1
|
Jiang Y, Chen J, Du Y, Fan M, Shen L. Immune modulation for the patterns of epithelial cell death in inflammatory bowel disease. Int Immunopharmacol 2025; 154:114462. [PMID: 40186907 DOI: 10.1016/j.intimp.2025.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the intestine whose primary pathological presentation is the destruction of the intestinal epithelium. The intestinal epithelium, located between the lumen and lamina propria, transmits luminal microbial signals to the immune cells in the lamina propria, which also modulate the intestinal epithelium. In IBD patients, intestinal epithelial cells (IECs) die dysfunction and the mucosal barrier is disrupted, leading to the recruitment of immune cells and the release of cytokines. In this review, we describe the structure and functions of the intestinal epithelium and mucosal barrier in the physiological state and under IBD conditions, as well as the patterns of epithelial cell death and how immune cells modulate the intestinal epithelium providing a reference for clinical research and drug development of IBD. In addition, according to the targeting of epithelial apoptosis and necroptotic pathways and the regulation of immune cells, we summarized some new methods for the treatment of IBD, such as necroptosis inhibitors, microbiome regulation, which provide potential ideas for the treatment of IBD. This review also describes the potential for integrating AI-driven approaches into innovation in IBD treatments.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Minwei Fan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Yang H, Jiang B, Li W, Du G, Xu F, Zhang Y, Yang Y, Zhang S, Cao W, Li X, Zhang X, Ji T, Wang J. 7 I, a structurally modified sinomenine, exerts dual anti-GBM effects by inhibiting glioblastoma proliferation and inducing necroptosis which further mediates lysosomal cell death. Br J Pharmacol 2025; 182:2310-2331. [PMID: 40038493 DOI: 10.1111/bph.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma multiforme (GBM) is an aggressive brain tumour which drug treatment has no overall significant effect on survival rate. Sinomenine is a natural product extracted from the traditional Chinese medicine Qingteng and was found to have a certain anti-tumour effect. Although, its short biological half-life, unstable physicochemical properties, large dosage and causes histamine release have hindered its use but it may form the basis for novel drug therapy of GBM. EXPERIMENTAL APPROACH We designed, synthesised and screened sinomenine derivative-7 I with high anti-GBM activity and investigated its mechanism of action. Its actions on GBM cells were detected by cell viability assay, RNA-Seq, Western blot, transmission electron microscopy, immunofluorescence along with other methods described. KEY RESULTS 7 I exerted anti-GBM effects through a dual mechanism. 7 I arrested the cell cycle of GBM cells at the G2/M phase by the activation of the P53/P21/CDK1/cyclin B pathway, inhibiting GBM cells proliferation. Secondly, 7 I induced necroptosis of GBM cells through the classical RIPK1/RIPK3/MLKL-dependent pathway causing lysosomal damage and membrane permeabilization leading to lysosomal-mediated cell death. Finally, in vivo xenograft experiments, 7 I significantly inhibited the growth of glioblastoma, effectively reducing inflammation in mice and showing good safety profile. CONCLUSIONS AND IMPLICATIONS 7 I, a structurally modified sinomenine, has excellent in vitro and in vivo anti-GBM activity and exerts dual anti-GBM effects by inhibiting glioblastoma proliferation and inducing necroptosis, which further mediates lysosomal cell death. In summary, 7 I is a promising candidate agent for GBM treatment. LINKED ARTICLES This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bin Jiang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoxue Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xu Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tengfei Ji
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Drug ability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Hu T, Lai X, Li L, Li Y, Wang M, Zhang H, Yang Y, Zhang C, Yan Y, Wang B. UVB-Induced necroptosis of the skin cells via RIPK3-MLKL activation independent of RIPK1 kinase activity. Cell Death Discov 2025; 11:167. [PMID: 40221399 PMCID: PMC11993685 DOI: 10.1038/s41420-025-02471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Ultraviolet B (UVB) is recognized for inducing inflammation and death of keratinocytes through the activation of death receptors and pattern recognition receptors (PRRs). Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 play pivotal roles in mediating necroptosis, which can be triggered by the activation of specific death receptors and PRRs. In this study, we observed a reduction of RIPK1 protein after UVB exposure which led to activation of Nuclear factor-kappa B (NF-κB) in HaCaT cells. This activation, in turn, promoted the production of IL-1β and TNF-α. However, RIPK1 kinase remained inactive and did not participate in cell death. Interestingly, UVB radiation triggered the activation of RIPK3 independently of RIPK1 kinase activity and subsequently induced phosphorylation of mixed-lineage kinase domain-like protein (MLKL), culminating in necroptosis and inflammation of the skin. At the same time, UVB-induced activation of RIPK3 also played a role in promoting the mitochondrial apoptotic pathway of Keratinocytes. In conclusion, UVB irradiation initiates an inflammatory response via RIPK1 pathway without necessitating its enzymatic activity. Simultaneously, RIPK3 can be activated by UVB exposure independently of RIPK1's activity, resulting in necroptosis and inflammation of the skin.
Collapse
Affiliation(s)
- Tairan Hu
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Lai
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Li
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haini Zhang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Yang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chong Zhang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Baoxi Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Luo D, Luo G, Xu H, Li K, Li Z, Zhang C. Inorganic dietary nanoparticles in intestinal barrier function of inflammatory bowel disease: allies or adversaries? Front Immunol 2025; 16:1563504. [PMID: 40270957 PMCID: PMC12014688 DOI: 10.3389/fimmu.2025.1563504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Inorganic dietary nanoparticles (IDNPs) are frequently utilized as food additives and in packaging, resulting in their exposure becoming a substantial yet often overlooked concern for patients with inflammatory bowel disease (IBD). Considering that impaired intestinal barrier function plays a central role in the pathogenesis of IBD, this review concentrates on the roles and mechanisms of IDNPs in the intestinal barrier (physical, chemical, biological, and immune barriers) of IBD patients. Previous studies have shown that different types of nanoparticles have varying effects on animals in diverse states. In this context, factors such as the source, size, shape, dosage, and duration of action of the nanoparticles, as well as the species, gender, dietary habits, and age of the animals, significantly influence research outcomes. Future studies should undertake more comprehensive explorations into the effects and mechanisms of IDNPs with diverse sources and properties in IBD patients.
Collapse
Affiliation(s)
- Duo Luo
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guifang Luo
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kangbao Li
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaotao Li
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan, China
| | - Cong Zhang
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
5
|
Lee J, Cheong H. The Role of A20 in Cancer: Friend or Foe? Cells 2025; 14:544. [PMID: 40214497 PMCID: PMC11988600 DOI: 10.3390/cells14070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
A20 is a ubiquitin-editing enzyme that has emerged as a key regulator of inflammatory signaling with paradoxical roles in cancer. Acting as both an oncogene and a tumor suppressor gene depending on the cellular context, A20 modulates important cell pathways, such as NF-κB signaling and autophagy. In this review, we summarize the dual roles of A20 in tumorigenesis, highlighting its ability to promote tumor progression in cancers, such as breast and melanoma, while functioning as a tumor suppressor in lymphomas and hepatocellular carcinoma. We discuss the interplay of A20 with autophagy, a process that is important for maintaining cellular homeostasis and influencing tumor dynamics. By integrating recent findings, we provide insight into how dysregulation of A20 and its associated pathways can either suppress or drive cancer development, which may lead to improved therapeutic intervention.
