1
|
Wang C, Zhang X, Liu G, Zhang C, Li P, He P, Liu S, Ji H, Yu H. Selenium alleviates high-fat diet induced hepatocyte lipid accumulation via exosome miR-22/FGFR1 pathway in grass carp. J Nutr Biochem 2025; 141:109907. [PMID: 40147740 DOI: 10.1016/j.jnutbio.2025.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
The current study aims to investigate whether exosomal miRNAs are involved in lipid reduction by selenium (Se) in the liver of grass carp, through miRNA sequencing, transfection of miRNA mimic (miR-22m) or inhibitor (miR-22i), isolation of hepatocyte-derived exosomes and treatment, and detection of lipid metabolism-related genes and proteins. The miRNAs sequencing and bioinformatics revealed that miR-22 was most abundantly expressed in the differentially expressed miRNAs after selenium treatment, and was enriched in lipid metabolism-related pathways. Moreover, Se significantly up-regulated the miR-22 levels and reduced the lipid content in liver or hepatocytes of grass carp. Furthermore, the miR-22m significantly increased levels of miR-22 and reduced lipid content in grass carp hepatocytes, which were consistent with the Se-treatment. However, the miR-22i reversed these trends. Besides, the miR-22 suppressed the FGFR1-PI3K-AKT-mTOR signaling pathway and its downstream genes related to lipid synthesis. More importantly, the Se-treated hepatocyte-exosomes which were enriched in the miR-22 significantly reduced the triglycerides content in the oleic acid-treated hepatocytes. In summary, Se alleviated high fat-induced lipid accumulation in grass carp liver by up-regulating the expression of miR-22 which negatively regulates FGFR1 and its downstream regulatory genes. Moreover, exosomes participate in the lipid reduction by Se, which may be through carrying miR-22.
Collapse
Affiliation(s)
- Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guohao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Pan He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sha Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Gao Y, Chen Q, Wu Z, Yuan L. Regulation of pancreatic β cells by exosomes from different sources. Diabetes Res Clin Pract 2025; 224:112222. [PMID: 40324722 DOI: 10.1016/j.diabres.2025.112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Diabetes is a chronic metabolic disorder with rising global prevalence, particularly in developed and high-income regions. Central to its pathogenesis is the dysfunction of pancreatic β-cells, alongside impaired glucose and lipid metabolism in peripheral insulin-responsive tissues. Exosomes are nano-sized extracellular vesicles essential for intercellular communication and have emerged as pivotal regulators of metabolic homeostasis. Secreted by virtually all cell types, exosomes encapsulate bioactive cargo that reflects their cellular origin and physiological state, thereby exerting diverse functional effects. Recent evidence highlights the role of exosomes derived from the liver, gut, adipose tissue, skeletal muscle, and mesenchymal stem cells in modulating β-cell proliferation, insulin secretion, and survival. In peripheral tissues exosomes also influence insulin sensitivity by regulating glucose and lipid metabolism, ultimately shaping β-cell responses under hyperglycemic conditions. A more comprehensive understanding of exosome-mediated crosstalk between metabolic organs and pancreatic β-cells could pave the way for the development of exosome-based diagnostic tools and therapeutic strategies aimed at improving early detection, prevention, and treatment of the diabetes.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuoying Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Le Lay S, Scherer PE. Exploring adipose tissue-derived extracellular vesicles in inter-organ crosstalk: Implications for metabolic regulation and adipose tissue function. Cell Rep 2025; 44:115732. [PMID: 40408250 DOI: 10.1016/j.celrep.2025.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/24/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025] Open
Abstract
Intercellular and inter-organ communication systems are vital for tissue homeostasis and disease development, utilizing soluble bioactive molecules for signaling. The field of extracellular vesicle (EV) biology has rapidly expanded in recent decades, highlighting EVs as effective bioactive nanovectors for cell-to-cell communication in various physiological and pathological contexts. Numerous studies indicate that adipocyte-derived EVs are crucial components of the adipose secretome, playing a key role in autocrine and paracrine interactions within adipose tissue, as well as in endocrine signaling. This review aims to present an updated perspective on EVs as mediators of communication between adipose tissue and other organs, while also examining their therapeutic potential in the light of recent advancements in EV biology research.
Collapse
Affiliation(s)
- Soazig Le Lay
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Université Angers, SFR ICAT, 49000 Angers, France.
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Alén R, Garcia-Martinez I, Cobo-Vuilleumier N, Fernández-Millán E, Gallardo-Villanueva P, Ferreira V, Izquierdo M, Moro MÁ, Lizasoain I, Nieto N, Gauthier BR, Valverde ÁM. Effect of lipotoxic hepatocyte-derived extracellular vesicles in pancreas inflammation: essential role of macrophage TLR4 in beta cell functionality. Diabetologia 2025:10.1007/s00125-025-06445-z. [PMID: 40387904 DOI: 10.1007/s00125-025-06445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/03/2025] [Indexed: 05/20/2025]
Abstract
AIMS/HYPOTHESIS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common feature of obesity and type 2 diabetes. Under lipotoxic stress, hepatocytes release small extracellular vesicles (sEVs) which act locally and contribute to MASLD progression, but their role in beta cell function and development of type 2 diabetes remains largely unexplored. We aimed to examine whether hepatocyte-derived sEVs (Hep-sEVs) under lipotoxic conditions impact on liver and pancreas inflammation and subsequent effects on beta cell function. METHODS Primary mouse hepatocytes and Huh7 human hepatocytes were treated with palmitic acid and Hep-sEVs were purified from the culture medium by differential ultracentrifugation. In vitro and in vivo approaches were used to decipher the role of Hep-sEVs in liver and pancreas inflammation and beta cell dysfunction in mouse and human pancreatic islets. The contribution of the Toll-like receptor 4 (TLR4) to Hep-sEV-mediated effects was investigated in pancreatic islets from myeloid-specific TLR4-deficient mice. RESULTS Lipotoxic Hep-sEVs targeted pancreatic islet macrophages and induced TLR4-mediated inflammation. The subsequent inflammatory response downregulated beta cell identity genes and impaired glucose-stimulated insulin secretion in both INS-1 beta cells (p<0.05) and isolated pancreatic islets from mice (p<0.01) and humans (p<0.05). Specific deletion of TLR4 in macrophages protected pancreatic islets against inflammation and the impairment of glucose-stimulated insulin secretion induced by lipotoxic Hep-sEVs. Chronic administration of lipotoxic Hep-sEVs in lean mice induced liver and pancreas inflammation through the recruitment of immune cells. This intervention induced hepatocyte injury and fibrotic damage together with detrimental immunometabolic systemic effects. Insulin resistance in hepatocytes (p<0.01) and a compensatory insulin secretion (p<0.001) that prevented glucose intolerance were also observed in mice treated with lipotoxic Hep-sEVs. CONCLUSIONS/INTERPRETATION This study has provided evidence of liver and pancreas inflammation and beta cell dysfunction induced by lipotoxic Hep-sEVs. Our data also envision TLR4-mediated signalling in islet macrophages as a key mediator of the effects of lipotoxic Hep-sEVs on beta cell function.
Collapse
Affiliation(s)
- Rosa Alén
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Nadia Cobo-Vuilleumier
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Paula Gallardo-Villanueva
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Vitor Ferreira
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain
| | - María Ángeles Moro
- Fisiopatología Neurovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Natalia Nieto
- Department of Pathology, Department of Medicine (Gastroenterology and Hepatology), University of Illinois at Chicago, Chicago, IL, USA
| | - Benoit R Gauthier
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Sevilla, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBm, CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
5
|
Jayabalan N, Nair S, Lai A, Scholz-Romero K, Razo-Azamar M, Ormazabal V, Lim R, Carrion F, Guanzon D, Rice GE, McIntyre HD, Lappas M, Salomon C. Extracellular vesicle-associated miR-515-5p from adipose tissue regulates placental metabolism and fetal growth in gestational diabetes mellitus. Cardiovasc Diabetol 2025; 24:205. [PMID: 40369565 PMCID: PMC12080180 DOI: 10.1186/s12933-025-02739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) affects 2-20% of pregnant women worldwide and is linked to fetal overgrowth, increased perinatal morbidity, and mortality, as well as a higher risk of developing cardiovascular disease later in life for mother and child. MicroRNAs (miRNAs), which regulate gene expression, can be transported within extracellular vesicles (EVs). Adipose tissue-derived EVs have been associated with changes in placental metabolism in GDM, potentially influencing cardiovascular health outcomes. This study aimed to evaluate the miRNA profile in EVs from omental adipose tissue in GDM and their effect on placental nutrient uptake and fetal growth. METHODS This case-control study included patients with normal glucose tolerance (NGT) and GDM. We conducted a miRNA expression profiling on omental adipose tissue and its derived EVs from women with NGT (n = 20) and GDM (n = 36). Trophoblast cells were utilized to assess the effect of EVs on glucose and fatty acid uptake, pro-inflammatory cytokine, and chemokine release. Double-stranded miRNA mimics were used to investigate the effect of selected miRNAs on trophoblast cells. Subsequently, the impact of EVs from NGT and GDM, as well as miR-515-5p, on in vivo glucose tolerance and fetal growth was assessed in pregnant mice. RESULTS Fifty-four miRNAs showed significant differences between EVs from the adipose tissue of NGT and GDM groups. EVs from GDM increased glucose uptake in trophoblast cells, whereas EVs from NGT increased the secretion of CXCL8, IL-6, CXCL1, CXCL4, and CXCL5 from trophoblasts compared to the effect without EVs. Specifically, miR-515-5p increased glucose uptake and abolished TNF-α-dependent increase in pro-inflammatory cytokines and chemokines from trophoblast cells. Injection of pregnant mice with EVs from NGT adipose tissue loaded with miR-515-5p resulted in increased fetal weight and glucose levels. CONCLUSION miR-515-5p, specifically encapsulated within EVs from omental adipose tissue in GDM, regulates placental nutrient uptake, glucose homeostasis, and fetal growth.
