1
|
Chen Y, Mao R, Xu J, Huang Y, Xu J, Cui S, Zhu Z, Ji X, Huang S, Huang Y, Huang HY, Yen SC, Lin YCD, Huang HD. A Causal Regulation Modeling Algorithm for Temporal Events with Application to Escherichia coli's Aerobic to Anaerobic Transition. Int J Mol Sci 2024; 25:5654. [PMID: 38891842 PMCID: PMC11171773 DOI: 10.3390/ijms25115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Time-series experiments are crucial for understanding the transient and dynamic nature of biological phenomena. These experiments, leveraging advanced classification and clustering algorithms, allow for a deep dive into the cellular processes. However, while these approaches effectively identify patterns and trends within data, they often need to improve in elucidating the causal mechanisms behind these changes. Building on this foundation, our study introduces a novel algorithm for temporal causal signaling modeling, integrating established knowledge networks with sequential gene expression data to elucidate signal transduction pathways over time. Focusing on Escherichia coli's (E. coli) aerobic to anaerobic transition (AAT), this research marks a significant leap in understanding the organism's metabolic shifts. By applying our algorithm to a comprehensive E. coli regulatory network and a time-series microarray dataset, we constructed the cross-time point core signaling and regulatory processes of E. coli's AAT. Through gene expression analysis, we validated the primary regulatory interactions governing this process. We identified a novel regulatory scheme wherein environmentally responsive genes, soxR and oxyR, activate fur, modulating the nitrogen metabolism regulators fnr and nac. This regulatory cascade controls the stress regulators ompR and lrhA, ultimately affecting the cell motility gene flhD, unveiling a novel regulatory axis that elucidates the complex regulatory dynamics during the AAT process. Our approach, merging empirical data with prior knowledge, represents a significant advance in modeling cellular signaling processes, offering a deeper understanding of microbial physiology and its applications in biotechnology.
Collapse
Affiliation(s)
- Yigang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Runbo Mao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
| | - Jiatong Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Jingyi Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
| | - Shidong Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Zihao Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Xiang Ji
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Shenghan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Yanzhe Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Shih-Chung Yen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Yang-Chi-Duang Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.C.); (R.M.); (J.X.); (Y.H.); (J.X.); (S.C.); (Z.Z.); (X.J.); (S.H.); (Y.H.); (H.-Y.H.); (S.-C.Y.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China
| |
Collapse
|
2
|
Miftahussurur M, Alfaray RI, Fauzia KA, Dewayani A, Doohan D, Waskito LA, Rezkitha YAA, Utomo DH, Somayana G, Fahrial Syam A, Lubis M, Akada J, Matsumoto T, Yamaoka Y. Low-grade intestinal metaplasia in Indonesia: Insights into the expression of proinflammatory cytokines during Helicobacter pylori infection and unique East-Asian CagA characteristics. Cytokine 2023; 163:156122. [PMID: 36640695 DOI: 10.1016/j.cyto.2022.156122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023]
Abstract
Helicobacter pylori infection is a major cause of intestinal metaplasia. In this study, we aimed to understand the reason underlying the low grade and incidence of intestinal metaplasia in Indonesia, based on the expression of genes encoding proinflammatory cytokines in gastric biopsy specimens. The possible reasons for the lesser virulence of the East-Asian-type CagA in Indonesia than that of the Western-type CagA, which is not common in other countries, were also investigated. The mRNA expression of cytokines was evaluated using real-time PCR. CagA characteristics were analyzed using in silico analysis. The expression of cytokines was typically not robust, among H. pylori-infected subjects in Indonesia, despite them predominantly demonstrating the East-Asian-type CagA. This might partially be explained by the characteristics of the East-Asian-type CagA in Indonesia, which showed a higher instability index and required higher energy to interact with proteins related to the cytokine induction pathway compared with the other types (p < 0.001 and p < 0.05, respectively). Taken together, besides the low prevalence of H. pylori, the low inflammatory response of the host and low CagA virulence, even among populations with high infection rates, may play an essential role in the low grade and low incidence of intestinal metaplasia in Indonesia. We believe that these findings would be relevant for better understanding of intestinal metaplasia, which is closely associated with the development of gastric cancer.
Collapse
Affiliation(s)
- Muhammad Miftahussurur
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Jalan Mayjend Prof, Dr. Moestopo, No. 6-8, Surabaya, Surabaya 60131, Indonesia; Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Ricky Indra Alfaray
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Kartika Afrida Fauzia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan; Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Astri Dewayani
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Infectious Disease Control, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan; Department of Anatomy, Histology and Pharmacology, Universitas Airlangga, Surabaya 60131, Indonesia.
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Anatomy, Histology and Pharmacology, Universitas Airlangga, Surabaya 60131, Indonesia.
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Internal Medicine, Faculty of Medicine, University of Muhammadiyah, Surabaya, Surabaya 60113, Indonesia.
| | - Didik Huswo Utomo
- Research and Education Center for Bioinformatics, Indonesia Institute of Bioinformatics, Malang 65162, Indonesia.
| | - Gde Somayana
- Gastroentero Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Sanglah Hospital, Udayana University, Denpasar, Bali 80114, Indonesia.
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, University of Indonesia, Jakarta 10430, Indonesia.
| | - Masrul Lubis
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, Universitas Sumatera Utara, Medan 20222, Indonesia
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Sharafutdinov I, Ekici A, Vieth M, Backert S, Linz B. Early and late genome-wide gastric epithelial transcriptome response during infection with the human carcinogen Helicobacterpylori. CELL INSIGHT 2022; 1:100032. [PMID: 37193047 PMCID: PMC10120309 DOI: 10.1016/j.cellin.2022.100032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/18/2023]
Abstract
Infection of the stomach by Helicobacter pylori is a major risk factor for the development of gastric cancer. Colonization of the gastric epithelium leads to the activation of multiple disease-related signaling pathways. Serine protease HtrA represents an important secreted virulence factor that mediates cleavage of cellular junctions. However, its potential role in nuclear responses is unknown. Here, we performed a genome-wide RNA-seq analysis of polarized gastric epithelial cells infected by wild-type (wt) and ΔhtrA mutant bacteria. Fluorescence microscopy showed that H. pylori wt, but not ΔhtrA bacteria, preferably localized at cellular junctions. Our results pinpointed early (2 h) and late (6 h) transcriptional responses, with most differentially expressed genes at 6 h post infection. The transcriptomes revealed HtrA-dependent targeting of genes associated with inflammation and apoptosis (e.g. IL8, ZFP36, TNF). Accordingly, infection with the ΔhtrA mutant induced increased apoptosis rates in host cells, which was associated with reduced H. pylori CagA expression. In contrast, transcription of various carcinogenesis-associated genes (e.g. DKK1, DOCK8) was affected by H. pylori independent of HtrA. These findings suggest that H. pylori disturbs previously unknown molecular pathways in an HtrA-dependent and HtrA-independent manner, and provide valuable new insights of this significant pathogen in humans and thus potential targets for better controlling the risk of malignant transformation.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, University Hospital, Friedrich Alexander Universität Erlangen-Nürnberg, Schwabachanlage 10, D-91054, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str 101, D-95445, Bayreuth, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| |
Collapse
|
4
|
Ozgul OF, Bardak B, Tan M. A Convolutional Deep Clustering Framework for Gene Expression Time Series. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2198-2207. [PMID: 32324563 DOI: 10.1109/tcbb.2020.2988985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The functional or regulatory processes within the cell are explicitly governed by the expression levels of a subset of its genes. Gene expression time series captures activities of individual genes over time and aids revealing underlying cellular dynamics. An important step in high-throughput gene expression time series experiment is clustering genes based on their temporal expression patterns and is conventionally achieved by unsupervised machine learning techniques. However, most of the clustering techniques either suffer from the short length of gene expression time series or ignore temporal structure of the data. In this work, we propose DeepTrust, a novel deep learning-based framework for gene expression time series clustering which can overcome these issues. DeepTrust initially transforms time series data into images to obtain richer data representations. Afterwards, a deep convolutional clustering algorithm is applied on the constructed images. Analyses on both simulated and biological data sets exhibit the efficiency of this new framework, compared to widely used clustering techniques. We also utilize enrichment analyses to illustrate the biological plausibility of the clusters detected by DeepTrust. Our code and data are available from http://github.com/tanlab/DeepTrust.
Collapse
|
5
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
6
|
Wen Y, Huang H, Tang T, Yang H, Wang X, Huang X, Gong Y, Zhang X, She F. AI-2 represses CagA expression and bacterial adhesion, attenuating the Helicobacter pylori-induced inflammatory response of gastric epithelial cells. Helicobacter 2021; 26:e12778. [PMID: 33400843 DOI: 10.1111/hel.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection of gastric epithelial cells induces inflammatory response. Outer membrane proteins (OMPs), Type 4 secretion system (T4SS) encoded by cagPAI, and the effector protein CagA are involved in the pathogenesis of H. pylori. H. pylori possesses a gene encoding LuxS which synthesizes AI-2, a quorum sensing signal molecule. The aim of this study was to investigate the role of AI-2 in the expression of virulence factors and the inflammatory response of gastric epithelial (AGS) cells induced by H. pylori. MATERIALS AND METHODS H. pylori ΔluxS mutant was constructed, and AI-2 activity was measured with Vibrio harveyi BB170. NF-κB activation, IL-8 production, expression of OMPs (outer membrane proteins), CagA, and T4SS encoded by cagPAI were investigated in H. pylori wild type, and ΔluxS with or without supplementation of AI-2. RESULTS H. pylori produced approximately 7 μM of AI-2 in the medium. AI-2 inhibited expression and translocation of CagA after infection of AGS cells. AI-2 upregulated the expression of CagM, CagE, and CagX, while had no effect to the interaction between T4SS and α5β1 integrin. AI-2 also reduced expression of adhesins and bacterial adhesion to AGS cells. Finally, AI-2 reduced the activation of NF-κB and expression of IL-8 in H. pylori-infected AGS. CONCLUSIONS AI-2 plays an important role in the pathogenesis of H. pylori. AI-2 inhibits the bacterial adhesion, expression, and translocation of CagA, and attenuates the inflammatory response of AGS cells induced by H. pylori.