Collapse
Affiliation(s)
| | - Heesun Cheong
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea;
| |
Collapse
|
6
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
7
|
Zhang X, Zuo L, Song X, Zhang W, Yang Z, Wang Z, Guo Y, Ge S, Wang L, Wang Y, Geng Z, Li J, Hu J. The mesenteric adipokine SFRP5 alleviated intestinal epithelial apoptosis improving barrier dysfunction in Crohn's disease. iScience 2024; 27:111517. [PMID: 39759008 PMCID: PMC11699250 DOI: 10.1016/j.isci.2024.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/21/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
The hypertrophic mesenteric adipose tissue (htMAT) of Crohn disease (CD) participates in inflammation through the expression of adipokines, but the exact mechanism of this action in the intestine is unknown. Here, we analyzed the expression of secreted frizzled-related protein 5 (SFRP5), an adipokine with cytoprotective effects, in htMAT and its role in CD. The results of this study revealed that the level of SFPR5 increased in the diseased MAT (htMAT) of CD patients and aggregated among intestinal epithelial cells in the diseased intestine and that it could ameliorate intestinal barrier dysfunction in tumor necrosis factor alpha (TNF-α)-stimulated colonic organoids and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mice at least in part through the inhibition of Wnt5a-mediated apoptosis in epithelial cells. This study elucidates possible mechanisms by which mesenteric adipokines influence the progression of enteritis and provides a new theoretical basis for the treatment of CD via the mesenteric pathway.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenjing Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Yibing Guo
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Sitang Ge
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
8
|
Xu Y, Lin F, Liao G, Sun J, Chen W, Zhang L. Ripks and Neuroinflammation. Mol Neurobiol 2024; 61:6771-6787. [PMID: 38349514 DOI: 10.1007/s12035-024-03981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/20/2024] [Indexed: 08/22/2024]
Abstract
Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Yue Xu
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Lin
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Guolei Liao
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Jiaxing Sun
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Wenli Chen
- Department of Pharmacy, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Lei Zhang
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Li X, Di Q, Li X, Zhao X, Wu H, Xiao Y, Tang H, Huang X, Chen J, Chen S, Gao Y, Gao J, Xiao W, Chen W. Kumujan B suppresses TNF-α-induced inflammatory response and alleviates experimental colitis in mice. Front Pharmacol 2024; 15:1427340. [PMID: 39148547 PMCID: PMC11324439 DOI: 10.3389/fphar.2024.1427340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Treatments of inflammatory bowel disease (IBD) are diverse, but their efficacy is limited, and it is therefore urgent to find better therapies. Controlling mucosal inflammation is a must in IBD drug treatment. The occurrence of anti-tumor necrosis factor α (TNF-α) monoclonal antibodies has provided a safer and more efficacious therapy. However, this kind of treatment still faces failure in the form of loss of response. β-Carboline alkaloids own an anti-inflammatory pharmacological activity. While Kumujan B contains β-carboline, its biological activity remains unknown. In this study, we attempted to determine the anti-inflammatory effects of Kumujan B using both the TNF-α- induced in vitro inflammation and DSS-induced in vivo murine IBD models. Our data show that Kumujan B attenuated the expression of interleukin 1β (IL-1β) and interleukin 6 (IL-6) induced by TNF-α in mouse peritoneal macrophages. Kumujan B suppressed c-Jun N-terminal protein kinases (JNK) signaling, especially c-Jun, for anti-inflammatory response. Furthermore, Kumujan B promoted K11-linked ubiquitination and degradation of c-Jun through the proteasome pathway. In an in vivo study, Kumujan B inhibited the expression of IL-1β, IL-6, and TNF-α and improved the colon barrier function in dextran sulfate sodium salt (DSS)-induced experimental mice colitis. Kumujan B exhibited in vivo and in vitro anti-inflammatory effects, making it a potential therapeutic candidate for treating IBD.
Collapse
Affiliation(s)
- Xunwei Li
- School of Pharmaceutical Sciences, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yue Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Haimei Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xucan Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Jin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Shaoying Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yuli Gao
- School of Pharmaceutical Sciences, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Junbo Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Weilin Chen
- School of Pharmaceutical Sciences, Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Yu J, Li H, Wu Y, Luo M, Chen S, Shen G, Wei X, Shao B. Inhibition of NLRP3 inflammasome activation by A20 through modulation of NEK7. Proc Natl Acad Sci U S A 2024; 121:e2316551121. [PMID: 38865260 PMCID: PMC11194493 DOI: 10.1073/pnas.2316551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024] Open
Abstract
The NLRP3 inflammasome, a pivotal component of innate immunity, has been implicated in various inflammatory disorders. The ubiquitin-editing enzyme A20 is well known to regulate inflammation and maintain homeostasis. However, the precise molecular mechanisms by which A20 modulates the NLRP3 inflammasome remain poorly understood. Here, our study revealed that macrophages deficient in A20 exhibit increased protein abundance and elevated mRNA level of NIMA-related kinase 7 (NEK7). Importantly, A20 directly binds with NEK7, mediating its K48-linked ubiquitination, thereby targeting NEK7 for proteasomal degradation. Our results demonstrate that A20 enhances the ubiquitination of NEK7 at K189 and K293 ubiquitinated sites, with K189 playing a crucial role in the binding of NEK7 to A20, albeit not significantly influencing the interaction between NEK7 and NLRP3. Furthermore, A20 disrupts the association of NEK7 with the NLRP3 complex, potentially through the OTU domain and/or synergistic effect of ZnF4 and ZnF7 motifs. Significantly, NEK7 deletion markedly attenuates the activation of the NLRP3 inflammasome in A20-deficient conditions, both in vitro and in vivo. This study uncovers a mechanism by which A20 inhibits the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiayun Yu
- Department of Radiotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu610041, China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Min Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Siyuan Chen
- Department of Radiotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu610041, China
| | - Guobo Shen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
11
|
Ciorba MA, Konnikova L, Hirota SA, Lucchetta EM, Turner JR, Slavin A, Johnson K, Condray CD, Hong S, Cressall BK, Pizarro TT, Hurtado-Lorenzo A, Heller CA, Moss AC, Swantek JL, Garrett WS. Challenges in IBD Research 2024: Preclinical Human IBD Mechanisms. Inflamm Bowel Dis 2024; 30:S5-S18. [PMID: 38778627 PMCID: PMC11491665 DOI: 10.1093/ibd/izae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Preclinical human inflammatory bowel disease (IBD) mechanisms is one of 5 focus areas of the Challenges in IBD Research 2024 document, which also includes environmental triggers, novel technologies, precision medicine, and pragmatic clinical research. Herein, we provide a comprehensive overview of current gaps in inflammatory bowel diseases research that relate to preclinical research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in IBD interception, remission, and restoration. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. This preclinical human IBD mechanisms section identifies major research gaps whose investigation will elucidate pathways and mechanisms that can be targeted to address unmet medical needs in IBD. Research gaps were identified in the following areas: genetics, risk alleles, and epigenetics; the microbiome; cell states and interactions; barrier function; IBD complications (specifically fibrosis and stricturing); and extraintestinal manifestations. To address these gaps, we share specific opportunities for investigation for basic and translational scientists and identify priority actions.
Collapse
Affiliation(s)
- Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Liza Konnikova
- Departments of Pediatrics, Immunobiology, and Obstetric, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elena M Lucchetta
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Cass D Condray
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Sungmo Hong
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Brandon K Cressall
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Caren A Heller
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | - Alan C Moss
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Kymera Therapeutics, Watertown, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Siegmund D, Zaitseva O, Wajant H. Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling. Front Cell Dev Biol 2023; 11:1267837. [PMID: 38020877 PMCID: PMC10657838 DOI: 10.3389/fcell.2023.1267837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
14
|
Li S, Zhang W, Hu X. Comprehensive analysis of necroptosis-related genes in renal ischemia-reperfusion injury. Front Immunol 2023; 14:1279603. [PMID: 37965311 PMCID: PMC10641517 DOI: 10.3389/fimmu.2023.1279603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Background Oxidative stress is the primary cause of ischemia-reperfusion injury (IRI) in kidney transplantation, leading to delayed graft function (DGF) and implications on patient health. Necroptosis is believed to play a role in renal IRI. This research presents a comprehensive analysis of necroptosis-related genes and their functional implications in the context of IRI in renal transplantation. Methods The necroptosis-related differentially expressed genes (NR-DEGs) were identified using gene expression data from pre- and post-reperfusion renal biopsies, and consensus clustering analysis was performed to distinguish necroptosis-related clusters. A predictive model for DGF was developed based on the NR-DEGs and patients were divided into high- and low-risk groups. We investigated the differences in functional enrichment and immune infiltration between different clusters and risk groups and further validated them in single-cell RNA-sequencing (scRNA-seq) data. Finally, we verified the expression changes of NR-DEGs in an IRI mouse model. Results Five NR-DEGs were identified and were involved in various biological processes. The renal samples were further stratified into two necroptosis-related clusters (C1 and C2) showing different occurrences of DGF. The predictive model had a reliable performance in identifying patients at higher risk of DGF with the area under the curve as 0.798. Additionally, immune infiltration analysis indicated more abundant proinflammatory cells in the high-risk group, which was also found in C2 cluster with more DGF patients. Validation of NR-DEG in scRNA-seq data further supported their involvement in immune cells. Lastly, the mouse model validated the up-regulation of NR-DEGs after IR and indicated the correlations with kidney function markers. Conclusions Our research provides valuable insights into the identification and functional characterization of NR-DEGs in the context of renal transplantation and sheds light on their involvement in immune responses and the progression of IRI and DGF.