Collapse
Affiliation(s)
- Nanthini Jayabalan
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Katherin Scholz-Romero
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Melissa Razo-Azamar
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Valeska Ormazabal
- Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Dominic Guanzon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Gregory E Rice
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- INOVIQ Ltd, Notting Hill, VIC, 3168, Australia
| | - Harold David McIntyre
- Mater Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
- UQ Centre for Extracellular Vesicle nanomedicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
6
|
Xie Y, Ran L, Yue C, Wang C, Chen F, Su Y, Qin Y, Zhang Q, Liu J, Du N, Zhang L, Jiang Y, Liu G. Delivery of miR-26a-5p by Subcutaneous Adipose Tissue-Derived Extracellular Vesicles Alleviates Acute Lung Injury in Mice Through CHUK/NF-κB Pathway. Int J Nanomedicine 2025; 20:6001-6021. [PMID: 40370804 PMCID: PMC12077418 DOI: 10.2147/ijn.s514623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung injury and high mortality rates due to severe inflammation. Adipose tissue, functioning as both an endocrine and immune organ, plays a crucial role in immune regulation by secreting a variety of adipokines. Among these, adipose tissue-derived extracellular vesicles (EVs) have emerged as novel mediators of intercellular communication, capable of delivering bioactive molecules such as microRNAs to target cells. This study aimed to elucidate the immunomodulatory roles and underlying mechanisms of adipose tissue-derived EVs in the pathogenesis of ARDS. Methods Subcutaneous adipose tissue extracellular vesicles (SAT-EVs) were collected from the mice via ultracentrifugation. C57BL/6 mice were administered SAT-EVs (1×10^9 particles per mouse) via tail vein injection, followed by an intraperitoneal Lipopolysaccharide (LPS) injection three hours later to induce acute respiratory distress syndrome (ARDS). The mice were euthanized after 18 h to evaluate the permeability of the microvessels and level of inflammation in the lungs. For in vitro experiments, RAW 264.7 macrophages were stimulated with LPS, with or without SAT-EVs, as a control, to evaluate the inflammatory response of the macrophages. Results SAT-EVs treatment enhanced the survival rate of ARDS mice and reduced pulmonary vascular permeability. SAT-EVs were internalized by alveolar macrophages, leading to an attenuation of inflammation, as indicated by decreased levels of TNF-α, IL-1β, iNOS, PTGS2, and CCL2. Notably, SAT-EVs transferred miR-26a-5p to alveolar macrophages, which directly targeted conserved helix-loop-helix ubiquitous kinase (CHUK), a key regulator of the NF-κB pathway. This inhibition resulted in reduced transcription of inflammatory mediators (iNOS, PTGS2, and IL-1β). In vitro, SAT-EVs were internalized by RAW 264.7 macrophages, leading to the suppression of LPS-induced inflammation, as shown by decreased expression of TNF-α, IL-1β, iNOS, PTGS2, and CCL2. These findings suggest that miR-26a-5p plays a crucial role in the anti-inflammatory effects of SAT-EVs by suppressing CHUK and modulating the NF-κB pathway. Conclusion SAT-EVs significantly attenuated LPS-induced ARDS, potentially through the CHUK/NF-κB pathway mediated by miR-26a-5p, thereby exerting protective effects against inflammatory lung injury. These findings provide mechanistic insights into the role of SAT-EVs in immune modulation and suggest their potential as a therapeutic strategy for ARDS.
Collapse
Affiliation(s)
- Yu Xie
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Liuyi Ran
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Ciquan Yue
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Chenxing Wang
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Fengming Chen
- Hubei University of Traditional Chinese Medicine Affiliated Shiyan Hospital, Shiyan, 442000, People’s Republic of China
| | - Yadong Su
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Yin Qin
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Qiuhong Zhang
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Jie Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Ning Du
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Li Zhang
- Basic Research Laboratory of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400011, People’s Republic of China
| | - Yu Jiang
- Department of Respiratory and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Gang Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| |
Collapse
|
7
|
Wang Z, Ma T, Bai G, Fang Q, Ou B, Chen M, Xu P, Tian M, Xu A, Ma Y. Adipose Tissue-Derived Extracellular Vesicles Loaded with miR-141-3p Regulate Obesity-Induced Insulin Resistance by Targeting Glycogen Synthesis and Gluconeogenesis. Int J Nanomedicine 2025; 20:5709-5726. [PMID: 40343195 PMCID: PMC12059219 DOI: 10.2147/ijn.s511842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Purpose Insulin resistance, a hallmark feature of type 2 diabetes and cardiovascular diseases, is critically influenced by liver-adipose tissue crosstalk, offering a novel therapeutic strategy for its management. Emerging evidence indicates that extracellular vesicles (EVs) secreted from adipose tissue serve as essential carriers of miRNA-mediated interorgan communication. This study aimed to investigate the regulatory effects of adipose tissue-derived EVs on obesity-induced hepatic insulin resistance and to elucidate the underlying molecular mechanisms by which EV-mediated signaling contributes to metabolic dysfunction. Methods EVs with miR-141-3p knockout or overexpression were constructed and administered to both in vitro cell models and in vivo mouse models to investigate the regulatory role and underlying mechanisms of miR-141-3p-mediated adipose tissue-derived EVs in obesity-induced hepatic insulin resistance. Results miR-141-3p is significantly upregulated in adipose tissue-derived EVs from high-fat diet (HFD)-fed mice, as well as in other obesity-related conditions. Furthermore, the knockdown of miR-141-3p in EVs from chow diet (CD-EVs) counteracted the effect in improving obesity-induced hepatic insulin resistance, whereas the overexpression of miR-141-3p in HFD-EVs improved hepatic insulin resistance. Mechanistically, EVs-derived miR-141-3p directly targets PTEN to promote PI3K/AKT signaling, thereby mediating hepatic glucose homeostasis through the regulation of hepatic gluconeogenesis and glycogen synthesis. Conclusion In summary, our results highlight the emerging role of miR-141-3p in mediating adipose tissue-derived EVs to alleviate obesity-induced hepatic insulin resistance, providing potential therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Zixian Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Tianyu Ma
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Ge Bai
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Qianchen Fang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Biqian Ou
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Meng Chen
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Pei Xu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Meng Tian
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Anding Xu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Yi Ma
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
8
|
Qi L, Luo DZ, Li H, Yan J, He W. Macrophage-driven exosomes regulate the progression of cardiovascular disease. Front Pharmacol 2025; 16:1563800. [PMID: 40371346 PMCID: PMC12075947 DOI: 10.3389/fphar.2025.1563800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Exosomes, as vital mediators of intercellular communication, play a critical role in the progression of cardiovascular disease (CVD). Recently, macrophage-derived exosomes (Mφ-Exos) have garnered increasing attention because of their significant potential in early diagnosis, pathological processes, and therapeutic applications for CVD. Exosomes contain diverse nucleic acids (e.g., miRNAs, mRNAs, and long noncoding RNAs (lncRNAs)) and proteins, which serve as specific biomarkers that regulate various stages of CVD. For example, miRNAs encapsulated within exosomes (e.g., miR-21, miR-133a, and miR-155) are closely associated with atherosclerosis, myocardial infarction, coronary artery disease, and stroke, and changes in their abundance can serve as diagnostic and prognostic indicators. Additionally, the composition of Mφ-Exos, including miRNAs, lipids, and proteins, plays a significant role in the initiation, progression, and inflammation of CVD. Research on Mφ-Exos provides new directions for early diagnosis, mechanistic exploration, and novel therapeutic targets in CVD. However, challenges remain regarding exosome isolation and identification technologies. Future studies need to further explore the biological properties of exosomes and develop more efficient, economical, and straightforward isolation methods. This review summarizes the multifaceted regulatory roles of Mφ-Exos in CVD, encompassing key processes such as inflammation, angiogenesis, metabolism, and cell death. Research has shown that M1-Exos promote the progression and exacerbation of CVD through pro-inflammatory and pro-fibrotic mechanisms, while M2-Exos demonstrate significant therapeutic potential via anti-inflammatory, pro-angiogenic, and metabolic reprogramming pathways. These findings not only reveal the complex mechanisms of Mφ-Exos in CVD but also provide new perspectives and potential targets for early diagnosis and precision treatment of the disease.
Collapse
Affiliation(s)
- Liao Qi
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| | - De-Zhu Luo
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - HuLi Li
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - JianWen Yan
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| | - WenJie He
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, China
| |
Collapse
|
9
|
Navarro-Díaz M, López-Martínez M. The Role of miRNAs as Early Biomarkers in Obesity-Related Glomerulopathy: Implications for Early Detection and Treatment. Biomedicines 2025; 13:1030. [PMID: 40426859 PMCID: PMC12108821 DOI: 10.3390/biomedicines13051030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Obesity increases the risk of cardiovascular disease, diabetes and chronic kidney disease. Obesity-related glomerulopathy (ORG) is a potentially reversible cause of kidney disease that often progresses silently until it reaches irreversible stages. However, we are still lacking a sensitive and specific biomarker to identify patients with obesity who are at risk of developing CKD. The role of microRNAs (miRNAs) has emerged as a promising area for diagnostic and therapeutic applications in kidney disease. Recent research has highlighted the specific roles of various miRNAs in renal function, showing that their dysregulation can contribute to the development of kidney diseases. This review will discuss the emerging role of miRNAs in the context of ORG, focusing on their potential as biomarkers and therapeutic targets for this increasingly prevalent disease.
Collapse
Affiliation(s)
- Maruja Navarro-Díaz
- Genomic Platform, Germans Trias i Pujol’s Research Insitute, 08916 Badalona, Spain
- Nephrology Department, Sant Joan Despí Moisès Broggi Hospital, 08970 Sant Joan Despí, Spain
| | - Marina López-Martínez
- Nephrology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
10
|
Yuan MJ, Huang HC, Shi HS, Hu XM, Zhao Z, Chen YQ, Fan WJ, Sun J, Liu GB. MicroRNA-122-5p is upregulated in diabetic foot ulcers and decelerates the transition from the inflammatory to the proliferative stage. World J Diabetes 2025; 16:100113. [PMID: 40236859 PMCID: PMC11947911 DOI: 10.4239/wjd.v16.i4.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Shifting from the inflammatory to the proliferative phase represents a pivotal step during managing diabetic foot ulcers (DFUs); however, existing medical interventions remain insufficient. MicroRNAs (miRs) highlight notable capacity for accelerating the repair process of DFUs. Previous research has demonstrated which miR-122-5p regulates matrix metalloproteinases under diabetic conditions, thereby influencing extracellular matrix dynamics. AIM To investigate the impact of miR-122-5p on the transition from the inflammatory to the proliferative stage in DFU. METHODS Analysis for miR-122-5p expression in skin tissues from diabetic ulcer patients and mice was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). A diabetic wound healing model induced by streptozotocin was used, with mice receiving intradermal injections of adeno-associated virus -DJ encoding empty vector or miR-122. Skin tissues were retrieved at 3, 7, and 14 days after injury for gene expression analysis, histology, immunohistochemistry, and network studies. The study explored miR-122-5p's role in macrophage-fibroblast interactions and its effect on transitioning from inflammation to proliferation in DFU healing. RESULTS High-throughput sequencing revealed miR-122-5p as crucial for DFU healing. qRT-PCR showed significant upregulation of miR-122-5p within diabetic skin among DFU individuals and mice. Western blot, along with immunohistochemical and enzyme-linked immunosorbent assay, demonstrating the upregulation of inflammatory mediators (hypoxia inducible factor-1α, matrix metalloproteinase 9, tumor necrosis factor-α) and reduced fibrosis markers (fibronectin 1, α-smooth muscle actin) by targeting vascular endothelial growth factor. Fluorescence in situ hybridization indicated its expression localized to epidermal keratinocytes and fibroblasts in diabetic mice. Immunofluorescence revealed enhanced increased presence of M1 macrophages and reduced M2 polarization, highlighting its role in inflammation. MiR-122-5p elevated inflammatory cytokine levels while suppressing fibrotic activity from fibroblasts exposed to macrophage-derived media, highlighting its pivotal role in regulating DFU healing. CONCLUSION MiR-122-5p impedes cutaneous healing of diabetic mice via enhancing inflammation and inhibiting fibrosis, offering insights into miR roles in human skin wound repair.
