1
|
Bhole R, Shinkar J, Labhade S, Karwa P, Kapare H. MED12 dysregulation: insights into cancer and therapeutic resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04006-0. [PMID: 40105922 DOI: 10.1007/s00210-025-04006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025]
Abstract
MED12, a critical subunit of the mediator (MED) complex, plays a central role in transcriptional regulation by bridging signal-dependent transcription factors and RNA polymerase II. Dysregulation of MED12, often through mutation, has emerged as a significant driver in various cancers, including uterine leiomyomas, breast cancer (B.C.), and prostate cancer (P.C.). These mutations disrupt normal transcriptional processes by impairing the mediator complex's ability to properly regulate gene expression, which activates oncogenic pathways such as Wnt/β-catenin and TGF-β signaling, promoting tumorigenesis and drug resistance. Specifically, mutations in the MED12 gene lead to altered interactions with the transcriptional machinery, fostering aberrant activation of oncogenic networks. MED12 alterations have also been implicated in chemoresistance, particularly to therapies targeting EGFR, ALK, and BRAF, highlighting its role as a barrier to effective treatment. This review explores the mechanisms underlying MED12 dysregulation, its impact on cancer progression, and its association with therapeutic resistance. By examining its potential as a predictive biomarker and a therapeutic target, the article underscores the importance of MED12 in advancing precision oncology. Understanding MED12-mediated mechanisms offers insights into overcoming therapeutic resistance and paves the way for innovative, personalized cancer treatments.
Collapse
Affiliation(s)
- Ritesh Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India.
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Jagruti Shinkar
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Sonali Labhade
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Pawan Karwa
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Harshad Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| |
Collapse
|
2
|
Chou CH, Huang WJ, Hsu KC, Hsu JY, Lin TE, Yang CR. The Cyclin-Dependent Kinase 8 Inhibitor E966-0530-45418 Attenuates Pulmonary Fibrosis In Vitro and In Vivo. Int J Biol Sci 2025; 21:685-707. [PMID: 39781457 PMCID: PMC11705631 DOI: 10.7150/ijbs.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms. We discovered that CDK8 is upregulated in lung tissues from idiopathic pulmonary fibrosis patients and in a bleomycin-induced PF mouse model. Our study further revealed that E966-0530-45418 inhibits PF progression by attenuating the activity of the transcription factor Smad3, which is involved in TGF-β1/Smad signaling, along with RNA polymerase II to downregulate fibrosis-associated protein expression in alveolar epithelia and lung fibroblasts and consequently mitigate myofibroblast differentiation and collagen deposition. E966-0530-45418 also blocks STAT3 signaling to obstruct M2 macrophage polarization, further suppressing PF progression. Moreover, E966-0530-45418 administration ameliorated lung function deterioration and lung parenchymal destruction in the bleomycin-induced PF mouse model. These findings indicate that E966-0530-45418 holds promise as a pioneering CDK8 inhibitor for treating PF.
Collapse
Affiliation(s)
- Ching-Hsuan Chou
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Jan Huang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jui-Yi Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. Development 2024; 151:dev203111. [PMID: 39531377 PMCID: PMC11634032 DOI: 10.1242/dev.203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The Mediator complex plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising CDK8, Cyclin C (CycC), Med12 and Med13, serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes associated with mutations in CKM subunits, but the underlying mechanisms have remained unclear. Using Drosophila as a model, we generated transgenic strains to deplete individually or simultaneously the four CKM subunits in all possible combinations, uncovering unique phenotypes in the eyes and wings. Depletion of CDK8-CycC enhanced E2F1 target gene expression and promoted cell-cycle progression, whereas Med12-Med13 depletion had no significant impact on these processes. Instead, depleting Med12-Med13 altered the expression of ribosomal protein genes and fibrillarin, and reduced nascent protein synthesis, indicating a severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. These findings reveal distinct in vivo roles for CKM subunits, with Med12-Med13 disruption having a more pronounced effect on ribosome biogenesis and protein synthesis than CDK8-CycC loss.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yue Xing
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ye Niu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yanwu Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Chao TC, Chen SF, Kim HJ, Tang HC, Tseng HC, Xu A, Palao L, Khadka S, Li T, Huang MF, Lee DF, Murakami K, Boyer TG, Tsai KL. Structural basis of the human transcriptional Mediator regulated by its dissociable kinase module. Mol Cell 2024; 84:3932-3949.e10. [PMID: 39321804 PMCID: PMC11832219 DOI: 10.1016/j.molcel.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/05/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.