Collapse
Affiliation(s)
- Shuai Li
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Weixun Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
16
|
Jia Y, Yin C, Ke W, Liu J, Guo B, Wang X, Zhao P, Hu S, Zhang C, Li X, Liu R, Zheng X, Wang Y, Wang G, Pan H, Hu W, Song Z. Alpha-ketoglutarate alleviates cadmium-induced inflammation by inhibiting the HIF1A-TNFAIP3 pathway in hepatocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163069. [PMID: 36996991 DOI: 10.1016/j.scitotenv.2023.163069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
The threat to public health posed by rapidly increasing levels of cadmium (Cd) in the environment is receiving worldwide attention. Although, Cd is known to be absorbed into the body and causes non-negligible damage to the liver, the detailed mechanisms underlying its hepatoxicity are incompletely understood. In the present study, investigated the effect of TNFAIP3 and α-ketoglutarate (AKG) on Cd-induced liver inflammation and hepatocyte death. Male C57BL/6 mice were exposed to cadmium chloride (1.0 mg/kg) while being fed a diet with 2 % AKG for two weeks. We found that Cd induced hepatocyte injury and inflammatory infiltration. In addition, TNFAIP3 expression was inhibited in the liver tissues and cells of CdCl2-treated mice. Mouse hepatocyte-specific TNFAIP3 overexpression by tail vein injection of an adeno-associated virus (AAV) vector effectively alleviated Cd-induced hepatic necrosis and inflammation, which was mediated by the NF-κB signaling pathway. Notably, this inhibitory effect of TNFAIP3 on Cd-induced liver injury was dependent on AKG. Exogenous addition of AKG prevented Cd exposure-induced increases in serum ALT, AST and LDH levels, production of pro-inflammatory cytokines, activation of the NF-κB signaling pathway, and even significantly reduced Cd-induced oxidative stress and hepatocyte death. Mechanistically, AKG exerted its anti-inflammatory effect by promoting the hydroxylation and degradation of HIF1A to reduce its Cd-induced overexpression in vivo and in vitro, avoiding the inhibition of the TNFAIP3 promoter by HIF1A. Moreover, the protective effect of AKG was significantly weaker in Cd-treated primary hepatocytes transfected with HIF1A pcDNA. Overall, our results reveal a novel mechanism of Cd-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wenbo Ke
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Bing Guo
- Insitute for Genome Sciences, University of Maryland School of Medical, Baltimore, MD 21201, United States
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ran Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wenjun Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| |
Collapse
|
17
|
Liu S, Huang Q, Huang Q, Wang Y, Li S, Wang J, Wu Q. The protective effects of electroacupuncture on intestinal barrier lesions in IBS and UC model. Sci Rep 2023; 13:7276. [PMID: 37142764 PMCID: PMC10160055 DOI: 10.1038/s41598-023-34182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) and ulcerative colitis (UC) are two intestinal diseases with different pathological changes. Electroacupuncture (EA) at Zusanli (ST36) on both IBS and UC is widely used in clinic practice. But it is unclear whether acupuncture at one acupoint can treat two different intestinal diseases at different layers of intestinal barrier. To address this question, we explored three intestinal barrier lesions in IBS and UC mice with the aid of transcriptome data analysis and studied the efficacy of EA at ST36 on them. The transcriptome data analysis showed that both UC and IBS had disrupted intestinal barrier in various layers. And both UC and IBS had epithelial barrier lesions with reduction of ZO-1, Occludin and Claudin-1, while UC rather than IBS had the destruction of the mucus barrier with less MUC2 expression. As to the vascular barrier, UC showed a higher CD31 level and mesenteric blood flow reduction, while IBS showed a lower PV-1 level. EA at ST36 can significantly improve the above lesions of intestinal barrier of IBS and UC. Our results gave more details about the comprehensive protective effect of EA for UC and IBS. We guess the effect of acupuncture may be a kind of homeostasis regulation.
Collapse
Affiliation(s)
- Shuqing Liu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Qin Huang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Qianhui Huang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Yuemei Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Sihui Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Junmeng Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Li W, Yuan J. Targeting RIPK1 kinase for modulating inflammation in human diseases. Front Immunol 2023; 14:1159743. [PMID: 36969188 PMCID: PMC10030951 DOI: 10.3389/fimmu.2023.1159743] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) is a master regulator of TNFR1 signaling in controlling cell death and survival. While the scaffold of RIPK1 participates in the canonical NF-κB pathway, the activation of RIPK1 kinase promotes not only necroptosis and apoptosis, but also inflammation by mediating the transcriptional induction of inflammatory cytokines. The nuclear translocation of activated RIPK1 has been shown to interact BAF-complex to promote chromatin remodeling and transcription. This review will highlight the proinflammatory role of RIPK1 kinase with focus on human neurodegenerative diseases. We will discuss the possibility of targeting RIPK1 kinase for the treatment of inflammatory pathology in human diseases.
Collapse
Affiliation(s)
- Wanjin Li
- *Correspondence: Wanjin Li, ; Junying Yuan,
| | | |
Collapse
|
19
|
Muendlein HI, Connolly WM, Cameron J, Jetton D, Magri Z, Smirnova I, Vannier E, Li X, Martinot AJ, Batorsky R, Poltorak A. Neutrophils and macrophages drive TNF-induced lethality via TRIF/CD14-mediated responses. Sci Immunol 2022; 7:eadd0665. [PMID: 36563168 PMCID: PMC10021564 DOI: 10.1126/sciimmunol.add0665] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
TNF mediates a variety of biological processes including cellular proliferation, inflammatory responses, and cell death and is therefore associated with numerous pathologies including autoinflammatory diseases and septic shock. The inflammatory and cell death responses to TNF have been studied extensively downstream of TNF-R1 and are believed to rely on the formation of proinflammatory complex I and prodeath complex II, respectively. We recently identified a similar multimeric complex downstream of TLR4, termed the TRIFosome, that regulates inflammation and cell death in response to LPS or Yersinia pseudotuberculosis. We present evidence of a role for the TRIFosome downstream of TNF-R1, independent of TLR3 or TLR4 engagement. Specifically, TNF-induced cell death and inflammation in murine macrophages were driven by the TLR4 adaptor TRIF and the LPS co-receptor CD14, highlighting an important role for these proteins beyond TLR-mediated immune responses. Via immunoprecipitation and visualization of TRIF-specific puncta, we demonstrated TRIF- and CD14-dependent formation of prodeath and proinflammatory complexes in response to TNF. Extending these findings, in a murine TNF-induced sepsis model, TRIF and CD14 deficiency decreased systemic inflammation, reduced organ pathology, and improved survival. The outcome of TRIF activation was cell specific, because TNF-induced lethality was mediated by neutrophils and macrophages responding to TNF in a TRIF-dependent manner. Our findings suggest that in addition to their crucial role in TNF production, myeloid cells are central to TNF toxicity and position TRIF and CD14 as universal components of receptor-mediated immune responses.