Collapse
Affiliation(s)
- Mei-Jie Yuan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - He-Chen Huang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong-Shuo Shi
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Ming Hu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhuo Zhao
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Qi Chen
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Jing Fan
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Sun
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Bin Liu
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Ren T, Zhang Y, Tong Y, Zhang Q, Wang T, Wang Y, Yang C, Xu Z. FRET imaging of glycoRNA on small extracellular vesicles enabling sensitive cancer diagnostics. Nat Commun 2025; 16:3391. [PMID: 40210865 PMCID: PMC11985951 DOI: 10.1038/s41467-025-58490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
Glycosylated RNAs (glycoRNAs), a recently discovered class of membrane-associated glyco-molecules, remain poorly understood in function and clinical value due to limited detection methods. Here, we show a dual recognition Förster resonance energy transfer (drFRET) strategy using nucleic acid probes to detect N-acetylneuraminic acid-modified RNAs, enabling sensitive, selective profiling of glycoRNAs on small extracellular vesicles (sEVs) from minimal biofluids (10 μl initial biofluid). Using drFRET, we identify 5 prevalent sEV glycoRNAs derived from 7 cancer cell lines. In a 100-patient cohort (6 cancer types and non-cancer controls), sEV glycoRNA profiles achieve 100% accuracy (95% confidence interval) in distinguishing cancers from non-cancer cases and 89% accuracy in classifying specific cancer types. Furthermore, drFRET reveal that sEV glycoRNAs specifically interact with Siglec proteins and P-selectin, which is critical for sEV cellular internalization. The drFRET strategy provides a versatile and sensitive platform for the imaging and functional analysis of sEV glycoRNAs, with promising implications for clinical applications.
Collapse
Affiliation(s)
- Tingju Ren
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Yingzhi Zhang
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuxiao Tong
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Qi Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Tianhao Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Yue Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Chunguang Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning Province, China.
| |
Collapse
|
12
|
Fan Y, Deng H, Zhu J, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Porcine jejunal-derived extracellular vesicles participate in the regulation of lipid metabolism. J Anim Sci Biotechnol 2025; 16:53. [PMID: 40189541 PMCID: PMC11974103 DOI: 10.1186/s40104-025-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/23/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Regulating the regional deposition of fat is crucial for improving the carcass characteristics of pigs. The intestine, as an important organ for lipid absorption and homeostasis maintenance, secretes various biological signals that participate in the crosstalk between the intestine and adipose tissue. Extracellular vesicles, as novel extracellular genetic factors that mediate metabolic signal exchange among multiple tissues, have emerged as a hotspot and breakthrough in revealing the mechanisms of physiological homeostasis. However, how extracellular vesicles regulate the intestinal-adipose signaling axis, especially in relation lipid metabolism and deposition is still unclear. Thus, in the current study, intestinal extracellular vesicles from Chinese fat-type piglets of Lantang and typical lean-type piglets of Landrace were isolated and identified, and to reveal the regulatory mechanisms of lipid metabolism via intestinal extracellular vesicles in mediating intestinal-adipose crosstalk. RESULTS We isolated and identified intestinal extracellular vesicles from the jejunum of 3-day-old Lantang and Landrace piglets (LT-EVs and LD-EVs) and further investigated their effects on lipid accumulation in porcine primary adipocytes. Compared to LD-EVs, LT-EVs promoted lipid deposition in porcine primary adipocytes, with intestinal-derived miRNAs playing a critical role in the crosstalk between the intestine and adipose tissue. Further analysis of extracellular vesicles-derived miRNA sequencing revealed that miR-30b-5p, enriched in LD-EVs, is involved in the regulation of lipid metabolism. Notably, the enrichment of miR-30b-5p in extracellular vesicles derived from IPEC-J2 cells also influenced lipid metabolism. Mechanistically, the targeted binding of miR-30b-5p and FMO3 may be critical for the extracellular vesicle-mediated regulation of lipid metabolism. CONCLUSIONS Our findings suggest that jejunal-derived extracellular vesicles play a critical role in regulating lipid metabolism, and the regulatory effect of extracellular vesicles from obese piglets was higher than that of lean piglets. Furthermore, the different expression of miRNAs, such as miR-30b-5p, in intestinal extracellular vesicles may be the key to determining lipid deposition phenotypes across the two pig breeds.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Haibin Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Zhao S, Song Y, Nakashima Y, Zou X, Koga T, Ishida T, Li R, Hirota Y, Tanaka Y, Ishii Y. Ablation of Mouse Selenium-Binding Protein 1 and 2 Elevates LDL by Disruption of Cholesterol Efflux and Lipid Metabolism. Int J Mol Sci 2025; 26:3363. [PMID: 40244197 PMCID: PMC11989624 DOI: 10.3390/ijms26073363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium-binding protein 1 (SeBP1) is an anticancer factor that affects lipid metabolism in mouse kidneys via the peroxisome proliferator-activated receptor-alpha (PPARA) pathway. However, its physiological role in the liver is difficult to explain because of the presence of the highly homologous selenium-binding protein 2 (SeBP2). To investigate the role of these proteins in the liver, we generated SeBP1 and SeBP2 double-knockout mice (SeBP1/2-DK). SeBP1/2 deletion did not significantly alter the mice phenotypic compared to that of the wild-type strain. Then, we identified the genes involved in hepatic lipid metabolism. The double knockout did not affect fatty acid and cholesterol synthesis, but inhibited fatty acid oxidation and cholesterol efflux. Furthermore, transfection of HepG2 cells with human selenium-binding protein 1 (hSeBP1) positively regulated PPARA and the genes controlled by it. Overexpression of hSeBP1 reduced the levels of non-esterified fatty acids in the culture medium. The serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides were significantly different among the three groups. In summary, we elucidated the potential signaling pathways of SeBP1 and SeBP2 in fatty acid oxidation and hepatic cholesterol efflux. Our findings provide insights relevant for developing new strategies to prevent and treat lipid metabolism disorders.
Collapse
Grants
- Scientific Research (A) JSPS KAKENHI JP17H00788, Recipient YI Japan Society for the Promotion of Science
- Scientific Research (A) JSPS KAKENHI JP21H04928, Recipient YI Japan Society for the Promotion of Science
- JSPS Fellows JSPS KAKENHI 24KJ1773, Recipient SZ Japan Society for the Promotion of Science
- Research on Food Safety (H30-Designated Research-005, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- the Ministry of Health, Labor and Welfare, Japan [Research on Food Safety (R3-Designated Research JP21KA2003, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- Research on Food Safety ( R6-Designated Research JP24KA2001, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
Collapse
Affiliation(s)
- Shuangli Zhao
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yingxia Song
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuko Nakashima
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Xing Zou
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa 831-8501, Japan;
| | - Renshi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| |
Collapse
|
14
|
Chen J, Luo M, Xing Z, Chen Y, Peng C, Li D. Start small, think big: MicroRNAs in diabetes mellitus and relevant cardiorenal-liver metabolic health spectrum. Metabolism 2025; 165:156153. [PMID: 39914482 DOI: 10.1016/j.metabol.2025.156153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Diabetes mellitus (DM), co-existing with metabolic disorder of cardio-renal-liver, is one of the most difficult problems in medicine that attracts global concern with high mortality. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that negatively regulates gene expression and exerts active against a large proportion of the transcriptome, due to their high evolutionary conservation. Emerging evidence prove that miRNAs are involved in the pathogenesis of DM and associated metabolic disorders, manifested by their variable alteration in the blood, urine, tissues, or organs, principally contributing to modulate the interconnections between DM and cardio-renal-liver metabolism. Mechanistically, miRNAs regulate various biological processes, such as metabolism of insulin, lipid, glucose, inflammatory response, fibrosis, oxidative stress, apoptosis, and angiogenesis, etc. This review emphasizes the function of miRNAs and highlights the physiopathological regulation of miRNA in DM and related complications, especially the dysfunction of cardiovascular system, kidneys, and liver, with the aim of providing promising biomarkers for assisting early diagnosis of DM with cardio-renal-liver- specific metabolic disorders, as well as for the development of miRNA-targeting agents.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maozhu Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
15
|
Puagsopa J, Tongviseskul N, Jaroentomeechai T, Meksiriporn B. Recent Progress in Developing Extracellular Vesicles as Nanovehicles to Deliver Carbohydrate-Based Therapeutics and Vaccines. Vaccines (Basel) 2025; 13:285. [PMID: 40266147 PMCID: PMC11946770 DOI: 10.3390/vaccines13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Cell-derived, nanoscale extracellular vesicles (EVs) have emerged as promising tools in diagnostic, therapeutic, and vaccine applications. Their unique properties including the capability to encapsulate diverse molecular cargo as well as the versatility in surface functionalization make them ideal candidates for safe and effective vehicles to deliver a range of biomolecules including gene editing cassettes, therapeutic proteins, glycans, and glycoconjugate vaccines. In this review, we discuss recent advances in the development of EVs derived from mammalian and bacterial cells for use in a delivery of carbohydrate-based protein therapeutics and vaccines. We highlight key innovations in EVs' molecular design, characterization, and deployment for treating diseases including Alzheimer's disease, infectious diseases, and cancers. We discuss challenges for their clinical translation and provide perspectives for future development of EVs within biopharmaceutical research and the clinical translation landscape.
Collapse
Affiliation(s)
- Japigorn Puagsopa
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Niksa Tongviseskul
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Bunyarit Meksiriporn
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| |
Collapse
|
16
|
Lin YK, Pan YF, Jiang TY, Chen YB, Shang TY, Xu MY, Feng HB, Ma YH, Tan YX, Wang HY, Dong LW. Blocking the SIRPα-CD47 axis promotes macrophage phagocytosis of exosomes derived from visceral adipose tissue and improves inflammation and metabolism in mice. J Biomed Sci 2025; 32:31. [PMID: 40016734 PMCID: PMC11869713 DOI: 10.1186/s12929-025-01124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Adipose tissue plays a pivotal role in systemic metabolism and maintaining bodily homeostasis. Exosomes from adipose tissues, known as AT-Exos, are recognized as important messengers in the communication between adipose tissue and other organs. Despite this, the alterations in exosome composition and the functional disparities among depot-specific AT-Exos in obesity remain elusive. METHODS In this work, we utilized lipidomics and microRNA (miRNA) sequencing to elucidate the lipid and miRNA profiles of AT-Exos in a diet-induced obesity model. We identified obesity-related miRNAs in AT-Exos and further explored their mechanisms using gain- and loss-of-function experiments. To evaluate the metabolic effects of AT-Exos on adipocytes, we conducted RNA-sequencing (RNA-seq) and confirmed our findings through Quantitative Real-time PCR (qPCR) and Western bolt analyses. Meanwhile, a mouse model with intraperitoneal injections was utilized to validate the role of exosomes derived from visceral white adipose tissue (vWAT-Exos) in obesity progression in vivo. Finally, we explored potential therapeutic intervention strategies targeting AT-Exos, particularly focusing on modulating the SIRPα-CD47 axis to enhance macrophage phagocytosis using Leptin-deficient (ob/ob) mice and SIRPα knock-out mice. RESULTS Our study revealed that obesity-related metabolism affects the biological processes of AT-Exos, with depot-specific secretion patterns. In obesity, the lipidome profile of AT-Exos was significantly altered, and diet can modify the miRNA content and function within these exosomes, influencing lipid metabolism and inflammatory pathways that contribute to metabolic dysregulation. Specifically, we identified that miR-200a-3p and miR-200b-3p promoted lipid accumulation in 3T3L1 cells partly through the PI3K/AKT/mTOR pathway. RNA-Seq analysis revealed that AT-Exos from different fat depots exerted distinct effects on adipocyte metabolism, with obese vWAT-Exos being notably potent in triggering inflammation and lipid accumulation in diet-induced obesity. Additionally, we found that inhibiting the SIRPα-CD47 axis can mitigate metabolic disorders induced by obese vWAT-Exos or ob/ob mice, partly due to the enhanced clearance of vWAT-Exos. Consistent with this, SIRPα-deficient mice exhibited a reduction in vWAT-Exos and displayed greater resistance to obesity. CONCLUSIONS This study elucidates that diet-induced obesity altered the lipid and miRNA profiles of AT-Exos, which involved in modulating adipocyte inflammation and metabolic balance. The SIRPα-CD47 axis emerges as a potential therapeutic target for obesity and its associated complications.