Collapse
Affiliation(s)
- Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hsiang-Ching Tseng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Subash Khadka
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
5
|
Li T, Chao TC, Tsai KL. Structures and compositional dynamics of Mediator in transcription regulation. Curr Opin Struct Biol 2024; 88:102892. [PMID: 39067114 PMCID: PMC11779508 DOI: 10.1016/j.sbi.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), functions as a critical coregulator during RNA polymerase II (RNAPII) transcription. cMED recruits RNAPII and facilitates the assembly of the pre-initiation complex (PIC) at promoters. In contrast, CKM prevents RNAPII binding to cMED while simultaneously exerting positive or negative influence on gene transcription through its kinase function. Recent structural studies on cMED and CKM have revealed their intricate architectures and subunit interactions. Here, we explore these structures, providing a comprehensive insight into Mediator (cMED-CKM) architecture and its potential mechanism in regulating RNAPII transcription. Additionally, we discuss the remaining puzzles that require further investigation to fully understand how cMED coordinates with CKM to regulate transcription in various events.
Collapse
Affiliation(s)
- Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA
| | - Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston TX, USA.
| |
Collapse
|
6
|
Chen SF, Chao TC, Kim HJ, Tang HC, Khadka S, Li T, Lee DF, Murakami K, Boyer TG, Tsai KL. Structural basis of the human transcriptional Mediator complex modulated by its dissociable Kinase module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601608. [PMID: 39005267 PMCID: PMC11244988 DOI: 10.1101/2024.07.01.601608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), regulates RNA Polymerase II (Pol II)-dependent transcription. cMED recruits Pol II and promotes pre-initiation complex (PIC) formation in a manner inhibited by the CKM, which is also implicated in post-initiation control of gene expression. Herein we report cryo-electron microscopy structures of the human complete Mediator and its CKM, which explains the basis for CKM inhibition of cMED-activated transcription. The CKM binds to cMED through an intrinsically disordered region (IDR) in MED13 and HEAT repeats in MED12. The CKM inhibits transcription by allocating its MED13 IDR to occlude binding of Pol II and MED26 to cMED and further obstructing cMED-PIC assembly through steric hindrance with TFIIH and the +1 nucleosome. Notably, MED12 binds to the cMED Hook, positioning CDK8 downstream of the transcription start site, which sheds new light on its stimulatory function in post-initiation events.
Collapse
|
7
|
Olson SL, Akbar RJ, Gorniak A, Fuhr LI, Borahay MA. Hypoxia in uterine fibroids: role in pathobiology and therapeutic opportunities. OXYGEN (BASEL, SWITZERLAND) 2024; 4:236-252. [PMID: 38957794 PMCID: PMC11218552 DOI: 10.3390/oxygen4020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Uterine fibroids are the most common tumors in females affecting up to 70% of women world-wide, yet targeted therapeutic options are limited. Oxidative stress has recently surfaced as a key driver of fibroid pathogenesis and provides insights into hypoxia-induced cell transformation, extracellular matrix pathophysiology, hypoxic cell signaling cascades, and uterine biology. Hypoxia drives fibroid tumorigenesis through (1) promoting myometrial stem cell proliferation, (2) causing DNA damage propelling transformation of stem cells to tumor initiating cells, and (3) driving excess extracellular matrix (ECM) production. Common fibroid-associated DNA mutations include MED12 mutations, HMGA2 overexpression, and Fumarate hydratase loss of function. Evidence suggests an interaction between hypoxia signaling and these mutations. Fibroid development and growth are promoted by hypoxia-triggered cell signaling via various pathways including HIF-1, TGFβ, and Wnt/β-catenin. Fibroid-associated hypoxia persists due to antioxidant imbalance, ECM accumulation, and growth beyond adequate vascular supply. Current clinically available fibroid treatments do not take advantage of hypoxia-targeting therapies. Growing pre-clinical and clinical studies identify ROS inhibitors, anti-HIF-1 agents, Wnt/β-catenin inhibition, and TGFβ cascade inhibitors as agents that may reduce fibroid development and growth through targeting hypoxia.
