1
|
Rivera-Cardona J, Mahajan T, Kakuturu NR, Teo QW, Lederer J, Thayer EA, Rowland EF, Heimburger K, Sun J, McDonald CA, Mickelson CK, Langlois RA, Wu NC, Milenkovic O, Maslov S, Brooke CB. Intrinsic OASL expression licenses interferon induction during influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643375. [PMID: 40166309 PMCID: PMC11956916 DOI: 10.1101/2025.03.14.643375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Effective control of viral infection requires rapid induction of the innate immune response, especially the type I and type III interferon (IFN) systems. Despite the critical role of IFN induction in host defense, numerous studies have established that most cells fail to produce IFNs in response to viral stimuli. The specific factors that govern cellular heterogeneity in IFN induction potential during infection are not understood. To identify specific host factors that license some cells but not others to mount an IFN response to viral infection, we developed an approach for analyzing temporal scRNA-seq data of influenza A virus (IAV)-infected cells. This approach identified the expression of several interferon stimulated genes (ISGs) within pre-infection cells as correlates of IFN induction potential of those cells, post-infection. Validation experiments confirmed that intrinsic expression of the ISG OASL is essential for robust IFNL induction during IAV infection. Altogether, our findings reveal an important role for IFN-independent, intrinsic expression of ISGs in promoting IFN induction and provide new insights into the mechanisms that regulate cell-to-cell heterogeneity in innate immune activation.
Collapse
Affiliation(s)
- Joel Rivera-Cardona
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tarun Mahajan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Neeharika R. Kakuturu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Qi Wen Teo
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Urbana, Illinois, USA
| | - Joseph Lederer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth A. Thayer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth F. Rowland
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kyle Heimburger
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jiayi Sun
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cera A. McDonald
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clayton K. Mickelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas C. Wu
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Urbana, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Olgica Milenkovic
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Artificial Intelligence and Modeling, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Artificial Intelligence and Modeling, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Ferreri LM, Seibert B, Caceres CJ, Patatanian K, Holmes KE, Gay LC, Cargnin Faccin F, Cardenas M, Carnaccini S, Shetty N, Rajao D, Koelle K, Marr LC, Perez DR, Lowen AC. Dispersal of influenza virus populations within the respiratory tract shapes their evolutionary potential. Proc Natl Acad Sci U S A 2025; 122:e2419985122. [PMID: 39835898 PMCID: PMC11789087 DOI: 10.1073/pnas.2419985122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Viral infections are characterized by dispersal from an initial site to secondary locations within the host. How the resultant spatial heterogeneity shapes within-host genetic diversity and viral evolutionary pathways is poorly understood. Here, we show that virus dispersal within and between the nasal cavity and trachea maintains diversity and is therefore conducive to adaptive evolution, whereas dispersal to the lungs gives rise to population heterogeneity. We infected ferrets either intranasally or by aerosol with a barcoded influenza A/California/07/2009 (H1N1) virus. At 1, 2, or 4 days postinfection, dispersal was assessed by collecting 52 samples from throughout the respiratory tract of each animal. Irrespective of inoculation route, barcode compositions across the nasal turbinates and trachea were similar and highly diverse, revealing little constraint on the establishment of infection in the nasal cavity and descent through the trachea. Conversely, infection of the lungs produced genetically distinct viral populations. Lung populations were pauci-clonal, suggesting that each seeded location received relatively few viral genotypes. While aerosol inoculation gave distinct populations at every lung site sampled, within-host dispersal after intranasal inoculation produced larger patches, indicative of local expansion following seeding of the lungs. Throughout the respiratory tract, barcode diversity declined over time, but new diversity was generated through mutation. De novo variants were often unique to a given location, indicating that localized replication following dispersal resulted in population divergence. In summary, dispersal within the respiratory tract operates differently between regions and contributes to the potential for viral evolution to proceed independently in multiple within-host subpopulations.
Collapse
Affiliation(s)
- Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Kayle Patatanian
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Nishit Shetty
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA24061
| | - Daniela Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Katia Koelle
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA30322
- Emory Center of Excellence for Influenza Research and Response, Atlanta, GA30322
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA24061
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA30602
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
- Emory Center of Excellence for Influenza Research and Response, Atlanta, GA30322
| |
Collapse
|
3
|
Becker JT, Mickelson CK, Pross LM, Sanders AE, Vogt ER, Shepherd FK, Wick C, Barkhymer AJ, Aron SL, Fay EJ, Harris RS, Langlois RA. Mammalian ZAP and KHNYN independently restrict CpG-enriched avian viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.629495. [PMID: 39763980 PMCID: PMC11703154 DOI: 10.1101/2024.12.23.629495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Zoonotic viruses are an omnipresent threat to global health. Influenza A virus (IAV) transmits between birds, livestock, and humans. Proviral host factors involved in the cross-species interface are well known. Less is known about antiviral mechanisms that suppress IAV zoonoses. We observed CpG dinucleotide depletion in human IAV relative to avian IAV. Notably, human ZAP selectively depletes CpG-enriched viral RNAs with its cofactor KHNYN. ZAP is conserved in tetrapods but we uncovered that avian species lack KHNYN. We found that chicken ZAP does not affect IAV (PR8) or CpG enriched IAV. Human ZAP or KHNYN independently restricted CpG enriched IAV by overexpression in chicken cells or knockout in human cells. Additionally, mammalian ZAP-L and KHNYN also independently restricted an avian retrovirus (ROSV). Curiously, platypus KHNYN, the most divergent from eutherian mammals, was also capable of direct restriction of multiple diverse viruses. We suggest that mammalian KHNYN may be a bona fide restriction factor with cell-autonomous activity. Furthermore, we speculate that through repeated contact between avian viruses and mammalian hosts, protein changes may accompany CpG-biased mutations or reassortment to evade mammalian ZAP and KHNYN.