Collapse
Affiliation(s)
- Yun-Kai Lin
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yu-Fei Pan
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Tian-Yi Jiang
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yi-Bin Chen
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Tai-Yu Shang
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Meng-You Xu
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Hui-Bo Feng
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Yun-Han Ma
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ye-Xiong Tan
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China
| | - Hong-Yang Wang
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Li-Wei Dong
- International Cooperation Laboratory On Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
- Oncology Pharmacy Laboratory, National Center for Liver Cancer, Shanghai, China.
| |
Collapse
|
17
|
Liang M, Xiao X, Chen M, Guo Y, Han W, Min Y, Jiang X, Yu W. Artemisia capillaris Thunb. Water extract alleviates metabolic dysfunction-associated Steatotic liver disease Disease by inhibiting miR-34a-5p to activate Sirt1-mediated hepatic lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119030. [PMID: 39515682 DOI: 10.1016/j.jep.2024.119030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia capillaris Thunb. (ACT) is a plant in the Asteraceae family. Its traditional effects are to clear away dampness and heat, promote gallbladder and reduce jaundice. Traditional Chinese medicine believes that MASLD is a damp-heat syndrome. The group's previous study showed that Artemisia capillaris Thunb. Water Extract (ACTE) has an improved effect on MASLD. AIM OF THE STUDY AND METHODS In order to further understand its mechanism of action, this study established a mouse MASLD model and a HepG2 cell lipid droplet model, combined small RNA sequencing and miRNA transfection experiments, to explore the mechanism of ACTE to improve MASLD by modulating miRNA-targeted mRNA. Non-targeted metabolomics method was used to detect and analyze ACTE. RESULTS This study screened miR-34a-5p and confirmed its target mRNA-Sirtuin 1 (Sirt1). MASLD induced high expression of miR-34a-5p and low expression of Sirt1, and ACE reversed these changes. When overexpressing miR-34a-5p or knocking down Sirt1, the effect of ACE in reducing PO (palmitic acid and oleic acid complex)-induced lipid accumulation in HepG2 cells was attenuated. ACTE reduces the expression of FASN, SCD1, ACC, and SREBP-1c, promotes the expression of CPT-1 and HSL, thereby reducing lipid accumulation. CONCLUSIONS ACTE activates Sirt1 by inhibiting the expression of miR-34a-5p, thereby reducing liver lipid accumulation and improving HFD-induced MASLD. These findings highlight the potential of ACTE in reducing weight, controlling obesity, and improving lipid metabolism disorders.
Collapse
Affiliation(s)
- Meng Liang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiao Xiao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Miao Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Yi Guo
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Weiting Han
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Yahong Min
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial Key Laboratory of Animal Pathogenesis and Comparative Medicine, Harbin, 150030, China.
| |
Collapse
|
18
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
19
|
Chen Y, Qi W, Wang Z, Niu F. Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins. Pharmaceutics 2025; 17:147. [PMID: 40006514 PMCID: PMC11858990 DOI: 10.3390/pharmaceutics17020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Exosomes have emerged as promising therapeutic agents in regenerative medicine. This review introduces a novel cell type-oriented perspective to systematically analyze exosomal properties in regenerative therapies. To our knowledge, this review is the first to comprehensively compare exosomes based on cellular source type, offering unprecedented insights into selecting optimal exosome producers for targeted regenerative applications. Factors beyond cellular origin influencing exosomal therapeutic efficacy, such as donor sites and collection methods, are also explored here. By synthesizing key advances, we propose promising research directions in the end. We aim to accelerate the development of more effective exosome-based regenerative therapies and highlight underexplored directions in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Feng Niu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan, Beijing 100144, China; (Y.C.)
| |
Collapse
|
20
|
Vijay B, Devkumar P, Saha G, RamachandraRao SP. Urine exosome biomarkers of obesity after Lekhana Basti treatment - Report of a pilot study. J Ayurveda Integr Med 2025; 16:101043. [PMID: 39879695 PMCID: PMC11803157 DOI: 10.1016/j.jaim.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Obesity is a rising risk factor for various diseases including cardiovascular diseases and Cancer. The limitations of targeted obesity-treatment approaches employed in the clinic presently underscore the importance of developing integrative management strategies for identification of specific biomarkers of obesity. OBJECTIVES Given the specificity of exosome/extracellular vesicle (EV) biomarkers, we aimed here to identify the EV biomarkers of Ayurveda treatment - Lekhana Basti - for Obesity. METHODOLOGY A total of eighteen 24-h urine samples from 6 participants with BMI>30 kg/m2 were used in this study, collected over 3 time-points during the Lekhana basti (medicated enema for obesity) treatment. Urine EV were isolated using Polyethylene Glycol (PEG). The proteins were resolved by 1-d gel electrophoresis and identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and quantified by label-free methods. Significant Protein-Protein Interactions, KEGG pathway analysis and enrichment, functional gene ontology (GO) annotation were identified and shortlisted in comparison to Obesity reference genes from DisGeNET. RESULTS With UniProt as a reference subsequent to LC-MS/MS-identification, a total of 210 exosome proteins were identified. Seventy-three proteins were overexpressed in pathway enrichment analysis. Further, GO functional annotation identified 15 common proteins involved. Finally, the 8 hub proteins associated with obesity were identified and their differential expression profile compared between three different time-points during Lekhana Basti treatment. Six protein markers overexpressed during obesity were downregulated post Lekhana Basti treatment, while 2 markers increased in abundance post-treatment. CONCLUSION To our knowledge, this is the first study to isolate and identify urine EV protein abundance profiles from obese female participants of India. The study results indicate significant changes in the differential expression profile of 8 hub proteins involved in obesity, after Lekhana Basti treatment. The biomarker signature of the pilot study indicates the role of Ayurveda treatment and the possible pathways involved in the treatment of Obesity. Further, this study underlines the specificity of urine exosomes/EV as diagnostic markers as well as the potential of Ayurveda treatment in effective management of obesity.
Collapse
Affiliation(s)
- Bhavya Vijay
- Center for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Poornima Devkumar
- Center for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Gargi Saha
- Center for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Satish P RamachandraRao
- Center for Clinical Research and Education, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India; Internal Medicine - Cardiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Washington AM, Kostallari E. Extracellular Vesicles and Micro-RNAs in Liver Disease. Semin Liver Dis 2024. [PMID: 39626790 DOI: 10.1055/a-2494-2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Progression of liver disease is dependent on intercellular signaling, including those mediated by extracellular vesicles (EVs). Within these EVs, microRNAs (miRNAs) are packaged to selectively silence gene expression in recipient cells for upregulating or downregulating a specific pathway. Injured hepatocytes secrete EV-associated miRNAs which can be taken up by liver sinusoidal endothelial cells, immune cells, hepatic stellate cells, and other cell types. In addition, these recipient cells will secrete their own EV-associated miRNAs to propagate a response throughout the tissue and the circulation. In this review, we comment on the implications of EV-miRNAs in the progression of alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, viral and parasitic infections, liver fibrosis, and liver malignancies. We summarize how circulating miRNAs can be used as biomarkers and the potential of utilizing EVs and miRNAs as therapeutic methods to treat liver disease.
Collapse
Affiliation(s)
- Alexander M Washington
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Diez-Roda P, Perez-Navarro E, Garcia-Martin R. Adipose Tissue as a Major Launch Spot for Circulating Extracellular Vesicle-Carried MicroRNAs Coordinating Tissue and Systemic Metabolism. Int J Mol Sci 2024; 25:13488. [PMID: 39769251 PMCID: PMC11677924 DOI: 10.3390/ijms252413488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Circulating microRNAs (miRNAs), especially transported by extracellular vesicles (EVs), have recently emerged as major new participants in interorgan communication, playing an important role in the metabolic coordination of our tissues. Among these, adipose tissue displays an extraordinary ability to secrete a vast list of EV-carried miRNAs into the circulation, representing new hormone-like factors. Despite the limitations of current methodologies for the unequivocal identification of the origin and destination of EV-carried miRNAs in vivo, recent investigations clearly support the important regulatory role of adipose-derived circulating miRNAs in shaping the metabolism and function of other tissues including the liver, muscle, endocrine pancreas, cardiovascular system, gastrointestinal tract, and brain. Here, we review the most recent findings regarding miRNAs transported by adipose-derived EVs (AdEVs) targeting other major metabolic organs and the implications of this dialog for physiology and pathology. We also review here the current and potential future diagnostic and therapeutic applications of AdEV-carried miRNAs.
Collapse
Affiliation(s)
| | | | - Ruben Garcia-Martin
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain; (P.D.-R.); (E.P.-N.)
| |
Collapse
|
23
|
Zhang L, Lou K, Zhang Y, Leng Y, Huang Y, Liao X, Liu X, Feng S, Feng G. Tools for regulating metabolic diseases: extracellular vesicles from adipose macrophages. Front Endocrinol (Lausanne) 2024; 15:1510712. [PMID: 39735643 PMCID: PMC11674605 DOI: 10.3389/fendo.2024.1510712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Metabolic diseases have gradually become one of the most significant global medical burdens. Diseases such as obesity, diabetes, and metabolic syndrome, along with their complications, are clinically categorized as metabolic diseases. Long-term oral medication significantly reduces patient compliance and quality of life. Therefore, alternative therapies that intervene at the cellular level or target the root causes of metabolic diseases might help change this predicament. Research has found that extracellular vesicles derived from adipose macrophages can effectively regulate metabolic diseases by influencing the disease's development. This regulation is likely related to the role of these extracellular vesicles as important mediators in modulating adipose tissue function and insulin sensitivity, and their involvement in the crosstalk between adipocytes and macrophages. This review aims to describe the regulation of metabolic diseases mediated by adipose macrophage-derived extracellular vesicles, with a focus on their involvement in adipocyte crosstalk, the regulation of metabolism-related autoimmunity, and their potential as therapeutic agents for metabolic diseases, providing new avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| | - Yuanjing Leng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Yuqing Huang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xinxin Liao
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Guoqiang Feng
- Department of Rehabilitation, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
24
|
Li W, Yu L. Role and therapeutic perspectives of extracellular vesicles derived from liver and adipose tissue in metabolic dysfunction-associated steatotic liver disease. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:355-369. [PMID: 38833340 DOI: 10.1080/21691401.2024.2360008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The global epidemic of metabolic diseases has led to the emergence of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), which pose a significant threat to human health. Despite recent advances in research on the pathogenesis and treatment of MASLD/MASH, there is still a lack of more effective and targeted therapies. Extracellular vesicles (EVs) discovered in a wide range of tissues and body fluids encapsulate different activated biomolecules and mediate intercellular communication. Recent studies have shown that EVs derived from the liver and adipose tissue (AT) play vital roles in MASLD/MASH pathogenesis and therapeutics, depending on their sources and intervention types. Besides, adipose-derived stem cell (ADSC)-derived EVs appear to be more effective in mitigating MASLD/MASH. This review presents an overview of the definition, extraction strategies, and characterisation of EVs, with a particular focus on the biogenesis and release of exosomes. It also reviews the effects and potential molecular mechanisms of liver- and AT-derived EVs on MASLD/MASH, and emphasises the contribution and clinical therapeutic potential of ADSC-derived EVs. Furthermore, the future perspective of EV therapy in a clinical setting is discussed.