Collapse
Affiliation(s)
- Hayley I. Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M. Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - James Cameron
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Edouard Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA 02111, USA
| | - Xudong Li
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
20
|
Shi K, Zhang J, Zhou E, Wang J, Wang Y. Small-Molecule Receptor-Interacting Protein 1 (RIP1) Inhibitors as Therapeutic Agents for Multifaceted Diseases: Current Medicinal Chemistry Insights and Emerging Opportunities. J Med Chem 2022; 65:14971-14999. [DOI: 10.1021/acs.jmedchem.2c01518] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kunyu Shi
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Tianfu Jincheng Laboratory, Chengdu, 610041 Sichuan, China
| | - Enda Zhou
- West China School of Pharmacy, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Tianfu Jincheng Laboratory, Chengdu, 610041 Sichuan, China
| |
Collapse
|
21
|
Basta DW, Vong M, Beshimova A, Nakamura BN, Rusu I, Kattah MG, Shao L. A20 Restricts NOS2 Expression and Intestinal Tumorigenesis in a Mouse Model of Colitis-Associated Cancer. GASTRO HEP ADVANCES 2022; 2:96-107. [PMID: 36636264 PMCID: PMC9833806 DOI: 10.1016/j.gastha.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Colon cancer can occur sporadically or in the setting of chronic inflammation, such as in patients with inflammatory bowel disease. We previously showed that A20, a critical negative regulator of tumor necrosis factor signal transduction, could regulate sporadic colon cancer development. In this report, we investigate whether A20 also acts as a tumor suppressor in a model of colitis-associated cancer. METHODS Colitis and colitis-associated tumors were induced in wild-type and A20 intestinal epithelial cell-specific knockout (A20dIEC) mice using dextran sodium sulfate and azoxymethane. Clinicopathologic markers of inflammation were assessed in conjunction with colonic tumor burden. Gene expression analyses and immunohistochemistry were performed on colonic tissue and intestinal enteroids. Nitric oxide (NO) production and activity were assessed in whole colonic lysates and mouse embryonic fibroblasts. RESULTS A20dIEC mice develop larger tumors after treatment with dextran sodium sulfate and azoxymethane than wild-type mice. In addition to elevated markers of inflammation, A20dIEC mice have significantly enhanced expression of inducible nitric oxide synthase (iNOS), a well-known driver of neoplasia. Enhanced iNOS expression is associated with the formation of reactive nitrogen species and DNA damage. Loss of A20 also enhances NO-dependent cell death directly. CONCLUSION Mechanistically, we propose that A20 normally restricts tumor necrosis factor-induced nuclear factor kappa B-dependent production of iNOS in intestinal epithelial cells, thereby protecting against colitis-associated tumorigenesis. We also propose that A20 plays a direct role in regulating NO-dependent cell death.
Collapse
Affiliation(s)
- David W Basta
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Mandy Vong
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Adolat Beshimova
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Brooke N Nakamura
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Iulia Rusu
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Michael G Kattah
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Ling Shao
- Division of Gastroenterology and Liver Disease, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California
| |
Collapse
|
22
|
Lucafò M, Muzzo A, Marcuzzi M, Giorio L, Decorti G, Stocco G. Patient-derived organoids for therapy personalization in inflammatory bowel diseases. World J Gastroenterol 2022; 28:2636-2653. [PMID: 35979165 PMCID: PMC9260862 DOI: 10.3748/wjg.v28.i24.2636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract that have emerged as a growing problem in industrialized countries. Knowledge of IBD pathogenesis is still incomplete, and the most widely-accepted interpretation considers genetic factors, environmental stimuli, uncontrolled immune responses and altered intestinal microbiota composition as determinants of IBD, leading to dysfunction of the intestinal epithelial functions. In vitro models commonly used to study the intestinal barrier do not fully reflect the proper intestinal architecture. An important innovation is represented by organoids, 3D in vitro cell structures derived from stem cells that can self-organize into functional organ-specific structures. Organoids may be generated from induced pluripotent stem cells or adult intestinal stem cells of IBD patients and therefore retain their genetic and transcriptomic profile. These models are powerful pharmacological tools to better understand IBD pathogenesis, to study the mechanisms of action on the epithelial barrier of drugs already used in the treatment of IBD, and to evaluate novel target-directed molecules which could improve therapeutic strategies. The aim of this review is to illustrate the potential use of organoids for therapy personalization by focusing on the most significant advances in IBD research achieved through the use of adult stem cells-derived intestinal organoids.
Collapse
Affiliation(s)
- Marianna Lucafò
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
| | - Antonella Muzzo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Martina Marcuzzi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Lorenzo Giorio
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Giuliana Decorti
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Gabriele Stocco
- Advanced Translational Diagnostics Laboratory, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
23
|
Deubiquitinases in cell death and inflammation. Biochem J 2022; 479:1103-1119. [PMID: 35608338 PMCID: PMC9162465 DOI: 10.1042/bcj20210735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Abstract
Apoptosis, pyroptosis, and necroptosis are distinct forms of programmed cell death that eliminate infected, damaged, or obsolete cells. Many proteins that regulate or are a part of the cell death machinery undergo ubiquitination, a post-translational modification made by ubiquitin ligases that modulates protein abundance, localization, and/or activity. For example, some ubiquitin chains target proteins for degradation, while others function as scaffolds for the assembly of signaling complexes. Deubiquitinases (DUBs) are the proteases that counteract ubiquitin ligases by cleaving ubiquitin from their protein substrates. Here, we review the DUBs that have been found to suppress or promote apoptosis, pyroptosis, or necroptosis.
Collapse
|
24
|
Bai W, Huo S, Li J, Shao J. Advances in the Study of the Ubiquitin-Editing Enzyme A20. Front Pharmacol 2022; 13:845262. [PMID: 35592427 PMCID: PMC9110840 DOI: 10.3389/fphar.2022.845262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Ubiquitin modification is a common post-translational protein modification and an important mechanism whereby the body regulates protein levels and functions. As a common enzyme associated with ubiquitin modification, the ubiquitin-editing enzyme A20 may be closely associated with the development of numerous pathological processes through its different structural domains. The aim of this paper is to provide an overview of the following: advances in ubiquitination research, the structure and function of A20, and the relationships between A20 and immune inflammatory response, apoptosis, necroptosis, pyroptosis, and autophagy.
Collapse
Affiliation(s)
- Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
25
|
The deubiquitinase OTUD1 inhibits colonic inflammation by suppressing RIPK1-mediated NF-κB signaling. Cell Mol Immunol 2022; 19:276-289. [PMID: 34876703 PMCID: PMC8803853 DOI: 10.1038/s41423-021-00810-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/03/2023] Open
Abstract
The E3 ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase (DUB)-mediated deubiquitination processes are closely associated with the occurrence and development of colonic inflammation. Ovarian tumor deubiquitinase 1 (OTUD1) is involved in immunoregulatory functions linked to infectious diseases. However, the effect of OTUD1 on intestinal immune responses during colonic inflammatory disorders such as inflammatory bowel disease (IBD) remains unclear. Here, we show that loss of OTUD1 in mice contributes to the pathogenesis of dextran sulfate sodium (DSS)-induced colitis via excessive release of proinflammatory cytokines. In addition, bone marrow transplantation experiments revealed that OTUD1 in hematopoietic cells plays a dominant role in protection against colitis. Mechanistically, OTUD1 physically interacts with receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and selectively cleaves K63-linked polyubiquitin chains from RIPK1 to inhibit the recruitment of NF-κB essential modulator (NEMO). Moreover, the expression of OTUD1 in mucosa samples from ulcerative colitis (UC) patients was lower than that in mucosa samples from healthy controls. Furthermore, we demonstrate that the UC-associated OTUD1 G430V mutation abolishes the ability of OTUD1 to inhibit RIPK1-mediated NF-κB activation and intestinal inflammation. Taken together, our study unveils a previously unexplored role of OTUD1 in moderating intestinal inflammation by inhibiting RIPK1-mediated NF-κB activation, suggesting that the OTUD1-RIPK1 axis could be a potential target for the treatment of IBD.
