivity remained largely restricted to continental boundaries and shallow aquatic environments where weathering inputs made iron more accessible. The anoxic deep open ocean was rich in free iron during the Proterozoic, but this iron was largely inaccessible, partly because an otherwise nutrient-poor ocean was limiting to photosynthesis, but also because a photosynthetic expansion would have quenched its own iron supply. Near the Proterozoic-Phanerozoic boundary, bioenergetics innovations allowed eukaryotic photosynthesis to overcome these interconnected negative feedbacks and begin expanding into the deep open oceans and onto the continents, where nutrients are inherently harder to come by. Key insights into what drove the ecological rise of eukaryotic photosynthesis emerge from analyses of marine Synechococcus and Prochlorococcus, abundant marine picocyanobacteria whose ancestors colonized the oceans in the Neoproterozoic. The reconstructed evolution of this group reveals a sequence of innovations that ultimately produced a form of photosynthesis in Prochlorococcus that is more like that of green plant cells than other cyanobacteria. Innovations increased the energy flux of cells, thereby enhancing their ability to acquire sparse nutrients, and as by-product also increased the production of organic carbon waste. Some of these organic waste products had the ability to chelate iron and make it bioavailable, thereby indirectly pushing the oceans through a transition from an anoxic state rich in free iron to an oxygenated state with organic carbon-bound iron. Resulting conditions (and parallel processes on the continents) in turn led to a series of positive feedbacks that increased the availability of other nutrients, thereby promoting the rise of a globally productive biosphere. In addition to the occurrence of major biospheric expansions, the several hundred million-year periods around the Archean-Proterozoic and Proterozoic-Phanerozoic boundaries share a number of other parallels. Both epochs have also been linked to major carbon cycle perturbations and global glaciations, as well as changes in the nature of plate tectonics and increases in continental exposure and weathering. This suggests the dynamics of life and Earth are intimately intertwined across many levels and that general principles governed transitions in these coupled dynamics at both times in Earth history.
Collapse
Affiliation(s)
- Rogier Braakman
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA; Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, USA.
| |
Collapse
|
36
|
Doi M, Tamiaki H. Synthesis of a chlorophyll-a derivative fused with an additional exo-five-membered ring and its optical properties. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Zhang Y, Schulz F, Rytting BM, Walters CC, Kaiser K, Metz JN, Harper MR, Merchant SS, Mennito AS, Qian K, Kushnerick JD, Kilpatrick PK, Gross L. Elucidating the Geometric Substitution of Petroporphyrins by Spectroscopic Analysis and Atomic Force Microscopy Molecular Imaging. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2019; 33:6088-6097. [PMID: 31354183 PMCID: PMC6647966 DOI: 10.1021/acs.energyfuels.9b00816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Indexed: 06/10/2023]
Abstract
Determination of the molecular structures of petroporphyrins has been crucial to understand the diagenetic pathways and maturation of petroleum. However, these studies have been hampered by their structural complexity and the challenges associated with their isolation. In comparison to the skeletal macrocyclic structures, much less is known about the substitutions, which are more sensitive to the maturation and diagenesis pathways. While these isolated vanadyl petroporphyrins largely consist of etioporphyrin and deoxophylloerythroetioporphyrin as expected, surprisingly, we find evidence that one or a few β hydrogens are present in petroporphyrins of low carbon numbers using a combination of ultraviolet-visible spectroscopy, Fourier transform ion cyclotron resonance mass spectrometry, and non-contact atomic force microscopy. Petroporphyrins with β hydrogens were not anticipated on the basis of their biological precursors. The data support dealkylation under catagenesis but not transalkylation or random alkylation of the β and meso positions, despite the fact that more complex porphyrin structures are formed.
