1
|
Hernández-Núñez I, Urman A, Zhang X, Jacobs W, Hoffman C, Rebba S, Harding EG, Li Q, Mao F, Cani AK, Chen S, Dawlaty MM, Rao RC, Ruzycki PA, Edwards JR, Clark BS. Active DNA demethylation is upstream of rod-photoreceptor fate determination and required for retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636318. [PMID: 39975078 PMCID: PMC11838574 DOI: 10.1101/2025.02.03.636318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Retinal cell fate specification from multipotent retinal progenitors is governed by dynamic changes in chromatin structure and gene expression. Methylation at cytosines in DNA (5mC) is actively regulated for proper control of gene expression and chromatin architecture. Numerous genes display active DNA demethylation across retinal development; a process that requires oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and is controlled by the ten-eleven translocation methylcytosine dioxygenase (TET) enzymes. Using an allelic series of conditional TET enzyme mutants, we determine that DNA demethylation is required upstream of NRL and NR2E3 expression for the establishment of rod-photoreceptor fate. Using histological, behavioral, transcriptomic, and base-pair resolution DNA methylation analyses, we establish that inhibition of active DNA demethylation results in global changes in gene expression and methylation patterns that prevent photoreceptor precursors from adopting a rod-photoreceptor fate, instead producing a retina in which all photoreceptors specify as cones. Our results establish the TET enzymes and DNA demethylation as critical regulators of retinal development and cell fate specification, elucidating a novel mechanism required for the specification of rod-photoreceptors.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alaina Urman
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaodong Zhang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - William Jacobs
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christy Hoffman
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Sohini Rebba
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Andi K Cani
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Shiming Chen
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Department of Genetics, and Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department and Center of Computational Medicine and Bioinformatics, Comprehensive Cancer Center, A. Alfred Taubman Medical Research Institute, Center for RNA Biomedicine, Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgery Section, VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Edwards
- Center for Pharmacogenetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Liao Q, Yang J, Shi H, Mengjiang R, Li Y, Zhang Q, Wen X, Ge S, Chai P, Fan X, Jia R, Fan J. Aurora A Kinase Inhibition Is Synthetic Lethal With the Activation of MYCN in Retinoblastoma. Invest Ophthalmol Vis Sci 2025; 66:20. [PMID: 39918479 PMCID: PMC11809451 DOI: 10.1167/iovs.66.2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/13/2025] [Indexed: 02/12/2025] Open
Abstract
Purpose RB1 inactivation and MYCN activation have been documented as common oncogenic alterations in retinoblastoma (RB). Direct targeting of RB1 and MYCN has not yet been proven to be feasible. The current treatment options for RB mainly consist of conventional chemotherapy, which inevitably poses health-threatening side effects. Here, we aimed to screen an in-house compound library to identify potential drugs for the treatment of human RB. Methods Aurora A kinase (AURKA) inhibitors were identified by differential viability screening with a tool compound library, and the pharmacological safety and efficacy of candidate drugs were further validated in zebrafish and RB patient-derived xenograft (PDX) models in vivo. Further CUT & Tag assay, ChIP-qPCR and RNA seq performances showed that MYCN binds to the AURKA promoter and upregulates its transcription, suggesting that AURKA inhibition induces synthetic lethality in RB. Results In this study, we revealed that AURKA inhibitors exhibited high therapeutic efficacy against RB both in vitro and in vivo. Mechanistically, we found that MYCN could bind to the AURKA promoter region to regulate its transcription, thereby promoting AURKA expression and consequently driving RB progression. Interestingly, AURKA inhibition exhibited synthetic lethality with RB1-deficient and MYCN-amplification in RB cells. Conclusions Collectively, these findings demonstrate that AURKA is crucial for RB progression and further expanded the current understanding of synthetic lethal therapeutic strategies. Our study indicates that AURKA inhibitors may represent a new therapeutic strategy for selectively targeting patients with RB with RB1-deficient and MYCN-amplification to improve the prognosis of aggressive types of patients with RB.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Jie Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Hanhan Shi
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Reyizha Mengjiang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yongyun Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xuyang Wen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Jiayan Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Aschero R, Simao M, Catala-Mora J, L Chantada G. Risk Factors for Extraocular Relapse in Retinoblastoma. Semin Ophthalmol 2025:1-11. [PMID: 39789868 DOI: 10.1080/08820538.2025.2450682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Metastatic retinoblastoma remains a significant challenge in pediatric oncology, with stark disparities in survival outcomes between high-income countries (HICs) and low-income countries (LICs). Delayed diagnosis and treatment, driven by socioeconomic factors and limitations in healthcare systems, contribute to poorer outcomes in LICs. Histopathological characteristics, including high-risk pathology factors (HRPFs) and the extent of ocular tumor invasion, are critical for predicting metastatic risk and guiding treatment strategies. METHODS This review examines the role of clinical, histopathological, and molecular characteristics in assessing metastatic risk in retinoblastoma. Literature on HRPFs, tumor invasion, and molecular subtypes was analyzed to understand their impact on risk stratification and therapy optimization, particularly in resource-limited settings. RESULTS Retinoblastoma is increasingly recognized as a heterogeneous disease with at least two distinct molecular subtypes. High-risk cases frequently exhibit genetic alterations that underscore the need to incorporate molecular profiling into risk assessment. Current adjuvant therapy approaches, however, vary widely, and debates persist regarding their necessity based on tumor characteristics. Integrated strategies that combine clinical, histopathological, and molecular data show promise in improving management and survival outcomes. CONCLUSIONS Addressing the disparities in metastatic retinoblastoma outcomes requires a multifaceted approach. By integrating clinical, histopathological, and molecular insights, management strategies can be optimized to improve survival, particularly in resource-limited settings where challenges are most pronounced.
Collapse
Affiliation(s)
- Rosario Aschero
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Margarida Simao
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Jaume Catala-Mora
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Servicio de Oftalmología, Unidad de Tumores Intraoculares de la Infancia, Servicio de Oftalmología, Hospital Sant Joan de Deú, Barcelona, Spain
| | - Guillermo L Chantada
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Hematology Oncology Service, Hospital Pereira Rossell, Montevideo, Uruguay
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Zhang S, Xiao Y, Mo X, Chen X, Zhong J, Chen Z, Liu X, Qiu Y, Dai W, Chen J, Jin X, Fan G, Hu Y. Simultaneous profiling of RNA isoforms and chromatin accessibility of single cells of human retinal organoids. Nat Commun 2024; 15:8022. [PMID: 39271703 PMCID: PMC11399327 DOI: 10.1038/s41467-024-52335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Single-cell multi-omics sequencing is a powerful approach to analyze complex mechanisms underlying neuronal development and regeneration. However, current methods lack the ability to simultaneously profile RNA alternative splicing and chromatin accessibility at the single-cell level. We develop a technique, single-cell RNA isoform and chromatin accessibility sequencing (scRICA-seq), which demonstrates higher sensitivity and cost-effectiveness compared to existing methods. scRICA-seq can profile both isoforms and chromatin accessibility for up to 10,000 single cells in a single run. Applying this method to human retinal organoids, we construct a multi-omic cell atlas and reveal associations between chromatin accessibility, isoform expression of fate-determining factors, and alternative splicing events in their binding sites. This study provides insights into integrating epigenetics, transcription, and RNA splicing to elucidate the mechanisms underlying retinal neuronal development and fate determination.
Collapse
Affiliation(s)
- Shuyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuhua Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xinzhi Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiawei Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zheyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuanhui Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wangxuan Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xishan Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
5
|
Shayler DW, Stachelek K, Cambier L, Lee S, Bai J, Reid MW, Weisenberger DJ, Bhat B, Aparicio JG, Kim Y, Singh M, Bay M, Thornton ME, Doyle EK, Fouladian Z, Erberich SG, Grubbs BH, Bonaguidi MA, Craft CM, Singh HP, Cobrinik D. Identification and characterization of early human photoreceptor states and cell-state-specific retinoblastoma-related features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.28.530247. [PMID: 38915659 PMCID: PMC11195049 DOI: 10.1101/2023.02.28.530247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Human cone photoreceptors differ from rods and serve as the retinoblastoma cell-of-origin, yet the developmental basis for their distinct behaviors is poorly understood. Here, we used deep full-length single-cell RNA-sequencing to distinguish post-mitotic cone and rod developmental states and identify cone-specific features that contribute to retinoblastomagenesis. The analyses revealed early post-mitotic cone- and rod-directed populations characterized by higher THRB or NRL regulon activities, an immature photoreceptor precursor population with concurrent cone and rod gene and regulon expression, and distinct early and late cone and rod maturation states distinguished by maturation-associated declines in RAX regulon activity. Unexpectedly, both L/M cone and rod precursors co-expressed NRL and THRB RNAs, yet they differentially expressed functionally antagonistic NRL and THRB isoforms and prematurely terminated THRB transcripts. Early L/M cone precursors exhibited successive expression of several lncRNAs along with MYCN, which composed the seventh most L/M-cone-specific regulon, and SYK, which contributed to the early cone precursors' proliferative response to RB1 loss. These findings reveal previously unrecognized photoreceptor precursor states and a role for early cone-precursor-intrinsic SYK expression in retinoblastoma initiation.
Collapse
Affiliation(s)
- Dominic W.H. Shayler
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin Stachelek
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Cancer Biology and Genomics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda Cambier
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sunhye Lee
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jinlun Bai
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark W. Reid
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Daniel J. Weisenberger
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bhavana Bhat
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Yeha Kim
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Mitali Singh
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Maxwell Bay
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E. Thornton
- Maternal-Fetal Medicine Division of the Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eamon K. Doyle
- Department of Radiology and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephan G. Erberich
- Department of Radiology and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H. Grubbs
- Maternal-Fetal Medicine Division of the Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Bonaguidi
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Development, Stem Cell, and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheryl Mae Craft
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hardeep P. Singh
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Utine CA, Güven S. Tissue Engineering and Ophthalmology. Turk J Ophthalmol 2024; 54:159-169. [PMID: 38940358 PMCID: PMC11589309 DOI: 10.4274/tjo.galenos.2024.49779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue engineering (TE) is a field of science that combines biological, engineering, and medical sciences and allows the development of disease models, drug development and gene therapy studies, and even cellular or tissue-based treatments developed by engineering methods. The eye is an organ that is easily accessible and amenable to engineering applications, paving the way for TE in ophthalmology. TE studies are being conducted on a wide range of topics, including the tear film, eyelids, cornea, optic nerve, glaucoma, and retinal diseases. With the rapid scientific advances in the field, it seems that TE is radically modifying the management of ocular disorders.