Collapse
|
26
|
Li B, Xie X. A20 (TNFAIP3) alleviates viral myocarditis through ADAR1/miR-1a-3p-dependent regulation. BMC Cardiovasc Disord 2022; 22:10. [PMID: 35034631 PMCID: PMC8762865 DOI: 10.1186/s12872-021-02438-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the effect of A20 and how A20 is regulated in viral myocarditis (VMC). Methods BABL/C mice, primary neonatal rat cardiomyocytes and H9c2 cells were infected with Coxsackie virus B3 (CVB3) to establish animal and cellular models of VMC. H&E staining revealed the pathologic condition of myocardium. ELISA measured the serum levels of creatine kinase, creatine kinase isoenzyme and cardiac troponin I. The effects of A20, miR-1a-3p and ADAR1 were investigated using gain and loss of function approaches. ELISA measured the levels of IL-6, IL-18 and TNF-α in serum or cell culture supernatant. TUNEL staining and flow cytometry assessed the apoptosis of myocardium and cardiomyocytes, respectively. RNA-binding protein immunoprecipitation and dual-luciferase reporter assays verified the binding between A20 and miR-1a-3p. Co-immunoprecipitation assay verified the binding between ADAR1 and Dicer. Results A20 was underexpressed and miR-1a-3p was overexpressed in the myocardium of VMC mice as well as in CVB3-infected cardiomyocytes. Overexpression of A20 suppressed cardiomyocyte inflammation and apoptosis in vivo and in vitro. miR-1a-3p promoted CVB3-induced inflammation and apoptosis in cardiomyocytes by binding to A20. The expression of miR-1a-3p was regulated by ADAR1. ADAR1 promoted the slicing of miR-1a-3p precursor by binding to Dicer. Conclusion A20, regulated by ADAR1/miR-1a-3p, suppresses inflammation and cardiomyocyte apoptosis in VMC. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02438-z.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Xiangnan University, No. 25, West Renmin Road, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xing Xie
- Department of Cardiovascular Medicine, Affiliated Hospital of Xiangnan University, No. 25, West Renmin Road, Chenzhou, 423000, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Rucker AJ, Chan FKM. Tumor-intrinsic and immune modulatory roles of receptor-interacting protein kinases. Trends Biochem Sci 2022; 47:342-351. [PMID: 34998669 PMCID: PMC8917977 DOI: 10.1016/j.tibs.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are signaling adaptors that critically regulate cell death and inflammation. Tumors have adapted to subvert RIPK-dependent cell death, suggesting that these processes have key roles in tumor regulation. Moreover, RIPK-driven cancer cell death might bolster durable antitumor immunity. By contrast, there are examples in which RIPKs induce inflammation and aid tumor progression. Furthermore, the RIPKs can exert their effects on tumor growth through regulating the activity of immune effectors in the tumor microenvironment, thus highlighting the context-dependent roles of RIPKs. Here, we review recent advances in the regulation of RIPK activity in tumors and immune cells and how these processes coordinate with each other to control tumorigenesis.
Collapse
Affiliation(s)
- A Justin Rucker
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710-3010, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710-3010, USA.
| |
Collapse
|
28
|
Shi W, Xu N, Wang X, Vallée I, Liu M, Liu X. Helminth Therapy for Immune-Mediated Inflammatory Diseases: Current and Future Perspectives. J Inflamm Res 2022; 15:475-491. [PMID: 35087284 PMCID: PMC8789313 DOI: 10.2147/jir.s348079] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Wenjie Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Isabelle Vallée
- UMR BIPAR, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
- Correspondence: Xiaolei Liu; Mingyuan Liu, Tel +86-15943092280; +86-13019125996, Email ;
| |
Collapse
|
29
|
Zou M, Zeng QS, Nie J, Yang JH, Luo ZY, Gan HT. The Role of E3 Ubiquitin Ligases and Deubiquitinases in Inflammatory Bowel Disease: Friend or Foe? Front Immunol 2021; 12:769167. [PMID: 34956195 PMCID: PMC8692584 DOI: 10.3389/fimmu.2021.769167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), which include Crohn’s disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.
Collapse
Affiliation(s)
- Min Zou
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Shan Zeng
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Nie
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hui Yang
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Yi Luo
- Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Tian Gan
- Department of Gastroenterology and the Center of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China.,Lab of Inflammatory Bowel Disease, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Geriatrics and National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Abstract
The receptor-interacting protein kinase 1 (RIPK1) is recognized as a master upstream regulator that controls cell survival and inflammatory signaling as well as multiple cell death pathways, including apoptosis and necroptosis. The activation of RIPK1 kinase is extensively modulated by ubiquitination and phosphorylation, which are mediated by multiple factors that also control the activation of the NF-κB pathway. We discuss current findings regarding the genetic modulation of RIPK1 that controls its activation and interaction with downstream mediators, such as caspase-8 and RIPK3, to promote apoptosis and necroptosis. We also address genetic autoinflammatory human conditions that involve abnormal activation of RIPK1. Leveraging these new genetic and mechanistic insights, we postulate how an improved understanding of RIPK1 biology may support the development of therapeutics that target RIPK1 for the treatment of human inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| |
Collapse
|
31
|
Abstract
Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs (ncRNAs) present in various tissues and cells. However, the functions of most circRNAs have not been verified experimentally. Here, using deltacoronavirus as a model, differentially expressed circRNAs in cells with or without deltacoronavirus infection were analyzed by RNA sequencing to characterize the cellular responses to RNA virus infection. More than 57,000 circRNA candidates were detected, and seven significantly dysregulated circRNAs were quantitated by real-time reverse transcription-PCR. We discovered a previously unidentified circRNA derived from the TNFAIP3 gene, named circTNFAIP3, which is distributed and expressed widely in various tissues. RNA viruses, including deltacoronaviruses, rather than DNA viruses tend to activate the expression of endogenous circTNFAIP3. Overexpression of circTNFAIP3 promoted deltacoronavirus replication by reducing the apoptosis, while silencing of circTNFAIP3 inhibited deltacoronavirus replication by enhancing the apoptosis. In summary, our work provides useful circRNA-related information to facilitate investigation of the underlying mechanism of deltacoronavirus infection and identifies a novel circTNFAIP3 that promotes deltacoronavirus replication via regulating apoptosis.
Collapse
|
32
|
Jin Z, Zheng E, Sareli C, Kolattukudy PE, Niu J. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation. Front Immunol 2021; 12:727861. [PMID: 34659213 PMCID: PMC8519509 DOI: 10.3389/fimmu.2021.727861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory response is a host-protective mechanism against tissue injury or infections, but also has the potential to cause extensive immunopathology and tissue damage, as seen in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other infectious diseases with public health concerns, such as Coronavirus Disease 2019 (COVID-19), if failure to resolve in a timely manner. Recent studies have uncovered a superfamily of endogenous chemical molecules that tend to resolve inflammatory responses and re-establish homeostasis without causing excessive damage to healthy cells and tissues. Among these, the monocyte chemoattractant protein-induced protein (MCPIP) family consisting of four members (MCPIP-1, -2, -3, and -4) has emerged as a group of evolutionarily conserved molecules participating in the resolution of inflammation. The focus of this review highlights the biological functions of MCPIP-1 (also known as Regnase-1), the best-studied member of this family, in the resolution of inflammatory response. As outlined in this review, MCPIP-1 acts on specific signaling pathways, in particular NFκB, to blunt production of inflammatory mediators, while also acts as an endonuclease controlling the stability of mRNA and microRNA (miRNA), leading to the resolution of inflammation, clearance of virus and dead cells, and promotion of tissue regeneration via its pleiotropic effects. Evidence from transgenic and knock-out mouse models revealed an involvement of MCPIP-1 expression in immune functions and in the physiology of the cardiovascular system, indicating that MCPIP-1 is a key endogenous molecule that governs normal resolution of acute inflammation and infection. In this review, we also discuss the current evidence underlying the roles of other members of the MCPIP family in the regulation of inflammatory processes. Further understanding of the proteins from this family will provide new insights into the identification of novel targets for both host effectors and microbial factors and will lead to new therapeutic treatments for infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - En Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Candice Sareli
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States.,Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
33
|
Li H, Zhang C, Zhang H, Li H. Xanthine oxidoreductase promotes the progression of colitis-associated colorectal cancer by causing DNA damage and mediating macrophage M1 polarization. Eur J Pharmacol 2021; 906:174270. [PMID: 34171392 DOI: 10.1016/j.ejphar.2021.174270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
In addition to its pivotal role in purine metabolism, xanthine oxidoreductase (XOR) is one of the key enzymes involved in superoxide radical generation. Oxidative stress has been implicated in the etiology of colorectal cancer, but the contribution of XOR remains unclear. Here we investigated the role of XOR in colitis-associated colorectal cancer (CAC) and the underlying mechanisms. Using clinical samples, we demonstrated that XOR up-regulation was an early event in colonic carcinogenesis. Pharmacological inhibition of XOR effectively delayed the progression of CAC. Moreover, XOR activity positively correlated with tumor necrosis factor-alpha (TNFα) protein levels. Mechanistically, TNFα may activate XOR transcription via activator protein-1 and, thus, promote endogenous hydrogen peroxide generation, resulting in oxidative DNA damage in colon cancer cells. On the other hand, XOR may regulate the TNFα mRNA transcripts by mediating LPS-induced macrophage M1 polarization. Collectively, XOR promotes tumor development by programming the tumor microenvironment and stimulates CAC progression via DNA damage-induced genetic instability.