Collapse
Affiliation(s)
- Wandi Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Haidian District, Beijing, P.R. China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, P.R. China
- Endocrine Department, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Henan, P.R. China
| |
Collapse
|
25
|
Németh K, Kestecher BM, Ghosal S, Bodnár BR, Kittel Á, Hambalkó S, Kovácsházi C, Giricz Z, Ferdinandy P, Osteikoetxea X, Burkhardt R, Buzas EI, Orsó E. Therapeutic and pharmacological applications of extracellular vesicles and lipoproteins. Br J Pharmacol 2024; 181:4733-4749. [PMID: 39491825 DOI: 10.1111/bph.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 07/13/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, various approaches have been undertaken to eliminate lipoproteins co-isolated with extracellular vesicles, as they were initially regarded as contaminating entities. However, novel discoveries are reshaping our perspective. In body fluids, these distinct particles not only co-exist, but also interactions between them are likely to occur. Extracellular vesicles and lipoproteins can associate with each other, share cargo, influence each other's functions, and jointly have a role in the pathomechanisms of diseases. Additionally, their association carries important implications for therapeutic and pharmacological aspects of lipid-lowering strategies. Extracellular vesicles and lipoprotein particles may have roles in the elimination of each other from the circulation. The objective of this minireview is to delve into these aspects. Here, we show that under certain physiological and pathological conditions, extracellular vesicles and lipoproteins are 'partners' rather than 'strangers' or 'rivals'.
Collapse
Affiliation(s)
- Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Brachyahu M Kestecher
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Sayam Ghosal
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Bernadett R Bodnár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Ágnes Kittel
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HUN-REN, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Hambalkó
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Edit I Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Evelyn Orsó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Azari H, George M, Albracht-Schulte K. Gut Microbiota-microRNA Interactions and Obesity Pathophysiology: A Systematic Review of Integrated Studies. Int J Mol Sci 2024; 25:12836. [PMID: 39684547 DOI: 10.3390/ijms252312836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is the fifth leading cause of death globally and its comorbidities put a high burden on societies and cause disability. In this review, we aim to summarize the interactions and crosstalk between gut microbiota and micro-RNA (miRNA) in obesity. We searched for the relevant literature through PubMed, Web of Science, Scopus, and Science Direct. The study design is registered in the international prospective register of systematic reviews (Prospero). According to the inclusion criteria, eight studies were eligible for assessment (two studies including human subjects and six studies including animal subjects). We report that the interactions of miRNA and gut microbiota in the context of obesity are diverse and in some cases tissue specific. However, the interactions mediate obesity-associated pathways including the inflammatory response, oxidative stress, insulin signaling, gut permeability, and lipogenesis. To mention the most meaningful results, the expression of adipose tissue miRNA-378a-3p/5p was associated with Bifidobacterium and Akkermansia abundance, the expression of hepatic miRNA-34a was related to the Firmicutes phylum, and the expression of miRNA-122-5p and miRNA-375 was associated with the Bacteroides genus. miRNA-microbiota-associated pathological pathways seem to provide an intricate, but promising field for future research directed toward the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Hushyar Azari
- Department of Kinesiology and Sport Management and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Megan George
- Department of Kinesiology and Sport Management and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Kembra Albracht-Schulte
- Department of Kinesiology and Sport Management and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
27
|
Zhang Y, Qian B, Yang Y, Niu F, Lin C, Yuan H, Wang J, Wu T, Shao Y, Shao S, Liu A, Wu J, Sun P, Chang X, Bi Y, Tang W, Zhu Y, Chen F, Su D, Han X. Visceral Adipocyte-Derived Extracellular Vesicle miR-27a-5p Elicits Glucose Intolerance by Inhibiting Pancreatic β-Cell Insulin Secretion. Diabetes 2024; 73:1832-1847. [PMID: 39186314 PMCID: PMC11493764 DOI: 10.2337/db24-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Pancreatic β-cell dysfunction caused by obesity can be associated with alterations in the levels of miRNAs. However, the role of miRNAs in such processes remains elusive. Here, we show that pancreatic islet miR-27a-5p, which is markedly increased in obese mice and impairs insulin secretion, is mainly delivered by visceral adipocyte-derived extracellular vesicles (EVs). Depleting miR-27a-5p significantly improved insulin secretion and glucose intolerance in db/db mice. Supporting the function of EV miR-27a-5p as a key pathogenic factor, intravenous injection of miR-27a-5p-containing EVs showed their distribution in mouse pancreatic islets. Tracing the injected adeno-associated virus (AAV)-miR-27a-5p (AAV-miR-27a) or AAV-FABP4-miR-27a-5p (AAV-FABP4-miR-27a) in visceral fat resulted in upregulating miR-27a-5p in EVs and serum and elicited mouse pancreatic β-cell dysfunction. Mechanistically, miR-27a-5p directly targeted L-type Ca2+ channel subtype CaV1.2 (Cacna1c) and reduced insulin secretion in β-cells. Overexpressing mouse CaV1.2 largely abolished the insulin secretion injury induced by miR-27a-5p. These findings reveal a causative role of EV miR-27a-5p in visceral adipocyte-mediated pancreatic β-cell dysfunction in obesity-associated type 2 diabetes mellitus. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bin Qian
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yang Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Fandi Niu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi’an, Shanxi, China
| | - Changsong Lin
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honglei Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianan Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yixue Shao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shulin Shao
- Department of Laboratory, Nanjing Pukou Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Aiming Liu
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingwen Wu
- The First Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, Jiangsu, China
| | - Wei Tang
- Department of Endocrinology, Islet Cell Senescence and Function Research Laboratory, Jiangsu Province Geriatric Institute, Nanjing, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Tang F, Zhang JN, Xu LY, Zhao XL, Wan F, Ao H, Peng C. Endothelial-derived exosomes: A novel therapeutic strategy for LPS-induced myocardial damage with anisodamine. Int J Biol Macromol 2024; 282:136993. [PMID: 39489255 DOI: 10.1016/j.ijbiomac.2024.136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-induced myocardial dysfunction presents significant challenges in clinical management and is associated with increased mortality. Anisodamine (654-1/-2) has potentials in alleviating cardiac and endothelial impairments associated with sepsis. Exosomes, small vesicles secreted by cells, carry various bioactive molecules, such as nucleic acids, proteins, and lipids. These vesicles can travel to target cells to influence their function and modulating biological processes. In the context of endothelial-cardiac crosstalk, exosomes derived from endothelial cells can transfer signals that either exacerbate or mitigate myocardial injury, playing a crucial role in the progression of cardiovascular diseases. However, the precise role of endothelial-cardiac crosstalk, particularly through exosomes, in mediating the cardioprotective effects of anisodamine remains unclear. This study evaluated the effects of anisodamine on myocardial and endothelial injuries induced by LPS. Mechanisms were analyzed through network pharmacology, molecular docking, Western blotting, and RT-qPCR. The interaction between endothelial and cardiomyocyte inflammatory responses to anisodamine was assessed using a co-culture assay. Furthermore, both in vivo and in vitro assays were conducted to evaluate the effects of anisodamine-/LPS- treated HUVECs exosomes on A16 cell and myocardial function in mice. Anisodamine effectively mitigated apoptosis, inflammation, mitochondrial and myocardial injury, glycocalyx degradation, and oxidative stress by regulating the PI3K-AKT, NLRP-3/Caspase-1/ASC, TNF-α/PKCα/eNOs/NO, and NF-κB/iNOs/NO pathways in A16 cells and HUVECs. Moreover, in vivo and in vitro assays confirmed the protective effects of anisodamine against myocardial injuries mediated by exosomes derived from LPS-treated HUVECs. In summary, anisodamine ameliorated inflammation-induced endothelial and cardiomyocyte dysfunction. The in vitro and in vivo assays demonstrated that anisodamine could alleviate myocardial dysfunction through exosome-mediated mechanisms, offering new therapeutic avenues for treating myocardial injury and highlighting the potential of targeted exosome therapy in clinical settings.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feng Wan
- Chengdu NO. 1 Pharmaceutical Co., Ltd., No. 133, Section 2, East Third Ring Road, Tianpeng, Pengzhou 611930, Sichuan, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
29
|
Duisenbek A, Avilés Pérez MD, Pérez M, Aguilar Benitez JM, Pereira Pérez VR, Gorts Ortega J, Ussipbek B, Yessenbekova A, López-Armas GC, Ablaikhanova N, Olivieri F, Escames G, Acuña-Castroviejo D, Rusanova I. Unveiling the Predictive Model for Macrovascular Complications in Type 2 Diabetes Mellitus: microRNAs Expression, Lipid Profile, and Oxidative Stress Markers. Int J Mol Sci 2024; 25:11763. [PMID: 39519313 PMCID: PMC11546857 DOI: 10.3390/ijms252111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
To assay new circulating markers related to macrovascular complications (MVC) in type 2 diabetes mellitus (T2DM), we carried out a descriptive cross-sectional study. We recruited 30 controls (CG), 34 patients with T2DM (DG), and 28 patients with T2DM and vascular complications (DG+C); among them, 22 presented MVC. Peripheral blood was used to determine redox status (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; glucose-6-phosphate dehydrogenase, G6PD) and markers of oxidative damage (advanced oxidation protein products, AOPP; lipid peroxidation, LPO), nitrite levels in plasma (NOx). Inflammatory markers (IL-1β, IL-6, IL-10, IL-18, MCP-1, TNF-α) and the relative expression of c-miRNAs were analyzed. The real-time PCR results showed that the expressions of miR-155-5p, miR-21-5p, miR-146a-3p, and miR-210-3p were significantly higher in the DG group compared to the CG. The DG+C group presented statistically relevant differences with CG for four miRs: the increased expression of miR-484-5p, miR-21-5p, and miR-210-3p, and decreased expression of miR-126a-3p. Moreover, miR-126a-3p was significantly less expressed in DG+C compared to DG. The application of binary logistic regression analysis and construction of receiving operator characteristic curves (ROC) revealed two models with high predictive values for vascular complications presence: (1) HbAc1, creatinine, total cholesterol (TC), LPO, GPx, SOD, miR-126, miR-484 (Exp(B) = 0.926, chi2 = 34.093, p < 0.001; AUC = 0.913). (2) HbAc1, creatinine, TC, IL-6, LPO, miR-126, miR-484 (Exp(B) = 0.958, Chi2 = 33.863, p < 0.001; AUC = 0.938). Moreover, our data demonstrated that gender, TC, GPx, CAT, and miR-484 were associated with MVC and exhibited higher predictive values (Exp(B) = 0.528, p = 0.024, Chi2 = 28.214, AUC = 0.904) than classical variables (Exp(B) 0.462, p = 0.007, Chi2 = 18.814, AUC = 0.850). miR-126, miR-484, IL-6, SOD, CAT, and GPx participate in vascular damage development in the studied diabetic population and should be considered for future studies.