Collapse
Affiliation(s)
- Canan Aslı Utine
- Dokuz Eylul University Faculty of Medicine Department of Ophthalmology, İzmir, Turkiye
- İzmir Biomedicine and Genome Center İzmir, Turkiye
| | - Sinan Güven
- İzmir Biomedicine and Genome Center İzmir, Turkiye
- Dokuz Eylul University İzmir International Biomedicine and Genome Institute, İzmir, Turkiye
- Dokuz Eylul University Faculty of Medicine Department of Medical Biology and Genetics, İzmir, Turkiye
| |
Collapse
|
7
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
8
|
Cobrinik D. Retinoblastoma Origins and Destinations. N Engl J Med 2024; 390:1408-1419. [PMID: 38631004 DOI: 10.1056/nejmra1803083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- David Cobrinik
- From the Vision Center, Department of Surgery, and Saban Research Institute, Children's Hospital Los Angeles, and the Departments of Ophthalmology and Biochemistry and Molecular Medicine, Roski Eye Institute, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California - both in Los Angeles
| |
Collapse
|
9
|
Sanidas I, Lawrence MS, Dyson NJ. Patterns in the tapestry of chromatin-bound RB. Trends Cell Biol 2024; 34:288-298. [PMID: 37648594 PMCID: PMC10899529 DOI: 10.1016/j.tcb.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The retinoblastoma protein (RB)-mediated regulation of E2F is a component of a highly conserved cell cycle machine. However, RB's tumor suppressor activity, like RB's requirement in animal development, is tissue-specific, context-specific, and sometimes appears uncoupled from cell proliferation. Detailed new information about RB's genomic distribution provides a new perspective on the complexity of RB function, suggesting that some of its functional specificity results from context-specific RB association with chromatin. Here we summarize recent evidence showing that RB targets different types of chromatin regulatory elements at different cell cycle stages. RB controls traditional RB/E2F targets prior to S-phase, but, when cells proliferate, RB redistributes to cell type-specific chromatin loci. We discuss the broad implications of the new data for RB research.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
10
|
Tóth D, Fábián E, Szabó E, Patkó E, Vicena V, Váczy A, Atlasz T, Tornóczky T, Reglődi D. Investigation of PACAP38 and PAC1 Receptor Expression in Human Retinoblastoma and the Effect of PACAP38 Administration on Human Y-79 Retinoblastoma Cells. Life (Basel) 2024; 14:185. [PMID: 38398694 PMCID: PMC10890153 DOI: 10.3390/life14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Retinoblastoma represents the most prevalent malignant neoplasm affecting the eyes in childhood. The clear-cut origin of retinoblastoma has not yet been determined; however, based on experiments, it has been suggested that RB1 loss in cone photoreceptors causes retinoblastoma. Pituitary adenylate-cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide which has been shown to be affected in certain tumorous transformations, such as breast, lung, kidney, pancreatic, colon, and endocrine cancers. This study aimed to investigate potential changes in both PACAP38 and PAC1 receptor (PAC1R) expression in human retinoblastoma and the effect of PACAP38 administration on the survival of a human retinoblastoma cell line (Y-79). We analyzed human enucleation specimens removed because of retinoblastoma for PACAP38 and PAC1R immunostaining and the effect of PACAP38 on the survival of the Y-79 cell line. We described for the first time that human retinoblastoma cells from patients showed only perinuclear, dot-like immunopositivity for both PACAP38 and PAC1R, irrespective of laterality, genetic background, or histopathological features. Nanomolar (100 nM and 500 nM) PACAP38 concentrations had no effect on the viability of Y-79 cells, while micromolar (2 µM and 6 µM) PACAP38 significantly decreased tumor cell viability. These findings, along with general observations from animal studies showing that PACAP38 has strong anti-apoptotic, anti-inflammatory, and antioxidant effects on ocular tissues, together suggest that PACAP38 and its analogs are promising candidates in retinoblastoma therapy.
Collapse
Affiliation(s)
- Dénes Tóth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary
| | - Eszter Fábián
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Edina Szabó
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Evelin Patkó
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Viktória Vicena
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Alexandra Váczy
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| | - Tamás Atlasz
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
- Department of Sportbiology, University of Pécs, Ifjúság út 6, 7624 Pecs, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School and Clinical Center, 7624 Pecs, Hungary;
| | - Dóra Reglődi
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, 7624 Pecs, Hungary; (E.F.); (E.S.); (E.P.); (V.V.); (A.V.); (T.A.); (D.R.)
| |
Collapse
|
11
|
Babu VS, Mallipatna A, Dudeja G, Shetty R, Nair AP, Tun SBB, Ho CEH, Chaurasia SS, Bhattacharya SS, Verma NK, Lakshminarayanan R, Guha N, Heymans S, Barathi VA, Ghosh A. Depleted hexokinase1 and lack of AMPKα activation favor OXPHOS-dependent energetics in retinoblastoma tumors. Transl Res 2023; 261:41-56. [PMID: 37419277 DOI: 10.1016/j.trsl.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/03/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Lack of retinoblastoma (Rb) protein causes aggressive intraocular retinal tumors in children. Recently, Rb tumors have been shown to have a distinctly altered metabolic phenotype, such as reduced expression of glycolytic pathway proteins alongside altered pyruvate and fatty acid levels. In this study, we demonstrate that loss of hexokinase 1(HK1) in tumor cells rewires their metabolism allowing enhanced oxidative phosphorylation-dependent energy production. We show that rescuing HK1 or retinoblastoma protein 1 (RB1) in these Rb cells reduced cancer hallmarks such as proliferation, invasion, and spheroid formation and increased their sensitivity to chemotherapy drugs. Induction of HK1 was accompanied by a metabolic shift of the cells to glycolysis and a reduction in mitochondrial mass. Cytoplasmic HK1 bound Liver Kinase B1 and phosphorylated AMP-activated kinase-α (AMPKα Thr172), thereby reducing mitochondria-dependent energy production. We validated these findings in tumor samples from Rb patients compared to age-matched healthy retinae. HK1 or RB1 expression in Rb-/- cells led to a reduction in their respiratory capacity and glycolytic proton flux. HK1 overexpression reduced tumor burden in an intraocular tumor xenograft model. AMPKα activation by AICAR also enhanced the tumoricidal effects of the chemotherapeutic drug topotecan in vivo. Therefore, enhancing HK1 or AMPKα activity can reprogram cancer metabolism and sensitize Rb tumors to lower doses of existing treatments, a potential therapeutic modality for Rb.
Collapse
Affiliation(s)
- Vishnu Suresh Babu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India; Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ashwin Mallipatna
- Retinoblastoma Service, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Gagan Dudeja
- Retinoblastoma Service, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Rohit Shetty
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | | | | | | | - Shyam S Chaurasia
- Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shomi S Bhattacharya
- University College London, London, UK; GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Singapore Eye Research Institute, Singapore
| | | | - Nilanjan Guha
- Agilent Technologies India Pvt Ltd, New Delhi, Delhi, India
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore; The Ophthalmology and Visual Sciences ACP, Duke-NUS Medical School, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.
| |
Collapse
|
12
|
Bai J, Koos DS, Stepanian K, Fouladian Z, Shayler DWH, Aparicio JG, Fraser SE, Moats RA, Cobrinik D. Episodic live imaging of cone photoreceptor maturation in GNAT2-EGFP retinal organoids. Dis Model Mech 2023; 16:dmm050193. [PMID: 37902188 PMCID: PMC10690052 DOI: 10.1242/dmm.050193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
Fluorescent reporter pluripotent stem cell-derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of guanine nucleotide-binding protein subunit alpha transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP alleles robustly and exclusively labeled immature and mature cones. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of the morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 μm3 per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.
Collapse
Affiliation(s)
- Jinlun Bai
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David S. Koos
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dominic W. H. Shayler
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Scott E. Fraser
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rex A. Moats
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Busch MA, Haase A, Alefeld E, Biewald E, Jabbarli L, Dünker N. Trefoil Family Factor Peptide 1-A New Biomarker in Liquid Biopsies of Retinoblastoma under Therapy. Cancers (Basel) 2023; 15:4828. [PMID: 37835522 PMCID: PMC10571905 DOI: 10.3390/cancers15194828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Effective management of retinoblastoma (RB), the most prevalent childhood eye cancer, depends on reliable monitoring and diagnosis. A promising candidate in this context is the secreted trefoil family factor peptide 1 (TFF1), recently discovered as a promising new biomarker in patients with a more advanced subtype of retinoblastoma. The present study investigated TFF1 expression within aqueous humor (AH) of enucleated eyes and compared TFF1 levels in AH and corresponding blood serum samples from RB patients undergoing intravitreal chemotherapy (IVC). TFF1 was consistently detectable in AH, confirming its potential as a biomarker. Crucially, our data confirmed that TFF1-secreting cells within the tumor mass originate from RB tumor cells, not from surrounding stromal cells. IVC-therapy-responsive patients exhibited remarkably reduced TFF1 levels post-therapy. By contrast, RB patients' blood serum displayed low-to-undetectable levels of TFF1 even after sample concentration and no therapy-dependent changes were observed. Our findings suggest that compared with blood serum, AH represents the more reliable source of TFF1 if used for liquid biopsy RB marker analysis in RB patients. Thus, analysis of TFF1 in AH of RB patients potentially provides a minimally invasive tool for monitoring RB therapy efficacy, suggesting its importance for effective treatment regimens.
Collapse
Affiliation(s)
- Maike Anna Busch
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - André Haase
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - Emily Alefeld
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - Eva Biewald
- Department of Ophthalmology, Children’s Hospital, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (L.J.)
| | - Leyla Jabbarli
- Department of Ophthalmology, Children’s Hospital, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (L.J.)