Collapse
Affiliation(s)
- Sydney L. Olson
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | | | - Adrianna Gorniak
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Laura I. Fuhr
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mostafa A. Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
8
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591924. [PMID: 38746212 PMCID: PMC11092604 DOI: 10.1101/2024.04.30.591924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Mediator complex, composed of about 30 conserved subunits, plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising Med12, Med13, CDK8, and CycC (Cyclin C), serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes of CDK8-CycC and Med12-Med13 mutations, yet the underlying mechanism has remained unknown. Here, using Drosophila as a model organism, we show that depleting CDK8-CycC enhances E2F1 target gene expression and promotes cell-cycle progression. Conversely, depletion of Med12-Med13 affects the expression of ribosomal protein genes and fibrillarin, indicating a more severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Moreover, we found that the stability of CDK8 and CycC relies on Med12 and Med13, with a mutually interdependent relationship between Med12 and Med13. Furthermore, CycC stability depends on the other three CKM subunits. These findings reveal distinct roles for CKM subunits in vivo , with Med12-Med13 disruption exerting a more pronounced impact on ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Significance The CDK8 kinase module (CKM), comprising CDK8, CycC, Med12, and Med13, is essential in the Mediator complex for RNA polymerase II-dependent transcription in eukaryotes. While expected to function jointly, CKM subunit mutations result in distinct phenotypes in Drosophila . This study investigates the mechanisms driving these differing effects. Our analysis reveals the role of Med12-Med13 pair in regulating ribosomal biogenesis and cellular growth, contrasting with the involvement of CDK8-CycC in E2F1-dependent cell-cycle progression. Additionally, an asymmetric interdependence in the stability of CDK8-CycC and Med12-Med13 was observed. CKM mutations or overexpression are associated with cancers and cardiovascular diseases. Our findings underscore the distinct impacts of CKM mutations on cellular growth and proliferation, advancing our understanding of their diverse consequences in vivo .
Collapse
|
9
|
Yang JH, Liu ZG, Liu CL, Zhang MR, Jia YL, Zhai QX, He MF, He N, Qiao JD. MED12 variants associated with X-linked recessive partial epilepsy without intellectual disability. Seizure 2024; 116:30-36. [PMID: 36894399 DOI: 10.1016/j.seizure.2023.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES The MED12 gene encodes mediator complex subunit 12, which is a component of the mediator complex involved in the transcriptional regulation of nearly all RNA polymerase II-dependent genes. MED12 variants have previously been associated with developmental disorders with or without nonspecific intellectual disability. This study aims to explore the association between MED12 variants and epilepsy. MATERIALS AND METHODS Trios-based whole-exome sequencing was performed in a cohort of 349 unrelated cases with partial (focal) epilepsy without acquired causes. The genotype-phenotype correlations of MED12 variants were analyzed. RESULTS Five hemizygous missense MED12 variants, including c.958A>G/p.Ile320Val, c.1757G>A/p.Ser586Asn, c.2138C>T/p.Pro713Leu, c.3379T>C/p.Ser1127Pro, and c.4219A>C/p.Met1407Leu were identified in five unrelated males with partial epilepsy. All patients showed infrequent focal seizures and achieved seizure free without developmental abnormalities or intellectual disability. All the hemizygous variants were inherited from asymptomatic mothers (consistent with the X-linked recessive inheritance pattern) and were absent in the general population. The two variants with damaging hydrogen bonds were associated with early-onset seizures. Further genotype-phenotype analysis revealed that congenital anomaly disorder (Hardikar syndrome) was associated with (de novo) destructive variants in an X-linked dominant inheritance pattern, whereas epilepsy was associated with missense variants in an X-linked recessive inheritance pattern. Phenotypic features of intellectual disability appeared as the intermediate phenotype in terms of both genotype and inheritance. Epilepsy-related variants were located at the MED12-LCEWAV domain and the regions between MED12-LCEWAV and MED12-POL. CONCLUSION MED12 is a potentially causative gene for X-linked recessive partial epilepsy without developmental or intellectual abnormalities. The genotype-phenotype correlation of MED12 variants explains the phenotypic variations and can help the genetic diagnosis.
Collapse
Affiliation(s)
- Jie-Hua Yang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Chun-Ling Liu
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Rui Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Lu Jia
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong-Xiang Zhai
- Department of pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Crawford T, Siebler L, Sulkowska A, Nowack B, Jiang L, Pan Y, Lämke J, Kappel C, Bäurle I. The Mediator kinase module enhances polymerase activity to regulate transcriptional memory after heat stress in Arabidopsis. EMBO J 2024; 43:437-461. [PMID: 38228917 PMCID: PMC10897291 DOI: 10.1038/s44318-023-00024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.