Collapse
Affiliation(s)
- Yancheng Wen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Hongming Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Tiechen Tang
- The First Hospital of Nanping City, affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Huang Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xi Wang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xi Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yingying Gong
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Xu X, Chen J, Huang X, Feng S, Zhang X, She F, Wen Y. The Role of a Dipeptide Transporter in the Virulence of Human Pathogen, Helicobacter pylori. Front Microbiol 2021; 12:633166. [PMID: 33732225 PMCID: PMC7959749 DOI: 10.3389/fmicb.2021.633166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori harbors a dipeptide (Dpp) transporter consisting of a substrate-binding protein (DppA), two permeases (DppB and C), and two ATPases (DppD and F). The Dpp transporter is responsible for the transportation of dipeptides and short peptides. We found that its expression is important for the growth of H. pylori. To understand the role of the Dpp transporter in the pathogenesis of H. pylori, the expression of virulence factors and H. pylori-induced IL-8 production were investigated in H. pylori wild-type and isogenic H. pylori Dpp transporter mutants. We found that expression of CagA was downregulated, while expression of type 4 secretion system (T4SS) components was upregulated in Dpp transporter mutants. The DppA mutant strain expressed higher levels of outer membrane proteins (OMPs), including BabA, HopZ, OipA, and SabA, and showed a higher adhesion level to gastric epithelial AGS cells compared with the H. pylori 26695 wild-type strain. After infection of AGS cells, H. pylori ΔdppA induced a higher level of NF-κB activation and IL-8 production compared with wild-type. These results suggested that in addition to supporting the growth of H. pylori, the Dpp transporter causes bacteria to alter the expression of virulence factors and reduces H. pylori-induced NF-κB activation and IL-8 production in gastric epithelial cells.
Collapse
Affiliation(s)
- Xiaohong Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Medical University Union Hospital, Fuzhou, China
| | - Junwei Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoxing Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Tripto NI, Kabir M, Bayzid MS, Rahman A. Evaluation of classification and forecasting methods on time series gene expression data. PLoS One 2020; 15:e0241686. [PMID: 33156855 PMCID: PMC7647064 DOI: 10.1371/journal.pone.0241686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/20/2020] [Indexed: 11/18/2022] Open
Abstract
Time series gene expression data is widely used to study different dynamic biological processes. Although gene expression datasets share many of the characteristics of time series data from other domains, most of the analyses in this field do not fully leverage the time-ordered nature of the data and focus on clustering the genes based on their expression values. Other domains, such as financial stock and weather prediction, utilize time series data for forecasting purposes. Moreover, many studies have been conducted to classify generic time series data based on trend, seasonality, and other patterns. Therefore, an assessment of these approaches on gene expression data would be of great interest to evaluate their adequacy in this domain. Here, we perform a comprehensive evaluation of different traditional unsupervised and supervised machine learning approaches as well as deep learning based techniques for time series gene expression classification and forecasting on five real datasets. In addition, we propose deep learning based methods for both classification and forecasting, and compare their performances with the state-of-the-art methods. We find that deep learning based methods generally outperform traditional approaches for time series classification. Experiments also suggest that supervised classification on gene expression is more effective than clustering when labels are available. In time series gene expression forecasting, we observe that an autoregressive statistical approach has the best performance for short term forecasting, whereas deep learning based methods are better suited for long term forecasting.
Collapse
Affiliation(s)
- Nafis Irtiza Tripto
- Department of Computer Science and Engineering, Bangladesh University of Engineering & Technology, Dhaka, Bangladesh
- * E-mail: (MK); (NIT)
| | - Mohimenul Kabir
- Department of Computer Science and Engineering, Bangladesh University of Engineering & Technology, Dhaka, Bangladesh
- * E-mail: (MK); (NIT)
| | - Md. Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering & Technology, Dhaka, Bangladesh
| | - Atif Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering & Technology, Dhaka, Bangladesh
| |
Collapse
|
9
|
Kim SH, Kim H. Transcriptome Analysis of the Inhibitory Effect of Astaxanthin on Helicobacter pylori-Induced Gastric Carcinoma Cell Motility. Mar Drugs 2020; 18:md18070365. [PMID: 32679742 PMCID: PMC7404279 DOI: 10.3390/md18070365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection promotes the metastasis of gastric carcinoma cells by modulating signal transduction pathways that regulate cell proliferation, motility, and invasion. Astaxanthin (ASTX), a xanthophyll carotenoid, is known to inhibit cancer cell migration and invasion, however the mechanism of action of ASTX in H. pylori-infected gastric epithelial cells is not well understood. To gain insight into this process, we carried out a comparative RNA sequencing (RNA-Seq) analysis of human gastric cancer AGS (adenocarcinoma gastric) cells as a function of H. pylori infection and ASTX administration. The results were used to identify genes that are differently expressed in response to H. pylori and ASTX. Gene ontology (GO) analysis identified differentially expressed genes (DEGs) to be associated with cell cytoskeleton remodeling, motility, and/or migration. Among the 20 genes identified, those encoding c-MET, PI3KC2, PLCγ1, Cdc42, and ROCK1 were selected for verification by real-time PCR analysis. The verified genes were mapped, using signaling networks contained in the KEGG database, to create a signaling pathway through which ASTX might mitigate the effects of H. pylori-infection. We propose that H. pylori-induced upregulation of the upstream regulator c-MET, and hence, its downstream targets Cdc42 and ROCK1, is suppressed by ASTX. ASTX is also suggested to counteract H. pylori-induced activation of PI3K and PLCγ. In conclusion, ASTX can suppress H. pylori-induced gastric cancer progression by inhibiting cytoskeleton reorganization and reducing cell motility through downregulation of c-MET, EGFR, PI3KC2, PLCγ1, Cdc42, and ROCK1.
Collapse
|
10
|
Alpízar-Alpízar W, Skindersoe ME, Rasmussen L, Kriegbaum MC, Christensen IJ, Lund IK, Illemann M, Laerum OD, Krogfelt KA, Andersen LP, Ploug M. Helicobacter pylori Colonization Drives Urokinase Receptor (uPAR) Expression in Murine Gastric Epithelium During Early Pathogenesis. Microorganisms 2020; 8:microorganisms8071019. [PMID: 32660136 PMCID: PMC7409347 DOI: 10.3390/microorganisms8071019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Persistent Helicobacter pylori infection is the most important risk factor for gastric cancer. The urokinase receptor (uPAR) is upregulated in lesions harboring cancer invasion and inflammation. Circumstantial evidence tends to correlate H. pylori colonization with increased uPAR expression in the human gastric epithelium, but a direct causative link has not yet been established in vivo; (2) Methods: In a mouse model of H. pylori-induced gastritis, we investigated the temporal emergence of uPAR protein expression in the gastric mucosa in response to H. pylori (SS1 strain) infection; (3) Results: We observed intense uPAR immunoreactivity in foveolar epithelial cells of the gastric corpus due to de novo synthesis, compared to non-infected animals. This uPAR induction represents a very early response, but it increases progressively over time as do infiltrating immune cells. Eradication of H. pylori infection by antimicrobial therapy causes a regression of uPAR expression to its physiological baseline levels. Suppression of the inflammatory response by prostaglandin E2 treatment attenuates uPAR expression. Notwithstanding this relationship, H. pylori does induce uPAR expression in vitro in co-cultures with gastric cancer cell lines; (4) Conclusions: We showed that persistent H. pylori colonization is a necessary event for the emergence of a relatively high uPAR protein expression in murine gastric epithelial cells.
Collapse
Affiliation(s)
- Warner Alpízar-Alpízar
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Centre for Research on Microscopic Structures (CIEMic) and Department of Biochemistry, University of Costa Rica, 2060 San José, Costa Rica
- Correspondence: (W.A.-A.); (M.P.)
| | - Mette E. Skindersoe
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (M.E.S.); (K.A.K.)
- Bacthera, Kogle Allé 6, 2970 Hoersholm, Denmark
| | - Lone Rasmussen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; (L.P.A.); (L.R.)
| | - Mette C. Kriegbaum
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ib J. Christensen
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Hvidovre Hospital, University of Copenhagen, 2650 Copenhagen, Denmark
| | - Ida K. Lund
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Martin Illemann
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole D. Laerum
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karen A. Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (M.E.S.); (K.A.K.)
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Department of Virus and microbiological Diagnostics, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Leif P. Andersen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; (L.P.A.); (L.R.)
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence: (W.A.-A.); (M.P.)
| |
Collapse
|
11
|
Xu C, Soyfoo DM, Wu Y, Xu S. Virulence of Helicobacter pylori outer membrane proteins: an updated review. Eur J Clin Microbiol Infect Dis 2020; 39:1821-1830. [PMID: 32557327 PMCID: PMC7299134 DOI: 10.1007/s10096-020-03948-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) infection is associated with some gastric diseases, such as gastritis, peptic ulcer, and gastric cancer. CagA and VacA are known virulence factors of H. pylori, which play a vital role in severe clinical outcomes. Additionally, the expression of outer membrane proteins (OMPs) helps H. pylori attach to gastric epithelial cells at the primary stage and increases the virulence of H. pylori. In this review, we have summarized the paralogs of H. pylori OMPs, their genomic loci, and the different receptors of OMPs identified so far. We focused on five OMPs, BabA (HopS), SabA (HopP), OipA (HopH), HopQ, and HopZ, and one family of OMPs: Hom. We highlight the coexpression of OMPs with other virulence factors and their relationship with clinical outcomes. In conclusion, OMPs are closely related to the pathogenic processes of adhesion, colonization, persistent infection, and severe clinical consequences. They are potential targets for the prevention and treatment of H. pylori–related diseases.