Collapse
Affiliation(s)
- Yunlong Zhang
- ExxonMobil
Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Fabian Schulz
- IBM
Research−Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - B. McKay Rytting
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Clifford C. Walters
- ExxonMobil
Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Katharina Kaiser
- IBM
Research−Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Jordan N. Metz
- ExxonMobil
Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Michael R. Harper
- ExxonMobil
Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Shamel S. Merchant
- ExxonMobil
Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Anthony S. Mennito
- ExxonMobil
Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Kuangnan Qian
- ExxonMobil
Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - J. Douglas Kushnerick
- ExxonMobil
Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Peter K. Kilpatrick
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Leo Gross
- IBM
Research−Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
38
|
Jarrett AJM, Cox GM, Brocks JJ, Grosjean E, Boreham CJ, Edwards DS. Microbial assemblage and palaeoenvironmental reconstruction of the 1.38 Ga Velkerri Formation, McArthur Basin, northern Australia. GEOBIOLOGY 2019; 17:360-380. [PMID: 30734481 PMCID: PMC6618112 DOI: 10.1111/gbi.12331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/13/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
The ca. 1.38 billion years (Ga) old Roper Group of the McArthur Basin, northern Australia, is one of the most extensive Proterozoic hydrocarbon-bearing units. Organic-rich black siltstones from the Velkerri Formation were deposited in a deep-water sequence and were analysed to determine their organic geochemical (biomarker) signatures, which were used to interpret the microbial diversity and palaeoenvironment of the Roper Seaway. The indigenous hydrocarbon biomarker assemblages describe a water column dominated by bacteria with large-scale heterotrophic reworking of the organic matter in the water column or bottom sediment. Possible evidence for microbial reworking includes a large unresolved complex mixture (UCM), high ratios of mid-chained and terminally branched monomethyl alkanes relative to n-alkanes-features characteristic of indigenous Proterozoic bitumen. Steranes, biomarkers for single-celled and multicellular eukaryotes, were below detection limits in all extracts analysed, despite eukaryotic microfossils having been previously identified in the Roper Group, albeit largely in organically lean shallower water facies. These data suggest that eukaryotes, while present in the Roper Seaway, were ecologically restricted and contributed little to export production. The 2,3,4- and 2,3,6-trimethyl aryl isoprenoids (TMAI) were absent or in very low concentration in the Velkerri Formation. The low abundance is primary and not caused by thermal destruction. The combination of increased dibenzothiophene in the Amungee Member of the Velkerri Formation and trace metal redox geochemistry suggests that degradation of carotenoids occurred during intermittent oxygen exposure at the sediment-water interface and/or the water column was rarely euxinic in the photic zone and likely only transiently euxinic at depth. A comparison of this work with recently published biomarker and trace elemental studies from other mid-Proterozoic basins demonstrates that microbial environments, water column geochemistry and basin redox were heterogeneous.
Collapse
Affiliation(s)
| | - Grant M. Cox
- Department of Earth SciencesCentre for Tectonics Resources and Exploration (TRaX)The University of AdelaideAdelaideSouth AustraliaAustralia
| | - Jochen J. Brocks
- Research School of Earth SciencesAustralian National UniversityActonAustralian Capital TerritoryAustralia
| | | | - Chris J. Boreham
- Geoscience AustraliaCanberraAustralian Capital TerritoryAustralia
| | | |
Collapse
|
39
|
Graham LE. Digging deeper: why we need more Proterozoic algal fossils and how to get them. JOURNAL OF PHYCOLOGY 2019; 55:1-6. [PMID: 30270424 DOI: 10.1111/jpy.12790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Known Proterozoic algal fossils raise compelling questions about the origin and diversification of cyanobacteria and eukaryotic algae, and their ecological influence in deep time. This Perspectives article describes particular examples of persistent evolutionary and biogeochemical issues whose resolution would be aided by additional algal fossil evidence from Proterozoic deposits, which have been the subjects of recent intensive study. New Proterozoic geosciences literature relevant to the early diversification of algae is surveyed. Previously underappreciated algal traits that might improve taxonomic attributions of fossil remains are highlighted. Processes that phycologists could use to improve detection of algal fossils are recommended. Potential geological sources of new Proterozoic fossils are suggested.
Collapse
Affiliation(s)
- Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Shen Y, Zhao R, Tolić N, Tfaily MM, Robinson EW, Boiteau R, Paša-Tolić L, Hess NJ. Online supercritical fluid extraction mass spectrometry (SFE-LC-FTMS) for sensitive characterization of soil organic matter. Faraday Discuss 2019; 218:157-171. [DOI: 10.1039/c9fd00011a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel technical approach for subcritical fluid extraction (SFE) for organic matter characterization in complex matrices such as soil.