Collapse
Affiliation(s)
- Jordan T Becker
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
- Co-corresponding authors
- Lead contact
| | - Clayton K Mickelson
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Lauren M Pross
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Autumn E Sanders
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Esther R Vogt
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Frances K Shepherd
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Chloe Wick
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Alison J Barkhymer
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Stephanie L Aron
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Elizabeth J Fay
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, USA, 78229
- Howard Hughes Medical Institute, University of Texas Health, San Antonio, TX, USA, 78229
- Co-corresponding authors
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota - Twin Cities, Minneapolis, MN, USA, 55455
- Co-corresponding authors
| |
Collapse
|
4
|
Soni S, Antonescu L, Ro K, Horowitz JC, Mebratu YA, Nho RS. Influenza, SARS-CoV-2, and Their Impact on Chronic Lung Diseases and Fibrosis: Exploring Therapeutic Options. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1807-1822. [PMID: 39032604 PMCID: PMC11423761 DOI: 10.1016/j.ajpath.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Respiratory tract infections represent a significant global public health concern, disproportionately affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. RNA viruses, particularly influenza viruses and coronaviruses, significantly contribute to respiratory illnesses, especially in immunosuppressed and elderly individuals. Influenza A viruses (IAVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to pose global health threats due to their capacity to cause annual epidemics, with profound implications for public health. In addition, the increase in global life expectancy is influencing the dynamics and outcomes of respiratory viral infections. Understanding the molecular mechanisms by which IAVs and SARS-CoV-2 contribute to lung disease progression is therefore crucial. The aim of this review is to comprehensively explore the impact of IAVs and SARS-CoV-2 on chronic lung diseases, with a specific focus on pulmonary fibrosis in the elderly. It also outlines potential preventive and therapeutic strategies and suggests directions for future research.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Laura Antonescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kaylin Ro
- Scripps Research Institute, San Diego, California
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| | - Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
5
|
Roach SN, Shepherd FK, Mickelson CK, Fiege JK, Thielen BK, Pross LM, Sanders AE, Mitchell JS, Robertson M, Fife BT, Langlois RA. Tropism for ciliated cells is the dominant driver of influenza viral burst size in the human airway. Proc Natl Acad Sci U S A 2024; 121:e2320303121. [PMID: 39008691 PMCID: PMC11295045 DOI: 10.1073/pnas.2320303121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/26/2024] [Indexed: 07/17/2024] Open
Abstract
Influenza viruses pose a significant burden on global human health. Influenza has a broad cellular tropism in the airway, but how infection of different epithelial cell types impacts replication kinetics and burden in the airways is not fully understood. Using primary human airway cultures, which recapitulate the diverse epithelial cell landscape of the human airways, we investigated the impact of cell type composition on virus tropism and replication kinetics. Cultures were highly diverse across multiple donors and 30 independent differentiation conditions and supported a range of influenza replication. Although many cell types were susceptible to influenza, ciliated and secretory cells were predominantly infected. Despite the strong tropism preference for secretory and ciliated cells, which consistently make up 75% or more of infected cells, only ciliated cells were associated with increased virus production. Surprisingly, infected secretory cells were associated with overall reduced virus output. The disparate response and contribution to influenza virus production could be due to different pro- and antiviral interferon-stimulated gene signatures between ciliated and secretory populations, which were interrogated with single-cell RNA sequencing. These data highlight the heterogeneous outcomes of influenza virus infections in the complex cellular environment of the human airway and the disparate impacts of infected cell identity on multiround burst size, even among preferentially infected cell types.
Collapse
Affiliation(s)
- Shanley N. Roach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Clayton K. Mickelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Jessica K. Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Beth K. Thielen
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, MN55455
| | - Lauren M. Pross
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Autumn E. Sanders
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Jason S. Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN55455
| | - Mason Robertson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Brian T. Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN55455
- Department of Medicine, University of Minnesota, Minneapolis, MN55455
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
6
|
Phan T, Ye Q, Stach C, Lin YC, Cao H, Bowen A, Langlois RA, Hu WS. Synthetic Cell Lines for Inducible Packaging of Influenza A Virus. ACS Synth Biol 2024; 13:546-557. [PMID: 38259154 PMCID: PMC10878389 DOI: 10.1021/acssynbio.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
Influenza A virus (IAV) is a negative-sense RNA virus that causes seasonal infections and periodic pandemics, inflicting huge economic and human costs on society. The current production of influenza virus for vaccines is initiated by generating a seed virus through the transfection of multiple plasmids in HEK293 cells followed by the infection of seed viruses into embryonated chicken eggs or cultured mammalian cells. We took a system design and synthetic biology approach to engineer cell lines that can be induced to produce all viral components except hemagglutinin (HA) and neuraminidase (NA), which are the antigens that specify the variants of IAV. Upon the transfection of HA and NA, the cell line can produce infectious IAV particles. RNA-Seq transcriptome analysis revealed inefficient synthesis of viral RNA and upregulated expression of genes involved in host response to viral infection as potential limiting factors and offered possible targets for enhancing the productivity of the synthetic cell line. Overall, we showed for the first time that it was possible to create packaging cell lines for the production of a cytopathic negative-sense RNA virus. The approach allows for the exploitation of altered kinetics of the synthesis of viral components and offers a new method for manufacturing viral vaccines.
Collapse
Affiliation(s)
- Thu Phan
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Qian Ye
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Christopher Stach
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yu-Chieh Lin
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haoyu Cao
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Annika Bowen
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan A. Langlois
- Department
of Microbiology and Immunology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei-Shou Hu
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Sychla A, Stach CS, Roach SN, Hayward AN, Langlois RA, Smanski MJ. High-throughput investigation of genetic design constraints in domesticated Influenza A Virus for transient gene delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580300. [PMID: 38405907 PMCID: PMC10888799 DOI: 10.1101/2024.02.14.580300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Replication-incompetent single cycle infectious Influenza A Virus (sciIAV) has demonstrated utility as a research and vaccination platform. Protein-based therapeutics are increasingly attractive due to their high selectivity and potent efficacy but still suffer from low bioavailability and high manufacturing cost. Transient RNA-mediated delivery is a safe alternative that allows for expression of protein-based therapeutics within the target cells or tissues but is limited by delivery efficiency. Here, we develop recombinant sciIAV as a platform for transient gene delivery in vivo and in vitro for therapeutic, research, and manufacturing applications (in vivo antimicrobial production, cell culture contamination clearance, and production of antiviral proteins in vitro). While adapting the system to deliver new protein cargo we discovered expression differences presumably resulting from genetic context effects. We applied a high-throughput screen to map these within the 3'-untranslated and coding regions of the hemagglutinin-encoding segment 4. This screen revealed permissible mutations in the 3'-UTR and depletion of RNA level motifs in the N-terminal coding region.