Collapse
Affiliation(s)
- Hongling Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chengjuan Zhang
- Department of Bio-repository, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
34
|
Expression of deubiquitinases in human gingiva and cultured human gingival fibroblasts. BMC Oral Health 2021; 21:290. [PMID: 34092220 PMCID: PMC8180082 DOI: 10.1186/s12903-021-01655-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Although deubiquitinating enzymes (DUBs) such as CYLD, A20 and OTULIN are expressed in multiple tissues and thought to be linked with inflammatory diseases, their expression in periodontal tissues remains to be determined. This research was designed to assess the expression of CYLD, A20 and OTULIN in human gingiva, and to evaluate the regulation of these DUBs in human gingival fibroblasts (HGFs) upon different stimuli. Methods Immunohistochemistry assay was conducted to determine the expression of CYLD, A20 and OTULIN in human gingiva. Immunofluorescence assay was employed to observe the protein expression of CYLD, A20 and OTULIN in HGFs. RT-PCR and western blots were carried out to assess gene and protein expression changes of these DUBs in HGFs upon LPS or TNF-α. Results CYLD, A20 and OTULIN were found to be expressed in human gingiva and HGFs. The expression of CYLD, A20 and OTULIN was lower in the inflamed gingival tissue samples compared with the healthy gingival tissue samples. Further, the expression of CYLD, A20 and OTULIN in HGFs exhibited distinct regulation by different stimuli. TNF-α treatment markedly increased NF-κB activation in HGFs Conclusions Our findings suggest that CYLD, A20 and OTULIN might play a role in the progression of periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01655-4.
Collapse
|
35
|
Anterior Gradient Protein 2 Promotes Mucosal Repair in Pediatric Ulcerative Colitis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6483860. [PMID: 34055987 PMCID: PMC8149229 DOI: 10.1155/2021/6483860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
Mucosal healing comprises a key goal of ulcerative colitis (UC) treatment. Anterior gradient protein 2 (AGR2) plays an important role in maintaining intestinal homeostasis in UC. However, the role of AGR2 in the repair of mucosal injury is not yet clear. This study is aimed at investigating the expression of AGR2 in the intestinal tissues of children with UC and its role in repairing mucosal injury. Forty UC patients who were hospitalized in the Pediatric Gastroenterology Ward of Shengjing Hospital affiliated with China Medical University between July 1, 2013, and May 31, 2020, and 20 children who had normal colonoscopy results during the same period (control group) made up the study sample. The disease activity of UC was evaluated based on the pediatric ulcerative colitis activity index, and the ulcerative colitis endoscopic index was evaluated according to the Rachmilewitz score. Immunohistochemical staining was employed to examine the differences in AGR2 expression in the intestinal mucosa between groups. The protective effect of AGR2 in a model of tumor necrosis factor-alpha- (TNF-α-) induced intestinal mucosal barrier injury and the underlying molecular mechanism were explored through in vitro experiments. The results showed that compared with the normal control group, UC patients in the remission or active period had significantly higher expression of AGR2 in the intestine. AGR2 expression was positively correlated with Ki67, an intestinal epithelial cell proliferation marker, but negatively correlated with the degree of endoscopic mucosal injury. In an in vitro model, AGR2 overexpression promoted cell proliferation and migration and inhibited TNF-α-induced intestinal epithelial barrier damage by activating yes-associated protein (YAP). Collectively, our study suggests that AGR2 might serve as a valuable biomarker to help assess the condition and mucosal healing status of UC patients. In vitro, AGR2 promoted the repair of intestinal mucosal barrier injury by activating YAP.
Collapse
|
36
|
Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP Kinases in Chronic Inflammatory Disease. Biomolecules 2021; 11:biom11050646. [PMID: 33924766 PMCID: PMC8146010 DOI: 10.3390/biom11050646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory disorders are characterised by aberrant and exaggerated inflammatory immune cell responses. Modes of extrinsic cell death, apoptosis and necroptosis, have now been shown to be potent drivers of deleterious inflammation, and mutations in core repressors of these pathways underlie many autoinflammatory disorders. The receptor-interacting protein (RIP) kinases, RIPK1 and RIPK3, are integral players in extrinsic cell death signalling by regulating the production of pro-inflammatory cytokines, such as tumour necrosis factor (TNF), and coordinating the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which underpin pathological inflammation in numerous chronic inflammatory disorders. In this review, we firstly give an overview of the inflammatory cell death pathways regulated by RIPK1 and RIPK3. We then discuss how dysregulated signalling along these pathways can contribute to chronic inflammatory disorders of the joints, skin, and gastrointestinal tract, and discuss the emerging evidence for targeting these RIP kinases in the clinic.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Tirta M. Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stephanie A. Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722700
| |
Collapse
|
37
|
Han X, Ding S, Jiang H, Liu G. Roles of Macrophages in the Development and Treatment of Gut Inflammation. Front Cell Dev Biol 2021; 9:625423. [PMID: 33738283 PMCID: PMC7960654 DOI: 10.3389/fcell.2021.625423] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages, which are functional plasticity cells, have the ability to phagocytize and digest foreign substances and acquire pro-(M1-like) or anti-inflammatory (M2-like) phenotypes according to their microenvironment. The large number of macrophages in the intestinal tract, play a significant role in maintaining the homeostasis of microorganisms on the surface of the intestinal mucosa and in the continuous renewal of intestinal epithelial cells. They are not only responsible for innate immunity, but also participate in the development of intestinal inflammation. A clear understanding of the function of macrophages, as well as their role in pathogens and inflammatory response, will delineate the next steps in the treatment of intestinal inflammatory diseases. In this review, we discuss the origin and development of macrophages and their role in the intestinal inflammatory response or infection. In addition, the effects of macrophages in the occurrence and development of inflammatory bowel disease (IBD), and their role in inducing fibrosis, activating T cells, reducing colitis, and treating intestinal inflammation were also reviewed in this paper.
Collapse
Affiliation(s)
- Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| |
Collapse
|
38
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
39
|
Exploratory Investigation of Intestinal Structure and Function after Stroke in Mice. Mediators Inflamm 2021; 2021:1315797. [PMID: 33642941 PMCID: PMC7902147 DOI: 10.1155/2021/1315797] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
Stroke is the second leading cause of death worldwide. Patients who have a stroke are susceptible to many gastrointestinal (GI) complications, such as dysphagia, GI bleeding, and fecal incontinence. However, there are few studies focusing on the GI tract after stroke. The current study is to investigate the changes of intestinal structure and function in mice after ischemic stroke. Ischemic stroke was made as a disease model in mice, in which brain and ileal tissues were collected for experiments on the 1st and 7th day after stroke. Intestinal motility of mice was inhibited, and intestinal permeability was increased after stroke. Hematoxylin-eosin (HE) staining showed the accumulation of leucocytes in the intestinal mucosa. Myeloperoxidase (MPO) activity and inflammatory proteins (nuclear factor kappa-B (NF-κB), inducible nitric oxide synthase (iNOS)) in the small intestine were significantly increased in mice after stroke. The expression of tight junction (TJ) proteins (zonula occludens-1 (ZO-1), occludin, and claudin-1) was downregulated, and transmission electron microscopy (TEM) showed broken TJ of the intestinal mucosa after stroke. Glial fibrillary acidic protein (GFAP) and the apoptosis-associated proteins (tumor necrosis factor (TNF-α), caspase-3, and cleaved caspase-3) were notably upregulated as well. Ischemic stroke led to negative changes on intestinal structure and function. Inflammatory mediators and TNF-α-induced death receptor signaling pathways may be involved and disrupt the small intestinal barrier function. These results suggest that stroke patients should pay attention to GI protection.