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| |
Collapse
|
14
|
Marković L, Bukovac A, Varošanec AM, Šlaus N, Pećina-Šlaus N. Genetics in ophthalmology: molecular blueprints of retinoblastoma. Hum Genomics 2023; 17:82. [PMID: 37658463 PMCID: PMC10474694 DOI: 10.1186/s40246-023-00529-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
This review presents current knowledge on the molecular biology of retinoblastoma (RB). Retinoblastoma is an intraocular tumor with hereditary and sporadic forms. 8,000 new cases of this ocular malignancy of the developing retina are diagnosed each year worldwide. The major gene responsible for retinoblastoma is RB1, and it harbors a large spectrum of pathogenic variants. Tumorigenesis begins with mutations that cause RB1 biallelic inactivation preventing the production of functional pRB proteins. Depending on the type of mutation the penetrance of RB is different. However, in small percent of tumors additional genes may be required, such as MYCN, BCOR and CREBBP. Additionally, epigenetic changes contribute to the progression of retinoblastoma as well. Besides its role in the cell cycle, pRB plays many additional roles, it regulates the nucleosome structure, participates in apoptosis, DNA replication, cellular senescence, differentiation, DNA repair and angiogenesis. Notably, pRB has an important role as a modulator of chromatin remodeling. In recent years high-throughput techniques are becoming essential for credible biomarker identification and patient management improvement. In spite of remarkable advances in retinoblastoma therapy, primarily in high-income countries, our understanding of retinoblastoma and its specific genetics still needs further clarification in order to predict the course of this disease and improve therapy. One such approach is the tumor free DNA that can be obtained from the anterior segment of the eye and be useful in diagnostics and prognostics.
Collapse
Affiliation(s)
- Leon Marković
- Department of Ophthalmology, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital "Sveti Duh", Zagreb, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anja Bukovac
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000, Zagreb, Croatia
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000, Zagreb, Croatia
| | - Ana Maria Varošanec
- Department of Ophthalmology, Reference Center of the Ministry of Health of the Republic of Croatia for Pediatric Ophthalmology and Strabismus, University Hospital "Sveti Duh", Zagreb, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nika Šlaus
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000, Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000, Zagreb, Croatia.
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
15
|
Stachelek K, Harutyunyan N, Lee S, Beck A, Kim J, Xu L, Berry JL, Nagiel A, Reynolds CP, Murphree AL, Lee TC, Aparicio JG, Cobrinik D. Non-synonymous, synonymous, and non-coding nucleotide variants contribute to recurrently altered biological processes during retinoblastoma progression. Genes Chromosomes Cancer 2023; 62:275-289. [PMID: 36550020 PMCID: PMC10006380 DOI: 10.1002/gcc.23120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastomas form in response to biallelic RB1 mutations or MYCN amplification and progress to more aggressive and therapy-resistant phenotypes through accumulation of secondary genomic changes. Progression-related changes include recurrent somatic copy number alterations and typically non-recurrent nucleotide variants, including synonymous and non-coding variants, whose significance has been unclear. To determine if nucleotide variants recurrently affect specific biological processes, we identified altered genes and over-represented variant gene ontologies in 168 exome or whole-genome-sequenced retinoblastomas and 12 tumor-matched cell lines. In addition to RB1 mutations, MYCN amplification, and established retinoblastoma somatic copy number alterations, the analyses revealed enrichment of variant genes related to diverse biological processes including histone monoubiquitination, mRNA processing (P) body assembly, and mitotic sister chromatid segregation and cytokinesis. Importantly, non-coding and synonymous variants increased the enrichment significance of each over-represented biological process term. To assess the effects of such mutations, we examined the consequences of a 3' UTR variant of PCGF3 (a BCOR-binding component of Polycomb repressive complex I), dual 3' UTR variants of CDC14B (a regulator of sister chromatid segregation), and a synonymous variant of DYNC1H1 (a regulator of P-body assembly). One PCGF3 and one of two CDC14B 3' UTR variants impaired gene expression whereas a base-edited DYNC1H1 synonymous variant altered protease sensitivity and stability. Retinoblastoma cell lines retained only ~50% of variants detected in tumors and enriched for new variants affecting p53 signaling. These findings reveal potentially important differences in retinoblastoma cell lines and tumors and implicate synonymous and non-coding variants, along with non-synonymous variants, in retinoblastoma oncogenesis.
Collapse
Affiliation(s)
- Kevin Stachelek
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Cancer Biology and Genomics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Narine Harutyunyan
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Susan Lee
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Assaf Beck
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Jonathan Kim
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Liya Xu
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jesse L. Berry
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Aaron Nagiel
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - C. Patrick Reynolds
- Department of Pediatrics and Cancer Center, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX
| | - A. Linn Murphree
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Thomas C. Lee
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jennifer G. Aparicio
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - David Cobrinik
- The Vision Center and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
16
|
Bai J, Koos DS, Stepanian K, Fouladian Z, Shayler DWH, Aparicio JG, Fraser SE, Moats RA, Cobrinik D. Episodic live imaging of cone photoreceptor maturation in GNAT2-EGFP retinal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530518. [PMID: 36909527 PMCID: PMC10002746 DOI: 10.1101/2023.02.28.530518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Fluorescent reporter pluripotent stem cell (PSC) derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of Guanine Nucleotide-Binding Protein Subunit Alpha Transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP allele robustly and exclusively labeled both immature and mature cones starting at culture day 34. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 cubic microns per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.
Collapse
Affiliation(s)
- Jinlun Bai
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David S. Koos
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominic W. H. Shayler
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Scott E. Fraser
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
| | - Rex A. Moats
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Srimongkol A, Laosillapacharoen N, Saengwimol D, Chaitankar V, Rojanaporn D, Thanomchard T, Borwornpinyo S, Hongeng S, Kaewkhaw R. Sunitinib efficacy with minimal toxicity in patient-derived retinoblastoma organoids. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:39. [PMID: 36726110 PMCID: PMC9890748 DOI: 10.1186/s13046-023-02608-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Recurrence of retinoblastoma (RB) following chemoreduction is common and is often managed with local (intra-arterial/intravitreal) chemotherapy. However, some tumors are resistant to even local administration of maximum feasible drug dosages, or effective tumor control and globe preservation may be achieved at the cost of vision loss due to drug-induced retinal toxicity. The aim of this study was to identify drugs with improved antitumor activity and more favorable retinal toxicity profiles via screening of potentially repurposable FDA-approved drugs in patient-derived tumor organoids. METHODS Genomic profiling of five RB organoids and the corresponding parental tissues was performed. RB organoids were screened with 133 FDA-approved drugs, and candidate drugs were selected based on cytotoxicity and potency. RNA sequencing was conducted to generate a drug signature from RB organoids, and the effects of drugs on cell cycle progression and proliferative tumor cone restriction were examined. Drug toxicity was assessed with human embryonic stem cell-derived normal retinal organoids. The efficacy/toxicity profiles of candidate drugs were compared with those of drugs in clinical use. RESULTS RB organoids maintained the genomic features of the parental tumors. Sunitinib was identified as highly cytotoxic against both classical RB1-deficient and novel MYCN-amplified RB organoids and inhibited proliferation while inducing differentiation in RB. Sunitinib was a more effective suppressor of proliferative tumor cones in RB organoids and had lower toxicity in normal retinal organoids than either melphalan or topotecan. CONCLUSION The efficacy and retinal toxicity profiles of sunitinib suggest that it could potentially be repurposed for local chemotherapy of RB.
Collapse
Affiliation(s)
- Atthapol Srimongkol
- grid.10223.320000 0004 1937 0490Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Natanan Laosillapacharoen
- grid.10223.320000 0004 1937 0490Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Duangporn Saengwimol
- grid.10223.320000 0004 1937 0490Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Vijender Chaitankar
- grid.94365.3d0000 0001 2297 5165Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD USA
| | - Duangnate Rojanaporn
- grid.10223.320000 0004 1937 0490Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Thanastha Thanomchard
- grid.10223.320000 0004 1937 0490Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Suparerk Borwornpinyo
- grid.10223.320000 0004 1937 0490Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Department of Biotechnology, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Suradej Hongeng
- grid.10223.320000 0004 1937 0490Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand
| | - Rossukon Kaewkhaw
- grid.10223.320000 0004 1937 0490Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400 Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10540 Samut Prakan, Thailand
| |
Collapse
|
18
|
Retinoblastoma: From genes to patient care. Eur J Med Genet 2022; 66:104674. [PMID: 36470558 DOI: 10.1016/j.ejmg.2022.104674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Retinoblastoma is the most common paediatric neoplasm of the retina, and one of the earliest model of cancer genetics since the identification of the master tumour suppressor gene RB1. Tumorigenesis has been shown to be driven by pathogenic variants of the RB1 locus, but also genomic and epigenomic alterations outside the locus. The increasing knowledge on this "mutational landscape" is used in current practice for precise genetic testing and counselling. Novel methods provide access to pre-therapeutic tumour DNA, by isolating cell-free DNA from aqueous humour or plasma. This is expected to facilitate assessment of the constitutional status of RB1, to provide an early risk stratification using molecular prognostic markers, to follow the response to the treatment in longitudinal studies, and to predict the response to targeted therapies. The aim of this review is to show how molecular genetics of retinoblastoma drives diagnosis, treatment, monitoring of the disease and surveillance of the patients and relatives. We first recap the current knowledge on retinoblastoma genetics and its use in every-day practice. We then focus on retinoblastoma subgrouping at the era of molecular biology, and the expected input of cell-free DNA in the field.
Collapse
|
19
|
Manukonda R, Narayana RV, Kaliki S, Mishra DK, Vemuganti GK. Emerging therapeutic targets for retinoblastoma. Expert Opin Ther Targets 2022; 26:937-947. [PMID: 36524402 DOI: 10.1080/14728222.2022.2158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Retinoblastoma (Rb) is an early childhood intraocular tumor of the retina and is managed by multimodal therapeutic approaches. Recent advanced targeted delivery of chemotherapeutic drugs to the eye has improved the possibility of globe salvage. However, enucleation is inevitable for advanced and recurrent Rb. The cumulative knowledge of identification of newer molecular biology tools, exosomal cargo, role of cancer stem cells (CSCs), and its microenvironment in the progression of the diseases warrants a relook at the traditional treatment protocol and explore the feasibility of targeted therapies. AREAS COVERED This review covers Rb pathobiology, novel molecular-targeted therapeutics, and strategies targeting Rb CSCs and provides an update on potential therapeutic targets such as second messengers and exosomal cargo. EXPERT OPINION The emergence of early diagnosis and multimodality treatment protocols have significantly improved the clinical outcome of children with advanced Rb; however, the problem of tumor recurrence has not yet been overcome. Improved understanding of the molecular pathways, identification, and characterization of CSCs opens up new targeted therapy approaches. The contemporary evidence from other fields shows promising evidence that combining conservative treatment modalities with targeting therapies specific for CSCs in clinical practice is essential for achieving high globe salvage rate in Rb patients.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Revu Vl Narayana
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| |
Collapse
|
20
|
Li HT, Xu L, Weisenberger DJ, Li M, Zhou W, Peng CC, Stachelek K, Cobrinik D, Liang G, Berry JL. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy. Nat Commun 2022; 13:5523. [PMID: 36130950 PMCID: PMC9492718 DOI: 10.1038/s41467-022-33248-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Retinoblastoma (RB) is a cancer that forms in the developing retina of babies and toddlers. The goal of therapy is to cure the tumor, save the eye and maximize vision. However, it is difficult to predict which eyes are likely to respond to therapy. Predictive molecular biomarkers are needed to guide prognosis and optimize treatment decisions. Direct tumor biopsy is not an option for this cancer; however, the aqueous humor (AH) is an alternate source of tumor-derived cell-free DNA (cfDNA). Here we show that DNA methylation profiling of the AH is a valid method to identify the methylation status of RB tumors. We identify 294 genes directly regulated by methylation that are implicated in p53 tumor suppressor (RB1, p53, p21, and p16) and oncogenic (E2F) pathways. Finally, we use AH to characterize molecular subtypes that can potentially be used to predict the likelihood of treatment success for retinoblastoma patients.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
| | - Liya Xu
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wanding Zhou
- University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chen-Ching Peng
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Kevin Stachelek
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - David Cobrinik
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Jesse L Berry
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA.