Collapse
Affiliation(s)
- Adam Sychla
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Christopher S Stach
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Shanley N Roach
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Department of Microbiology and Immunology, University of Minnesota, Saint Paul, MN 55108
| | - Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| | - Ryan A Langlois
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Department of Microbiology and Immunology, University of Minnesota, Saint Paul, MN 55108
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, MN 55108
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108
| |
Collapse
|
8
|
Krischuns T, Arragain B, Isel C, Paisant S, Budt M, Wolff T, Cusack S, Naffakh N. The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome. Nat Commun 2024; 15:1064. [PMID: 38316757 PMCID: PMC10844641 DOI: 10.1038/s41467-024-45205-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
The current model is that the influenza virus polymerase (FluPol) binds either to host RNA polymerase II (RNAP II) or to the acidic nuclear phosphoprotein 32 (ANP32), which drives its conformation and activity towards transcription or replication of the viral genome, respectively. Here, we provide evidence that the FluPol-RNAP II binding interface, beyond its well-acknowledged function in cap-snatching during transcription initiation, has also a pivotal role in replication of the viral genome. Using a combination of cell-based and in vitro approaches, we show that the RNAP II C-terminal-domain, jointly with ANP32, enhances FluPol replication activity. We observe successive conformational changes to switch from a transcriptase to a replicase conformation in the presence of the bound RNPAII C-terminal domain and propose a model in which the host RNAP II is the anchor for transcription and replication of the viral genome. Our data open new perspectives on the spatial coupling of viral transcription and replication and the coordinated balance between these two activities.
Collapse
Affiliation(s)
- Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| | | | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Matthias Budt
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Thorsten Wolff
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble, France.
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| |
Collapse
|
9
|
Bruurs LJM, Müller M, Schipper JG, Rabouw HH, Boersma S, van Kuppeveld FJM, Tanenbaum ME. Antiviral responses are shaped by heterogeneity in viral replication dynamics. Nat Microbiol 2023; 8:2115-2129. [PMID: 37814072 PMCID: PMC10627821 DOI: 10.1038/s41564-023-01501-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
Antiviral signalling, which can be activated in host cells upon virus infection, restricts virus replication and communicates infection status to neighbouring cells. The antiviral response is heterogeneous, both quantitatively (efficiency of response activation) and qualitatively (transcribed antiviral gene set). To investigate the basis of this heterogeneity, we combined Virus Infection Real-time IMaging (VIRIM), a live-cell single-molecule imaging method, with real-time readouts of the dsRNA sensing pathway to analyse the response of human cells to encephalomyocarditis virus (EMCV) infection. We find that cell-to-cell heterogeneity in viral replication rates early in infection affect the efficiency of antiviral response activation, with lower replication rates leading to more antiviral response activation. Furthermore, we show that qualitatively distinct antiviral responses can be linked to the strength of the antiviral signalling pathway. Our analyses identify variation in early viral replication rates as an important parameter contributing to heterogeneity in antiviral response activation.
Collapse
Grants
- ERC starting grant (EU/ERC-677936 RNAREG), NWO klein-2 grant (OCENW.KLEIN.344), Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
- ERC starting grant (EU/ERC-677936 RNAREG), NWO klein-2 grant (OCENW.KLEIN.344), Oncode Institute
- NWO klein-2 grant (OCENW.KLEIN.344), NWO VICI (91812628)
- NWO VICI (91812628), ERC starting grant (EU/ERC-677936 RNAREG), Oncode Institute
- ERC starting grant (EU/ERC-677936 RNAREG), Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
- Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
Collapse
Affiliation(s)
- Lucas J M Bruurs
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Micha Müller
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jelle G Schipper
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Huib H Rabouw
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sanne Boersma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
10
|
Hamele CE, Spurrier MA, Leonard RA, Heaton NS. Segmented, Negative-Sense RNA Viruses of Humans: Genetic Systems and Experimental Uses of Reporter Strains. Annu Rev Virol 2023; 10:261-282. [PMID: 37774125 PMCID: PMC10795101 DOI: 10.1146/annurev-virology-111821-120445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Negative-stranded RNA viruses are a large group of viruses that encode their genomes in RNA across multiple segments in an orientation antisense to messenger RNA. Their members infect broad ranges of hosts, and there are a number of notable human pathogens. Here, we examine the development of reverse genetic systems as applied to these virus families, emphasizing conserved approaches illustrated by some of the prominent members that cause significant human disease. We also describe the utility of their genetic systems in the development of reporter strains of the viruses and some biological insights made possible by their use. To conclude the review, we highlight some possible future uses of reporter viruses that not only will increase our basic understanding of how these viruses replicate and cause disease but also could inform the development of new approaches to therapeutically intervene.
Collapse
Affiliation(s)
- Cait E Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - M Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA;
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
11
|
Wang H, Jia X, Zhang M, Cheng C, Liang X, Wang X, Xie F, Wang J, Yu Y, He Y, Dong Q, Wang Y, Xu A. Isoliquiritigenin inhibits virus replication and virus-mediated inflammation via NRF2 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154786. [PMID: 37002973 DOI: 10.1016/j.phymed.2023.154786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The transcription factor NRF2 is a master redox switch that regulates the cellular antioxidant response. However, recent advances have revealed new roles for NRF2, including the regulation of antiviral responses to various viruses, suggesting that pharmacological NRF2-activating agents may be a promising therapeutic drug for viral diseases. Isoliquiritigenin (ISL), a chalcone isolated from liquorice (Glycyrrhizae Radix) root, is reported to be a natural NRF2 agonist and has has antiviral activities against HCV (hepatitis C virus) and IAV (influenza A virus). However, the spectrum of antiviral activity and associated mechanism of ISL against other viruses are not well defined. PURPOSE This study investigated the antiviral activity and underlying mechanism of ISL against vesicular stomatitis virus (VSV), influenza A virus (H1N1), encephalomyocarditis virus (EMCV), herpes simplex virus type 1 (HSV-1). METHODS We evaluated the antiviral activity of ISL against VSV, H1N1, EMCV, and HSV-1 using flow cytometry and qRT-PCR analysis. RNA sequencing and bioinformatic analysis were performed to investigate the potential antiviral mechanism of ISL. NRF2 knockout cells were used to investigate whether NRF2 is required for the antiviral activity of ISL. The anti-apoptosis and anti-inflammatory activities of ISL were further measured by counting cell death ratio and assessing proinflammatory cytokines expression in virus-infected cells, respectively. In addition, we evaluated the antiviral effect of ISL in vivo by measuring the survival rate, body weights, histological analysis, viral load, and cytokine expression in VSV-infected mouse model. RESULTS Our data demonstrated that ISL effectively suppressed VSV, H1N1, HSV-1, and EMCV replication in vitro. The antiviral activity of ISL could be partially impaired in NRF2-deficient cells. Virus-induced cell death and proinflammatory cytokines were repressed by ISL. Finally, we showed that ISL treatment protected mice against VSV infection by reducing viral titers and suppressing the expression of inflammatory cytokines in vivo. CONCLUSION These findings suggest that ISL has antiviral and anti-inflammatory effects in virus infections, which are associated with its ability to activate NRF2 signaling, thus indicating that ISL has the potential to serve as an NRF2 agonist in the treatment of viral diseases.