Collapse
Affiliation(s)
- Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lara Siebler
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Bryan Nowack
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Yufeng Pan
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
11
|
Liu X, Liu J, Yan B, Quan Z, Wang X, Ma Y, Alarfaj AA, Yan L. Study of the PI3K/Akt/mTOR signaling pathway in vitro and molecular docking analysis of periplocin inhibits cell cycle progression and induces apoptosis in MDA-MB-231. ENVIRONMENTAL TOXICOLOGY 2024; 39:444-456. [PMID: 37792628 DOI: 10.1002/tox.23981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Breast cancer mainly affects women and is the second leading cause of cancer-related deaths worldwide. Breast cancer affects women aged 15-59. The current study explored periplocin's anticancer activities against breast cancer MDA-MB-231 cells by down-regulating the PI3K/Akt/mTOR pathway. The MTT assay assessed control-treated and periplocin (2.5-50 μM) treated MDA-MB-231 cell viability. ROS accumulation and apoptosis levels in periplocin-treated cells were examined using DAPI, dual staining, and Annexin V-FITC/PI assays. Caspase enzymes were studied using assay kits. Flow cytometry was used to measure cell cycle distributions. Periplocin-treated cells were analyzed using RT-PCR assays and insilico analyses for the expression of PI3K/Akt/mTOR molecules. The periplocin treatment remarkably reduced the viability of the MDA-MB-231 cells, with an IC50 concentration of 7.5 μM. The fluorescent staining assays revealed a substantial increase in ROS levels and apoptotic events in the periplocin-treated cells. The flow cytometry analysis revealed that periplocin triggered apoptosis and arrested the cell cycle in G0/G1 phases. Periplocin increased the caspase-3, -8, and -9 enzyme activities. In MDA-MB-231 cells, Periplocin decreased PI3K/Akt/mTOR activity, and in silico analysis, Periplocin was inhibited by CDK8-Cyclin C interactions. Periplocin has anticancer properties against breast cancer and may be an effective therapeutic agent for treating breast cancer.
Collapse
Affiliation(s)
- Xiaomin Liu
- Thyroid and Breast Surgery, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Jinsheng Liu
- Thyroid and Breast Surgery, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Bing Yan
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
- Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi Province, China
| | - Zhuo Quan
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
- Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi Province, China
| | - Xiaolong Wang
- Thyroid and Breast Surgery, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Yujing Ma
- Thyroid and Breast Surgery, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lei Yan
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
- Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi Province, China
| |
Collapse
|
12
|
Ghasemi S, Mahdavi M, Maleki M, Salahshourifar I, Kalayinia S. Novel pathogenic variant in MED12 causing non-syndromic dilated cardiomyopathy. BMC Med Genomics 2023; 16:334. [PMID: 38129817 PMCID: PMC10734089 DOI: 10.1186/s12920-023-01780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a major cause of sudden cardiac death and heart failure. Up to 50% of all DCM cases have a genetic background, with variants in over 250 genes reported in association with DCM. Whole-exome sequencing (WES) is a powerful tool to identify variants underlying genetic cardiomyopathies. Via WES, we sought to identify DCM causes in a family with 2 affected patients. METHODS WES was performed on the affected members of an Iranian family to identify the genetic etiology of DCM. The candidate variant was segregated via polymerase chain reaction and Sanger sequencing. Computational modeling and protein-protein docking were performed to survey the impact of the variant on the structure and function of the protein. RESULTS A novel single-nucleotide substitution (G > A) in exon 9 of MED12, c.1249G > A: p.Val417Ile, NM_005120.3, was identified. The c.1249G > A variant was validated in the family. Bioinformatic analysis and computational modeling confirmed that c.1249G > A was the pathogenic variant responsible for the DCM phenotype. CONCLUSION We detected a novel DCM-causing variant in MED12 using WES. The variant in MED12 may decrease binding to cyclin-dependent kinase 8 (CDK8), affect its activation, and cause alterations in calcium-handling gene expression in the heart, leading to DCM.
Collapse
Affiliation(s)
- Serwa Ghasemi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Salahshourifar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Li T, Tang HC, Tsai KL. Unveiling the noncanonical activation mechanism of CDKs: insights from recent structural studies. Front Mol Biosci 2023; 10:1290631. [PMID: 38028546 PMCID: PMC10666765 DOI: 10.3389/fmolb.2023.1290631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The Cyclin-dependent kinases (CDKs) play crucial roles in a range of essential cellular processes. While the classical two-step activation mechanism is generally applicable to cell cycle-related CDKs, both CDK7 and CDK8, involved in transcriptional regulation, adopt distinct mechanisms for kinase activation. In both cases, binding to their respective cyclin partners results in only partial activity, while their full activation requires the presence of an additional subunit. Recent structural studies of these two noncanonical kinases have provided unprecedented insights into their activation mechanisms, enabling us to understand how the third subunit coordinates the T-loop stabilization and enhances kinase activity. In this review, we summarize the structure and function of CDK7 and CDK8 within their respective functional complexes, while also describing their noncanonical activation mechanisms. These insights open new avenues for targeted drug discovery and potential therapeutic interventions in various diseases related to CDK7 and CDK8.