| |
Collapse
|
21
|
Roohollahi K, de Jong Y, van Mil SE, Fabius AW, Moll AC, Dorsman JC. High-Level MYCN-Amplified RB1-Proficient Retinoblastoma Tumors Retain Distinct Molecular Signatures. OPHTHALMOLOGY SCIENCE 2022; 2:100188. [PMID: 36245757 PMCID: PMC9559112 DOI: 10.1016/j.xops.2022.100188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Affiliation(s)
| | - Yvonne de Jong
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
- Correspondence: Yvonne de Jong, PhD, Department of Human Genetics, Amsterdam UMC, Location VUMC, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands.
| | - Saskia E. van Mil
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Annette C. Moll
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Josephine C. Dorsman
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
- Josephine C. Dorsman, PhD, Department of Human Genetics, Amsterdam UMC, Location VUMC, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Li YP, Wang YT, Wang W, Zhang X, Shen RJ, Jin K, Jin LW, Jin ZB. Second hit impels oncogenesis of retinoblastoma in patient-induced pluripotent stem cell-derived retinal organoids: direct evidence for Knudson's theory. PNAS NEXUS 2022; 1:pgac162. [PMID: 36714839 PMCID: PMC9802398 DOI: 10.1093/pnasnexus/pgac162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Retinoblastoma (Rb) is a type of malignant tumor due to abnormal retinogenesis with biallelic mutations of the RB1 gene. Its pathogenesis has been proposed as a "two-mutation hypothesis" by Knudson since 1971; however, there remain some debates on disease onset sufficiency of the biallelic RB1 mutations. To obtain straightforward evidence for this hypothesis, we investigated whether two-hit mutations of the RB1 gene drive tumorigenesis in patient-induced pluripotent stem cell (hiPSC)-derived human retinal organoids (hROs) and whether single allelic mutation hiPSC-derived hROs exhibit molecular and cellular defects. We generated hiPSCs with a heterozygous germline mutation (RB1m1/ wt ) from a Rb patient. A second-allele RB1 gene mutation was knocked in to produce compound heterozygous mutations (RB1m1/m2 ) in the hiPSCs. These two hiPSC lines were independently developed into hROs through a stepwise differentiation. The hiPSC-RB1m1/m2 derived organoids demonstrated tumorigenesis in dishes, consistent with Rb profiles in spatiotemporal transcriptomes, in which developmentally photoreceptor fate-determining markers, CRX and OTX2, were highly expressed in hiPSC-RB1m1/m2 derived hROs. Additionally, ARR3+ maturing cone precursors were co-labeled with proliferative markers Ki67 or PCNA, in agreement with the consensus that human Rb is originated from maturing cone precursors. Finally, we demonstrated that retinal cells of hROs with monoallelic RB1 mutation were abnormal in molecular aspects due to its haploinsufficiency. In conclusion, this study provides straightforward supporting evidence in a way of reverse genetics for "two-hit hypothesis" in the Rb tumorigenesis and opens new avenues for development of early intervention and treatment of Rb.
Collapse
Affiliation(s)
- Yan-Ping Li
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ya-Ting Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Li-Wen Jin
- Quanzhou Aier Eye Hospital, Quanzhou 362017, China
| | | |
Collapse
|
23
|
An immature, dedifferentiated, and lineage-deconstrained cone precursor origin of N-Myc-initiated retinoblastoma. Proc Natl Acad Sci U S A 2022; 119:e2200721119. [PMID: 35867756 PMCID: PMC9282279 DOI: 10.1073/pnas.2200721119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most retinoblastomas develop from maturing cone precursors in response to biallelic RB1 loss and are dependent on cone maturation-related signaling. Additionally, ∼2% lack RB1 mutations but have MYCN amplification (MYCNA), N-Myc protein overexpression, and more rapid and invasive growth, yet the MYCNA retinoblastoma cell of origin and basis for its responses to deregulated N-Myc are unknown. Here, using explanted cultured retinae, we show that ectopic N-Myc induces cell cycle entry in cells expressing markers of several retinal types yet induces continuous proliferation and tumorigenesis only in cone precursors. Unlike the response to RB1 loss, both immature cone arrestin-negative (ARR3-) and maturing ARR3+ cone precursors proliferate, and maturing cone precursors rapidly dedifferentiate, losing ARR3 as well as L/M-opsin expression. N-Myc-overexpressing retinal cells also lose cell lineage constraints, occasionally coexpressing the cone-specific RXRγ with the rod-specific NRL or amacrine-specific AP2α and widely coexpressing RXRγ with the progenitor and Müller cell-specific SOX9 and retinal ganglion cell-specific BRN3 and GAP43. Mechanistically, N-Myc induced Cyclin D2 and CDK4 overexpression, pRB phosphorylation, and SOX9-dependent proliferation without a retinoma-like stage that characterizes pRB-deficient retinoblastoma, despite continuous p16INK4A expression. Orthotopic xenografts of N-Myc-overexpressing retinal cells formed tumors with retinal cell marker expression similar to those in MYCN-transduced retinae and MYCNA retinoblastomas in patients. These findings demonstrate the MYCNA retinoblastoma origin from immature and lineage-deconstrained cone precursors, reveal their opportunistic use of an undifferentiated retinal progenitor cell feature, and illustrate that different cancer-initiating mutations cooperate with distinct developmental stage-specific cell signaling circuitries to drive retinoblastoma tumorigenesis.
Collapse
|
24
|
MYCN induces cell-specific tumorigenic growth in RB1-proficient human retinal organoid and chicken retina models of retinoblastoma. Oncogenesis 2022; 11:34. [PMID: 35729105 PMCID: PMC9213451 DOI: 10.1038/s41389-022-00409-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Retinoblastoma is a rare, intraocular paediatric cancer that originates in the neural retina and is most frequently caused by bi-allelic loss of RB1 gene function. Other oncogenic mutations, such as amplification and increased expression of the MYCN gene, have been found even with proficient RB1 function. In this study, we investigated whether MYCN over-expression can drive carcinogenesis independently of RB1 loss-of-function mutations. The aim was to elucidate the events that result in carcinogenesis and identify the cancer cell-of-origin. We used the chicken retina, a well-established model for studying retinal neurogenesis, and established human embryonic stem cell-derived retinal organoids as model systems. We over-expressed MYCN by electroporation of piggyBac genome-integrating expression vectors. We found that over-expression of MYCN induced tumorigenic growth with high frequency in RB1-proficient chicken retinas and human organoids. In both systems, the tumorigenic cells expressed markers for undifferentiated cone photoreceptor/horizontal cell progenitors. The over-expression resulted in metastatic retinoblastoma within 7–9 weeks in chicken. Cells expressing MYCN could be grown in vitro and, when orthotopically injected, formed tumours that infiltrated the sclera and optic nerve and expressed markers for cone progenitors. Investigation of the tumour cell phenotype determined that the potential for neoplastic growth was embryonic stage-dependent and featured a cell-specific resistance to apoptosis in the cone/horizontal cell lineage, but not in ganglion or amacrine cells. We conclude that MYCN over-expression is sufficient to drive tumorigenesis and that a cell-specific resistance to apoptosis in the cone/horizontal cell lineage mediates the cancer phenotype. ![]()
Collapse
|
25
|
Rozanska A, Cerna-Chavez R, Queen R, Collin J, Zerti D, Dorgau B, Beh CS, Davey T, Coxhead J, Hussain R, Al-Aama J, Steel DH, Benvenisty N, Armstrong L, Parulekar M, Lako M. pRB-Depleted Pluripotent Stem Cell Retinal Organoids Recapitulate Cell State Transitions of Retinoblastoma Development and Suggest an Important Role for pRB in Retinal Cell Differentiation. Stem Cells Transl Med 2022; 11:415-433. [PMID: 35325233 PMCID: PMC9052432 DOI: 10.1093/stcltm/szac008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022] Open
Abstract
Retinoblastoma (Rb) is a childhood cancer of the developing retina, accounting for up to 17% of all tumors in infancy. To gain insights into the transcriptional events of cell state transitions during Rb development, we established 2 disease models via retinal organoid differentiation of a pRB (retinoblastoma protein)-depleted human embryonic stem cell line (RB1-null hESCs) and a pRB patient-specific induced pluripotent (iPSC) line harboring a RB1 biallelic mutation (c.2082delC). Both models were characterized by pRB depletion and accumulation of retinal progenitor cells at the expense of amacrine, horizontal and retinal ganglion cells, which suggests an important role for pRB in differentiation of these cell lineages. Importantly, a significant increase in the fraction of proliferating cone precursors (RXRγ+Ki67+) was observed in both pRB-depleted organoid models, which were defined as Rb-like clusters by single-cell RNA-Seq analysis. The pRB-depleted retinal organoids displayed similar features to Rb tumors, including mitochondrial cristae aberrations and rosette-like structures, and were able to undergo cell growth in an anchorage-independent manner, indicative of cell transformation in vitro. In both models, the Rb cones expressed retinal ganglion and horizontal cell markers, a novel finding, which could help to better characterize these tumors with possible therapeutic implications. Application of Melphalan, Topotecan, and TW-37 led to a significant reduction in the fraction of Rb proliferating cone precursors, validating the suitability of these in vitro models for testing novel therapeutics for Rb.