Collapse
Affiliation(s)
- Haojia Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meiqi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cuiqin Cheng
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejiao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Xie
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanli Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qiutong Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
12
|
Roach SN, Fiege JK, Shepherd FK, Wiggen TD, Hunter RC, Langlois RA. Respiratory Influenza Virus Infection Causes Dynamic Tuft Cell and Innate Lymphoid Cell Changes in the Small Intestine. J Virol 2022; 96:e0035222. [PMID: 35446142 PMCID: PMC9093116 DOI: 10.1128/jvi.00352-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.
Collapse
Affiliation(s)
- Shanley N. Roach
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica K. Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Talia D. Wiggen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan C. Hunter
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Characterization of influenza A virus induced transposons reveals a subgroup of transposons likely possessing the regulatory role as eRNAs. Sci Rep 2022; 12:2188. [PMID: 35140280 PMCID: PMC8828846 DOI: 10.1038/s41598-022-06196-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/25/2022] [Indexed: 01/02/2023] Open
Abstract
Although many studies have observed genome-wide host transposon expression alteration during viral infection, the mechanisms of induction and the impact on the host remain unclear. Utilizing recently published influenza A virus (IAV) time series data and ENCODE functional genomics data, we characterized virus induced host differentially expressed transposons (virus-induced-TE) by investigating genome-wide spatial and functional relevance between the virus-induced-TEs and epigenomic markers (e.g. histone modification and chromatin remodelers). We found that a significant fraction of virus-induced-TEs are derived from host enhancer regions, where CHD4 binding and/or H3K27ac occupancy is high or H3K9me3 occupancy is low. By overlapping virus-induced-TEs to human enhancer RNAs (eRNAs), we discovered that a proportion of virus-induced-TEs are either eRNAs or part of enhancer RNAs. Upon further analysis of the eRNA targeted genes, we found that the virus-induced-TE related eRNA targets are overrepresented in differentially expressed host genes of IAV infected samples. Our results suggest that changing chromatin accessibility from repressive to permissive in the transposon docked enhancer regions to regulate host downstream gene expression is potentially one of the virus and host cell interaction mechanisms, where transposons are likely important regulatory genomic elements. Our study provides a new insight into the mechanisms of virus-host interaction and may lead to novel strategies for prevention and therapeutics of IAV and other virus infectious diseases.
Collapse
|
14
|
Alqazlan N, Emam M, Nagy É, Bridle B, Sargolzaei M, Sharif S. Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus H9N2. Sci Rep 2021; 11:20462. [PMID: 34650121 PMCID: PMC8517014 DOI: 10.1038/s41598-021-99182-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses cause severe respiratory infections in humans and birds, triggering global health concerns and economic burden. Influenza infection is a dynamic process involving complex biological host responses. The objective of this study was to illustrate global biological processes in ileum and cecal tonsils at early time points after chickens were infected with low pathogenic avian influenza virus (LPAIV) H9N2 through transcriptome analysis. Total RNA isolated from ileum and cecal tonsils of non-infected and infected layers at 12-, 24- and 72-h post-infection (hpi) was used for mRNA sequencing analyses to characterize differentially expressed genes and overrepresented pathways. Statistical analysis highlighted transcriptomic signatures significantly occurring 24 and 72 hpi, but not earlier at 12 hpi. Interferon (IFN)-inducible and IFN-stimulated gene (ISG) expression was increased, followed by continued expression of various heat-shock proteins (HSP), including HSP60, HSP70, HSP90 and HSP110. Some upregulated genes involved in innate antiviral responses included DDX60, MX1, RSAD2 and CMPK2. The ISG15 antiviral mechanism pathway was highly enriched in ileum and cecal tonsils at 24 hpi. Overall, most affected pathways were related to interferon production and the heat-shock response. Research on these candidate genes and pathways is warranted to decipher underlying mechanisms of immunity against LPAIV in chickens.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Emam
- grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, QC H3A 0E7 Canada
| | - Éva Nagy
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Byram Bridle
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Sargolzaei
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada ,Select Sires, Inc., Plain City, OH 43064 USA
| | - Shayan Sharif
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
15
|
Suomalainen M, Greber UF. Virus Infection Variability by Single-Cell Profiling. Viruses 2021; 13:1568. [PMID: 34452433 PMCID: PMC8402812 DOI: 10.3390/v13081568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-to-cell variability of infection has long been known, yet it has remained one of the least understood phenomena in infection research. It impacts on disease onset and development, yet only recently underlying mechanisms have been studied in clonal cell cultures by single-virion immunofluorescence microscopy and flow cytometry. In this review, we showcase how single-cell RNA sequencing (scRNA-seq), single-molecule RNA-fluorescence in situ hybridization (FISH), and copper(I)-catalyzed azide-alkyne cycloaddition (click) with alkynyl-tagged viral genomes dissect infection variability in human and mouse cells. We show how the combined use of scRNA-FISH and click-chemistry reveals highly variable onsets of adenoviral gene expression, and how single live cell plaques reveal lytic and nonlytic adenovirus transmissions. The review highlights how scRNA-seq profiling and scRNA-FISH of coxsackie, influenza, dengue, zika, and herpes simplex virus infections uncover transcriptional variability, and how the host interferon response tunes influenza and sendai virus infections. We introduce the concept of "cell state" in infection variability, and conclude with advances by single-cell simultaneous measurements of chromatin accessibility and mRNA counts at high-throughput. Such technology will further dissect the sequence of events in virus infection and pathology, and better characterize the genetic and genomic stability of viruses, cell autonomous innate immune responses, and mechanisms of tissue injury.