Collapse
|
40
|
Zhou M, He J, Shi Y, Liu X, Luo S, Cheng C, Ge W, Qu C, Du P, Chen Y. ABIN3 Negatively Regulates Necroptosis-induced Intestinal Inflammation Through Recruiting A20 and Restricting the Ubiquitination of RIPK3 in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:99-114. [PMID: 32599618 DOI: 10.1093/ecco-jcc/jjaa131] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS There is evidence for a disturbed necroptosis function in many inflammatory diseases, but its role in inflammatory bowel diseases [IBD] and the underlying mechanisms are unclear. Here, we studied the functional significance and molecular mechanisms of ABIN3, a ubiquitin-binding protein, in regulating the ubiquitination and activation of necroptosis in IBD. METHODS The expression of necroptosis hallmarks and ABIN3 were assessed in inflamed samples of IBD patients, dextran sodium sulphate [DSS]-induced colitis models, and azoxymethane [AOM]/DSS models in mice. ABIN3 was overexpressed and silenced to explore its function in regulating necroptosis, inflammation, and intestinal barrier function. Immuoprecipitiation [IP] and co-IP assays were performed to investigate the cross-talk between ABIN3 and deubiquitinating enzyme A20, and the mechanisms of coordinating ubiquitination modification to regulate necroptosis. RESULTS Excessive necroptosis is an important contributory factor towards the uncontrolled inflammation and intestinal barrier defects in IBD and experimental colitis. Blocking necroptosis by Nec-1s or GSK'872 significantly prevented cell death and alleviated DSS-induced colitis in vivo, whereas in the AOM/DSS model, necroptosis inhibitors aggravated the severity of colitis-associated colon carcinogenesis [CAC]. Mechanistically, ABIN3 is rapidly recruited to the TNF-RSC complex, which interacts and coordinates with deubiquitinating enzyme A20 to control the K63 deubiquitination modification and subsequent activation of the critical necroptosis kinase, RIPK3, to suppress necroptosis. CONCLUSIONS ABIN3 regulates inflammatory response and intestinal barrier function by interacting with A20 and coordinating the K63 deubiquitination modification of necroptosis in IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jing He
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xiaoman Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shangjian Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Cheng Cheng
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunying Qu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
41
|
Wu H, Chen QY, Wang WZ, Chu S, Liu XX, Liu YJ, Tan C, Zhu F, Deng SJ, Dong YL, Yu T, Gao F, He HX, Leng XY, Fan H. Compound sophorae decoction enhances intestinal barrier function of dextran sodium sulfate induced colitis via regulating notch signaling pathway in mice. Biomed Pharmacother 2021; 133:110937. [PMID: 33217689 DOI: 10.1016/j.biopha.2020.110937] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Compound sophorae decoction (CSD), a Chinese Herbal decoction, is frequently clinically prescribed for patients suffered from ulcerative colitis (UC) characterized by bloody diarrhea. Yet, the underlying mechanism about how this formulae works is remain elusive. METHODS In the present study, the experimental colitis in C57BL/6 J mice was induced by oral administration of standard diets containing 3% dextran sodium sulfate (DSS), and CSD was given orally for treatment at the same time. The clinical symptoms including stool and body weight were recorded each day, and colon length and its histopathological changes were observed. Apoptosis of colonic epithelium was studied by detecting protein expression of cleaved caspase-3, and cell proliferation by Ki-67 immunohistochemistry. Tight junction complex like ZO-1 and occludin were also determined by transmission electron microscope and immunofluorescence. The concentration of FITC-dextran 4000 was measured to evaluate intestinal barrier permeability and possible signaling pathway was investigated. Mucin2 (MUC2) and notch pathway were tested through western blot. The M1/M2 ratio in spleen and mesenteric lymph nodes were detected by flow cytometry. And the mRNA levels of iNOS and Arg1 were examined by qRT-PCR. RESULTS CSD could significantly alleviate the clinical manifestations and pathological damage. Body weight loss and DAI score of mice with colitis were improved and shortening of colon was inhibited. The administration of CSD was able to reduce apoptotic epithelial cells and facilitate epithelial cell regeneration. Increased intestinal permeability was reduced in DSS-induced colitis mice. In addition, CSD treatment obviously up-regulated the expression of ZO-1 and occludin and the secretion of MUC2, regulated notch signaling, and decreased the ratio of M1/M2. CONCLUSIONS These data together suggest that CSD can effectively mitigate intestinal inflammation, promote phenotypic change in macrophage phenotype and enhance colonic mucosal barrier function by, at least in part, regulating notch signaling in mice affected by DSS-induced colitis.
Collapse
Affiliation(s)
- Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Zhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si Chu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuang-Jiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Lan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Xia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue-Yuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
42
|
Liu L, Liang L, Yang C, Zhou Y, Chen Y. Extracellular vesicles of Fusobacterium nucleatum compromise intestinal barrier through targeting RIPK1-mediated cell death pathway. Gut Microbes 2021; 13:1-20. [PMID: 33769187 PMCID: PMC8007154 DOI: 10.1080/19490976.2021.1902718] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023] Open
Abstract
Microbial factors that mediate microbes-host interaction in ulcerative colitis (UC), a chronic disease seriously affecting human health, are not fully known. The emerging oncobacterium Fusobacterium nucleatum (Fn) secretes extracellular vesicles carrying several types of harmful molecules in the intestine which can alter microbes-host interaction, especially the epithelial homeostasis in UC. However, the mechanism is not yet clear. Previously, we isolated EVs by the ultracentrifugation of Fn culture media and characterized them as the potent inducer of pro-inflammatory cytokines. Here, we examined the mechanism in detail. We found that in macrophage/Caco-2 co-cultures, FnEVs significantly promoted epithelial barrier loss and oxidative stress damage, which are related to epithelial necroptosis caused by the activation of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3). Furthermore, FnEVs promoted the migration of RIPK1 and RIPK3 into necrosome in Caco2 cells. Notably, these effects were reversed by TNF-α neutralizing antibody or Necrostatin-1 (Nec-1), a RIPK1 inhibitor. This suggested that FADD-RIPK1-caspase-3 signaling is involved in the process. Moreover, the observed effects were verified in the murine colitis model treated with FnEVs or by adoptive transfer of FnEVs-trained macrophages. In conclusion, we propose that RIPK1-mediated epithelial cell death promotes FnEVs-induced gut barrier disruption in UC and the findings can be used as the basis to further investigate this disease.
Collapse
Affiliation(s)
- Le Liu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenghai Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Shin DW, Lim BO. Nutritional Interventions Using Functional Foods and Nutraceuticals to Improve Inflammatory Bowel Disease. J Med Food 2020; 23:1136-1145. [PMID: 33047999 DOI: 10.1089/jmf.2020.4712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract, the second largest organ in the body, plays an important role in nutrient and mineral intake through the intestinal barrier. Dysfunction of intestinal permeability and related disorders commonly occur in patients with inflammatory bowel disease (IBD), one of the health problems in the Western societies that are considered to be mainly due to the Western diet. Although the exact etiology of IBD has not been elucidated, environmental and genetic factors may be involved in its pathogenesis. Many synthetic or biological drugs, such as 5-aminosalicylic acid corticosteroids as anti-inflammatory drugs, have been used clinically to treat IBD. However, their long-term use exhibits some adverse health consequences. Therefore, many researchers have devised alternative therapies to overcome this problem. Many studies have revealed that some functional nutrients in nature can relieve gastrointestinal inflammation by controlling proinflammatory cytokines. In this study, we review the ability of functional nutraceuticals such as phytochemicals, fatty acids, and bioactive peptides in improving IBD by regulating its underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea.,Research Institute of Inflammatory Disease, Konkuk University, Chungju, Korea
| |
Collapse
|
44
|
Wu Y, He X, Huang N, Yu J, Shao B. A20: a master regulator of arthritis. Arthritis Res Ther 2020; 22:220. [PMID: 32958016 PMCID: PMC7504854 DOI: 10.1186/s13075-020-02281-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
A20, also known as TNF-α-induced protein 3 (TNFAIP3), is an anti-inflammatory protein that plays an important part in both immune responses and cell death. Impaired A20 function is associated with several human inflammatory and autoimmune diseases. Although the role of A20 in mediating inflammation has been frequently discussed, its intrinsic link to arthritis awaits further explanation. Here, we review new findings that further demonstrate the molecular mechanisms through which A20 regulates inflammatory arthritis, and we discuss the regulation of A20 by many factors. We conclude by reviewing the latest A20-associated mouse models that have been applied in related research because they reflect the characteristics of arthritis, the study of which will hopefully cast new light on anti-arthritis treatments.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaomin He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiayun Yu
- State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
45
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
46
|
Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol 2020; 17:543-556. [PMID: 32651553 DOI: 10.1038/s41575-020-0326-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. As the transit-amplifying progenitors of the intestinal epithelium generate ~300 cells per crypt every day, regulated cell death and sloughing at the apical surface keeps the overall cell number in check. An aberrant increase in the rate of intestinal epithelial cell (IEC) death underlies instances of extensive epithelial erosion, which is characteristic of several intestinal diseases such as inflammatory bowel disease and infectious colitis. Emerging evidence points to a crucial role of necroptosis, autophagy and pyroptosis as important modes of programmed cell death in the intestine in addition to apoptosis. The mode of cell death affects tissue restitution responses and ultimately the long-term risks of intestinal fibrosis and colorectal cancer. A vicious cycle of intestinal barrier breach, misregulated cell death and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. This Review discusses the underlying molecular and cellular underpinnings that control programmed cell death in IECs, which emerge during intestinal diseases. Translational aspects of cell death modulation for the development of novel therapeutic alternatives for inflammatory bowel diseases and colorectal cancer are also discussed.