Collapse
Affiliation(s)
- Chenjing Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Yao Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shunfu Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. .,Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Neuper T, Frauenlob T, Sarajlic M, Posselt G, Wessler S, Horejs-Hoeck J. TLR2, TLR4 and TLR10 Shape the Cytokine and Chemokine Release of H. pylori-Infected Human DCs. Int J Mol Sci 2020; 21:ijms21113897. [PMID: 32486097 PMCID: PMC7311968 DOI: 10.3390/ijms21113897] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a stomach pathogen that persistently colonizes the gastric mucosa, often leading to chronic inflammation and gastric pathologies. Although infection with H. pylori is the primary risk factor for gastric cancer, the underlying mechanisms of pathogen persistence and consequential chronic inflammation are still not well understood. Conventional dendritic cells (cDCs), which are among the first immune cells to encounter H. pylori in the gastric lining, and the cytokines and chemokines they secrete, contribute to both acute and chronic inflammation. Therefore, this study aimed to unravel the contributions of specific signaling pathways within human CD1c+ cDCs (cDC2s) to the composition of secreted cytokines and chemokines in H. pylori infection. Here, we show that the type IV secretion system (T4SS) plays only a minor role in H. pylori-induced activation of cDC2s. In contrast, Toll-like receptor 4 (TLR4) signaling drives the secretion of inflammatory mediators, including IL-12 and IL-18, while signaling via TLR10 attenuates the release of IL-1β and other inflammatory cytokines upon H. pylori infection. The TLR2 pathway significantly blocks the release of CXCL1 and CXCL8, while it promotes the secretion of TNFα and GM-CSF. Taken together, these results highlight how specific TLR-signaling pathways in human cDC2s shape the H. pylori-induced cytokine and chemokine milieu, which plays a pivotal role in the onset of an effective immune response.
Collapse
Affiliation(s)
- Theresa Neuper
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
| | - Tobias Frauenlob
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
| | - Muamera Sarajlic
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
| | - Gernot Posselt
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
| | - Silja Wessler
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (T.N.); (T.F.); (M.S.); (G.P.); (S.W.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
13
|
Sukri A, Hanafiah A, Mohamad Zin N, Kosai NR. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. APMIS 2020; 128:150-161. [PMID: 32352605 DOI: 10.1111/apm.13034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori is associated with the development of gastric cancer. Although the prevalence of gastric cancer has declined throughout years due to improvement in early screening strategy, mortality due to gastric cancer has not changed. Incidence and mortality due to gastric cancer are higher in developing countries as compared to developed countries. Diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Eradication of H. pylori is pertinent for the prevention of gastric cancer. However, the rise in antimicrobial resistance among H. pylori isolates has complicated the prevention strategy. H. pylori express multiple virulence factors for survival in the hostile acid gastric environment. The expression of oncogenic protein cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), and outer inflammatory protein is essential for H. pylori to exert pathogenesis towards the host. Interestingly, <3% of H. pylori-infected subjects develop gastric cancer, suggesting a unique way of interaction between the host's immune response and H. pylori virulence factors. This article is aimed to review the epidemiology and role of H. pylori in gastric carcinogenesis. A better understanding of the interaction between H. pylori virulence factors and host is required for better gastric cancer prevention.
Collapse
Affiliation(s)
- Asif Sukri
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Berlamont H, De Witte C, Bauwens E, Min Jou H, Ducatelle R, De Meester E, Gansemans Y, Deforce D, Van Nieuwerburgh F, Haesebrouck F, Smet A. Distinct transcriptome signatures of Helicobacter suis and Helicobacter heilmannii strains upon adherence to human gastric epithelial cells. Vet Res 2020; 51:62. [PMID: 32381076 PMCID: PMC7206758 DOI: 10.1186/s13567-020-00786-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
The porcine Helicobacter suis and canine-feline H. heilmannii are gastric Helicobacter species with zoonotic potential. However, little is known about the pathogenesis of human infections with these Helicobacter species. To gain more insight into the interactions of both zoonotic Helicobacter species with human gastric epithelial cells, we investigated bacterial genes that are differentially expressed in a H. suis and H. heilmannii strain after adhesion to the human gastric epithelial cell line MKN7. In vitro Helicobacter-MKN7 binding assays were performed to obtain bacterial RNA for sequencing analysis. H. suis and H. heilmannii bacteria attached to the gastric epithelial cells (i.e. cases) as well as unbound bacteria (i.e. controls) were isolated, after which prokaryotic RNA was purified and sequenced. Differentially expressed genes were identified using the DESeq2 package and SARTools pipeline in R. A list of 134 (83 up-regulated and 51 down-regulated) and 143 (60 up-regulated and 83 down-regulated) differentially expressed genes (padj ≤ 0.01; fold change ≥ 2) were identified for the adherent H. suis and H. heilmannii strains, respectively. According to BLASTp analyses, only 2 genes were commonly up-regulated and 4 genes commonly down-regulated in both pathogens. Differentially expressed genes of the H. suis and H. heilmannii strains belonged to multiple functional classes, indicating that adhesion of both strains to human gastric epithelial cells evokes pleiotropic adaptive responses. Our results suggest that distinct pathways are involved in human gastric colonization of H. suis and H. heilmannii. Further research is needed to elucidate the clinical significance of these findings.
Collapse
Affiliation(s)
- Helena Berlamont
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Chloë De Witte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva Bauwens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hannah Min Jou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ellen De Meester
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Annemieke Smet
- Translational Research in Immunology and Inflammation, Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Antwerp University, 2610, Antwerp, Belgium.
| |
Collapse
|
15
|
Tabata N, Sueta D, Arima Y, Okamoto K, Shono T, Hanatani S, Takashio S, Oniki K, Saruwatari J, Sakamoto K, Kaikita K, Sinning JM, Werner N, Nickenig G, Sasaki Y, Fukui T, Tsujita K. Cytotoxin-associated gene-A-seropositivity and Interleukin-1 polymorphisms influence adverse cardiovascular events. IJC HEART & VASCULATURE 2020; 27:100498. [PMID: 32181324 PMCID: PMC7062927 DOI: 10.1016/j.ijcha.2020.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
Aims Although the bacterial virulent factor of cytotoxin-associated gene-A (CagA)-seropositivity and the host genetic factors of interleukin (IL)-1 polymorphisms have been suggested to influence Helicobacter pylori (HP) -related diseases, the underlying mechanisms of the association between HP infection and acute coronary syndrome (ACS) remain unknown. Methods and results Among 341 consecutive ACS patients, the clinical outcomes after ACS included composite cardiovascular events within the 2-year follow-up period. A significantly higher probability of primary outcomes was observed in HP positive patients than in HP negative patients. There were no significant differences in the rate of cardiovascular events between HP positive and HP negative patients in the absence of an IL-polymorphism, while there were significant differences in the presence of an IL-polymorphism. There were significant differences in the rate of cardiovascular events among CagA positive, CagA negative/ HP positive and CagA negative/HP negative patients. Moreover, via immunohistochemical staining, aortic CagA positive cells were confirmed in the vasa vasorum in CagA positive patients, whereas they could not be identified in CagA negative patients. Conclusions The bacterial virulence factor CagA and host genetic IL-1 polymorphisms influence the incidence of adverse cardiovascular events, possibly through infection of atherosclerotic lesions. Registration: University Hospital Medical Information Network (UMIN)-CTR (http://www.umin.ac.jp/ctr/). Identifier: UMIN000035696.
Collapse
Affiliation(s)
- Noriaki Tabata
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan.,Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Daisuke Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Ken Okamoto
- Department of Cardiovascular Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Takashi Shono
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Shinsuke Hanatani
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Jan-Malte Sinning
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Nikos Werner
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Georg Nickenig
- Medizinische Klinik und Poliklinik II, Herzzentrum Bonn, Universitätsklinikum Bonn, Bonn, Germany
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Toshihiro Fukui
- Department of Cardiovascular Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| |
Collapse
|
16
|
Karkhah A, Ebrahimpour S, Rostamtabar M, Koppolu V, Darvish S, Vasigala VKR, Validi M, Nouri HR. Helicobacter pylori evasion strategies of the host innate and adaptive immune responses to survive and develop gastrointestinal diseases. Microbiol Res 2018; 218:49-57. [PMID: 30454658 DOI: 10.1016/j.micres.2018.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/09/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori (H. pylori) is a bacterial pathogen that resides in more than half of the human population and has co-evolved with humans for more than 58,000 years. This bacterium is orally transmitted during childhood and is a key cause of chronic gastritis, peptic ulcers and two malignant cancers including MALT (mucosa-associated lymphoid tissue) lymphoma and adenocarcinoma. Despite the strong innate and adaptive immune responses, H. pylori has a long-term survival in the gastric mucosa. In addition to the virulence factors, survival of H. pylori is strongly influenced by the ability of bacteria to escape, disrupt and manipulate the host immune system. This bacterium can escape from recognition by innate immune receptors via altering its surface molecules. Moreover, H. pylori subverts adaptive immune response by modulation of effector T cell. In this review, we discuss the immune-pathogenicity of H. pylori by focusing on its ability to manipulate the innate and acquired immune responses to increase its survival in the gastric mucosa, leading up to gastrointestinal disorders. We also highlight the mechanisms that resulted to the persistence of H. pylori in gastric mucosa.
Collapse
Affiliation(s)
- Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Rostamtabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Veerendra Koppolu
- Scientist Biopharmaceutical Development Medimmune Gaithersburg, MD, 20878 USA
| | - Sorena Darvish
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Majid Validi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
17
|
Molina-Castro S, Ramírez-Mayorga V, Alpízar-Alpízar W. Priming the seed: Helicobacter pylori alters epithelial cell invasiveness in early gastric carcinogenesis. World J Gastrointest Oncol 2018; 10:231-243. [PMID: 30254719 PMCID: PMC6147766 DOI: 10.4251/wjgo.v10.i9.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is a well-established risk factor for the development of gastric cancer (GC), one of the most common and deadliest neoplasms worldwide. H. pylori infection induces chronic inflammation in the gastric mucosa that, in the absence of treatment, may progress through a series of steps to GC. GC is only one of several clinical outcomes associated with this bacterial infection, which may be at least partially attributed to the high genetic variability of H. pylori. The biological mechanisms underlying how and under what circumstances H. pylori alters normal physiological processes remain enigmatic. A key aspect of carcinogenesis is the acquisition of traits that equip preneoplastic cells with the ability to invade. Accumulating evidence implicates H. pylori in the manipulation of cellular and molecular programs that are crucial for conferring cells with invasive capabilities. We present here an overview of the main findings about the involvement of H. pylori in the acquisition of cell invasive behavior, specifically focusing on the epithelial-to-mesenchymal transition, changes in cell polarity, and deregulation of molecules that control extracellular matrix remodeling.