Collapse
Affiliation(s)
- Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
16
|
Fiege JK, Thiede JM, Nanda HA, Matchett WE, Moore PJ, Montanari NR, Thielen BK, Daniel J, Stanley E, Hunter RC, Menachery VD, Shen SS, Bold TD, Langlois RA. Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium. PLoS Pathog 2021; 17:e1009292. [PMID: 33507952 PMCID: PMC7872261 DOI: 10.1371/journal.ppat.1009292] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/09/2021] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Jessica K. Fiege
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joshua M. Thiede
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hezkiel Arya Nanda
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William E. Matchett
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Patrick J. Moore
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Noe Rico Montanari
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Beth K. Thielen
- Department of Pediatrics, Division of Infectious Diseases, University of Minnesota, United States of America
| | - Jerry Daniel
- University of Minnesota Genomics Center, Minneapolis, Minnesota, United States of America
| | - Emma Stanley
- University of Minnesota Genomics Center, Minneapolis, Minnesota, United States of America
| | - Ryan C. Hunter
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Steven S. Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Tyler D. Bold
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryan A. Langlois
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
17
|
Fiege JK, Thiede JM, Nanda H, Matchett WE, Moore PJ, Montanari NR, Thielen BK, Daniel J, Stanley E, Hunter RC, Menachery VD, Shen SS, Bold TD, Langlois RA. Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33106802 PMCID: PMC7587775 DOI: 10.1101/2020.10.19.343954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Jessica K Fiege
- Center for Immunology, University of Minnesota.,Department of Microbiology and Immunology, University of Minnesota
| | - Joshua M Thiede
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
| | - Hezkiel Nanda
- Institute for Health Informatics, University of Minnesota
| | - William E Matchett
- Center for Immunology, University of Minnesota.,Department of Microbiology and Immunology, University of Minnesota
| | - Patrick J Moore
- Department of Microbiology and Immunology, University of Minnesota
| | | | - Beth K Thielen
- Department of Pediatrics, Division of Infectious Diseases, University of Minnesota
| | | | | | - Ryan C Hunter
- Center for Immunology, University of Minnesota.,Department of Microbiology and Immunology, University of Minnesota
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch
| | - Steven S Shen
- Institute for Health Informatics, University of Minnesota
| | - Tyler D Bold
- Center for Immunology, University of Minnesota.,Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota
| | - Ryan A Langlois
- Center for Immunology, University of Minnesota.,Department of Microbiology and Immunology, University of Minnesota
| |
Collapse
|
18
|
Gaynor AS, Chen W. Conditional Protein Rescue by Binding-Induced Protective Shielding. ACS Synth Biol 2020; 9:2639-2647. [PMID: 33025786 DOI: 10.1021/acssynbio.0c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic protein-level circuits offer an extra layer of cellular control on top of conventional gene-level circuits. Here, we describe a technology that allows conditional protein rescue (CPR) from proteasomal degradation using different protein inputs as masking agents. A target protein is fused to a degron tag and an affinity sensor domain. The use of nanobodies as the sensor domain offers a generalizable strategy to execute a wide range of protein-level circuits with ease. The utility of this new strategy was successfully demonstrated to distinguish cancer cells out of a healthy population using the HPV-specific E7 protein as a cellular marker. Because CPR can be programmed to execute more complex Boolean logic designs using cell-specific proteomes, this platform offers a highly modular and scalable framework for a wide range of applications based on synthetic protein circuits.
Collapse
Affiliation(s)
- Andrew S. Gaynor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2020; 19:272-282. [PMID: 33024309 PMCID: PMC7537587 DOI: 10.1038/s41579-020-00449-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.
Collapse
Affiliation(s)
- Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Stifter SA, Bhattacharyya N, Sawyer AJ, Cootes TA, Stambas J, Doyle SE, Feigenbaum L, Paul WE, Britton WJ, Sher A, Feng CG. Visualizing the Selectivity and Dynamics of Interferon Signaling In Vivo. Cell Rep 2020; 29:3539-3550.e4. [PMID: 31825834 DOI: 10.1016/j.celrep.2019.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/25/2019] [Accepted: 11/06/2019] [Indexed: 01/09/2023] Open
Abstract
Interferons (IFN) are pleiotropic cytokines essential for defense against infection, but the identity and tissue distribution of IFN-responsive cells in vivo are poorly defined. In this study, we generate a mouse strain capable of reporting IFN-signaling activated by all three types of IFNs and investigate the spatio-temporal dynamics and identity of IFN-responding cells following IFN injection and influenza virus infection. Despite ubiquitous expression of IFN receptors, cellular responses to IFNs are highly heterogenous in vivo and are determined by anatomical site, cell type, cellular preference to individual IFNs, and activation status. Unexpectedly, type I and II pneumocytes, the primary target of influenza infection, exhibit striking differences in the strength and temporal dynamics of IFN signaling associated with differential susceptibility to the viral infection. Our findings suggest that time- and cell-type-dependent integration of distinct IFN signals govern the specificity and magnitude of IFN responses in vivo.
Collapse
Affiliation(s)
- Sebastian A Stifter
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - Nayan Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - Andrew J Sawyer
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - Taylor A Cootes
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | | | - Lionel Feigenbaum
- Laboratory Animal Sciences Program, National Cancer Institute, Frederick, MD 21702, USA
| | - William E Paul
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, NSW 2050, Australia; Central Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892-3202, USA
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia.
| |
Collapse
|
21
|
Fay EJ, Aron SL, Macchietto MG, Markman MW, Esser-Nobis K, Gale M, Shen S, Langlois RA. Cell type- and replication stage-specific influenza virus responses in vivo. PLoS Pathog 2020; 16:e1008760. [PMID: 32790753 PMCID: PMC7447048 DOI: 10.1371/journal.ppat.1008760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/25/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses (IAVs) remain a significant global health burden. Activation of the innate immune response is important for controlling early virus replication and spread. It is unclear how early IAV replication events contribute to immune detection. Additionally, while many cell types in the lung can be infected, it is not known if all cell types contribute equally to establish the antiviral state in the host. Here, we use single-cycle influenza A viruses (scIAVs) to characterize the early immune response to IAV in vitro and in vivo. We found that the magnitude of virus replication contributes to antiviral gene expression within infected cells prior to the induction of a global response. We also developed a scIAV that is only capable of undergoing primary transcription, the earliest stage of virus replication. Using this tool, we uncovered replication stage-specific responses in vitro and in vivo. Using several innate immune receptor knockout cell lines, we identify RIG-I as the predominant antiviral detector of primary virus transcription and amplified replication in vitro. Through a Cre-inducible reporter mouse, we used scIAVs expressing Cre-recombinase to characterize cell type-specific responses in vivo. Individual cell types upregulate unique sets of antiviral genes in response to both primary virus transcription and amplified replication. We also identified antiviral genes that are only upregulated in response to direct infection. Altogether, these data offer insight into the early mechanisms of antiviral gene activation during influenza A infection.