Collapse
Affiliation(s)
- Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
14
|
Zuberi A, Huang Y, Dotts AJ, Wei H, Coon JS, Liu S, Iizuka T, Wu O, Sotos O, Saini P, Chakravarti D, Boyer TG, Dai Y, Bulun SE, Yin P. MED12 mutation activates the tryptophan/kynurenine/AHR pathway to promote growth of uterine leiomyomas. JCI Insight 2023; 8:e171305. [PMID: 37607000 PMCID: PMC10561729 DOI: 10.1172/jci.insight.171305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.
Collapse
Affiliation(s)
- Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yongchao Huang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ariel J. Dotts
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen Wei
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John S. Coon
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shimeng Liu
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Olivia Wu
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Olivia Sotos
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Priyanka Saini
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
15
|
Cohen S, Schneidman-Duhovny D. A deep learning model for predicting optimal distance range in crosslinking mass spectrometry data. Proteomics 2023; 23:e2200341. [PMID: 37070547 DOI: 10.1002/pmic.202200341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
Macromolecular assemblies play an important role in all cellular processes. While there has recently been significant progress in protein structure prediction based on deep learning, large protein complexes cannot be predicted with these approaches. The integrative structure modeling approach characterizes multi-subunit complexes by computational integration of data from fast and accessible experimental techniques. Crosslinking mass spectrometry is one such technique that provides spatial information about the proximity of crosslinked residues. One of the challenges in interpreting crosslinking datasets is designing a scoring function that, given a structure, can quantify how well it fits the data. Most approaches set an upper bound on the distance between Cα atoms of crosslinked residues and calculate a fraction of satisfied crosslinks. However, the distance spanned by the crosslinker greatly depends on the neighborhood of the crosslinked residues. Here, we design a deep learning model for predicting the optimal distance range for a crosslinked residue pair based on the structures of their neighborhoods. We find that our model can predict the distance range with the area under the receiver-operator curve of 0.86 and 0.7 for intra- and inter-protein crosslinks, respectively. Our deep scoring function can be used in a range of structure modeling applications.
Collapse
Affiliation(s)
- Shon Cohen
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Rengachari S, Schilbach S, Cramer P. Mediator structure and function in transcription initiation. Biol Chem 2023; 404:829-837. [PMID: 37078249 DOI: 10.1515/hsz-2023-0158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Recent advances in cryo-electron microscopy have led to multiple structures of Mediator in complex with the RNA polymerase II (Pol II) transcription initiation machinery. As a result we now hold in hands near-complete structures of both yeast and human Mediator complexes and have a better understanding of their interactions with the Pol II pre-initiation complex (PIC). Herein, we provide a summary of recent achievements and discuss their implications for future studies of Mediator and its role in gene regulation.
Collapse
Affiliation(s)
- Srinivasan Rengachari
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
17
|
Gollner A, Heine C, Hofbauer KS. Kinase Degraders, Activators, and Inhibitors: Highlights and Synthesis Routes to the Chemical Probes on opnMe.com, Part 1. ChemMedChem 2023; 18:e202300031. [PMID: 36825440 DOI: 10.1002/cmdc.202300031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Kinases are among the most important and successful drug targets. Chemical probe compounds have played a critical role in elucidating the role of kinases in many biological pathways. There are currently twelve well-validated chemical probes that target kinases available free-of-cost via the Molecules to Order (M2O) arm of Boehringer Ingelheim's open innovation platform, opnMe.com. Here we present a summary of the key data for each of these probe compounds and the synthesis routes to all twelve compounds. We hope this will aid researchers who use or plan to use these compounds in their research.
Collapse
Affiliation(s)
- Andreas Gollner
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co. KG, Boehringer-Gasse, Wien, 5-11, 1121 Vienna, Austria
| | - Claudia Heine
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co. KG, 88400, Biberach, Germany
| | - Karin S Hofbauer
- Department of Medicinal Chemistry, Boehringer Ingelheim RCV GmbH & Co. KG, Boehringer-Gasse, Wien, 5-11, 1121 Vienna, Austria
| |
Collapse
|
18
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
19
|
Towards a structurally resolved human protein interaction network. Nat Struct Mol Biol 2023; 30:216-225. [PMID: 36690744 PMCID: PMC9935395 DOI: 10.1038/s41594-022-00910-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/14/2022] [Indexed: 01/25/2023]
Abstract
Cellular functions are governed by molecular machines that assemble through protein-protein interactions. Their atomic details are critical to studying their molecular mechanisms. However, fewer than 5% of hundreds of thousands of human protein interactions have been structurally characterized. Here we test the potential and limitations of recent progress in deep-learning methods using AlphaFold2 to predict structures for 65,484 human protein interactions. We show that experiments can orthogonally confirm higher-confidence models. We identify 3,137 high-confidence models, of which 1,371 have no homology to a known structure. We identify interface residues harboring disease mutations, suggesting potential mechanisms for pathogenic variants. Groups of interface phosphorylation sites show patterns of co-regulation across conditions, suggestive of coordinated tuning of multiple protein interactions as signaling responses. Finally, we provide examples of how the predicted binary complexes can be used to build larger assemblies helping to expand our understanding of human cell biology.