Collapse
|
47
|
Mifflin L, Ofengeim D, Yuan J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat Rev Drug Discov 2020; 19:553-571. [PMID: 32669658 PMCID: PMC7362612 DOI: 10.1038/s41573-020-0071-y] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a key mediator of cell death and inflammation. The unique hydrophobic pocket in the allosteric regulatory domain of RIPK1 has enabled the development of highly selective small-molecule inhibitors of its kinase activity, which have demonstrated safety in preclinical models and clinical trials. Potential applications of these RIPK1 inhibitors for the treatment of monogenic and polygenic autoimmune, inflammatory, neurodegenerative, ischaemic and acute conditions, such as sepsis, are emerging. This article reviews RIPK1 biology and disease-associated mutations in RIPK1 signalling pathways, highlighting clinical trials of RIPK1 inhibitors and potential strategies to mitigate development challenges. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) — a key mediator of cell death and inflammation — is activated in human diseases. Here, Yuan and colleagues discuss current understanding of RIPK1 biology and its association with diseases including inflammatory and autoimmune disorders, neurodegenerative diseases and sepsis. The clinical development of small-molecule RIPK1 inhibitors and associated challenges are discussed.
Collapse
Affiliation(s)
- Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Dimitry Ofengeim
- Rare and Neurologic Disease Research, Sanofi, Framingham, MA, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Subramanian S, Geng H, Tan XD. Cell death of intestinal epithelial cells in intestinal diseases. SHENG LI XUE BAO : [ACTA PHYSIOLOGICA SINICA] 2020; 72:308-324. [PMID: 32572429 PMCID: PMC7755516 DOI: pmid/32572429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gut injury continues to be the devastating and unpredictable critical illness associated with increased cell death of intestinal epithelial cells (IECs). The IECs, immune system and microbiome are the interrelated entities to maintain normal intestinal homeostasis and barrier integrity. In response to microbial invasion, IEC cell death occurs to maintain intestinal epithelium function and retain the continuous renewal and tissue homeostasis. But the imbalance of IEC cell death results in increased intestinal permeability and barrier dysfunction that leads to several acute and chronic intestinal diseases, such as intestinal ischemia/reperfusion (I/R), sepsis, inflammatory bowel diseases (IBD), necrotizing enterocolitis (NEC), etc. During the pathophysiological state, the excessive IEC apoptotic cell death leads to a chronic inflammatory condition, later switches to necroptotic cell death mechanism that induces more pathological features than apoptosis and may also induce other lytic cell death mechanisms like pyroptosis and ferroptosis to increase the pathogenesis of the intestinal diseases. But still, there remains gaps in the fundamental knowledge about the IEC cell death mechanisms in chronic intestinal diseases. Together, a deep understanding of the specific cell death mechanisms underlying chronic intestinal diseases, including sepsis, IBD, NEC, and intestinal I/R, is desperately needed to develop emerging novel promising therapeutic strategies. This review aims to show how the acute and critical illness in the gut are driven by IEC cell death mechanism, such as apoptosis, necrosis, necroptosis, pyroptosis, and ferroptosis.
Collapse
Affiliation(s)
- Saravanan Subramanian
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
49
|
Oikawa D, Sato Y, Ito H, Tokunaga F. Linear Ubiquitin Code: Its Writer, Erasers, Decoders, Inhibitors, and Implications in Disorders. Int J Mol Sci 2020; 21:ijms21093381. [PMID: 32403254 PMCID: PMC7246992 DOI: 10.3390/ijms21093381] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin ligase composed of the Heme-oxidized IRP2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein (HOIP), and Shank-associated RH domain interactor (SHARPIN) subunits. LUBAC specifically generates the N-terminal Met1-linked linear ubiquitin chain and regulates acquired and innate immune responses, such as the canonical nuclear factor-κB (NF-κB) and interferon antiviral pathways. Deubiquitinating enzymes, OTULIN and CYLD, physiologically bind to HOIP and control its function by hydrolyzing the linear ubiquitin chain. Moreover, proteins containing linear ubiquitin-specific binding domains, such as NF-κB-essential modulator (NEMO), optineurin, A20-binding inhibitors of NF-κB (ABINs), and A20, modulate the functions of LUBAC, and the dysregulation of the LUBAC-mediated linear ubiquitination pathway induces cancer and inflammatory, autoimmune, and neurodegenerative diseases. Therefore, inhibitors of LUBAC would be valuable to facilitate investigations of the molecular and cellular bases for LUBAC-mediated linear ubiquitination and signal transduction, and for potential therapeutic purposes. We identified and characterized α,β-unsaturated carbonyl-containing chemicals, named HOIPINs (HOIP inhibitors), as LUBAC inhibitors. We summarize recent advances in elucidations of the pathophysiological functions of LUBAC-mediated linear ubiquitination and identifications of its regulators, toward the development of LUBAC inhibitors.
Collapse
Affiliation(s)
- Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan;
| | - Hidefumi Ito
- Department of Neurology, Faculty of Medicine, Wakayama Medical University, Wakayama 641-8510, Japan;
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
- Correspondence: ; Tel.: +81-6-6645-3720
| |
Collapse
|
50
|
A20 Restores Impaired Intestinal Permeability and Inhibits Th2 Response in Mice with Colitis. Dig Dis Sci 2020; 65:1340-1347. [PMID: 31584137 DOI: 10.1007/s10620-019-05860-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS The etiology of inflammatory bowel disease is multifactorial and still obscure. The protective role of ubiquitin E3 ligase A20 (A20) in colitis needs to be further elucidated. This study aimed to investigate whether A20 exogenous administration restored impaired intestinal permeability and inhibited T helper (Th)2 response in mice with colitis. METHODS The effect of A20 overexpression in colonic mucosa on epithelial barrier function and T cell differentiation was evaluated in mice with dextran sulfate sodium (DSS)-induced chronic colitis. RESULTS A20 rectal treatment alleviated DSS-induced chronic colitis and restored impaired intestinal permeability. Oral challenge with 2% DSS elicited a Th2-type response in mice with colitis, and A20 rectal treatment inhibited CD4+ interleukin (IL)-4+ T cell differentiation and proliferation. In addition, the RNA expressions of Th2-related costimulatory molecular T-cell immunoglobulin and mucin domain (TIM)-1 and IL-4 were suppressed, while thrombospondin (TSP)-1 and interferon (IFN)-γ expressions were upregulated, after A20 rectal administration. CONCLUSION A20 rectal treatment restores impaired intestinal permeability and inhibits activated Th2 cell response in mice with colitis.
Collapse
|