Collapse
Affiliation(s)
- Elizabeth J. Fay
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis MN, United States of America
- Center for Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Stephanie L. Aron
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Marissa G. Macchietto
- Institute for Health Informatics, University of Minnesota, Minneapolis MN, United States of America
| | - Matthew W. Markman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| | - Katharina Esser-Nobis
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, Seattle WA, United States of America
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, Seattle WA, United States of America
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis MN, United States of America
| | - Ryan A. Langlois
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis MN, United States of America
- Center for Immunology, University of Minnesota, Minneapolis MN, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis MN, United States of America
| |
Collapse
|
22
|
Sun J, Vera JC, Drnevich J, Lin YT, Ke R, Brooke CB. Single cell heterogeneity in influenza A virus gene expression shapes the innate antiviral response to infection. PLoS Pathog 2020; 16:e1008671. [PMID: 32614923 PMCID: PMC7363107 DOI: 10.1371/journal.ppat.1008671] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/15/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Viral infection outcomes are governed by the complex and dynamic interplay between the infecting virus population and the host response. It is increasingly clear that both viral and host cell populations are highly heterogeneous, but little is known about how this heterogeneity influences infection dynamics or viral pathogenicity. To dissect the interactions between influenza A virus (IAV) and host cell heterogeneity, we examined the combined host and viral transcriptomes of thousands of individual cells, each infected with a single IAV virion. We observed complex patterns of viral gene expression and the existence of multiple distinct host transcriptional responses to infection at the single cell level. We show that human H1N1 and H3N2 strains differ significantly in patterns of both viral and host anti-viral gene transcriptional heterogeneity at the single cell level. Our analyses also reveal that semi-infectious particles that fail to express the viral NS can play a dominant role in triggering the innate anti-viral response to infection. Altogether, these data reveal how patterns of viral population heterogeneity can serve as a major determinant of antiviral gene activation.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - J. Cristobal Vera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jenny Drnevich
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yen Ting Lin
- Information Sciences Group, Computer, Computational and Statistical Sciences DIvision (CCS-3), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
23
|
Bedford JG, Infusini G, Dagley LF, Villalon-Letelier F, Zheng MZM, Bennett-Wood V, Reading PC, Wakim LM. Airway Exosomes Released During Influenza Virus Infection Serve as a Key Component of the Antiviral Innate Immune Response. Front Immunol 2020; 11:887. [PMID: 32477358 PMCID: PMC7236881 DOI: 10.3389/fimmu.2020.00887] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by cells that have an important biological function in intercellular communication by transferring biologically active proteins, lipids, and RNAs to neighboring or distant cells. While a role for exosomes in antimicrobial defense has recently emerged, currently very little is known regarding the nature and functional relevance of exosomes generated in vivo, particularly during an active viral infection. Here, we characterized exosomes released into the airways during influenza virus infection. We show that these vesicles dynamically change in protein composition over the course of infection, increasing expression of host proteins with known anti-influenza activity, and viral proteins with the potential to trigger host immune responses. We show that exosomes released into the airways during influenza virus infection trigger pulmonary inflammation and carry viral antigen that can be utilized by antigen presenting cells to drive the induction of a cellular immune response. Moreover, we show that attachment factors for influenza virus, namely α2,3 and α2,6-linked sialic acids, are present on the surface of airway exosomes and these vesicles have the ability to neutralize influenza virus, thereby preventing the virus from binding and entering target cells. These data reveal a novel role for airway exosomes in the antiviral innate immune defense against influenza virus infection.
Collapse
Affiliation(s)
- James G Bedford
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Giuseppe Infusini
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Laura F Dagley
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ming Z M Zheng
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Macchietto MG, Langlois RA, Shen SS. Virus-induced transposable element expression up-regulation in human and mouse host cells. Life Sci Alliance 2020; 3:3/2/e201900536. [PMID: 31964680 PMCID: PMC6977392 DOI: 10.26508/lsa.201900536] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide transposon expression up-regulation in host cells regardless of virus, species, and host cell tissue types occurs early during viral infection and likely contributes to promoting the host innate immune response. Virus–host cell interactions initiate a host cell–defensive response during virus infection. How transposable elements in the host cell respond to viral stress at the molecular level remains largely unclear. By reanalyzing next generation sequencing data sets from dozens of virus infection studies from the Gene Expression Omnibus database, we found that genome-wide transposon expression up-regulation in host cells occurs near antiviral response genes and exists in all studies regardless of virus, species, and host cell tissue types. Some transposons were found to be up-regulated almost immediately upon infection and before increases in virus replication and significant increases in interferon β expression. These findings indicate that transposon up-regulation is a common phenomenon during virus infection in human and mouse and that early up-regulated transposons are part of the first wave response during virus infection.
Collapse
Affiliation(s)
| | - Ryan A Langlois
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Steven S Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA .,Clinical Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Cell-to-Cell Variation in Defective Virus Expression and Effects on Host Responses during Influenza Virus Infection. mBio 2020; 11:mBio.02880-19. [PMID: 31937643 PMCID: PMC6960286 DOI: 10.1128/mbio.02880-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Defective influenza virus particles generated during viral replication carry incomplete viral genomes and can interfere with the replication of competent viruses. These defective genomes are thought to modulate the disease severity and pathogenicity of an influenza virus infection. Different defective viral genomes also introduce another source of variation across a heterogeneous cell population. Evaluating the impact of defective virus genomes on host cell responses cannot be fully resolved at the population level, requiring single-cell transcriptional profiling. Here, we characterized virus and host transcriptomes in individual influenza virus-infected cells, including those of defective viruses that arise during influenza A virus infection. We established an association between defective virus transcription and host responses and validated interfering and immunostimulatory functions of identified dominant defective viral genome species in vitro. This study demonstrates the intricate effects of defective viral genomes on host transcriptional responses and highlights the importance of capturing host-virus interactions at the single-cell level. Virus and host factors contribute to cell-to-cell variation in viral infections and determine the outcome of the overall infection. However, the extent of the variability at the single-cell level and how it impacts virus-host interactions at a system level are not well understood. To characterize the dynamics of viral transcription and host responses, we used single-cell RNA sequencing to quantify at multiple time points the host and viral transcriptomes of human A549 cells and primary bronchial epithelial cells infected with influenza A virus. We observed substantial variability in viral transcription between cells, including the accumulation of defective viral genomes (DVGs) that impact viral replication. We show (i) a correlation between DVGs and virus-induced variation of the host transcriptional program and (ii) an association between differential inductions of innate immune response genes and attenuated viral transcription in subpopulations of cells. These observations at the single-cell level improve our understanding of the complex virus-host interplay during influenza virus infection.