Collapse
|
20
|
Wang L, Xu L, Wang Z, Hou T, Hao H, Sun H. Cooperation of structural motifs controls drug selectivity in cyclin-dependent kinases: an advanced theoretical analysis. Brief Bioinform 2023; 24:6964518. [PMID: 36578163 DOI: 10.1093/bib/bbac544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/30/2022] Open
Abstract
Understanding drug selectivity mechanism is a long-standing issue for helping design drugs with high specificity. Designing drugs targeting cyclin-dependent kinases (CDKs) with high selectivity is challenging because of their highly conserved binding pockets. To reveal the underlying general selectivity mechanism, we carried out comprehensive analyses from both the thermodynamics and kinetics points of view on a representative CDK12 inhibitor. To fully capture the binding features of the drug-target recognition process, we proposed to use kinetic residue energy analysis (KREA) in conjunction with the community network analysis (CNA) to reveal the underlying cooperation effect between individual residues/protein motifs to the binding/dissociating process of the ligand. The general mechanism of drug selectivity in CDKs can be summarized as that the difference of structural cooperation between the ligand and the protein motifs leads to the difference of the energetic contribution of the key residues to the ligand. The proposed mechanisms may be prevalent in drug selectivity issues, and the insights may help design new strategies to overcome/attenuate the drug selectivity associated problems.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | | | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
21
|
Rathod S, Shinde K, Porlekar J, Choudhari P, Dhavale R, Mahuli D, Tamboli Y, Bhatia M, Haval KP, Al-Sehemi AG, Pannipara M. Computational Exploration of Anti-cancer Potential of Flavonoids against Cyclin-Dependent Kinase 8: An In Silico Molecular Docking and Dynamic Approach. ACS OMEGA 2023; 8:391-409. [PMID: 36643495 PMCID: PMC9835631 DOI: 10.1021/acsomega.2c04837] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Over the centuries, cancer has been considered one of the significant health threats. It holds the position in the list of deadliest diseases over the globe. In women, breast cancer is the most common among many cancers and is the second most common cancer all over the world, while lung cancer is the first. Cyclin-dependent kinase 8 (CDK8) has been identified as a critical oncogenic driver that is found in breast cancer and associated with tumor progression. Flavonoids were virtually screened against CDK8 using molecular docking, drug-likeness, ADMET prediction, and a molecular dynamics (MD) simulation approach to determine the potential flavonoid structure against CDK8. The results indicated that ZINC000005854718 showed the highest negative binding affinity of -10.7 kcal/mol with the targeted protein and passed all the drug-likeness parameters. Performed molecular dynamics simulation showed that docked complex systems have good conformational stability over 100 ns in different temperatures (298, 300, 305, 310, and 320 K). The comparison between calculated binding free energy via MM/PB(GB)SA methods and binding affinity calculated via molecular docking suggested tight binding of ZINC000005854718 with targeted protein. The results concluded that ZINC000005854718 has drug-like properties with tight and stable binding with the targeted protein.