Collapse
Affiliation(s)
- Silvia Molina-Castro
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Clinical Department, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| | - Vanessa Ramírez-Mayorga
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Public Nutrition Section, School of Nutrition, University of Costa Rica, San José 2060, Costa Rica
| | - Warner Alpízar-Alpízar
- Center for Research in Microscopic Structures, University of Costa Rica, San José 2060, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
18
|
Kokate SB, Dixit P, Poirah I, Roy AD, Chakraborty D, Rout N, Singh SP, Ashktorab H, Smoot DT, Bhattacharyya A. Testin and filamin-C downregulation by acetylated Siah2 increases invasiveness of Helicobacter pylori-infected gastric cancer cells. Int J Biochem Cell Biol 2018; 103:14-24. [PMID: 30063986 DOI: 10.1016/j.biocel.2018.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori is the strongest known risk-factor for gastric cancer. However, its role in gastric cancer metastasis remains unclear. Previously we have reported that H. pylori promotes gastric cancer invasiveness by stabilizing the E3 ubiquitin ligase Siah2 which is mediated by Siah2 acetylation at Lys 139 (K139) residue. Here we identify that cell adhesion-related proteins testin (TES) and filamin-C (FLN-C) interact with Siah2 and get proteasomally degraded. The efficiency of TES and FLN-C degradation is significantly potentiated by K139-acetylated Siah2 (ac-K139 Siah2) in infected gastric cancer cells (GCCs). ac-Siah2-mediated downregulation of TES and FLN-C disrupts filopodia structures but promotes lamellipodia formation and enhances invasiveness and migration of infected GCCs. Since H. felis-infected mice as well as human gastric cancer biopsy samples also show high level of ac-K139 Siah2 and downregulated TES and FLN-C, we believe that acetylation of Siah2 is an important checkpoint that can be useful for therapeutic intervention.
Collapse
Affiliation(s)
- Shrikant Babanrao Kokate
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda Jatni, 752050, Odisha, India
| | - Pragyesh Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda Jatni, 752050, Odisha, India
| | - Indrajit Poirah
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda Jatni, 752050, Odisha, India
| | - Arjama Dhar Roy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda Jatni, 752050, Odisha, India
| | - Debashish Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda Jatni, 752050, Odisha, India
| | - Niranjan Rout
- Department of Oncopathology, Acharya Harihar Regional Cancer Centre, Cuttack 753007, Odisha, India
| | | | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC 20060, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda Jatni, 752050, Odisha, India.
| |
Collapse
|
19
|
Yuan XY, Wang Y, Wang MY. The type IV secretion system in Helicobacter pylori. Future Microbiol 2018; 13:1041-1054. [PMID: 29927340 DOI: 10.2217/fmb-2018-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) has an essential role in the pathogenesis of gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma and gastric cancer. The severity of the host inflammatory responses against the bacteria have been straightly associated with a special bacterial virulence factor, the cag pathogenicity island, which is a type IV secretion system (T4SS) to deliver CagA into the host cells. Besides cag-T4SS, the chromosomes of H. pylori can encode another three T4SSs, including comB, tfs3 and tfs4. In this review, we systematically reviewed the four T4SSs of H. pylori and explored their roles in the pathogenesis of gastroduodenal diseases. The information summarized in this review might provide valuable insights into the pathogenic mechanism for H. pylori.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ying Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
20
|
Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies. TEST-SPAIN 2018. [DOI: 10.1007/s11749-017-0547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Kokate SB, Dixit P, Das L, Rath S, Roy AD, Poirah I, Chakraborty D, Rout N, Singh SP, Bhattacharyya A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells. FASEB J 2018; 32:5378-5389. [PMID: 29688807 DOI: 10.1096/fj.201701344rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gastric epithelial cells infected with Helicobacter pylori acquire highly invasive and metastatic characteristics. The seven in absentia homolog (Siah)2, an E3 ubiquitin ligase, is one of the major proteins that induces invasiveness of infected gastric epithelial cells. We find that p300-driven acetylation of Siah2 at lysine 139 residue stabilizes the molecule in infected cells, thereby substantially increasing its efficiency to degrade prolyl hydroxylase (PHD)3 in the gastric epithelium. This enhances the accumulation of an oncogenic transcription factor hypoxia-inducible factor 1α (Hif1α) in H. pylori-infected gastric cancer cells in normoxic condition and promotes invasiveness of infected cells. Increased acetylation of Siah2, Hif1α accumulation, and the absence of PHD3 in the infected human gastric metastatic cancer biopsy samples and in invasive murine gastric cancer tissues further confirm that the acetylated Siah2 (ac-Siah2)-Hif1α axis is crucial in promoting gastric cancer invasiveness. This study establishes the importance of a previously unrecognized function of ac-Siah2 in regulating invasiveness of H. pylori-infected gastric epithelial cells.-Kokate, S. B., Dixit, P., Das, L., Rath, S., Roy, A. D., Poirah, I., Chakraborty, D., Rout, N., Singh, S. P., Bhattacharyya, A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells.
Collapse
Affiliation(s)
- Shrikant Babanrao Kokate
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Pragyesh Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Lopamudra Das
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Suvasmita Rath
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Arjama Dhar Roy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Indrajit Poirah
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Debashish Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Niranjan Rout
- Department of Oncopathology, Acharya Harihar Regional Cancer Centre, Odisha, India
| | - Shivaram Prasad Singh
- Department of Gastroenterology, Srirama Chandra Bhanja (SCB) Medical College, Odisha, India
| | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| |
Collapse
|
22
|
Leker K, Lozano-Pope I, Bandyopadhyay K, Choudhury BP, Obonyo M. Comparison of lipopolysaccharides composition of two different strains of Helicobacter pylori. BMC Microbiol 2017; 17:226. [PMID: 29202699 PMCID: PMC5715995 DOI: 10.1186/s12866-017-1135-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium that is recognized as a major cause of chronic gastritis, peptic ulcers, and gastric cancer. Comparable to other Gram-negative bacteria, lipopolysaccharides (LPS) are an important cellular component of the outer membrane of H. pylori. The LPS of this organism plays a key role in its colonization and persistence in the stomach. In addition, H. pylori LPS modulates pathogen-induced host inflammatory responses resulting in chronic inflammation within the gastrointestinal tract. Very little is known about the comparative LPS compositions of different strains of H. pylori with varied degree of virulence in human. Therefore, LPS was analyzed from two strains of H. pylori with differing potency in inducing inflammatory responses (SS1 and G27). LPS were extracted from aqueous and phenol layer of hot-phenol water extraction method and subjected for composition analysis by gas chromatography - mass spectrometry (GC-MS) to sugar and fatty acid compositions. RESULTS The major difference between the two strains of H. pylori is the presence of Rhamnose, Fucose and GalNAc in the SS1 strain, which was either not found or with low abundance in the G27 strain. On the other hand, high amount of Mannose was present in G27 in comparison to SS1. Fatty acid composition of lipid-A portion also showed considerable amount of differences between the two strains, phenol layer of SS1 had enhanced amount of 3 hydroxy decanoic acid (3-OH-C10:0) and 3-hydroxy dodecanoic acid (3-OH-C12:0) which were not present in G27, whereas myristic acid (C14:0) was present in G27 in relatively high amount. CONCLUSION The composition analysis of H. pylori LPS, revealed differences in sugars and fatty acids composition between a mouse adapted strain SS1 and G27. This knowledge provides a novel way to dissect out their importance in host-pathogen interaction in further studies.
Collapse
Affiliation(s)
- Kristy Leker
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, California 92093 USA
| | - Ivonne Lozano-Pope
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, California 92093 USA
| | - Keya Bandyopadhyay
- Glycotechnology Core Resources, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, California 92093 USA
| | - Biswa P. Choudhury
- Glycotechnology Core Resources, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, California 92093 USA
| | - Marygorret Obonyo
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, California 92093 USA
| |
Collapse
|
23
|
Hutton ML, D'Costa K, Rossiter AE, Wang L, Turner L, Steer DL, Masters SL, Croker BA, Kaparakis-Liaskos M, Ferrero RL. A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization. Front Cell Infect Microbiol 2017; 7:219. [PMID: 28634572 PMCID: PMC5460342 DOI: 10.3389/fcimb.2017.00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
The human pathogen Helicobacter pylori acquires cholesterol from membrane raft domains in eukaryotic cells, commonly known as "lipid rafts." Incorporation of this cholesterol into the H. pylori cell membrane allows the bacterium to avoid clearance by the host immune system and to resist the effects of antibiotics and antimicrobial peptides. The presence of cholesterol in H. pylori bacteria suggested that this pathogen may have cholesterol-enriched domains within its membrane. Consistent with this suggestion, we identified a hypothetical H. pylori protein (HP0248) with homology to the flotillin proteins normally found in the cholesterol-enriched domains of eukaryotic cells. As shown for eukaryotic flotillin proteins, HP0248 was detected in detergent-resistant membrane fractions of H. pylori. Importantly, H. pylori HP0248 mutants contained lower levels of cholesterol than wild-type bacteria (P < 0.01). HP0248 mutant bacteria also exhibited defects in type IV secretion functions, as indicated by reduced IL-8 responses and CagA translocation in epithelial cells (P < 0.05), and were less able to establish a chronic infection in mice than wild-type bacteria (P < 0.05). Thus, we have identified an H. pylori flotillin protein and shown its importance for bacterial virulence. Taken together, the data demonstrate important roles for H. pylori flotillin in host-pathogen interactions. We propose that H. pylori flotillin may be required for the organization of virulence proteins into membrane raft-like structures in this pathogen.