Collapse
|
26
|
Ramos I, Smith G, Ruf-Zamojski F, Martínez-Romero C, Fribourg M, Carbajal EA, Hartmann BM, Nair VD, Marjanovic N, Monteagudo PL, DeJesus VA, Mutetwa T, Zamojski M, Tan GS, Jayaprakash C, Zaslavsky E, Albrecht RA, Sealfon SC, García-Sastre A, Fernandez-Sesma A. Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1. J Virol 2019; 93:e00559-19. [PMID: 31375585 PMCID: PMC6798124 DOI: 10.1128/jvi.00559-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
Early interactions of influenza A virus (IAV) with respiratory epithelium might determine the outcome of infection. The study of global cellular innate immune responses often masks multiple aspects of the mechanisms by which populations of cells work as organized and heterogeneous systems to defeat virus infection, and how the virus counteracts these systems. In this study, we experimentally dissected the dynamics of IAV and human epithelial respiratory cell interaction during early infection at the single-cell level. We found that the number of viruses infecting a cell (multiplicity of infection [MOI]) influences the magnitude of virus antagonism of the host innate antiviral response. Infections performed at high MOIs resulted in increased viral gene expression per cell and stronger antagonist effect than infections at low MOIs. In addition, single-cell patterns of expression of interferons (IFN) and IFN-stimulated genes (ISGs) provided important insights into the contributions of the infected and bystander cells to the innate immune responses during infection. Specifically, the expression of multiple ISGs was lower in infected than in bystander cells. In contrast with other IFNs, IFN lambda 1 (IFNL1) showed a widespread pattern of expression, suggesting a different cell-to-cell propagation mechanism more reliant on paracrine signaling. Finally, we measured the dynamics of the antiviral response in primary human epithelial cells, which highlighted the importance of early innate immune responses at inhibiting virus spread.IMPORTANCE Influenza A virus (IAV) is a respiratory pathogen of high importance to public health. Annual epidemics of seasonal IAV infections in humans are a significant public health and economic burden. IAV also causes sporadic pandemics, which can have devastating effects. The main target cells for IAV replication are epithelial cells in the respiratory epithelium. The cellular innate immune responses induced in these cells upon infection are critical for defense against the virus, and therefore, it is important to understand the complex interactions between the virus and the host cells. In this study, we investigated the innate immune response to IAV in the respiratory epithelium at the single-cell level, providing a better understanding on how a population of epithelial cells functions as a complex system to orchestrate the response to virus infection and how the virus counteracts this system.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carles Martínez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel Fribourg
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edwin A Carbajal
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Boris M Hartmann
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nada Marjanovic
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paula L Monteagudo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Veronica A DeJesus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tinaye Mutetwa
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gene S Tan
- Infectious Diseases, J. Craig Venter Institute, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | | | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Fiege JK, Stone IA, Dumm RE, Waring BM, Fife BT, Agudo J, Brown BD, Heaton NS, Langlois RA. Long-term surviving influenza infected cells evade CD8+ T cell mediated clearance. PLoS Pathog 2019; 15:e1008077. [PMID: 31557273 PMCID: PMC6782110 DOI: 10.1371/journal.ppat.1008077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 10/08/2019] [Accepted: 09/11/2019] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus (IAV) is a seasonal pathogen with the potential to cause devastating pandemics. IAV infects multiple epithelial cell subsets in the respiratory tract, eliciting damage to the lungs. Clearance of IAV is primarily dependent on CD8+ T cells, which must balance control of the infection with immunopathology. Using a virus expressing Cre recombinase to permanently label infected cells in a Cre-inducible reporter mouse, we previously discovered infected club cells that survive both lytic virus replication and CD8+ T cell-mediated clearance. In this study, we demonstrate that ciliated epithelial cells, type I and type II alveolar cells can also become survivor cells. Survivor cells are stable in the lung long-term and demonstrate enhanced proliferation compared to uninfected cells. When we investigated how survivor cells evade CD8+ T cell killing we observed that survivor cells upregulated the inhibitory ligand PD-L1, but survivor cells did not use PD-L1 to evade CD8+ T cell killing. Instead our data suggest that survivor cells are not inherently resistant to CD8+ T cell killing, but instead no longer present IAV antigen and cannot be detected by CD8+ T cells. Finally, we evaluate the failure of CD8+ T cells to kill these previously infected cells. This work demonstrates that additional cell types can survive IAV infection and that these cells robustly proliferate and are stable long term. By sparing previously infected cells, the adaptive immune system may be minimizing pathology associated with IAV infection.
Collapse
Affiliation(s)
- Jessica K. Fiege
- University of Minnesota, Department of Microbiology and Immunology and the Center for Immunology, Minneapolis, Minnesota, United States of America
| | - Ian A. Stone
- University of Minnesota, Department of Microbiology and Immunology and the Center for Immunology, Minneapolis, Minnesota, United States of America
| | - Rebekah E. Dumm
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
| | - Barbara M. Waring
- University of Minnesota, Department of Microbiology and Immunology and the Center for Immunology, Minneapolis, Minnesota, United States of America
| | - Brian T. Fife
- University of Minnesota, Department of Medicine and the Center for Immunology, Minneapolis, Minnesota, United States of America
| | - Judith Agudo
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York City, New York, United States of America
| | - Brian D. Brown
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York City, New York, United States of America
| | - Nicholas S. Heaton
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Durham, North Carolina, United States of America
| | - Ryan A. Langlois
- University of Minnesota, Department of Microbiology and Immunology and the Center for Immunology, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ghorbani A, Ngunjiri JM, Lee CW. Influenza A Virus Subpopulations and Their Implication in Pathogenesis and Vaccine Development. Annu Rev Anim Biosci 2019; 8:247-267. [PMID: 31479617 DOI: 10.1146/annurev-animal-021419-083756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The concept of influenza A virus (IAV) subpopulations emerged approximately 75 years ago, when Preben von Magnus described "incomplete" virus particles that interfere with the replication of infectious virus. It is now widely accepted that infectious particles constitute only a minor portion of biologically active IAV subpopulations. The IAV quasispecies is an extremely diverse swarm of biologically and genetically heterogeneous particle subpopulations that collectively influence the evolutionary fitness of the virus. This review summarizes the current knowledge of IAV subpopulations, focusing on their biologic and genomic diversity. It also discusses the potential roles IAV subpopulations play in virus pathogenesis and live attenuated influenza vaccine development.