Collapse
Affiliation(s)
- Sanket Rathod
- Department
of Pharmaceutical Chemistry, Bharati Vidyapeeth
College of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Ketaki Shinde
- Department
of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune 411 038, Maharashtra, India
| | - Jaykedar Porlekar
- Department
of Pharmaceutics, Bharati Vidyapeeth College
of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Prafulla Choudhari
- Department
of Pharmaceutical Chemistry, Bharati Vidyapeeth
College of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Rakesh Dhavale
- Department
of Pharmaceutics, Bharati Vidyapeeth College
of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Deepak Mahuli
- Department
of Pharmacology, Bharati Vidyapeeth College
of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Yasinalli Tamboli
- Wockhardt
Research Centre, D-4, MIDC, Chikalthana, Aurangabad 431 006, Maharashtra, India
| | - Manish Bhatia
- Department
of Pharmaceutical Chemistry, Bharati Vidyapeeth
College of Pharmacy, Kolhapur 416 013, Maharashtra, India
| | - Kishan P. Haval
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University Sub Campus, Osmanabad 413501, Maharashtra, India
| | | | | |
Collapse
|
22
|
Lambert É, Puwakdandawa K, Tao YF, Robert F. From structure to molecular condensates: emerging mechanisms for Mediator function. FEBS J 2023; 290:286-309. [PMID: 34698446 DOI: 10.1111/febs.16250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Mediator is a large modular protein assembly whose function as a coactivator of transcription is conserved in all eukaryotes. The Mediator complex can integrate and relay signals from gene-specific activators bound at enhancers to activate the general transcription machinery located at promoters. It has thus been described as a bridge between these elements during initiation of transcription. Here, we review recent studies on Mediator relating to its structure, gene specificity and general requirement, roles in chromatin architecture as well as novel concepts involving phase separation and transcriptional bursting. We revisit the mechanism of action of Mediator and ultimately put forward models for its mode of action in gene activation.
Collapse
Affiliation(s)
- Élie Lambert
- Institut de recherches cliniques de Montréal, Canada
| | | | - Yi Fei Tao
- Institut de recherches cliniques de Montréal, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Canada
| |
Collapse
|
23
|
Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, Regev A, Lin TY, Liberatore K, Cizin DM, Cohen BM, Vasan N, Ma Y, Krismer K, Robles JT, van de Kooij B, van Vlimmeren AE, Andrée-Busch N, Käufer NF, Dorovkov MV, Ryazanov AG, Takagi Y, Kastenhuber ER, Goncalves MD, Hopkins BD, Elemento O, Taatjes DJ, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry SD, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck PV, Turk BE, Yaffe MB, Cantley LC. An atlas of substrate specificities for the human serine/threonine kinome. Nature 2023; 613:759-766. [PMID: 36631611 PMCID: PMC9876800 DOI: 10.1038/s41586-022-05575-3] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.
Collapse
Affiliation(s)
- Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and The Rockefeller University, New York, NY, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY, USA
| | - Katarina Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Bert van de Kooij
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E van Vlimmeren
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole Andrée-Busch
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Norbert F Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maxim V Dorovkov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward R Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Rune Linding
- Rewire Tx, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Edelmann J. NOTCH1 Signalling: A key pathway for the development of high-risk chronic lymphocytic leukaemia. Front Oncol 2022; 12:1019730. [DOI: 10.3389/fonc.2022.1019730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
NOTCH1 is a cell surface receptor that releases its intracellular domain as transcription factor upon activation. With the advent of next-generation sequencing, the NOTCH1 gene was found recurrently mutated in chronic lymphocytic leukaemia (CLL). Here, virtually all NOTCH1 mutations affect the protein’s PEST-domain and impair inactivation and degradation of the released transcription factor, thus increasing NOTCH1 signalling strength. Besides sequence alterations directly affecting the NOTCH1 gene, multiple other genomic and non-genomic alterations have by now been identified in CLL cells that could promote an abnormally strong NOTCH1 signalling strength. This renders NOTCH1 one of the key signalling pathways in CLL pathophysiology. The frequency of genomic alterations affecting NOTCH1 signalling is rising over the CLL disease course culminating in the observation that besides TP53 loss, 8q gain and CDKN2A/B loss, NOTCH1 mutation is a hallmark genomic alteration associated with transformation of CLL into an aggressive lymphoma (Richter transformation). Both findings associate de-regulated NOTCH1 signalling with the development of high-risk CLL. This narrative review provides data on the role of NOTCH1 mutation for CLL development and progression, discusses the impact of NOTCH1 mutation on treatment response, gives insight into potential modes of NOTCH1 pathway activation and regulation, summarises alterations that have been discussed to contribute to a de-regulation of NOTCH1 signalling in CLL cells and provides a perspective on how to assess NOTCH1 signalling in CLL samples.