Collapse
Affiliation(s)
- Ayauly Duisenbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - María D. Avilés Pérez
- Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada Ibs.GRANADA, University Hospital San Cecilio, 18007 Granada, Spain;
| | - Miguel Pérez
- Hospital Alto Guadalquivir, 23740 Andujar, Spain;
| | | | - Víctor Roger Pereira Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
| | - Juan Gorts Ortega
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
| | - Botagoz Ussipbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Gabriela C. López-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara C.P. 44638, Mexico;
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Disclimo, Università Politecnica delle Marche, 60126 Ancona, Italy;
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
30
|
Sakaue T, Dorayappan KDP, Zingarelli R, Khadraoui W, Anbalagan M, Wallbillich J, Bognar B, Wanner R, Cosgrove C, Suarez A, Koga H, Maxwell GL, O'Malley DM, Cohn DE, Selvendiran K. Obesity-induced extracellular vesicles proteins drive the endometrial cancer pathogenesis: therapeutic potential of HO-3867 and Metformin. Oncogene 2024; 43:3586-3597. [PMID: 39414985 PMCID: PMC11602708 DOI: 10.1038/s41388-024-03182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Endometrial cancer (EC) is the leading gynecologic malignancy in the United States with obesity implicated in 57% of cases. This research investigates the molecular complexities of extracellular vesicles (EV) secretion as carriers of oncogenic protein and their involvement in obesity-mediated EC. An understanding of these mechanisms is pivotal for unraveling pathways relevant to obesity-associated EC, thereby guiding the development of innovative prevention and treatment strategies. Our exploration revealed a significant increase in EV secretion carrying oncogenic proteins (TMEM205, STAT5, and FAS) in adipose and uterine tissues/serum samples from obese EC patients compared to control (without cancer). We identified alterations in EV-regulating proteins (Rab7, Rab11, and Rab27a) in obesity-mediated EC patients, adipose/uterine tissues, and serum samples. Through a 24-week analysis of the effects of a 45% kcal high-fat diet (HFD) on mice, we observed increased body weight, increased adipose tissue, enlarged uterine horns, and increased inflammation in the HFD group. This correlated with elevated levels of EV secretion and increased expression of oncogenic proteins TMEM205, FAS, and STAT5 and downregulation of the tumor suppressor gene PIAS3 in adipose and uterine tissues. Furthermore, our study confirmed that adipocyte derived EV increased EC cell proliferation, migration and xenograft tumor growth. Additionally, we identified that the small molecule inhibitors (HO-3867) or Metformin inhibited EV secretion in vitro and in vivo, demonstrating significant inhibition of high glucose or adipocyte-mediated EC cell proliferation and a reduction in body weight and adipose tissue accumulation when administered to HFD mice. Moreover, HO-3867 or Metformin treatment inhibited HFD induced hyperplasia (precursor of EC) by altering the expression of EV-regulated proteins and decreasing oncogenic protein expression levels. This study provides critical insights into the mechanisms underpinning obesity-mediated EV secretion with oncogenic protein expression, shedding light on their role in EC pathogenesis. Additionally, it offers pre-clinical evidence supporting the initiation of novel studies for EV-targeted therapies aimed at preventing obesity-mediated EC.
Collapse
Affiliation(s)
- Takahiko Sakaue
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | | | - Roman Zingarelli
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Wafa Khadraoui
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | | | - John Wallbillich
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Balazs Bognar
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ross Wanner
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Casey Cosgrove
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Adrian Suarez
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - G Larry Maxwell
- Inova Women's Service Line and the Inova Schar Cancer Institute, Falls Church, VA, USA
| | - David M O'Malley
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - David E Cohn
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Karuppaiyah Selvendiran
- Division of GYN/ONC, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Li B, Jin Y, Zhang B, Lu T, Li J, Zhang J, Zhou Y, Wang Y, Zhang C, Zhao Y, Li H. Adipose tissue-derived extracellular vesicles aggravate temporomandibular joint osteoarthritis associated with obesity. Clin Transl Med 2024; 14:e70029. [PMID: 39350476 PMCID: PMC11442491 DOI: 10.1002/ctm2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Temporomandibular joint osteoarthritis (TMJ OA) is a major disease that affects maxillofacial health and is characterised by cartilage degeneration and subchondral bone remodelling. Obesity is associated with the exacerbation of pathological manifestations of TMJ OA. However, the underlying mechanism between adipose tissue and the TMJ axis remains limited. OBJECTIVES To evaluate the effects of obesity and the adipose tissue on the development of TMJ OA. METHODS The obesity-related metabolic changes in TMJ OA patients were detected by physical signs and plasma metabolites. The effects of adipose tissue-derived EVs (Ad-EVs) on TMJ OA was investigated through histological and cytological experiments as well as gene editing technology. Alterations of Ad-EVs in obese state were identified by microRNA-seq analysis and the mechanism by which EVs affect TMJ OA was explored in vitro and in vivo. RESULTS Obesity and the related metabolic changes were important influencing factors for TMJ OA. Ad-EVs from obese mice induced marked chondrocyte apoptosis, cartilage matrix degradation and subchondral bone remodelling, which exacerbated the development of TMJ OA. Depletion of Ad-EVs secretion by knocking out the geranylgeranyl diphosphate synthase (Ggpps) gene in adipose tissue significantly inhibited the obesity-induced aggravation of TMJ OA. MiR-3074-5p played an important role in this process . CONCLUSIONS Our work unveils an unknown link between obese adipose tissue and TMJ OA. Targeting the Ad-EVs and the miR-3074-5p may represent a promising therapeutic strategy for obesity-related TMJ OA. KEY POINTS High-fat-diet-induced obesity aggravate the progression of TMJ OA in mice. Obese adipose tissue participates in cartilage damage through the altered miRNA in extracellular vesicles. Inhibition of miR-3074-5p/SMAD4 pathway in chondrocyte alleviated the effect of HFD-EVs on TMJ OA.
Collapse
Affiliation(s)
- Baochao Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yuqin Jin
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Bingqing Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Tong Lu
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jialing Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jingzi Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of ImmunologyMedical School, Nanjing UniversityNanjingChina
| | - Yiwen Zhou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yanyi Wang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Caixia Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yue Zhao
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Huang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
32
|
Lu L, He Y. Dysregulation of miR-335-5p in People with Obesity and its Predictive Value for Metabolic Syndrome. Horm Metab Res 2024; 56:749-755. [PMID: 38447950 DOI: 10.1055/a-2261-8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The epidemic of obesity and metabolic syndrome has become the most serious global public health problem. The part played by microRNA (miRNA) in the onset and progression of obesity and metabolic syndrome has been increasingly focused upon. The goal of this study was to explore miR-335-5p as a potential predictive biomarker or therapeutic target for obesity and metabolic syndrome. The expression level of miR-335-5p was detected by qRT-PCR. The diagnostic value of miR-335-5p was evaluated by ROC curve. The association between serum miR-335-5p levels and various clinical parameters was assessed using the chi-square test. Logistic regression analysis was used to evaluate the risk factors of metabolic syndrome in obese population. The biological processes and molecular mechanisms are studied through GO and KEGG enrichment analysis. The ROC curve analysis revealed that miR-335-5p could serve as a predictive indicator for the development of obesity accompanied by metabolic syndrome. Logistic regression analysis revealed that BMI, TG, FBG, HOMA-IR, and miR-335-5p expression represent independent risk factors of metabolic syndrome occurrence. Chi-square test analysis revealed that patients with higher values of BMI, SBP, DBP, TG, FBG, and HOMA-IR exhibited a more significantly increased expression of miR-335-5p in their serum. In conclusion, miR-335-5p holds predictive and diagnostic value for obesity and metabolic syndrome and has potential to serve as a biomarker for these conditions.
Collapse
Affiliation(s)
- Liting Lu
- Endocrinology, The People's Hospital of Longhua, Shenzhen, China
| | - Yufeng He
- Minzhi Community Health Service Center, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
33
|
Aswani BS, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Tackling exosome and nuclear receptor interaction: an emerging paradigm in the treatment of chronic diseases. Mil Med Res 2024; 11:67. [PMID: 39327610 PMCID: PMC11426102 DOI: 10.1186/s40779-024-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear receptors (NRs) function as crucial transcription factors in orchestrating essential functions within the realms of development, host defense, and homeostasis of body. NRs have garnered increased attention due to their potential as therapeutic targets, with drugs directed at NRs demonstrating significant efficacy in impeding chronic disease progression. Consequently, these pharmacological agents hold promise for the treatment and management of various diseases. Accumulating evidence emphasizes the regulatory role of exosome-derived microRNAs (miRNAs) in chronic inflammation, disease progression, and therapy resistance, primarily by modulating transcription factors, particularly NRs. By exploiting inflammatory pathways such as protein kinase B (Akt)/mammalian target of rapamycin (mTOR), nuclear factor kappa-B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and Wnt/β-catenin signaling, exosomes and NRs play a pivotal role in the panorama of development, physiology, and pathology. The internalization of exosomes modulates NRs and initiates diverse autocrine or paracrine signaling cascades, influencing various processes in recipient cells such as survival, proliferation, differentiation, metabolism, and cellular defense mechanisms. This comprehensive review meticulously examines the involvement of exosome-mediated NR regulation in the pathogenesis of chronic ailments, including atherosclerosis, cancer, diabetes, liver diseases, and respiratory conditions. Additionally, it elucidates the molecular intricacies of exosome-mediated communication between host and recipient cells via NRs, leading to immunomodulation. Furthermore, it outlines the implications of exosome-modulated NR pathways in the prophylaxis of chronic inflammation, delineates current limitations, and provides insights into future perspectives. This review also presents existing evidence on the role of exosomes and their components in the emergence of therapeutic resistance.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
34
|
Gong X, Zhao Q, Zhang H, Liu R, Wu J, Zhang N, Zou Y, Zhao W, Huo R, Cui R. The Effects of Mesenchymal Stem Cells-Derived Exosomes on Metabolic Reprogramming in Scar Formation and Wound Healing. Int J Nanomedicine 2024; 19:9871-9887. [PMID: 39345908 PMCID: PMC11438468 DOI: 10.2147/ijn.s480901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Pathological scarring results from aberrant cutaneous wound healing due to the overactivation of biological behaviors of human skin fibroblasts, characterized by local inordinate inflammation, excessive extracellular matrix and collagen deposition. Yet, its underlying pathogenesis opinions vary, which could be caused by increased local mechanical tension, enhanced and continuous inflammation, gene mutation, as well as cellular metabolic disorder, etc. Metabolic reprogramming is the process by which the metabolic pattern of cells undergoes a systematic adjustment and transformation to adapt to the changes of the external environment and meet the needs of their growth and differentiation. Therefore, the abnormality of metabolic reprogramming in cells within wounds and scars attaches great importance to scar formation. Mesenchymal stem cells-derived exosomes (MSC-Exo) are the extracellular vesicles that play an important role in tissue repair, cancer treatment as well as immune and metabolic regulation. However, there is not a systematic work to detail the relevant studies. Herein, we gave a comprehensive summary of the existing research on three main metabolisms, including glycometabolism, lipid metabolism and amino acid metabolism, and MSC-Exo regulating metabolic reprogramming in wound healing and scar formation for further research reference.