Collapse
Affiliation(s)
- Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , , .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , ,
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , , .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
29
|
Russell AB, Elshina E, Kowalsky JR, Te Velthuis AJW, Bloom JD. Single-Cell Virus Sequencing of Influenza Infections That Trigger Innate Immunity. J Virol 2019; 93:e00500-19. [PMID: 31068418 PMCID: PMC6600203 DOI: 10.1128/jvi.00500-19] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus-infected cells vary widely in their expression of viral genes and only occasionally activate innate immunity. Here, we develop a new method to assess how the genetic variation in viral populations contributes to this heterogeneity. We do this by determining the transcriptome and full-length sequences of all viral genes in single cells infected with a nominally "pure" stock of influenza virus. Most cells are infected by virions with defects, some of which increase the frequency of innate-immune activation. These immunostimulatory defects are diverse and include mutations that perturb the function of the viral polymerase protein PB1, large internal deletions in viral genes, and failure to express the virus's interferon antagonist NS1. However, immune activation remains stochastic in cells infected by virions with these defects and occasionally is triggered even by virions that express unmutated copies of all genes. Our work shows that the diverse spectrum of defects in influenza virus populations contributes to-but does not completely explain-the heterogeneity in viral gene expression and immune activation in single infected cells.IMPORTANCE Because influenza virus has a high mutation rate, many cells are infected by mutated virions. But so far, it has been impossible to fully characterize the sequence of the virion infecting any given cell, since conventional techniques such as flow cytometry and single-cell transcriptome sequencing (scRNA-seq) only detect if a protein or transcript is present, not its sequence. Here we develop a new approach that uses long-read PacBio sequencing to determine the sequences of virions infecting single cells. We show that viral genetic variation explains some but not all of the cell-to-cell variability in viral gene expression and innate immune induction. Overall, our study provides the first complete picture of how viral mutations affect the course of infection in single cells.
Collapse
Affiliation(s)
- Alistair B Russell
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizaveta Elshina
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jacob R Kowalsky
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Aartjan J W Te Velthuis
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jesse D Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
30
|
Mesev EV, LeDesma RA, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol 2019; 4:914-924. [PMID: 30936491 PMCID: PMC6554024 DOI: 10.1038/s41564-019-0421-x] [Citation(s) in RCA: 365] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/22/2019] [Indexed: 02/08/2023]
Abstract
Interferon (IFN)-mediated antiviral responses are central to host defence against viral infection. Despite the existence of at least 20 IFNs, there are only three known cell surface receptors. IFN signalling and viral evasion mechanisms form an immensely complex network that differs across species. In this Review, we begin by highlighting some of the advances that have been made towards understanding the complexity of differential IFN signalling inputs and outputs that contribute to antiviral defences. Next, we explore some of the ways viruses can interfere with, or circumvent, these defences. Lastly, we address the largely under-reviewed impact of IFN signalling on host tropism, and we offer perspectives on the future of research into IFN signalling complexity and viral evasion across species.
Collapse
Affiliation(s)
- Emily V Mesev
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Robert A LeDesma
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
31
|
Unique Transcriptional Architecture in Airway Epithelial Cells and Macrophages Shapes Distinct Responses following Influenza Virus Infection Ex Vivo. J Virol 2019; 93:JVI.01986-18. [PMID: 30626665 DOI: 10.1128/jvi.01986-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Airway epithelial cells and macrophages differ markedly in their responses to influenza A virus (IAV) infection. To investigate transcriptional responses underlying these differences, purified subsets of type II airway epithelial cells (ATII) and alveolar macrophages (AM) recovered from the lungs of mock- or IAV-infected mice at 9 h postinfection were subjected to RNA sequencing. This time point was chosen to allow for characterization of cell types first infected with the virus inoculum, prior to multicycle virus replication and the infiltration of inflammatory cells into the airways. In the absence of infection, AM predominantly expressed genes related to immunity, whereas ATII expressed genes consistent with their physiological roles in the lung. Following IAV infection, AM almost exclusively activated cell-intrinsic antiviral pathways that were dependent on interferon (IFN) regulatory factor 3/7 (IRF3/7) and/or type I IFN signaling. In contrast, IAV-infected ATII activated a broader range of physiological responses, including cell-intrinsic antiviral pathways, which were both independent of and dependent on IRF3/7 and/or type I IFN. These data suggest that transcriptional profiles hardwired during development are a major determinant underlying the different responses of ATII and AM to IAV infection.IMPORTANCE Airway epithelial cells (AEC) and airway macrophages (AM) represent major targets of influenza A virus (IAV) infection in the lung, yet the two cell types respond very differently to IAV infection. We have used RNA sequencing to define the host transcriptional responses in each cell type under steady-state conditions as well as following IAV infection. To do this, different cell subsets isolated from the lungs of mock- and IAV-infected mice were subjected to RNA sequencing. Under steady-state conditions, AM and AEC express distinct transcriptional activities, consistent with distinct physiological roles in the airways. Not surprisingly, these cells also exhibited major differences in transcriptional responses following IAV infection. These studies shed light on how the different transcriptional architectures of airway cells from two different lineages drive transcriptional responses to IAV infection.
Collapse
|
32
|
Non-lytic clearance of influenza B virus from infected cells preserves epithelial barrier function. Nat Commun 2019; 10:779. [PMID: 30770807 PMCID: PMC6377627 DOI: 10.1038/s41467-019-08617-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/22/2019] [Indexed: 01/11/2023] Open
Abstract
Influenza B virus (IBV) is an acute, respiratory RNA virus that has been assumed to induce the eventual death of all infected cells. We and others have shown however, that infection with apparently cytopathic viruses does not necessarily lead to cell death; some cells can intrinsically clear the virus and persist in the host long-term. To determine if any cells can survive direct IBV infection, we here generate a recombinant IBV capable of activating a host-cell reporter to permanently label all infected cells. Using this system, we demonstrate that IBV infection leads to the formation of a survivor cell population in the proximal airways that are ciliated-like, but transcriptionally and phenotypically distinct from both actively infected and bystander ciliated cells. We also show that survivor cells are critical to maintain respiratory barrier function. These results highlight a host response pathway that preserves the epithelium to limit the severity of IBV disease. Infection of a cell with influenza B virus (IBV) often results in cell death and the role of surviving cells in pathogenesis is unclear. Here, Dumm et al. generate a recombinant IBV that activates a host-cell reporter to permanently label infected cells, and show that surviving cells are important to preserve epithelial barrier function.
Collapse
|
33
|
Subbarao K. Advances in Influenza Virus Research: A Personal Perspective. Viruses 2018; 10:v10120724. [PMID: 30567332 PMCID: PMC6316544 DOI: 10.3390/v10120724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Technical advances in the last decade have made it possible to investigate influenza virus infection from the cellular and subcellular level to intact animals and humans. As a result, we have gained a new understanding of the virus and disease.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
34
|
Flu mutations in a single cell help to predict immune response. Nature 2018. [DOI: 10.1038/d41586-018-07190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|