Collapse
Affiliation(s)
- Melanie L. Hutton
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Amanda E. Rossiter
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Lin Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Lorinda Turner
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - David L. Steer
- Monash Biomedical Proteomics Facility, Monash UniversityMelbourne, VIC, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall InstituteMelbourne, VIC, Australia
| | - Ben A. Croker
- Inflammation Division, The Walter and Eliza Hall InstituteMelbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical ResearchMelbourne, VIC, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
24
|
Imamura R, Matsumoto K. Hepatocyte growth factor in physiology and infectious diseases. Cytokine 2017; 98:97-106. [PMID: 28094206 DOI: 10.1016/j.cyto.2016.12.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 01/14/2023]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic cytokine composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. The receptor for HGF was identified as the c-met proto-oncogene product of transmembrane receptor tyrosine kinase. HGF-induced signaling through the receptor Met provokes dynamic biological responses that support morphogenesis, regeneration, and the survival of various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Characterization of tissue-specific Met knockout mice has further indicated that the HGF-Met system modulates immune cell functions and also plays an inhibitory role in the progression of chronic inflammation and fibrosis. However, the biological actions that are driven by the HGF-Met pathway all play a role in the acquisition of the malignant characteristics in tumor cells, such as invasion, metastasis, and drug resistance in the tumor microenvironment. Even though oncogenic Met signaling remains the major research focus, the HGF-Met axis has also been implicated in infectious diseases. Many pathogens try to utilize host HGF-Met system to establish comfortable environment for infection. Their strategies are not only simply change the expression level of HGF or Met, but also actively hijack HGF-Met system and deregulating Met signaling using their pathogenic factors. Consequently, the monitoring of HGF and Met expression, along with real-time detection of Met activation, can be a beneficial biomarker of these infectious diseases. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. Likewise, manipulating the HGF-Met system with complete control will lead to a tailor made treatment for those infectious diseases.
Collapse
Affiliation(s)
- Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
25
|
Modification of drug delivery to improve antibiotic targeting to the stomach. Ther Deliv 2016; 6:741-62. [PMID: 26149788 DOI: 10.4155/tde.15.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The obstacles to the successful eradication of Helicobacter pylori infections include the presence of antibiotic-resistant bacteria and therapy requiring multiple drugs with complicated dosing schedules. Other obstacles include bacterial residence in an environment where high antibiotic concentrations are difficult to achieve. Biofilm production by the bacteria is an additional challenge to the effective treatment of this infection. Conventional oral formulations used in the treatment of this infection have a short gastric residence time, thus limiting the duration of exposure of drug to the bacteria. This review summarizes the current research in the development of gastroretentive formulations and the prospective future applications of this approach in the targeted delivery of drugs such as antibiotics to the stomach.
Collapse
|
26
|
Zhong Y, Anderl F, Kruse T, Schindele F, Jagusztyn-Krynicka EK, Fischer W, Gerhard M, Mejías-Luque R. Helicobacter pylori HP0231 Influences Bacterial Virulence and Is Essential for Gastric Colonization. PLoS One 2016; 11:e0154643. [PMID: 27138472 PMCID: PMC4854439 DOI: 10.1371/journal.pone.0154643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/15/2016] [Indexed: 02/07/2023] Open
Abstract
The Dsb protein family is responsible for introducing disulfide bonds into nascent proteins in prokaryotes, stabilizing the structure of many proteins. Helicobacter pylori HP0231 is a Dsb-like protein, shown to catalyze disulfide bond formation and to participate in redox homeostasis. Notably, many H. pylori virulence factors are stabilized by the formation of disulfide bonds. By employing H. pylori HP0231 deficient strains we analyzed the effect of lack of this bacterial protein on the functionality of virulence factors containing putative disulfide bonds. The lack of H. pylori HP0231 impaired CagA translocation into gastric epithelial cells and reduced VacA-induced cellular vacuolation. Moreover, H. pylori HP0231 deficient bacteria were not able to colonize the gastric mucosa of mice, probably due to compromised motility. Together, our data demonstrate an essential function for H. pylori HP0231 in gastric colonization and proper function of bacterial virulence factors related to gastric pathology.
Collapse
Affiliation(s)
- Yu Zhong
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Florian Anderl
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Tobias Kruse
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Franziska Schindele
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
| | | | - Wolfgang Fischer
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
27
|
Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens. mBio 2016; 7:e00221-16. [PMID: 27118587 PMCID: PMC4850256 DOI: 10.1128/mbio.00221-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs. Many human and plant pathogens utilize complex nanomachines called type IV secretion systems (T4SSs) to transport proteins and DNA to target cells. In addition to delivery of harmful effector proteins into target cells, T4SSs can disseminate genetic determinants that confer antibiotic resistance among bacterial populations. In this study, we sought to identify compounds that disrupt T4SS-mediated processes. Using the human gastric pathogen H. pylori as a model system, we identified and characterized two small molecules that prevent transfer of an oncogenic effector protein to host cells. We discovered that these small molecules also prevented the spread of antibiotic resistance plasmids in E. coli populations and diminished the transfer of tumor-inducing DNA from the plant pathogen A. tumefaciens to target cells. Thus, these compounds are versatile molecular tools that can be used to study and disarm these important bacterial machines.
Collapse
|
28
|
Ahmadzadeh A, Ghalehnoei H, Farzi N, Yadegar A, Alebouyeh M, Aghdaei HA, Molaei M, Zali MR, Pour Hossein Gholi MA. Association of CagPAI integrity with severeness of Helicobacter pylori infection in patients with gastritis. ACTA ACUST UNITED AC 2015; 63:252-7. [PMID: 26530303 DOI: 10.1016/j.patbio.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The Helicobacter pylori cag pathogenicity island (cagPAI) is involved in delivery of CagA effector protein and peptidoglycan into host cells and also in IL-8 induction in the human gastric tissue. Diversity of cagPAI may affect disease status and clinical outcome of the infected patients. Our study was aimed to investigate diversity of this island and its intactness in Iranian patients to investigate possible associations between cagPAI integrity and pathological changes of the infected tissue. MATERIAL/PATIENTS AND METHODS Out of the 75 patients, H. pylori strains were obtained from 30 patients with severe active gastritis (SAG) (n=11), moderate chronic gastritis (CG) (n=14) and intestinal metaplasia/dysplasia (IM) (n=5). Intactness of the cagPAI was determined using 12 sets of primer pairs specific for functionally important loci of cagPAI by polymerase chain reaction (PCR). RESULTS The cagPAI positive strains were significantly observed in patients with SAG (52.4%) in comparison to those presenting CG (33.3%) and IM (14.3%). In addition, the presence of intact cagPAI was 87.5% in H. pylori strains isolated from patients with SAG, which was higher than those obtained from patients with CG (12.5%) or IM (0%). A significant increase in the frequency of cagα-cagY and cagW-cagT segments, as exterior proteins of the CagPAI, was illustrated in strains from SAG patients compared with those from patients with CG. CONCLUSIONS Overall, these results strongly proposed an association between the severity of histopathological changes and intactness of cagPAI in the gastric tissue of patients infected with H. pylori.
Collapse
Affiliation(s)
- A Ahmadzadeh
- Molecular Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Ilam University of Medical Sciences, Tehran, Iran
| | - H Ghalehnoei
- Molecular Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Farzi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Yadegar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - H A Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Molaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M R Zali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - M A Pour Hossein Gholi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Datta De D, Roychoudhury S. To be or not to be: The host genetic factor and beyond in Helicobacter pylori mediated gastro-duodenal diseases. World J Gastroenterol 2015; 21:2883-2895. [PMID: 25780285 PMCID: PMC4356907 DOI: 10.3748/wjg.v21.i10.2883] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) have long been associated with a spectrum of disease outcomes in the gastro-duodenal system. Heterogeneity in bacterial virulence factors or strains is not enough to explain the divergent disease phenotypes manifested by the infection. This review focuses on host genetic factors that are involved during infection and eventually are thought to influence the disease phenotype. We have summarized the different host genes that have been investigated for association studies in H. pylori mediated duodenal ulcer or gastric cancer. We discuss that as the bacteria co-evolved with the host; these host gene also show much variation across different ethnic population. We illustrate the allelic distribution of interleukin-1B, across different population which is one of the most popular candidate gene studied with respect to H. pylori infections. Further, we highlight that several polymorphisms in the pathway gene can by itself or collectively affect the acid secretion pathway axis (gastrin: somatostatin) thereby resulting in a spectrum of disease phenotype
Collapse
|
30
|
Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, Engevik AC, Javier JE, Peek Jr RM, Ottemann K, Orian-Rousseau V, Boivin GP, Helmrath MA, Zavros Y. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog 2015; 11:e1004663. [PMID: 25658601 PMCID: PMC4450086 DOI: 10.1371/journal.ppat.1004663] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation.
Collapse
Affiliation(s)
- Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Rui Feng
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Michael A. Schumacher
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Jing Li
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Maxime M. Mahe
- Department of Surgery, Division of Pediatric Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio, United States of
America
| | - Amy C. Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Jose E. Javier
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Richard M. Peek Jr
- Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of
America
| | - Karen Ottemann
- Department of Microbiology and Environmental Toxicology, University of
California at Santa Cruz, Santa Cruz, California, United States of
America
| | - Veronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute for Toxicology and Genetics,
Hermann von Helmholtzplatz, Germany
| | - Gregory P. Boivin
- Department of Pathology Wright State University, Health Sciences, Dayton,
Ohio, United States of America
- Veterans Affairs Medical Center, Cincinnati, Ohio, United States of
America
| | - Michael A. Helmrath
- Department of Surgery, Division of Pediatric Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio, United States of
America
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Helicobacter pylori: Genomic Insight into the Host-Pathogen Interaction. Int J Genomics 2015; 2015:386905. [PMID: 25722969 PMCID: PMC4334614 DOI: 10.1155/2015/386905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/09/2015] [Indexed: 12/18/2022] Open
Abstract
The advent of genomic analyses has revolutionized the study of human health. Infectious disease research in particular has experienced an explosion of bacterial genomic, transcriptomic, and proteomic data complementing the phenotypic methods employed in traditional bacteriology. Together, these techniques have revealed novel virulence determinants in numerous pathogens and have provided information for potential chemotherapeutics. The bacterial pathogen, Helicobacter pylori, has been recognized as a class 1 carcinogen and contributes to chronic inflammation within the gastric niche. Genomic analyses have uncovered remarkable coevolution between the human host and H. pylori. Perturbation of this coevolution results in dysregulation of the host-pathogen interaction, leading to oncogenic effects. This review discusses the relationship of H. pylori with the human host and environment and the contribution of each of these factors to disease progression, with an emphasis on features that have been illuminated by genomic tools.