Collapse
Affiliation(s)
- Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Darin Zerti
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chia Shyan Beh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tracey Davey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Riyadh, Saudi Arabia
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Manoj Parulekar
- Birmingham Women's and Children NHS Foundation Trust, Birmingham, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
RB1-Negative Retinal Organoids Display Proliferation of Cone Photoreceptors and Loss of Retinal Differentiation. Cancers (Basel) 2022; 14:cancers14092166. [PMID: 35565295 PMCID: PMC9105736 DOI: 10.3390/cancers14092166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Retinoblastoma is a tumor of the eye’s retina, which is the very specialized tissue responsible for vision. In 98% of cases, the tumor is caused by inactivation of the RB1 gene. Due to lack of material and models, the understanding of RB1 mutations in tumor development is still unsatisfactory. We aimed to establish a human laboratory model for retinoblastoma. While differentiating stem cells with a mutation in RB1 into retina, we observed reduced differentiation potential but enhanced proliferation—general hallmarks of tumor development. The gene expression signature in the model resembled that of tumor material. This approach now enables research on retinoblastoma and probably therapy in the correct tissue, the human retina. Abstract Retinoblastoma is a tumor of the eye in children under the age of five caused by biallelic inactivation of the RB1 tumor suppressor gene in maturing retinal cells. Cancer models are essential for understanding tumor development and in preclinical research. Because of the complex organization of the human retina, such models were challenging to develop for retinoblastoma. Here, we present an organoid model based on differentiation of human embryonic stem cells into neural retina after inactivation of RB1 by CRISPR/Cas9 mutagenesis. Wildtype and RB1 heterozygous mutant retinal organoids were indistinguishable with respect to morphology, temporal development of retinal cell types and global mRNA expression. However, loss of pRB resulted in spatially disorganized organoids and aberrant differentiation, indicated by disintegration of organoids beyond day 130 of differentiation and depletion of most retinal cell types. Only cone photoreceptors were abundant and continued to proliferate, supporting these as candidate cells-of-origin for retinoblastoma. Transcriptome analysis of RB1 knockout organoids and primary retinoblastoma revealed gain of a retinoblastoma expression signature in the organoids, characterized by upregulation of RBL1 (p107), MDM2, DEK, SYK and HELLS. In addition, genes related to immune response and extracellular matrix were specifically upregulated in RB1-negative organoids. In vitro retinal organoids therefore display some features associated with retinoblastoma and, so far, represent the only valid human cancer model for the development of this disease.
Collapse
|
27
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
28
|
The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022; 217:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Mouse double minute 2 (MDM2), an E3 ubiquitin ligase and the primary negative regulator of the tumor suppressor p53, cooperates with its structural homolog MDM4/MDMX to control intracellular p53 level. In turn, overexpression of p53 upregulates and forms an autoregulatory feedback loop with MDM2. The MDM2-p53 axis plays a pivotal role in modulating cell cycle control and apoptosis. MDM2 itself is regulated by the PI3K-AKT and RB-E2F-ARF pathways. While amplification of the MDM2 gene or overexpression of MDM2 (due to MDM2 SNP T309G, for instance) is associated with various malignancies, numerous studies have shown that MDM2/p53 alterations may also play a part in the pathogenetic process of certain ocular disorders (Fig. 1). These include cancers (retinoblastoma, uveal melanoma), fibrocellular proliferative diseases (proliferative vitreoretinopathy, pterygium), neovascular diseases, degenerative diseases (cataract, primary open-angle glaucoma, age-related macular degeneration) and infectious/inflammatory diseases (trachoma, uveitis). In addition, MDM2 is implicated in retinogenesis and regeneration after optic nerve injury. Anti-MDM2 therapy has shown potential as a novel approach to treating these diseases. Despite major safety concerns, there are high expectations for the clinical value of reformative MDM2 inhibitors. This review summarizes important findings about the role of MDM2 in ocular pathologies and provides an overview of recent advances in treating these diseases with anti-MDM2 therapies.
Collapse
|
29
|
SOX2 maintains the stemness of retinoblastoma stem-like cells through Hippo/YAP signaling pathway. Exp Eye Res 2021; 214:108887. [PMID: 34890603 DOI: 10.1016/j.exer.2021.108887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To explore the mechanisms underlying stemness maintenance of retinoblastoma (RB) stem cells (RSCs). METHODS The retinoblastoma stem-like cells (RSLCs) were isolated by single cell cloning in combination of examination of sphere-forming capacities. The stemness of the cells were characterized by the sphere-forming capacity and the expression levels of RSCs markers. Gene manipulation was performed by lentivirus system. Transcriptional regulation was identified by qRT-PCR, luciferase reporter, nuclear run-on and DNA pull-down assay. Spearman analysis was employed for correlation analysis of genes in tumor tissues of RB patients. RESULTS The isolated RSLCs exhibited enhanced sphere-forming capacity and constantly higher levels of CD44, ABCG2, SOX2 and PAX6, but not CD133. SOX2 positively regulated the stemness of RSLCs. SOX2 directly binds to the promoters of WWTR1 and YAP and transcriptionally activates WWTR1 and YAP. Knockdown of WWTR1 or YAP partially abolished the effect of SOX2 on the stemness of RSLCs. CONCLUSIONS SOX2, as a key deriver, maintains RB stemness by activating Hippo/YAP signaling. Inhibition of Hippo/YAP signaling would be an effective strategy for human RB caused by SOX2 upregulation.
Collapse
|
30
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
31
|
Yang J, Li Y, Han Y, Feng Y, Zhou M, Zong C, He X, Jia R, Xu X, Fan J. Single-cell transcriptome profiling reveals intratumoural heterogeneity and malignant progression in retinoblastoma. Cell Death Dis 2021; 12:1100. [PMID: 34815392 PMCID: PMC8611004 DOI: 10.1038/s41419-021-04390-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
Retinoblastoma is a childhood retinal tumour that is the most common primary malignant intraocular tumour. However, it has been challenging to identify the cell types associated with genetic complexity. Here, we performed single-cell RNA sequencing on 14,739 cells from two retinoblastoma samples to delineate the heterogeneity and the underlying mechanism of retinoblastoma progression. Using a multiresolution network-based analysis, we identified two major cell types in human retinoblastoma. Cell trajectory analysis yielded a total of 5 cell states organized into two main branches, and the cell cycle-associated cone precursors were the cells of origin of retinoblastoma that were required for initiating the differentiation and malignancy process of retinoblastoma. Tumour cells differentiation reprogramming trajectory analysis revealed that cell-type components of multiple tumour-related pathways and predominantly expressed UBE2C were associated with an activation state in the malignant progression of the tumour, providing a potential novel "switch gene" marker during early critical stages in human retinoblastoma development. Thus, our findings improve our current understanding of the mechanism of retinoblastoma progression and are potentially valuable in providing novel prognostic markers for retinoblastoma.
Collapse
Affiliation(s)
- Jie Yang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Yongyun Li
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Yanping Han
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Yiyi Feng
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Min Zhou
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Chunyan Zong
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Xiaoyu He
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China.
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P. R. China.
| |
Collapse
|
32
|
Zhang X, Wang W, Jin ZB. Retinal organoids as models for development and diseases. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:33. [PMID: 34719743 PMCID: PMC8557999 DOI: 10.1186/s13619-021-00097-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
The evolution of pluripotent stem cell-derived retinal organoids (ROs) has brought remarkable opportunities for developmental studies while also presenting new therapeutic avenues for retinal diseases. With a clear understanding of how well these models mimic native retinas, such preclinical models may be crucial tools that are widely used for the more efficient translation of studies into novel treatment strategies for retinal diseases. Genetic modifications or patient-derived ROs can allow these models to simulate the physical microenvironments of the actual disease process. However, we are currently at the beginning of the three-dimensional (3D) RO era, and a general quantitative technology for analyzing ROs derived from numerous differentiation protocols is still missing. Continued efforts to improve the efficiency and stability of differentiation, as well as understanding the disparity between the artificial retina and the native retina and advancing the current treatment strategies, will be essential in ensuring that these scientific advances can benefit patients with retinal disease. Herein, we briefly discuss RO differentiation protocols, the current applications of RO as a disease model and the treatments for retinal diseases by using RO modeling, to have a clear view of the role of current ROs in retinal development and diseases.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
33
|
Liu J, Ottaviani D, Sefta M, Desbrousses C, Chapeaublanc E, Aschero R, Sirab N, Lubieniecki F, Lamas G, Tonon L, Dehainault C, Hua C, Fréneaux P, Reichman S, Karboul N, Biton A, Mirabal-Ortega L, Larcher M, Brulard C, Arrufat S, Nicolas A, Elarouci N, Popova T, Némati F, Decaudin D, Gentien D, Baulande S, Mariani O, Dufour F, Guibert S, Vallot C, Rouic LLL, Matet A, Desjardins L, Pascual-Pasto G, Suñol M, Catala-Mora J, Llano GC, Couturier J, Barillot E, Schaiquevich P, Gauthier-Villars M, Stoppa-Lyonnet D, Golmard L, Houdayer C, Brisse H, Bernard-Pierrot I, Letouzé E, Viari A, Saule S, Sastre-Garau X, Doz F, Carcaboso AM, Cassoux N, Pouponnot C, Goureau O, Chantada G, de Reyniès A, Aerts I, Radvanyi F. A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression. Nat Commun 2021; 12:5578. [PMID: 34552068 PMCID: PMC8458383 DOI: 10.1038/s41467-021-25792-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.