Collapse
Affiliation(s)
- Xiangan Gong
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Qian Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jie Wu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Nanxin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Yuanxian Zou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
35
|
Sou YL, Chilian WM, Ratnam W, Zain SM, Syed Abdul Kadir SZ, Pan Y, Pung YF. Exosomal miRNAs and isomiRs: potential biomarkers for type 2 diabetes mellitus. PRECISION CLINICAL MEDICINE 2024; 7:pbae021. [PMID: 39347441 PMCID: PMC11438237 DOI: 10.1093/pcmedi/pbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease that is characterized by chronic hyperglycaemia. MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that play important roles in post-transcriptional gene regulation. They are negative regulators of their target messenger RNAs (mRNAs), in which they bind either to inhibit mRNA translation, or to induce mRNA decay. Similar to proteins, miRNAs exist in different isoforms (isomiRs). miRNAs and isomiRs are selectively loaded into small extracellular vesicles, such as the exosomes, to protect them from RNase degradation. In T2DM, exosomal miRNAs produced by different cell types are transported among the primary sites of insulin action. These interorgan crosstalk regulate various T2DM-associated pathways such as adipocyte inflammation, insulin signalling, and β cells dysfunction among many others. In this review, we first focus on the mechanism of exosome biogenesis, followed by miRNA biogenesis and isomiR formation. Next, we discuss the roles of exosomal miRNAs and isomiRs in the development of T2DM and provide evidence from clinical studies to support their potential roles as T2DM biomarkers. Lastly, we highlight the use of exosomal miRNAs and isomiRs in personalized medicine, as well as addressing the current challenges and future opportunities in this field. This review summarizes how research on exosomal miRNAs and isomiRs has developed from the very basic to clinical applications, with the goal of advancing towards the era of personalized medicine.
Collapse
Affiliation(s)
- Yong Ling Sou
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Shamsul Mohd Zain
- Department of Pharmacology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Yan Pan
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| |
Collapse
|
36
|
Ma N, Tan J, Chen Y, Yang L, Li M, He Y. MicroRNAs in metabolic dysfunction-associated diseases: Pathogenesis and therapeutic opportunities. FASEB J 2024; 38:e70038. [PMID: 39250169 DOI: 10.1096/fj.202401464r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Metabolic dysfunction-associated diseases often refer to various diseases caused by metabolic problems such as glucose and lipid metabolism disorders. With the improvement of living standards, the increasing prevalence of metabolic diseases has become a severe public health problem, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), diabetes and obesity. These diseases are both independent and interdependent, with complex and diverse molecular mechanisms. Therefore, it is urgent to explore the molecular mechanisms and find effective therapeutic targets of these diseases. MicroRNAs (miRNAs) have emerged as key regulators of metabolic homoeostasis due to their multitargets and network regulatory properties within the past few decades. In this review, we discussed the latest progress in the roles of miRNA-mediated regulatory networks in the development and progression of MASLD, ALD, diabetes and obesity.
Collapse
Affiliation(s)
- Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Tan
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Man Li
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
38
|
Sivri D, Gezmen-Karadağ M. Effects of Phytochemicals on Type 2 Diabetes via MicroRNAs. Curr Nutr Rep 2024; 13:444-454. [PMID: 38805166 PMCID: PMC11327184 DOI: 10.1007/s13668-024-00549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW Type 2 diabetes, characterized by inadequate insulin secretion and resistance, is increasingly prevalent. To effectively manage type 2 diabetes, identifying new therapeutic targets is crucial. MicroRNAs, short noncoding RNA molecules, play a pivotal role in regulating β-cell function, insulin production, and resistance, and show promise as biomarkers for predicting type 2 diabetes onset. Phytochemicals, known for their antioxidant activities, may influence microRNA expression, potentially improving insulin sensitivity and mitigating associated complications. This review aims to explore the significance of microRNA in type 2 diabetes, their potential as biomarkers, and how certain phytochemicals may modulate microRNA expressions to reduce or prevent diabetes and its complications. RECENT FINDINGS Current research suggests that microRNAs show promise as novel therapeutic biomarkers for diagnosing type 2 diabetes and monitoring diabetic complications. Additionally, phytochemicals may regulate microRNAs to control type 2 diabetes, presenting a potential therapeutic strategy. The multifactorial effects of phytochemicals on type 2 diabetes and its complications through microRNAs warrant further research to elucidate their mechanisms. Comprehensive clinical trials are needed to assess the safety and efficacy of phytochemicals and their combinations. Given their ability to modulate microRNAs expression, incorporating phytochemical-rich foods into the diet may be beneficial.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetic, Faculty of Health Science, Anadolu University, Eskişehir, Turkey.
| | - Makbule Gezmen-Karadağ
- Department of Nutrition and Dietetic, Faculty of Health Science, Gazi University, Ankara, Turkey
| |
Collapse
|
39
|
Sancar G, Birkenfeld AL. The role of adipose tissue dysfunction in hepatic insulin resistance and T2D. J Endocrinol 2024; 262:e240115. [PMID: 38967989 PMCID: PMC11378142 DOI: 10.1530/joe-24-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
The root cause of type 2 diabetes (T2D) is insulin resistance (IR), defined by the failure of cells to respond to circulating insulin to maintain lipid and glucose homeostasis. While the causes of whole-body insulin resistance are multifactorial, a major contributing factor is dysregulation of liver and adipose tissue function. Adipose dysfunction, particularly adipose tissue-IR (adipo-IR), plays a crucial role in the development of hepatic insulin resistance and the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) in the context of T2D. In this review, we will focus on molecular mechanisms of hepatic insulin resistance and its association with adipose tissue function. A deeper understanding of the pathophysiological mechanisms of the transition from a healthy state to insulin resistance, impaired glucose tolerance, and T2D may enable us to prevent and intervene in the progression to T2D.
Collapse
Affiliation(s)
- Gencer Sancar
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Mareboina M, Deng E, Mouratidis I, Yee NS, Pitteloud N, Georgakopoulos-Soares I, Chartoumpekis DV. A review on cell-free RNA profiling: Insights into metabolic diseases and predictive value for bariatric surgery outcomes. Mol Metab 2024; 87:101987. [PMID: 38977131 PMCID: PMC11305000 DOI: 10.1016/j.molmet.2024.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The advent of liquid biopsies presents a novel, minimally invasive methodology for the detection of disease biomarkers, offering a significant advantage over traditional biopsy techniques. Particularly, the analysis of cell-free RNA (cfRNA) has garnered interest due to its dynamic expression profiles and the capability to study various RNA species, including messenger RNA (mRNA) and long non-coding RNA (lncRNA). These attributes position cfRNA as a versatile biomarker with broad potential applications in clinical research and diagnostics. SCOPE OF REVIEW This review delves into the utility of cfRNA biomarkers as prognostic tools for obesity-related comorbidities, such as diabetes, dyslipidemia, and non-alcoholic fatty liver disease. MAJOR CONCLUSIONS We evaluate the efficacy of cfRNA in forecasting metabolic outcomes associated with obesity and in identifying patients likely to experience favorable clinical outcomes following bariatric surgery. Additionally, this review synthesizes evidence from studies examining circulating cfRNA across different physiological and pathological states, with a focus on its role in diabetes, including disease progression monitoring and treatment efficacy assessment. Through this exploration, we underscore the emerging relevance of cfRNA signatures in the context of obesity and its comorbidities, setting the stage for future investigative efforts in this rapidly advancing domain.
Collapse
Affiliation(s)
- Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Elen Deng
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Next-Generation Therapies Program, Penn State Cancer Institute, Hershey, PA, USA
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
41
|
Wang Y, Li Q, Zhou S, Tan P. Contents of exosomes derived from adipose tissue and their regulation on inflammation, tumors, and diabetes. Front Endocrinol (Lausanne) 2024; 15:1374715. [PMID: 39220365 PMCID: PMC11361949 DOI: 10.3389/fendo.2024.1374715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Adipose tissue (AT) serves as an energy-capacitive organ and performs functions involving paracrine- and endocrine-mediated regulation via extracellular vesicles (EVs) secretion. Exosomes, a subtype of EVs, contain various bioactive molecules with regulatory effects, such as nucleic acids, proteins, and lipids. AT-derived exosomes (AT-exos) include exosomes derived from various cells in AT, including adipocytes, adipose-derived stem cells (ADSCs), macrophages, and endothelial cells. This review aimed to comprehensively evaluate the impacts of different AT-exos on the regulation of physiological and pathological processes. The contents and functions of adipocyte-derived exosomes and ADSC-derived exosomes are compared simultaneously, highlighting their similarities and differences. The contents of AT-exos have been shown to exert complex regulatory effects on local inflammation, tumor dynamics, and insulin resistance. Significantly, differences in the cargoes of AT-exos have been observed among diabetes patients, obese individuals, and healthy individuals. These differences could be used to predict the development of diabetes mellitus and as therapeutic targets for improving insulin sensitivity and glucose tolerance. However, further research is needed to elucidate the underlying mechanisms and potential applications of AT-exos.