Collapse
|
32
|
Schumacher MA, Feng R, Aihara E, Engevik AC, Montrose MH, Ottemann KM, Zavros Y. Helicobacter pylori-induced Sonic Hedgehog expression is regulated by NFκB pathway activation: the use of a novel in vitro model to study epithelial response to infection. Helicobacter 2015; 20:19-28. [PMID: 25495001 PMCID: PMC4871133 DOI: 10.1111/hel.12152] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection leads to acute induction of Sonic Hedgehog (Shh) in the stomach that is associated with the initiation of gastritis. The mechanism by which H. pylori induces Shh is unknown. Shh is a target gene of transcription factor Nuclear Factor-κB (NFκB). We hypothesize that NFκB mediates H. pylori-induced Shh. MATERIALS AND METHODS To visualize Shh ligand expression in response to H. pylori infection in vivo, we used a mouse model that expresses Shh fused to green fluorescent protein (Shh::GFP mice) in place of wild-type Shh. In vitro, changes in Shh expression were measured in response to H. pylori infection using 3-dimensional epithelial cell cultures grown from whole dissociated gastric glands (organoids). Organoids were generated from stomachs collected from the fundic region of control and mice expressing a parietal cell-specific deletion of Shh (PC-Shh(KO) mice). RESULTS Within 2 days of infection, H. pylori induced Shh expression within parietal cells of Shh::GFP mice. Organoids expressed all major gastric cell markers, including parietal cell marker H(+) ,K(+) -ATPase and Shh. H. pylori infection of gastric organoids induced Shh expression; a response that was blocked by inhibiting NFκB signaling and correlated with IκB degradation. H. pylori infection of PC-Shh(KO) mouse-derived organoids did not result in the induction of Shh expression. CONCLUSION Gastric organoids allow for the study of the interaction between H. pylori and the differentiated gastric epithelium independent of the host immune response. H. pylori induces Shh expression from the parietal cells, a response mediated via activation of NFκB signaling.
Collapse
Affiliation(s)
- MA Schumacher
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - R Feng
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - E Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - AC Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - MH Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - KM Ottemann
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA
| | - Y Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
33
|
Shao Y, Sun K, Xu W, Li XL, Shen H, Sun WH. Helicobacter pylori infection, gastrin and cyclooxygenase-2 in gastric carcinogenesis. World J Gastroenterol 2014; 20:12860-12873. [PMID: 25278683 PMCID: PMC4177468 DOI: 10.3748/wjg.v20.i36.12860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/12/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent neoplasms and a main cause of death worldwide, especially in China and Japan. Numerous epidemiological, animal and experimental studies support a positive association between chronic Helicobacter pylori (H. pylori) infection and the development of gastric cancer. However, the exact mechanism whereby H. pylori causes gastric carcinogenesis remains unclear. It has been demonstrated that expression of cyclooxygenase-2 (COX-2) is elevated in gastric carcinomas and in their precursor lesions. In this review, we present the latest clinical and experimental evidence showing the role of gastrin and COX-2 in H. pylori-infected patients and their possible association with gastric cancer risk.
Collapse
|
34
|
Shim JH, Yoon JH, Choi SS, Ashktorab H, Smoot DT, Song KY, Nam SW, Lee JY, Park CH, Park WS. The effect of Helicobacter pylori CagA on the HER-2 copy number and expression in gastric cancer. Gene 2014; 546:288-296. [PMID: 24879917 PMCID: PMC4286173 DOI: 10.1016/j.gene.2014.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/15/2014] [Accepted: 05/23/2014] [Indexed: 01/26/2023]
Abstract
We investigated whether Helicobacter pylori (H. pylori) CagA contributes to the DNA copy change and mRNA transcript expression of the HER-2 gene and, consequently, affects HER-2 protein expression to evaluate the significance of CagA and HER-2 amplification in gastric cancer. We used the AGS and MKN1 gastric cancer and HFE-145 immortalized non-neoplastic gastric mucosa cell lines. We also confirmed the effects of CagA on HER-2 expression in human gastric cancer tissues and gastric mucosal tissues of H. pylori infected C57BL/6 mice. Ectopic CagA expression in AGS, MKN1 and HFE-145 cells showed a significant increase in HER-2 gene copy number and expression. The gastric mucosae of H. pylori infected C57BL/6 mice also showed increased HER-2 DNA copy number and protein expression. In addition, CagA expression was detected in 17 (56.7%) of 30 gastric cancer tissues, and eight (47%) of them showed HER-2 DNA amplification of more than two-fold. In immunohistochemistry, HER-2 overexpression was detected in 12 (40%) of 30 gastric cancers and a positive correlation was observed among DNA copy number, the mRNA transcript, and protein expression of the HER-2 gene in gastric cancer (P<0.05). These results suggest that H. pylori CagA may induce overexpression of the HER-2 protein by increasing HER-2 DNA and mRNA copy number.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Cell Line, Tumor
- Female
- Gastric Mucosa/metabolism
- Gastric Mucosa/pathology
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Helicobacter pylori/genetics
- Helicobacter pylori/metabolism
- Humans
- Male
- Mice
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/genetics
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
Collapse
Affiliation(s)
- Jung Ho Shim
- Division of Gastrointestinal Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Sook Choi
- College of Pharmacy, Sahmyook University, Hwarangro 815, Nowon-gu, Seoul 139-742, South Korea
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC 20060, USA
| | - Duane T Smoot
- Department of Medicine, Howard University, Washington, DC 20060, USA
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Young Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Cho Hyun Park
- Division of Gastrointestinal Surgery, Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
35
|
Katra R, Kabelka Z, Jurovcik M, Hradsky O, Kraus J, Pavlik E, Nartova E, Lukes P, Astl J. Pilot study: Association between Helicobacter pylori in adenoid hyperplasia and reflux episodes detected by multiple intraluminal impedance in children. Int J Pediatr Otorhinolaryngol 2014; 78:1243-9. [PMID: 24865809 DOI: 10.1016/j.ijporl.2014.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 04/18/2014] [Accepted: 04/20/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The aim of this pilot study was to investigate an association between laryngopharyngeal reflux detected by combined multiple intraluminal impedance and pH monitoring and Helicobacter pylori in adenoid hyperplasia detected with real time polymerase chain reaction (PCR). METHODS The study group consisted of 30 children (median age 5.34 years) with extraesophageal symptoms of gastroesophageal reflux disease with adenoid hyperplasia. All children underwent adenoidectomy with subsequent PCR detection of H. pylori DNA in the tissue and multiple intraluminal impedance and pH monitoring. The most proximal impedance sensor was located 1cm caudal to the entrance of the oesophagus. RESULTS We found significant differences in the number of reflux episodes among patients with PCR positivity (median 35) and negativity (median 0) of H. pylori (p-value of Mann-Whitney U-test 0.0056). Patients with PCR positivity of H. pylori had significantly more reflux episodes reaching the upper oesophageal sphincter (p-value of Mann-Whitney U-test 0.023). The absence of reflux episode was the only independent factor for PCR negativity of H. pylori in the multiple logistic regression model. CONCLUSIONS These results support the hypothesis that reflux episodes reaching the upper oesophageal sphincter may play an important role in the transmission of H. pylori into lymphoid tissue of the nasopharynx and thus may contribute to adenoid hyperplasia in children.
Collapse
Affiliation(s)
- R Katra
- Department of ENT, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic.
| | - Z Kabelka
- Department of ENT, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - M Jurovcik
- Department of ENT, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - O Hradsky
- Department of Paediatrics, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - J Kraus
- Department of Otorhinolaryngology, Hospital Rudolph and Stephanie, Benešov, Czech Republic
| | - E Pavlik
- Department of Microbiology and Immunology and Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, General Faculty Hospital, Charles University, Prague, Czech Republic
| | - E Nartova
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - P Lukes
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - J Astl
- Department of ENT, 3rd Faculty of Medicine, Charles University, Military University Hospital, Prague, Czech Republic
| |
Collapse
|
36
|
Zhao S, Lv Y, Zhang JB, Wang B, Lv GJ, Ma XJ. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori. World J Gastroenterol 2014; 20:9321-9. [PMID: 25071326 PMCID: PMC4110563 DOI: 10.3748/wjg.v20.i28.9321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/04/2014] [Accepted: 04/15/2014] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common pathogenic bacterial infections and is found in the stomachs of approximately half of the world's population. It is the primary known cause of gastritis, gastroduodenal ulcer disease and gastric cancer. However, combined drug therapy as the general treatment in the clinic, the rise of antibiotic-resistant bacteria, adverse reactions and poor patient compliance are major obstacles to the eradication of H. pylori. Oral site-specific drug delivery systems that could increase the longevity of the treatment agent at the target site might improve the therapeutic effect and avoid side effects. Gastroretentive drug delivery systems potentially prolong the gastric retention time and controlled/sustained release of a drug, thereby increasing the concentration of the drug at the application site, potentially improving its bioavailability and reducing the necessary dosage. Recommended gastroretentive drug delivery systems for enhancing local drug delivery include floating systems, bioadhesive systems and expandable systems. In this review, we summarize the important physiological parameters of the gastrointestinal tract that affect the gastric residence time. We then focus on various aspects useful in the development of gastroretentive drug delivery systems, including current trends and the progress of novel forms, especially with respect to their application for the treatment of H. pylori infections.