Collapse
Affiliation(s)
- Jing Liu
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Daniela Ottaviani
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Meriem Sefta
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Céline Desbrousses
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Elodie Chapeaublanc
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Rosario Aschero
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Nanor Sirab
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Fabiana Lubieniecki
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Gabriela Lamas
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina
| | - Laurie Tonon
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Catherine Dehainault
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France
| | - Clément Hua
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Paul Fréneaux
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Sacha Reichman
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Narjesse Karboul
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Anne Biton
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France ,grid.428999.70000 0001 2353 6535Present Address: Institut Pasteur – Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, 75015 Paris, France
| | - Liliana Mirabal-Ortega
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Magalie Larcher
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Céline Brulard
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.411777.30000 0004 1765 1563Present Address: INSERM U930, CHU Bretonneau, 37000 Tours, France
| | - Sandrine Arrufat
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - André Nicolas
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Nabila Elarouci
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Tatiana Popova
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Fariba Némati
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Didier Decaudin
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - David Gentien
- grid.418596.70000 0004 0639 6384Département de Recherche Translationnelle, Institut Curie, 75005 Paris, France
| | - Sylvain Baulande
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, NGS Platform, 75005 Paris, France
| | - Odette Mariani
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Florent Dufour
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Sylvain Guibert
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Céline Vallot
- grid.425132.3GeCo Genomics Consulting, Integragen, 91000 Evry, France
| | - Livia Lumbroso-Le Rouic
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Alexandre Matet
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Laurence Desjardins
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France
| | - Guillem Pascual-Pasto
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Mariona Suñol
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Pathology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jaume Catala-Mora
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Department of Ophthalmology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Genoveva Correa Llano
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jérôme Couturier
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France
| | - Emmanuel Barillot
- grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U900, 75005 Paris, France ,Ecole des Mines ParisTech, 77305 Fontainebleau, France
| | - Paula Schaiquevich
- grid.414531.60000 0001 0695 6255Pathology Service, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Marion Gauthier-Villars
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Dominique Stoppa-Lyonnet
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Lisa Golmard
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France
| | - Claude Houdayer
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Service de Génétique, Institut Curie, 75005 Paris, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM U830, 75005 Paris, France ,grid.41724.34Present Address: Department of Genetics, Rouen University Hospital, 76000 Rouen, France
| | - Hervé Brisse
- grid.418596.70000 0004 0639 6384Département d’Imagerie Médicale, Institut Curie, 75005 Paris, France
| | - Isabelle Bernard-Pierrot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| | - Eric Letouzé
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Universités, INSERM, 75006 Paris, France ,grid.508487.60000 0004 7885 7602Functional Genomics of Solid Tumors, équipe labellisée Ligue Contre le Cancer, Université de Paris, Université Paris 13, Paris, France
| | - Alain Viari
- grid.418116.b0000 0001 0200 3174Synergie Lyon Cancer, Plateforme de Bioinformatique “Gilles Thomas”, Centre Léon Bérard, 69008 Lyon, France
| | - Simon Saule
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Xavier Sastre-Garau
- grid.418596.70000 0004 0639 6384Département de Biologie des Tumeurs, Institut Curie, 75005 Paris, France ,grid.414145.10000 0004 1765 2136Present Address: Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France
| | - François Doz
- grid.508487.60000 0004 7885 7602Université de Paris, Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - Angel M. Carcaboso
- grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Nathalie Cassoux
- grid.418596.70000 0004 0639 6384Département de Chirurgie, Service d’Ophtalmologie, Institut Curie, 75005 Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Paris, France
| | - Celio Pouponnot
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR3347, PSL Research University, 91405 Orsay, France ,grid.418596.70000 0004 0639 6384Institut Curie, PSL Research University, INSERM, U1021, 91405 Orsay, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Guillermo Chantada
- grid.414531.60000 0001 0695 6255Precision Medicine, Hospital J.P. Garrahan, Buenos Aires, Argentina ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain ,grid.411160.30000 0001 0663 8628Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain ,grid.423606.50000 0001 1945 2152National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Aurélien de Reyniès
- grid.452770.30000 0001 2226 6748Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Isabelle Aerts
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France ,grid.418596.70000 0004 0639 6384SIREDO Center (Care, Innovation and Research in Pediatric Adolescent and Young Adult Oncology), Institut Curie, 75005 Paris, France
| | - François Radvanyi
- grid.4444.00000 0001 2112 9282Institut Curie, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, PSL Research University, 75005 Paris, France ,grid.462844.80000 0001 2308 1657Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005 Paris, France
| |
Collapse
|
34
|
Eldred KC, Reh TA. Human retinal model systems: Strengths, weaknesses, and future directions. Dev Biol 2021; 480:114-122. [PMID: 34529997 DOI: 10.1016/j.ydbio.2021.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The retina is a complex neuronal structure that converts light energy into visual perception. Many specialized aspects of the primate retina, including a cone rich macula for high acuity vision, ocular size, and cell type diversity are not found in other animal models. In addition, the unique morphologies and distinct laminar positions of cell types found in the retina make this model system ideal for the study of neuronal cell fate specification. Many key early events of human retinal development are inaccessible to investigation as they occur during gestation. For these reasons, it has been necessary to develop retinal model systems to gain insight into human-specific retinal development and disease. Recent advances in culturing retinal tissue have generated new systems for retinal research and have moved us closer to generating effective regenerative therapies for vision loss. Here, we describe the strengths, weaknesses, and future directions for different human retinal model systems including dissociated primary tissue, explanted primary tissue, retinospheres, and stem cell-derived retinal organoids.
Collapse
Affiliation(s)
- Kiara C Eldred
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
35
|
Kim ME, Polski A, Xu L, Prabakar RK, Peng CC, Reid MW, Shah R, Kuhn P, Cobrinik D, Hicks J, Berry JL. Comprehensive Somatic Copy Number Analysis Using Aqueous Humor Liquid Biopsy for Retinoblastoma. Cancers (Basel) 2021; 13:cancers13133340. [PMID: 34283049 PMCID: PMC8268955 DOI: 10.3390/cancers13133340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Aqueous humor (AH) liquid biopsy is an enriched source of cell-free circulating tumor-derived DNA for retinoblastoma (RB). The use of this AH liquid biopsy allows for genomic analysis of eyes in the absence of tumor tissue. Development of this platform was critical because direct tumor biopsy is prohibited in RB due to risk of extraocular tumor spread. In this retrospective study, we provide comprehensive, whole-genome analysis of the somatic copy number alterations (SCNAs) in 68 eyes of 64 RB patients. We show that the prevalence of specific SCNAs differ between eyes that required immediate enucleation (surgical removal) and eyes that were attempted to be saved but subsequently failed treatment, requiring secondary enucleation. Increases in chromosomal instability, or higher number of broad genomic alterations, predict higher risk clinical and biomarker features in these eyes. Prospective analyses are needed to further determine the clinical relevance and application of these findings. Abstract Aqueous humor (AH) liquid biopsy has been established as a surrogate tumor biopsy for retinoblastoma (RB). Previous AH studies have focused on highly recurrent RB somatic copy number alterations (SCNAs) including gain of 1q, 2p, 6p, and loss of 13q and 16q. In this retrospective study, we provide a comprehensive, whole-genome analysis of RB SCNAs and evaluate associated clinical features for 68 eyes of 64 RB patients from whom AH was obtained between December 2014 and October 2020. Shallow whole-genome sequencing of AH cell-free DNA was performed to assess for SCNAs. The prevalence of specific non-highly recurrent SCNAs, such as 20q gain and 8p loss, differed between primarily and secondarily enucleated eyes. Increases in chromosomal instability predict more advanced seeding morphology (p = 0.015); later age of diagnosis (p < 0.0001); greater odds of an endophytic tumor growth pattern (without retinal detachment; p = 0.047); tumor heights >10 mm (p = 0.09); and containing 6p gain, a biomarker of poor ocular prognosis (p = 0.004). The AH liquid biopsy platform is a high-yield method of whole-genome RB SCNA analysis, and SCNAs are associated with numerous clinical findings in RB eyes. Prospective analyses are encouraged to further elucidate the clinical relevance of specific SCNAs in RB.
Collapse
Affiliation(s)
- Mary E. Kim
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Ashley Polski
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Liya Xu
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
| | - Rishvanth K. Prabakar
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA;
| | - Chen-Ching Peng
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
| | - Mark W. Reid
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
| | - Rachana Shah
- Cancer and Blood Disease Institute at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Peter Kuhn
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA
| | - David Cobrinik
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - James Hicks
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90007, USA; (P.K.); (J.H.)
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse L. Berry
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (M.E.K.); (A.P.); (L.X.); (C.-C.P.); (M.W.R.); (D.C.)
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Correspondence: ; Tel.: +1-323-442-6335
| |
Collapse
|
36
|
Collin J, Queen R, Zerti D, Steel DH, Bowen C, Parulekar M, Lako M. Dissecting the Transcriptional and Chromatin Accessibility Heterogeneity of Proliferating Cone Precursors in Human Retinoblastoma Tumors by Single Cell Sequencing-Opening Pathways to New Therapeutic Strategies? Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34003213 PMCID: PMC8132003 DOI: 10.1167/iovs.62.6.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/18/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Retinoblastoma (Rb) is a malignant neoplasm arising during retinal development from mutations in the RB1 gene. Loss or inactivation of both copies of RB1 results in initiation of retinoblastoma tumors; however, additional genetic changes are needed for the continued growth and spread of the tumor. Ex vivo research has shown that in humans, retinoblastoma may initiate from RB1-depleted cone precursors. Notwithstanding, it has not been possible to assess the full spectrum of clonal types within the tumor itself in vivo and the molecular changes occurring at the cells of origin, enabling their malignant conversion. To overcome these challenges, we have performed the first single cell (sc) RNA- and ATAC-Seq analyses of primary tumor tissues, enabling us to dissect the transcriptional and chromatin accessibility heterogeneity of proliferating cone precursors in human Rb tumors. Methods Two Rb tumors each characterized by two pathogenic RB1 mutations were dissociated to single cells and subjected to scRNA-Seq and scATAC-Seq using the 10× Genomics platform. In addition, nine human embryonic and fetal retina samples were dissociated to single cells and subjected to scRNA- and ATAC-Seq analyses. The scRNA- and ATAC-Seq data were embedded using Uniform Manifold Approximation and Projection and clustered with Seurat graph-based clustering. Integrated scATAC-Seq analysis of Rb tumors and human embryonic/fetal retina samples was performed to identify Rb cone enriched subclusters. Pseudo time analysis of proliferating cones in the Rb samples was performed with Monocle. Ingenuity Pathway Analysis was used to identify the signaling pathway and upstream regulators in the Rb cone-enriched subclusters. Results Our single cell analyses revealed the predominant presence of cone precursors at different stages of the cell cycle in the Rb tumors and among those identified the G2/M subset as the cell type of origin. scATAC-Seq analysis identified two Rb enriched cone subclusters, each characterized by activation of different upstream regulators and signaling pathways, enabling proliferating cone precursors to escape cell cycle arrest and/or apoptosis. Conclusions Our study provides evidence of Rb tumor heterogeneity and defines molecular pathways that can be targeted to define new treatment strategies.