Collapse
Affiliation(s)
- Yufeng Shen
- Biological Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
- CoAnn Technologies
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Nikola Tolić
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Malak M. Tfaily
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
- Department of Soil, Water and Environmental Science
| | - Errol W. Robinson
- Biological Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Rene Boiteau
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
- College of Earth, Ocean and Atmospheric Sciences
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Nancy J. Hess
- Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|
41
|
Will SE, Henke P, Boedeker C, Huang S, Brinkmann H, Rohde M, Jarek M, Friedl T, Seufert S, Schumacher M, Overmann J, Neumann-Schaal M, Petersen J. Day and Night: Metabolic Profiles and Evolutionary Relationships of Six Axenic Non-Marine Cyanobacteria. Genome Biol Evol 2019; 11:270-294. [PMID: 30590650 PMCID: PMC6349668 DOI: 10.1093/gbe/evy275] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria are dominant primary producers of various ecosystems and they colonize marine as well as freshwater and terrestrial habitats. On the basis of their oxygenic photosynthesis they are known to synthesize a high number of secondary metabolites, which makes them promising for biotechnological applications. State-of-the-art sequencing and analytical techniques and the availability of several axenic strains offer new opportunities for the understanding of the hidden metabolic potential of cyanobacteria beyond those of single model organisms. Here, we report comprehensive genomic and metabolic analyses of five non-marine cyanobacteria, that is, Nostoc sp. DSM 107007, Anabaena variabilis DSM 107003, Calothrix desertica DSM 106972, Chroococcidiopsis cubana DSM 107010, Chlorogloeopsis sp. PCC 6912, and the reference strain Synechocystis sp. PCC 6803. Five strains that are prevalently belonging to the order Nostocales represent the phylogenetic depth of clade B1, a morphologically highly diverse sister lineage of clade B2 that includes strain PCC 6803. Genome sequencing, light and scanning electron microscopy revealed the characteristics and axenicity of the analyzed strains. Phylogenetic comparisons showed the limits of the 16S rRNA gene for the classification of cyanobacteria, but documented the applicability of a multilocus sequence alignment analysis based on 43 conserved protein markers. The analysis of metabolites of the core carbon metabolism showed parts of highly conserved metabolic pathways as well as lineage specific pathways such as the glyoxylate shunt, which was acquired by cyanobacteria at least twice via horizontal gene transfer. Major metabolic changes were observed when we compared alterations between day and night samples. Furthermore, our results showed metabolic potential of cyanobacteria beyond Synechocystis sp. PCC 6803 as model organism and may encourage the cyanobacterial community to broaden their research to related organisms with higher metabolic activity in the desired pathways.
Collapse
Affiliation(s)
- Sabine Eva Will
- Nachwuchsgruppe Bakterielle Metabolomik, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Petra Henke
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Boedeker
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Sixing Huang
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Henner Brinkmann
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Thomas Friedl
- Sammlung von Algenkulturen der Universität Göttingen (SAG), Germany
| | - Steph Seufert
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Martin Schumacher
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörg Overmann
- Abteilung Mikrobielle Ökologie und Diversität, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Nachwuchsgruppe Bakterielle Metabolomik, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörn Petersen
- Abteilung Protisten und Cyanobakterien, Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| |
Collapse
|
42
|
Slotznick SP, Swanson-Hysell NL, Sperling EA. Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy. Proc Natl Acad Sci U S A 2018; 115:12938-12943. [PMID: 30509974 PMCID: PMC6304936 DOI: 10.1073/pnas.1813493115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Terrestrial environments have been suggested as an oxic haven for eukaryotic life and diversification during portions of the Proterozoic Eon when the ocean was dominantly anoxic. However, iron speciation and Fe/Al data from the ca. 1.1-billion-year-old Nonesuch Formation, deposited in a large lake and bearing a diverse assemblage of early eukaryotes, are interpreted to indicate persistently anoxic conditions. To shed light on these distinct hypotheses, we analyzed two drill cores spanning the transgression into the lake and its subsequent shallowing. While the proportion of highly reactive to total iron (FeHR/FeT) is consistent through the sediments and typically in the range taken to be equivocal between anoxic and oxic conditions, magnetic experiments and petrographic data reveal that iron exists in three distinct mineral assemblages resulting from an oxycline. In the deepest waters, reductive dissolution of iron oxides records an anoxic environment. However, the remainder of the sedimentary succession has iron oxide assemblages indicative of an oxygenated environment. At intermediate water depths, a mixed-phase facies with hematite and magnetite indicates low oxygen conditions. In the shallowest waters of the lake, nearly every iron oxide has been oxidized to its most oxidized form, hematite. Combining magnetics and textural analyses results in a more nuanced understanding of ambiguous geochemical signals and indicates that for much of its temporal duration, and throughout much of its water column, there was oxygen in the waters of Paleolake Nonesuch.
Collapse
Affiliation(s)
- Sarah P Slotznick
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720;
| | | | - Erik A Sperling
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| |
Collapse
|