Collapse
|
37
|
Lee DG, Kim HS, Lee YS, Kim S, Cha SY, Ota I, Kim NH, Cha YH, Yang DH, Lee Y, Park GJ, Yook JI, Lee YC. Helicobacter pylori CagA promotes Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity. Nat Commun 2014; 5:4423. [PMID: 25055241 DOI: 10.1038/ncomms5423] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/17/2014] [Indexed: 12/15/2022] Open
Abstract
Cytotoxin-associated gene A (CagA) is an oncoprotein and a major virulence factor of H. pylori. CagA is delivered into gastric epithelial cells via a type IV secretion system and causes cellular transformation. The loss of epithelial adhesion that accompanies the epithelial-mesenchymal transition (EMT) is a hallmark of gastric cancer. Although CagA is a causal factor in gastric cancer, the link between CagA and the associated EMT has not been elucidated. Here, we show that CagA induces the EMT by stabilizing Snail, a transcriptional repressor of E-cadherin expression. Mechanistically we show that CagA binds GSK-3 in a manner similar to Axin and causes it to shift to an insoluble fraction, resulting in reduced GSK-3 activity. We also find that the level of Snail protein is increased in H. pylori infected epithelium in clinical samples. These results suggest that H. pylori CagA acts as a pathogenic scaffold protein that induces a Snail-mediated EMT via the depletion of GSK-3.
Collapse
Affiliation(s)
- Da-Gyum Lee
- 1] Department of Internal Medicine and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea [2]
| | - Hyun Sil Kim
- 1] Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, Korea [2]
| | - Yeo Song Lee
- Department of Internal Medicine and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Shin Kim
- Department of Internal Medicine and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - So Young Cha
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Yong Hoon Cha
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Dong Hyun Yang
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Yoonmi Lee
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Gyeong-Ju Park
- Department of Oral Histology, The School of Dentistry, Dankook University, Cheonan-si, Chungnam 330-714, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Yong Chan Lee
- Department of Internal Medicine and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
38
|
Genes required for assembly of pili associated with the Helicobacter pylori cag type IV secretion system. Infect Immun 2014; 82:3457-70. [PMID: 24891108 DOI: 10.1128/iai.01640-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori causes numerous alterations in gastric epithelial cells through processes that are dependent on activity of the cag type IV secretion system (T4SS). Filamentous structures termed "pili" have been visualized at the interface between H. pylori and gastric epithelial cells, and previous studies suggested that pilus formation is dependent on the presence of the cag pathogenicity island (PAI). Thus far, there has been relatively little effort to identify specific genes that are required for pilus formation, and the role of pili in T4SS function is unclear. In this study, we selected 7 genes in the cag PAI that are known to be required for T4SS function and investigated whether these genes were required for pilus formation. cagT, cagX, cagV, cagM, and cag3 mutants were defective in both T4SS function and pilus formation; complemented mutants regained T4SS function and the capacity for pilus formation. cagY and cagC mutants were defective in T4SS function but retained the capacity for pilus formation. These results define a set of cag PAI genes that are required for both pilus biogenesis and T4SS function and reveal that these processes can be uncoupled in specific mutant strains.
Collapse
|
39
|
Salih BA, Guner A, Karademir A, Uslu M, Ovali MA, Yazici D, Bolek BK, Arikan S. Evaluation of the effect of cagPAI genes of Helicobacter pylori on AGS epithelial cell morphology and IL-8 secretion. Antonie van Leeuwenhoek 2013; 105:179-89. [PMID: 24170115 DOI: 10.1007/s10482-013-0064-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori cagPAI genes play an important role in pathogenesis, however little is known about their functions in isolates from Turkish patients. We aimed to evaluate the intactness and the effect of the cagPAI genes (cagT, cagM, cagE, cagA) and cagA EPIYA motifs on the AGS morphological changes and IL-8 induction. Of 53 patients 38 were found infected with H. pylori. PCR amplification of the cagPAI genes showed 42.1 % intact, 39.5 % partially deleted and 18.4 % with complete deletions. Isolates from gastritis, duodenal and gastric ulcer patients with intact and partially deleted cagPAI genes induced higher IL-8 secretion than those with complete deletions. Isolates from gastritis patients had higher deletion frequencies of the cagT and cagM genes than the other two genes. Infection of AGS cells with isolates that possess intact cagPAI and EPIYA-ABC resulted in the formation of the hummingbird phenotype. The cagA positive isolates induced higher IL-8 secretion than cagA negative isolates. Isolates from DU patients with more than one EPIYA-C motif induced higher concentrations of IL-8 than those with EPIYA-ABC. In conclusion, the intactness of the cagPAI in our isolates from different patients was not conserved. An intact cagPAI was found to play an important role in the pathogenesis of DU but not GU or gastritis. The cagA gene, but not other cagPAI genes, was associated with the induction of IL-8 and the morphological changes of the AGS cells. An increase in the number of EPIYA-C motifs had noticeable effect on the formation of the hummingbird phenotype.
Collapse
Affiliation(s)
- Barik A Salih
- Department of Biology, Faculty of Science and Literature, Fatih University, B. Cekmece, Istanbul, Turkey,
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nártová E, Kraus J, Pavlík E, Lukeš P, Katra R, Plzák J, Kolářová L, Sterzl I, Betka J, Astl J. Presence of different genotypes of Helicobacter pylori in patients with chronic tonsillitis and sleep apnoea syndrome. Eur Arch Otorhinolaryngol 2013; 271:607-13. [PMID: 23864246 DOI: 10.1007/s00405-013-2607-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori, a well-known gastric pathogen, has been detected in the oral cavity and oropharynx in tonsillar tissue. In our study, the presence of H. pylori in the tonsillar tissue of patients with chronic tonsillitis and sleep apnoea syndrome (SAS) was investigated. The aim was to detect and genotype H. pylori for a collection of data supporting the possible role of H. pylori in the aetiology of chronic tonsillitis and SAS. Helicobacter pylori was detected by real-time polymerase chain reaction (rt-PCR). 89 patients, 60 with a diagnosis of chronic tonsillitis and 29 with SAS, were tested. In the chronic tonsillitis group, Helicobacter was detected in 48 (80 %) specimens, cagA gene was detected in 12 samples (25 %) and 12 samples were negative. In SAS group, Helicobacter was found in 24 samples (82.76 %), cagA gene was detected in 5 (20.83 %) and 5 samples (17.24 %) were negative. Helicobacter pylori-specific immunoglobulins were tested by ELISA in the serum of 57 patients only with 41 (71.93 %) showing positive. Our results on H. pylori DNA detection and H. pylori seropositivity show 26.32 % discrepancy, slightly in favour of rt-PCR (15.79 % compared to 10.53 %). The H. pylori presence in tonsillar tissue does not depend on the type of oropharyngeal disease (p = 0.756). This study shows that oropharynx constitutes an extragastric reservoir of H. pylori infection which could serve as an aetiopathogenetic factor for chronic tonsillitis and tonsillar hyperplasia by SAS. No conclusion has yet been drawn about the mechanism of the process.
Collapse
Affiliation(s)
- Eva Nártová
- Department of Othorinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Helicobacter pylori Infection: Regulatory T Cells and Their Participation in the Immune Response. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.5183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
42
|
Lukeš P, Pavlík E, Potuznikova B, Nartova E, Foltynova E, Plzak J, Katra R, Sterzl I, Bartunkova J, Betka J, Astl J. Detection of Helicobacter pylori in oropharyngeal lymphatic tissue with real-time PCR and assessment of its carcinogenic potential. Eur Arch Otorhinolaryngol 2013; 271:399-405. [PMID: 23744180 DOI: 10.1007/s00405-013-2574-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori (HP) is considered a major gastric pathogen with oncogenic potential. The aim of this study was to determine whether HP is present in oropharyngeal lymphoid tissue and whether oropharyngeal HP strains carry virulence factor genes known to be involved in gastric carcinogenesis. The study included 104 subjects (41 patients with tonsillar carcinoma, 38 with chronic tonsillitis and 25 with obstructive sleep apnoea syndrome--OSAS). Detection of specific serum anti-HP antibodies was performed with an ELISA. The presence of HP in tissue was determined by culture and real-time PCR. Detection of virulence factors genes was also performed. Specific antibodies were found in 78.05% of tumour cases, 34.21% of chronic tonsillitis cases, and 72.0% of OSAS cases. The presence of HP in the tissue was detected in 73.91% of tonsillar tumours, 70.0% of tonsillitis cases, and 69.23% of OSAS specimens. The results of the virulence factor gene analysis showed the majority of the s1b (52.4%) and m2 (59.5%) alleles of vacA gene and limited abundance of cagA gene (12.5%). Results confirm that HP may colonise oropharyngeal lymphoid tissue. Oropharyngeal HP colonisation was frequently found in the oropharyngeal cancer group and in patients with benign oropharyngeal diseases. A virulence factor gene analysis showed differences from the predominant strains most commonly found in the stomach. The strains obtained from the oropharynx differed primarily by the lower abundance of the cagA gene and carried the less virulent vacA gene allele combination.
Collapse
Affiliation(s)
- Petr Lukeš
- Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Úvalu 84, 150 06, Prague 5, Czech Republic,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Phylogeographic origin of Helicobacter pylori determines host-adaptive responses upon coculture with gastric epithelial cells. Infect Immun 2013; 81:2468-77. [PMID: 23630959 DOI: 10.1128/iai.01182-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While Helicobacter pylori infects over 50% of the world's population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors in H. pylori pathogenesis, global gene expression of six H. pylori isolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factors cagA, vacA, and babB and were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin of H. pylori strains may promote increased gastric disease.