Collapse
Affiliation(s)
- Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Darin Zerti
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Claire Bowen
- Birmingham Women's and Children NHS Foundation Trust, Birmingham, United Kingdom
| | - Manoj Parulekar
- Birmingham Women's and Children NHS Foundation Trust, Birmingham, United Kingdom
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
37
|
Ghasemi M, Alizadeh E, Motlagh BF, Zarghami N. The effect of exogenous ciliary neurotrophic factor on cell cycle and neural differentiation markers of in vitro model cells: New insights for future therapeutic approaches. Cell Biochem Funct 2021; 39:636-645. [PMID: 33890305 DOI: 10.1002/cbf.3628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/06/2022]
Abstract
Retinoblastoma is known as childhood rare malignancy of the retina. Ciliary neurotrophic factor (CNTF) was previously found to reduce degeneration and promote retina survival. This work investigated the effects of CNTF supplementation on in-vitro model cells including retinoblastoma (Y79) and adipose-derived mesenchymal stem cells (AMSCs) viability, proliferation, gene expression and cell cycle. A drop of viability was detected in Y79 treated with CNTF in a dose-dependent manner (P < .05). However, the proliferation of AMSCs was increased at lower concentrations of CNTF (5 ng/mL), but declined in higher doses (50 and 100 ng/mL). The BrdU assay confirmed the MTT assay results. Cell cycle was arrested in both Y79 and AMSCs in the G0/G1 phase by CNTF treatment. A considerable down-regulation of Bcl2, CycD1 and N-Myc genes expression (P < .05) inversely, P15 and P21 genes up-regulation in treated Y79 cells was observed. Besides, stemness genes' transcription was reduced in AMSCs (P < .05), and levels of neuronal-specific markers such as neuron-specific enolase (NSE) and neuronal nuclei (NeuN) were increased (P < .05). The findings of this study suggest a promising potential of CNTF in terms of arresting Y79 retinoblastoma cells, and differentiation-inducing to AMSCs, which could be valuable for managing future innovative treatments targeting retinoblastoma. SIGNIFICANCE OF THE STUDY: We demonstrate that CNTF has the potential to reduce proliferation of Y79 cells and induce the cell cycle arrest of them. Also, down-regulation of oncogenes (such as N-Myc) while up-regulation of tumour suppressor genes (such as P21) was detected by exposure of Y79 cells to CNTF. Furthermore, we observed the cell cycle arrest, reduction of stemness gene and up-regulation of neural differentiation markers in AMSCs treated with CNTF. These results support the probable promising effects of CNTF for controlling retinoblastoma.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Fallahi Motlagh
- Department of Ophthalmology, Nikokar Eye Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center (SRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Abstract
Retinoblastoma (Rb) is the most prevalent intraocular malignancy in early childhood. Traditional models are unable to accurately recapitulate the origin and development of human Rb. Here, we present a protocol to establish a novel human Rb organoid (hRBO) model derived from genetically engineered human embryonic stem cells (hESCs). This hRBO model exhibits properties highly consistent with human primary Rb and can be used effectively for dissecting the origination and pathogenesis of Rb as well as for screening of potential therapies. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).
Collapse
Affiliation(s)
- Hui Liu
- Laboratory of Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.,Institute of Biomedical Big Data, School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zi-Qi Hua
- Laboratory of Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China.,Institute of Stem Cell Research, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
39
|
Borah NA, Sradhanjali S, Barik MR, Jha A, Tripathy D, Kaliki S, Rath S, Raghav SK, Patnaik S, Mittal R, Reddy MM. Aurora Kinase B Expression, Its Regulation and Therapeutic Targeting in Human Retinoblastoma. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 33704359 PMCID: PMC7960835 DOI: 10.1167/iovs.62.3.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Aurora kinase B (AURKB) plays a pivotal role in the regulation of mitosis and is gaining prominence as a therapeutic target in cancers; however, the role of AURKB in retinoblastoma (RB) has not been studied. The purpose of this study was to determine if AURKB plays a role in RB, how its expression is regulated, and whether it could be specifically targeted. Methods The protein expression of AURKB was determined using immunohistochemistry in human RB patient specimens and immunoblotting in cell lines. Pharmacological inhibition and shRNA-mediated knockdown were used to understand the role of AURKB in cell viability, apoptosis, and cell cycle distribution. Cell viability in response to AURKB inhibition was also assessed in enucleated RB specimens. Immunoblotting was employed to determine the protein levels of phospho-histone H3, p53, p21, and MYCN. Chromatin immunoprecipitation-qPCR was performed to verify the binding of MYCN on the promoter region of AURKB. Results The expression of AURKB was found to be markedly elevated in human RB tissues, and the overexpression significantly correlated with optic nerve and anterior chamber invasion. Targeting AURKB with small-molecule inhibitors and shRNAs resulted in reduced cell survival and increased apoptosis and cell cycle arrest at the G2/M phase. More importantly, primary RB specimens showed decreased cell viability in response to pharmacological AURKB inhibition. Additional studies have demonstrated that the MYCN oncogene regulates the expression of AURKB in RB. Conclusions AURKB is overexpressed in RB, and targeting it could serve as a novel therapeutic strategy to restrict tumor cell growth.
Collapse
Affiliation(s)
- Naheed Arfin Borah
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Swatishree Sradhanjali
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Manas Ranjan Barik
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar, India
| | - Atimukta Jha
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences, Bhubaneswar, India
- Manipal Academy of Higher Education, Manipal, India
| | - Devjyoti Tripathy
- Ophthalmic Plastics, Orbit and Ocular Oncology Service, LV Prasad Eye Institute, Bhubaneswar, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
| | - Suryasnata Rath
- Ophthalmic Plastics, Orbit and Ocular Oncology Service, LV Prasad Eye Institute, Bhubaneswar, India
| | - Sunil K. Raghav
- Immuno-Genomics and Systems Biology Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | - Ruchi Mittal
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Bhubaneswar, India
- Department of Pathology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Mamatha M. Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| |
Collapse
|
40
|
Tran HN, Singh HP, Guo W, Cambier L, Riggan L, Shackleford GM, Thornton ME, Grubbs BH, Erdreich-Epstein A, Qi DL, Cobrinik D. Reciprocal Induction of MDM2 and MYCN in Neural and Neuroendocrine Cancers. Front Oncol 2020; 10:563156. [PMID: 33425720 PMCID: PMC7793692 DOI: 10.3389/fonc.2020.563156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
MYC family oncoproteins MYC, MYCN, and MYCL are deregulated in diverse cancers and via diverse mechanisms. Recent studies established a novel form of MYCN regulation in MYCN-overexpressing retinoblastoma and neuroblastoma cells in which the MDM2 oncoprotein promotes MYCN translation and MYCN-dependent proliferation via a p53-independent mechanism. However, it is unclear if MDM2 also promotes expression of other MYC family members and has similar effects in other cancers. Conversely, MYCN has been shown to induce MDM2 expression in neuroblastoma cells, yet it is unclear if MYC shares this ability, if MYC family proteins upregulate MDM2 in other malignancies, and if this regulation occurs during tumorigenesis as well as in cancer cell lines. Here, we report that intrinsically high MDM2 expression is required for high-level expression of MYCN, but not for expression of MYC, in retinoblastoma, neuroblastoma, small cell lung cancer, and medulloblastoma cells. Conversely, ectopic overexpression of MYC as well as MYCN induced high-level MDM2 expression and gave rise to rapidly proliferating and MDM2-dependent cone-precursor-derived masses in a cultured retinoblastoma genesis model. These findings reveal a highly specific collaboration between the MDM2 and MYCN oncoproteins and demonstrate the origin of their oncogenic positive feedback circuit within a normal neuronal tissue.
Collapse
Affiliation(s)
- Hung N Tran
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hardeep P Singh
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wenxuan Guo
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Program in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Linda Cambier
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Luke Riggan
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Gregory M Shackleford
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anat Erdreich-Epstein
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Departments of Pediatrics and Pathology, Children's Hospital Los Angeles and Keck School of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dong-Lai Qi
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, United States.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.,Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
41
|
Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proc Natl Acad Sci U S A 2020; 117:33628-33638. [PMID: 33318192 PMCID: PMC7776986 DOI: 10.1073/pnas.2011780117] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
As a genetic malignancy, retinoblastoma (Rb) is caused by RB1 mutations; however, its developmental origin and drug agents for human Rb remain largely unexplored. Here we describe an innovative Rb organoid model derived from human embryonic stem cells with a biallelic mutagenesis of the RB1 gene. We identify tumorigenic growth in the Rb organoids, as well as properties consistent with human primary Rb. We confirm that the Rb cell of origin stemmed from ARR3+ maturing cone precursor cells and SYK inhibitors displaying a significant therapeutic response. Our elegant in-dish Rb organoid model can be used to efficiently and effectively dissect the origin of Rb and mechanisms of Rb tumorigenesis, as well as screen novel therapies. Retinoblastoma (Rb) is the most prevalent intraocular malignancy in children, with a worldwide survival rate <30%. We have developed a cancerous model of Rb in retinal organoids derived from genetically engineered human embryonic stem cells (hESCs) with a biallelic mutagenesis of the RB1 gene. These organoid Rbs exhibit properties highly consistent with Rb tumorigenesis, transcriptome, and genome-wide methylation. Single-cell sequencing analysis suggests that Rb originated from ARR3-positive maturing cone precursors during development, which was further validated by immunostaining. Notably, we found that the PI3K-Akt pathway was aberrantly deregulated and its activator spleen tyrosine kinase (SYK) was significantly up-regulated. In addition, SYK inhibitors led to remarkable cell apoptosis in cancerous organoids. In conclusion, we have established an organoid Rb model derived from genetically engineered hESCs in a dish that has enabled us to trace the cell of origin and to test novel candidate therapeutic agents for human Rb, shedding light on the development and therapeutics of other malignancies.
Collapse
|
42
|
Ohfuji S. A Secretory Variant of Cerebral Meningioma with Partial Spontaneous Regression in a Cow. J Comp Pathol 2020; 180:86-90. [PMID: 33222879 DOI: 10.1016/j.jcpa.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
A 3.5-year-old Holstein cow presented with a 2-week history of weakness, ataxia and difficulty in rising, followed by recumbency. At necropsy, a 3 × 2.5 cm tumour mass was found in the subdural area of the left parietal lobe of the cerebrum. Histopathology revealed the tumour to be a variant of secretory meningeal tumour. Immunohistochemically, all of the neoplastic cells expressed vimentin and some were immunopositive for cytokeratin. There were variably sized, scattered pseudocysts containing eosinophilic material that stained positively with Alcian blue and periodic acid-Schiff stains. The marginal zone of the tumour exhibited regressive change characterized by lymphocytic infiltration and extensive fibrotic areas enclosing large numbers of tumour cell nests in which most tumour cells were apoptotic. This tumour was considered to be a secretory variant of cerebral meningioma with partial spontaneous regression.