Collapse
Affiliation(s)
- Yanwen Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangbai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pohching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
43
|
Song X, Song Y, Zhang J, Hu Y, Zhang L, Huang Z, Abbas Raza SH, Jiang C, Ma Y, Ma Y, Wu H, Wei D. Regulatory role of exosome-derived miRNAs and other contents in adipogenesis. Exp Cell Res 2024; 441:114168. [PMID: 39004201 DOI: 10.1016/j.yexcr.2024.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Intramuscular fat (IMF) content significantly impacts meat quality. influenced by complex interactions between skeletal muscle cells and adipocytes. Adipogenesis plays a pivotal role in IMF formation. Exosomes, extracellular membranous nanovesicles, facilitate intercellular communication by transporting proteins, nucleic acids (DNA and RNA), and other biomolecules into target cells, thereby modulating cellular behaviors. Recent studies have linked exosome-derived microRNAs (miRNAs) and other cargo to adipogenic processes. Various cell types, including skeletal muscle cells, interact with adipocytes via exosome secretion and uptake. Exosomes entering adipocytes regulate adipogenesis by modulating key signaling pathways, thereby influencing the extent and distribution of IMF deposition. This review comprehensively explores the origin, formation, and mechanisms of exosome action, along with current research and their applications in adipogenesis. Emphasis is placed on exosome-mediated regulation of miRNAs, non-coding RNAs (ncRNAs), proteins, lipids, and other biomolecules during adipogenesis. Leveraging exosomal contents for genetic breeding and treating obesity-related disorders is discussed. Insights gathered contribute to advancing understanding and potential therapeutic applications of exosome-regulated adipogenesis mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | | | - Sayed Haidar Abbas Raza
- Xichang University, Xichang, 615000, China; Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan, 750021, China.
| |
Collapse
|
44
|
Lu T, Zheng Y, Chen X, Lin Z, Liu C, Yuan C. The role of exosome derived miRNAs in inter-cell crosstalk among insulin-related organs in type 2 diabetes mellitus. J Physiol Biochem 2024; 80:501-510. [PMID: 38698251 DOI: 10.1007/s13105-024-01026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Exosomes are small extracellular vesicles secreted by almost all cell types, and carry diverse cargo including RNA, and other substances. Recent studies have focused exosomal microRNAs (miRNAs) on various human diseases, including type 2 diabetes mellitus (T2DM) and metabolic syndrome (METS) which accompany the occurrence of insulin resistance. The regulation of insulin signaling has connected with some miRNA expression which play a significant regulatory character in insulin targeted cells or organs, such as fat, muscle, and liver. The miRNAs carried by exosomes, through the circulation in the body fluids, mediate all kinds of physiological and pathological process involved in the human body. Studies have found that exosome derived miRNAs are abnormally expressed and cross-talked with insulin targeted cells or organs to affect insulin pathways. Further investigations of the mechanisms of exosomal miRNAs in T2DM will be valuable for the diagnostic biomarkers and therapeutic targets of T2DM. This review will summarize the molecular mechanism of action of the miRNAs carried by exosomes which are secreted from insulin signaling related cells, and elucidate the pathogenesis of insulin resistance to provide a new strategy for the potential diagnostic biomarkers and therapeutic targets for the type 2 diabetes.
Collapse
Affiliation(s)
- Ting Lu
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Ying Zheng
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaoling Chen
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Zhiyong Lin
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chaoqi Liu
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Chengfu Yuan
- Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, China Three Gorges University, School of Medicine, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, School of Medicine, Yichang, 443002, China.
| |
Collapse
|
45
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
46
|
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int J Nanomedicine 2024; 19:7137-7164. [PMID: 39050874 PMCID: PMC11268655 DOI: 10.2147/ijn.s464249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Exosomes emerge from endosomal invagination and range in size from 30 to 200 nm. Exosomes contain diverse proteins, lipids, and nucleic acids, which can indicate the state of various physiological and pathological processes. Studies have revealed the remarkable clinical potential of exosomes in diagnosing and prognosing multiple diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Exosomes also have the potential to be engineered and deliver their cargo to a specific target. However, further advancements are imperative to optimize exosomes' diagnostic and therapeutic capabilities for practical implementation in clinical settings. This review highlights exosomes' diagnostic and therapeutic applications, emphasizing their engineering through simple incubation, biological, and click chemistry techniques. Additionally, the loading of therapeutic agents onto exosomes, utilizing passive and active strategies, and exploring hybrid and artificial exosomes are discussed.
Collapse
Affiliation(s)
- Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| |
Collapse
|
47
|
Wang F, Zeng L, Chi Y, Yao S, Zheng Z, Peng S, Wang X, Chen K. Adipose-Derived exosome from Diet-Induced-Obese mouse attenuates LPS-Induced acute lung injury by inhibiting inflammation and Apoptosis: In vivo and in silico insight. Int Immunopharmacol 2024; 139:112679. [PMID: 39013217 DOI: 10.1016/j.intimp.2024.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe clinical condition in the intensive care units, and obesity is a high risk of ALI. Paradoxically, obese ALI patients had better prognosis than non-obese patients, and the mechanism remains largely unknown. METHODS Mouse models of ALI and diet-induced-obesity (DIO) were used to investigate the effect of exosomes derived from adipose tissue. The adipose-derived exosomes (ADEs) were isolated by ultracentrifugation, and the role of exosomal miRNAs in the ALI was studied. RESULTS Compared with ADEs of control mice (C-Exo), ADEs of DIO mice (D-Exo) increased survival rate and mitigated pulmonary lesions of ALI mice. GO and KEGG analyses showed that the target genes of 40 differentially expressed miRNAs between D-Exo and C-Exo were mainly involved with inflammation, apoptosis and cell cycle. Furthermore, the D-Exo treatment significantly decreased Ly6G+ cell infiltration, down-regulated levels of pro-inflammatory cytokines (IL-6, IL-12, TNF-α, MCP-1) and chemokines (IL-8 and MIP-2), reduced pulmonary apoptosis and arrest at G0G1 phase (P < 0.01). And the protective effects of D-Exo were better than those of C-Exo (P < 0.05). Compared with the C-Exo mice, the levels of miR-16-5p and miR-335-3p in the D-Exo mice were significantly up-regulated (P < 0.05), and the expressions of IKBKB and TNFSF10, respective target of miR-16-5p and miR-335-3p by bioinformatic analysis, were significantly down-regulated in the D-Exo mice (P < 0.05). CONCLUSIONS Exosomes derived from adipose tissue of DIO mice are potent to attenuate LPS-induced ALI, which could be contributed by exosome-carried miRNAs. Our data shed light on the interaction between obesity and ALI.
Collapse
Affiliation(s)
- Fengyuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Lei Zeng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Yanqi Chi
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Surui Yao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Zihan Zheng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Shiyu Peng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Xiangning Wang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| |
Collapse
|
48
|
Hernández-Gómez KG, Velázquez-Villegas LA, Granados-Portillo O, Avila-Nava A, González-Salazar LE, Serralde-Zúñiga AE, Palacios-González B, Pichardo-Ontiveros E, Guizar-Heredia R, López-Barradas AM, Sánchez-Tapia M, Larios-Serrato V, Olin-Sandoval V, Díaz-Villaseñor A, Medina-Vera I, Noriega LG, Alemán-Escondrillas G, Ortiz-Ortega VM, Torres N, Tovar AR, Guevara-Cruz M. Acute Effects of Dietary Protein Consumption on the Postprandial Metabolic Response, Amino Acid Levels and Circulating MicroRNAs in Patients with Obesity and Insulin Resistance. Int J Mol Sci 2024; 25:7716. [PMID: 39062958 PMCID: PMC11276941 DOI: 10.3390/ijms25147716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate). Glycaemic, insulinaemic, and glucagon responses, amino acid levels, and exosomal microRNAs isolated from plasma were analysed. Post-AP ingestion, the area under the curve (AUC) of insulin (p = 0.04) and the plasma concentrations of branched-chain (p = 0.007) and gluconeogenic (p = 0.01) amino acids increased. The effects of different types of proteins on the concentration of miRNAs were evaluated by measuring their plasma circulating levels. Compared with the baseline, the AP group presented increased circulating levels of miR-27a-3p, miR-29b-3p, and miR-122-5p (p < 0.05). Subsequent analysis over time at 0, 30, and 60 min revealed the same pattern and differences between treatments. We demonstrated that a single dose of dietary protein has acute effects on hormonal and metabolic regulation and increases exosomal miRNA expression in individuals with obesity and IR.
Collapse
Affiliation(s)
- Karla G. Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Laura A. Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, IMSS-Bienestar, Mérida 97130, Yucatán, Mexico
| | - Luis E. González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Aurora E. Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del INMEGEN en el Centro de Investigación Sobre el Envejecimiento, Mexico City 14330, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Adriana M. López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Violeta Larios-Serrato
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, Mexico
| | - Viridiana Olin-Sandoval
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City 04510, Mexico
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gabriela Alemán-Escondrillas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Victor M. Ortiz-Ortega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
49
|
Payet T, Gabinaud E, Landrier JF, Mounien L. Role of micro-RNAs associated with adipose-derived extracellular vesicles in metabolic disorders. Obes Rev 2024; 25:e13755. [PMID: 38622087 DOI: 10.1111/obr.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Micro-RNAs have emerged as important actors in the onset of metabolic disorders including obesity or type 2 diabetes. Particularly, several micro-RNAs are known to be key modulators of lipid metabolism, glucose homeostasis, or feeding behavior. Interestingly, the role of extracellular vesicles containing micro-RNAs, especially adipose-derived extracellular vesicles, are well-documented endocrine signals and disease biomarkers. However, the role of adipose-derived extracellular vesicles on the different tissues is different and highly related to the micro-RNA content. This review provides recent data about the potential involvement of adipose-derived extracellular vesicle-containing micro-RNAs in metabolic diseases.
Collapse
Affiliation(s)
- Thomas Payet
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Elisa Gabinaud
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
| | - Jean-François Landrier
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| | - Lourdes Mounien
- Aix Marseille Université, C2VN, INRAE, INSERM, Marseille, France
- PhenoMARS Aix-Marseille Technology Platform, CriBiom, Marseille, France
| |
Collapse
|
50
|
Tu C, Wu Q, Wang J, Chen P, Deng Y, Yu L, Xu X, Fang X, Li W. miR-486-5p-rich extracellular vesicles derived from patients with olanzapine-induced insulin resistance negatively affect glucose-regulating function. Biochem Pharmacol 2024; 225:116308. [PMID: 38788961 DOI: 10.1016/j.bcp.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
A high risk of glucometabolic disorder severely disturbs compliance and limits the clinical application of olanzapine. MicroRNAs (miRNAs) in extracellular vesicles (EVs) have been reported as emerging biomarkers in glucolipid metabolic disorders. A total of 81 individuals with continuous olanzapine treatment over 3 months were recruited in this study, and plasma EVs from these individuals were isolated and injected into rats via the tail vein to investigate the glucose-regulating function in vivo. Moreover, we performed a miRNA profiling assay by high through-put sequencing to clarify the differentiated miRNA profiles between two groups of patients who were either susceptible or not susceptible to olanzapine-induced insulin resistance (IR). Finally, we administered antagomir and cocultured them with adipocytes to explore the mechanism in vitro. The results showed that individual insulin sensitivity varied in those patients and in olanzapine-administered rats. Furthermore, treatment with circulating EVs from patients with olanzapine-induced IR led to the development of metabolic abnormalities in rats and adipocytes in vitro through the AKT-GLUT4 pathway. Deep sequencing illustrated that the miRNAs of plasma EVs from patients showed a clear difference based on susceptibility to olanzapine-induced IR, and miR-486-5p was identified as a notable gene. The adipocyte data indicated that miR-486-5p silencing partially reversed the impaired cellular insulin sensitivity. Collectively, this study confirmed the function of plasma EVs in the interindividual differences in olanzapine-induced insulin sensitivity.
Collapse
Affiliation(s)
- Chuyue Tu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiru Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojin Xu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiangming Fang
- Department of Psychiatry, Wuhan Youfu Hospital, Wuhan, China
| | - Weiyong Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|