Collapse
|
44
|
Sehgal R, Misra S, Anand N, Sharma M. Microarray in parasitic infections. Trop Parasitol 2013; 2:6-12. [PMID: 23508469 PMCID: PMC3593500 DOI: 10.4103/2229-5070.97232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 06/16/2012] [Indexed: 12/27/2022] Open
Abstract
Modern biology and genomic sciences are rooted in parasitic disease research. Genome sequencing efforts have provided a wealth of new biological information that promises to have a major impact on our understanding of parasites. Microarrays provide one of the major high-throughput platforms by which this information can be exploited in the laboratory. Many excellent reviews and technique articles have recently been published on applying microarrays to organisms for which fully annotated genomes are at hand. However, many parasitologists work on organisms whose genomes have been only partially sequenced. This review is mainly focused on how to use microarray in these situations.
Collapse
Affiliation(s)
- Rakesh Sehgal
- Department of Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
45
|
Abstract
In this chapter, different methods and applications of biclustering algorithms to DNA microarray data analysis that have been developed in recent years are discussed and compared. Identification of biological significant clusters of genes from microarray experimental data is a very daunting task that emerged, especially with the development of high throughput technologies. Various computational and evaluation methods based on diverse principles were introduced to identify new similarities among genes. Mathematical aspects of the models are highlighted, and applications to solve biological problems are discussed.
Collapse
|
46
|
Allison CC, Ferrand J, McLeod L, Hassan M, Kaparakis-Liaskos M, Grubman A, Bhathal PS, Dev A, Sievert W, Jenkins BJ, Ferrero RL. Nucleotide oligomerization domain 1 enhances IFN-γ signaling in gastric epithelial cells during Helicobacter pylori infection and exacerbates disease severity. THE JOURNAL OF IMMUNOLOGY 2013; 190:3706-15. [PMID: 23460743 DOI: 10.4049/jimmunol.1200591] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Virulent Helicobacter pylori strains that specifically activate signaling in epithelial cells via the innate immune molecule, nucleotide oligomerization domain 1 (NOD1), are more frequently associated with IFN-γ-dependent inflammation and with severe clinical outcomes (i.e., gastric cancer and peptic ulceration). In cell culture models, we showed that H. pylori activation of the NOD1 pathway caused enhanced proinflammatory signaling in epithelial cells in response to IFN-γ stimulation through the direct effects of H. pylori on two components of the IFN-γ signaling pathway, STAT1 and IFN regulatory factor 1 (IRF1). Specifically, H. pylori activation of the NOD1 pathway was shown to increase the levels of STAT1-Tyr(701)/Ser(727) phosphorylation and IRF1 expression/synthesis in cells, resulting in enhanced production of the NOD1- and IFN-γ-regulated chemokines, IL-8- and IFN-γ-induced protein 10, respectively. Consistent with the notion that heightened proinflammatory signaling in epithelial cells may have an impact on disease severity, we observed significantly increased expression levels of NOD1, CXCL8, IRF1, and CXCL10 in human gastric biopsies displaying severe gastritis, when compared with those without gastritis (p < 0.05, p < 0.001, p < 0.01, and p < 0.05, respectively). Interestingly, NOD1, CXCL8, and IRF1 expression levels were also significantly upregulated in gastric tumor tissues, when compared with paired nontumor samples (p < 0.0001, p < 0.05, and p < 0.05, respectively). Thus, we propose that cross-talk between NOD1 and IFN-γ signaling pathways contribute to H. pylori-induced inflammatory responses, potentially revealing a novel mechanism whereby virulent H. pylori strains promote more severe disease.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Neal JT, Peterson TS, Kent ML, Guillemin K. H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model. Dis Model Mech 2013; 6:802-10. [PMID: 23471915 PMCID: PMC3634662 DOI: 10.1242/dmm.011163] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with Helicobacter pylori is a major risk factor for the development of gastric cancer, and infection with strains carrying the virulence factor CagA significantly increases this risk. To investigate the mechanisms by which CagA promotes carcinogenesis, we generated transgenic zebrafish expressing CagA ubiquitously or in the anterior intestine. Transgenic zebrafish expressing either the wild-type or a phosphorylation-resistant form of CagA exhibited significantly increased rates of intestinal epithelial cell proliferation and showed significant upregulation of the Wnt target genes cyclinD1, axin2 and the zebrafish c-myc ortholog myca. Coexpression of CagA with a loss-of-function allele encoding the β-catenin destruction complex protein Axin1 resulted in a further increase in intestinal proliferation. Coexpression of CagA with a null allele of the key β-catenin transcriptional cofactor Tcf4 restored intestinal proliferation to wild-type levels. These results provide in vivo evidence of Wnt pathway activation by CagA downstream of or in parallel to the β-catenin destruction complex and upstream of Tcf4. Long-term transgenic expression of wild-type CagA, but not the phosphorylation-resistant form, resulted in significant hyperplasia of the adult intestinal epithelium. We further utilized this model to demonstrate that oncogenic cooperation between CagA and a loss-of-function allele of p53 is sufficient to induce high rates of intestinal small cell carcinoma and adenocarcinoma, establishing the utility of our transgenic zebrafish model in the study of CagA-associated gastrointestinal cancers.
Collapse
Affiliation(s)
- James T Neal
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
48
|
Marchetti M, Capela D, Poincloux R, Benmeradi N, Auriac MC, Le Ru A, Maridonneau-Parini I, Batut J, Masson-Boivin C. Queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on HeLa Cells and symbiosis with Medicago truncatula. PLoS One 2013; 8:e56043. [PMID: 23409119 PMCID: PMC3568095 DOI: 10.1371/journal.pone.0056043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.
Collapse
Affiliation(s)
- Marta Marchetti
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Delphine Capela
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Renaud Poincloux
- CNRS-IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS (Université Paul Sabatier), IPBS, Toulouse, France
| | - Nacer Benmeradi
- Institut de Biologie Cellulaire et de Génétique IBCG CNRS, Toulouse, France
| | - Marie-Christine Auriac
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Plateforme de Microscopie FRBT - Centre de Biologie du Développement, Toulouse, France
| | - Isabelle Maridonneau-Parini
- CNRS-IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS (Université Paul Sabatier), IPBS, Toulouse, France
| | - Jacques Batut
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
- * E-mail:
| | - Catherine Masson-Boivin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| |
Collapse
|
49
|
Poursina F, Faghri J, Moghim S, Zarkesh-Esfahani H, Nasr-Esfahani B, Fazeli H, Hasanzadeh A, Safaei HG. Assessment of cagE and babA mRNA expression during morphological conversion of Helicobacter pylori from spiral to coccoid. Curr Microbiol 2012; 66:406-13. [PMID: 23263256 DOI: 10.1007/s00284-012-0280-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori (H. Pylori) is an actively dividing spiral bacterium that changes to coccoid morphology under stressful environments. The infectivity of the coccoids is still controversial. The aim of this study was to determine the viability and expression of two important virulence genes (babA and cagE), in antibiotic-induced coccoid forms. Three strains of H. pylori, the standard 26695 and two clinical isolates (p1, p2) were converted to coccoid form by amoxicillin. Coccoids were identified according to Gram-staining and microscopic morphology. The viability of the cells was analyzed by flow cytometry. The expression of cagE and babA in coccoid forms were evaluated and compared to the spirals by quantitative PCR assay. The coccoid forms were developed after 72 h exposure of H. pylori to ½ MIC of amoxicillin, and the conversion form was completed (100 %) at 144 h in all of three isolates. Flow cytometry analyses showed that the majority of the induced coccoids (90-99.9 %) were viable. Expression of cagE and babA was seen in coccoids; however, in lower rate (cagE, ~3-fold and babA, ~10-fold) than these in spiral forms. Coccoid forms of two clinical isolates significantly expressed higher rate of cagE and babA than standard 26695 strain (P = 0.01). These results suggest that the induced coccoid form of H. pylori is not a passive entity but can actively infect the human by expression of the virulence genes for long time in stomach and probably play a role in chronic and severe disease.
Collapse
Affiliation(s)
- Farkhondeh Poursina
- Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Targosz A, Brzozowski T, Pierzchalski P, Szczyrk U, Ptak-Belowska A, Konturek SJ, Pawlik W. Helicobacter pylori promotes apoptosis, activates cyclooxygenase (COX)-2 and inhibits heat shock protein HSP70 in gastric cancer epithelial cells. Inflamm Res 2012; 61:955-66. [PMID: 22610150 PMCID: PMC3418497 DOI: 10.1007/s00011-012-0487-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/05/2012] [Accepted: 05/02/2012] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Apoptosis plays an important role in the regulation of gastric epithelial cell number and gastrointestinal disorders induced by Helicobacter pylori (Hp). Heat shock proteins (HSPs) are involved in cell integrity, cell growth and in gastric mucosa colonized by Hp. COX-2 was implicated in Hp-induced carcinogenesis but the effects of this germ and CagA cytotoxin on HSP70, COX-2, Bax and Bcl-2 in gastric cancer epithelial cells have been little studied. MATERIAL AND METHODS We determined the expression for HSP70, Bax and Bcl-2 in human gastric epithelial MKN7 cells incubated with live strain Hp (cagA + vacA+) with or without co-incubation with exogenous CagA and NS-398, the selective COX-2 inhibitor. After 3-48 h of incubation, the expression of HSP70, COX-2, Bax and Bcl-2 mRNA and proteins were determined by RT-PCR and immunoprecipitation. RESULTS Hp inhibited expression for HSP70 and this was significantly potentiated by exogenous CagA. Co-incubation of epithelial cells with Hp, without or with CagA increased Bax expression and simultaneously decreased expression for Bcl-2. The increase in COX-2 mRNA and Bax expression were significantly inhibited by NS-398. We conclude that Hp promotes apoptosis in adenocarcinoma gastric epithelial cells in vitro and this is associated with activation of COX-2 and inhibition of HSP70.
Collapse
Affiliation(s)
- Aneta Targosz
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Cracow, Poland
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Urszula Szczyrk
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Cracow, Poland
| | - Stanislaw Jan Konturek
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Cracow, Poland
| | - Wieslaw Pawlik
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Str., 31-531 Cracow, Poland
| |
Collapse
|