Collapse
Affiliation(s)
- Susumu Ohfuji
- Department of Histopathology, Diagnostic Animal Pathology Office, Hokkaido, Japan.
| |
Collapse
|
43
|
Genomic Study of Chinese Quadruple-negative GISTs Using Next-generation Sequencing Technology. Appl Immunohistochem Mol Morphol 2020; 29:34-41. [PMID: 33002893 DOI: 10.1097/pai.0000000000000842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Approximately 10% of gastrointestinal stromal tumors (GISTs) are devoid of KIT, PDGFRA (platelet-derived growth factor-alpha), BRAF, and SDH alterations. The aim of this study was to characterize molecular drivers in Chinese patients with quadruple-negative GISTs. PATIENTS AND METHODS In 1022 Chinese patients with GIST, mutations of KIT and PDGFRA were analyzed by direct sequencing. Of these mutations, 142 KIT/PDGFRA wild-type (WT) GISTs were detected, and succinate dehydrogenase (SDH) deficiency was determined using immunohistochemistry analysis of succinate dehydrogenase B. In 78 KIT/PDGFRA/SDH cases, we performed targeted 425 cancer-related gene analysis using next-generation sequencing. The correlation between molecular findings and clinicopathologic features was also analyzed. RESULTS We defined 72 quadruple-negative GISTs from enrollments. They featured nongastric localization with histologic characteristics of spindle cells and male predilection. An overall 27.78% (20/72) of quadruple-negative tumors carried TP53, and 25.00% (18/72) carried RB1 mutations, which were frequently associated with high mitotic index and large size. TP53 analyses demonstrated coexistence with mutational activation of other oncogenes in 12 of 20 cases. A total of 18 RB1-mutated cases were independent of TP53. Further, no tumors carried NF1 and BRAF mutations. CONCLUSIONS We report the genomic analysis of Chinese quadruple-negative patients. These databases may help advance our understanding of quadruple-negative GISTs' progression. Next-generation sequencing from GISTs is feasible to provide relevant data for guiding individualized therapy.
Collapse
|
44
|
Clinical, Genomic, and Pharmacological Study of MYCN-Amplified RB1 Wild-Type Metastatic Retinoblastoma. Cancers (Basel) 2020; 12:cancers12092714. [PMID: 32971811 PMCID: PMC7565107 DOI: 10.3390/cancers12092714] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
An uncommon subgroup of unilateral retinoblastomas with highly aggressive histological features, lacking aberrations in RB1 gene with high-level amplification of MYCN (MCYNamplRB1+/+) has only been described as intra-ocular cases treated with initial enucleation. Here, we present a comprehensive clinical, genomic, and pharmacological analysis of two cases of MCYNamplRB1+/+ with orbital and cervical lymph node involvement, but no central nervous system spread, rapidly progressing to fatal disease due to chemoresistance. Both patients showed in common MYCN high amplification and chromosome 16q and 17p loss. A somatic mutation in TP53, in homozygosis by LOH, and high chromosomal instability leading to aneuploidy was identified in the primary ocular tumor and sites of dissemination of one patient. High-throughput pharmacological screening was performed in a primary cell line derived from the lymph node dissemination of one case. This cell line showed resistance to broad spectrum chemotherapy consistent with the patient's poor response but sensitivity to the synergistic effects of panobinostat-bortezomib and carboplatin-panobinostat associations. From these cells we established a cell line derived xenograft model that closely recapitulated the tumor dissemination pattern of the patient and served to evaluate whether triple chemotherapy significantly prolonged survival of the animals. We report novel genomic alterations in two cases of metastatic MCYNamplRB1+/+ that may be associated with chemotherapy resistance and in vitro/in vivo models that serve as basis for tailoring therapy in these cases.
Collapse
|
45
|
Retinoblastoma: Etiology, Modeling, and Treatment. Cancers (Basel) 2020; 12:cancers12082304. [PMID: 32824373 PMCID: PMC7465685 DOI: 10.3390/cancers12082304] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Retinoblastoma is a retinal cancer that is initiated in response to biallelic loss of RB1 in almost all cases, together with other genetic/epigenetic changes culminating in the development of cancer. RB1 deficiency makes the retinoblastoma cell-of-origin extremely susceptible to cancerous transformation, and the tumor cell-of-origin appears to depend on the developmental stage and species. These are important to establish reliable preclinical models to study the disease and develop therapies. Although retinoblastoma is the most curable pediatric cancer with a high survival rate, advanced tumors limit globe salvage and are often associated with high-risk histopathological features predictive of dissemination. The advent of chemotherapy has improved treatment outcomes, which is effective for globe preservation with new routes of targeted drug delivery. However, molecularly targeted therapeutics with more effectiveness and less toxicity are needed. Here, we review the current knowledge concerning retinoblastoma genesis with particular attention to the genomic and transcriptomic landscapes with correlations to clinicopathological characteristics, as well as the retinoblastoma cell-of-origin and current disease models. We further discuss current treatments, clinicopathological correlations, which assist in guiding treatment and may facilitate globe preservation, and finally we discuss targeted therapeutics for future treatments.
Collapse
|
46
|
Maurange C. Temporal patterning in neural progenitors: from Drosophila development to childhood cancers. Dis Model Mech 2020; 13:dmm044883. [PMID: 32816915 PMCID: PMC7390627 DOI: 10.1242/dmm.044883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developing central nervous system (CNS) is particularly prone to malignant transformation, but the underlying mechanisms remain unresolved. However, periods of tumor susceptibility appear to correlate with windows of increased proliferation, which are often observed during embryonic and fetal stages and reflect stereotypical changes in the proliferative properties of neural progenitors. The temporal mechanisms underlying these proliferation patterns are still unclear in mammals. In Drosophila, two decades of work have revealed a network of sequentially expressed transcription factors and RNA-binding proteins that compose a neural progenitor-intrinsic temporal patterning system. Temporal patterning controls both the identity of the post-mitotic progeny of neural progenitors, according to the order in which they arose, and the proliferative properties of neural progenitors along development. In addition, in Drosophila, temporal patterning delineates early windows of cancer susceptibility and is aberrantly regulated in developmental tumors to govern cellular hierarchy as well as the metabolic and proliferative heterogeneity of tumor cells. Whereas recent studies have shown that similar genetic programs unfold during both fetal development and pediatric brain tumors, I discuss, in this Review, how the concept of temporal patterning that was pioneered in Drosophila could help to understand the mechanisms of initiation and progression of CNS tumors in children.
Collapse
Affiliation(s)
- Cédric Maurange
- Aix Marseille University, CNRS, IBDM, Equipe Labellisée LIGUE Contre le Cancer, Marseille 13009, France
| |
Collapse
|
47
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
48
|
Polski A, Xu L, Prabakar RK, Gai X, Kim JW, Shah R, Jubran R, Kuhn P, Cobrinik D, Hicks J, Berry JL. Variability in retinoblastoma genome stability is driven by age and not heritability. Genes Chromosomes Cancer 2020; 59:584-590. [PMID: 32390242 DOI: 10.1002/gcc.22859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma (RB) is a childhood intraocular cancer initiated by biallelic inactivation of the RB tumor suppressor gene (RB1-/- ). RB can be hereditary (germline RB1 pathogenic allele is present) or non-hereditary. Somatic copy number alterations (SCNAs) contribute to subsequent tumorigenesis. Previous studies of only enucleated RB eyes have reported associations between heritability status and the prevalence of SCNAs. Herein, we use an aqueous humor (AH) liquid biopsy to investigate RB genomic profiles in the context of germline RB1 status, age, and International Intraocular Retinoblastoma Classification (IIRC) clinical grouping for both enucleated and salvaged eyes. Between 2014 and 2019, AH was sampled from a total of 54 eyes of 50 patients. Germline RB1 status was determined from clinical blood testing, and cell-free DNA from AH was analyzed for SCNAs. Of the 50 patients, 23 (46.0%; 27 eyes) had hereditary RB, and 27 (54.0%, 27 eyes) had non-hereditary RB. Median age at diagnosis was comparable between hereditary (13 ± 10 months) and non-hereditary (13 ± 8 months) eyes (P = 0.818). There was no significant difference in the prevalence or number of SCNAs based on (1) hereditary status (P > 0.56) or (2) IIRC grouping (P > 0.47). There was, however, a significant correlation between patient age at diagnosis, and (1) number of total SCNAs (r[52] = 0.672, P < 0.00001) and (2) number of highly-recurrent RB SCNAs (r[52] = 0.616, P < 0.00001). This evidence does not support the theory that specific molecular or genomic subtypes exist between hereditary and non-hereditary RB; rather, the prevalence of genomic alterations in RB eyes is strongly related to patient age at diagnosis.
Collapse
Affiliation(s)
- Ashley Polski
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Liya Xu
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
| | - Rishvanth K Prabakar
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Jonathan W Kim
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Rachana Shah
- Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Rima Jubran
- Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Peter Kuhn
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - David Cobrinik
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - James Hicks
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jesse L Berry
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California, USA.,USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
49
|
Deng X, Iwagawa T, Fukushima M, Watanabe S. Characterization of human-induced pluripotent stem cells carrying homozygous RB1 gene deletion. Genes Cells 2020; 25:510-517. [PMID: 32277725 DOI: 10.1111/gtc.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Retinoblastoma is an infant cancer that results from loss of RB1 expression in both alleles. The RB1 gene was the first reported cancer suppressor gene; however, the mechanism by which RB1 loss causes cancer in the retina has not yet been clarified. Human-induced pluripotent stem cells (iPSCs) provide an ideal tool for mechanistic research regarding retinoblastoma. However, because RB1 is a tumor suppressor, loss of both alleles of RB1 in human iPS cells may affect the phenotype of the cells. To examine this possibility, we established human iPSCs with deletions in both alleles of RB1 by CRISPR/Cas9 technique to characterize the associated phenotype. We first examined the expression of RB1 transcripts by RT-qPCR, and RB1 transcripts were expressed in immature hiPSCs and then the expression levels of RB1 transcripts consistently increased during retinal organoid differentiation in human iPSCs. Expression levels of immature markers including SSEA4, OCT3/4 and NANOG were indistinguishable between control iPSCs and RB1 knockout iPSCs. Proliferative activity was also unaffected by homozygous RB1 deletion. Taken together, we showed that homozygous deletion of RB1 did not affect the maturation and proliferation statuses of human iPSCs.
Collapse
Affiliation(s)
- Xiaoyue Deng
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masaya Fukushima
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|