Collapse
|
25
|
Hazra S, Ray AS, Rahaman CH. Natural Phytocompounds from Common Indian Spices for Identification of Three Potential Inhibitors of Breast Cancer: A Molecular Modelling Approach. Molecules 2022; 27:molecules27196590. [PMID: 36235128 PMCID: PMC9573590 DOI: 10.3390/molecules27196590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the second most common cancer-related cause of death for women throughout the globe. In spite of some effective measures, the main concerns with traditional anti-cancer chemotherapy are its low bioavailability, physical side effects, acquired resistance of cancer cells and non-specific targeting. Now researchers have taken the initiative to establish natural product-based therapy methods and to identify viable hits for future lead optimization in the development of breast cancer medication. Our study aims to identify the potent phytocompounds from five very popular Indian spices (Zingiber officinale Roscoe, Cuminum cyminum L., Piper nigrum L., Curcuma longa L., and Allium sativum L.). From these spices, a total of 200 phytocompounds were identified and screened against three target genes, namely, cyclin-dependent kinase 8 (CDK 8), progesterone receptor (PR) and epidermal growth factor receptor (EGFR), through structure-based virtual screening using iGEMDOCK 2.1 software. Based on the binding affinity score, the top three phytocompounds against each target protein (cynaroside (-149.66 Kcal/mol), apigetrin (-139.527 Kcal/mol) and curcumin (-138.149 Kcal/mol) against CDK8; apigetrin (-123.298 Kcal/mol), cynaroside (-118.635 Kcal/mol) and xyloglucan (-113.788 Kcal/mol) against PR; cynaroside (-119.18 Kcal/mol), apigetrin (-105.185 Kcal/mol) and xyloglucan (-105.106 Kcal/mol) against EGFR) were selected. Apigetrin, cynaroside, curcumin, and xyloglucan were finally identified for further docking analysis with the respective three target proteins. Autodock 4.2 was applied to screen the optimal binding position and to assess the relative intensity of binding interactions. In addition, the ADME/T property checks and bioactivity scores analysis of were performed to understand the suitability of these four phytocompounds to be potential candidates for developing effective and non-toxic anticancer agents. Based on this in silico analysis, we believe this study could contribute to current efforts to develop new drugs for treating breast cancer.
Collapse
Affiliation(s)
- Samik Hazra
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Anindya Sundar Ray
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
- Department of Animal Science, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Correspondence: (A.S.R.); (C.H.R.)
| | - Chowdhury Habibur Rahaman
- Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati, Santiniketan 731235, West Bengal, India
- Correspondence: (A.S.R.); (C.H.R.)
| |
Collapse
|
26
|
Yasutake N, Iwasaki T, Yamamoto H, Sonoda K, Kodama K, Okugawa K, Asanoma K, Yahata H, Kato K, Oda Y. Cyclin-dependent kinase 8 is an independent prognosticator in uterine leiomyosarcoma. Pathol Res Pract 2022; 235:153920. [DOI: 10.1016/j.prp.2022.153920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
27
|
|
28
|
Muralimanoharan S, Shamby R, Stansbury N, Schenken R, de la Pena Avalos B, Javanmardi S, Dray E, Sung P, Boyer TG. Aberrant R-loop-induced replication stress in MED12-mutant uterine fibroids. Sci Rep 2022; 12:6169. [PMID: 35418189 PMCID: PMC9008039 DOI: 10.1038/s41598-022-10188-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Uterine fibroid (UF) driver mutations in Mediator complex subunit 12 (MED12) trigger genomic instability and tumor development through unknown mechanisms. Herein, we show that MED12 mutations trigger aberrant R-loop-induced replication stress, suggesting a possible route to genomic instability and a novel therapeutic vulnerability in this dominant UF subclass. Immunohistochemical analyses of patient-matched tissue samples revealed that MED12 mutation-positive UFs, compared to MED12 mutation-negative UFs and myometrium, exhibited significantly higher levels of R-loops and activated markers of Ataxia Telangiectasia and Rad3-related (ATR) kinase-dependent replication stress signaling in situ. Single molecule DNA fiber analysis revealed that primary cells from MED12 mutation-positive UFs, compared to those from patient-matched MED12 mutation-negative UFs and myometrium, exhibited defects in replication fork dynamics, including reduced fork speeds, increased and decreased numbers of stalled and restarted forks, respectively, and increased asymmetrical bidirectional forks. Notably, these phenotypes were recapitulated and functionally linked in cultured uterine smooth muscle cells following chemical inhibition of Mediator-associated CDK8/19 kinase activity that is known to be disrupted by UF driver mutations in MED12. Thus, Mediator kinase inhibition triggered enhanced R-loop formation and replication stress leading to an S-phase cell cycle delay, phenotypes that were rescued by overexpression of the R-loop resolving enzyme RNaseH. Altogether, these findings reveal MED12-mutant UFs to be uniquely characterized by aberrant R-loop induced replication stress, suggesting a possible basis for genomic instability and new avenues for therapeutic intervention that involve the replication stress phenotype in this dominant UF subtype.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Ross Shamby
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Nicholas Stansbury
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | | | - Samin Javanmardi
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
29
|
Sarnowski CP, Bikaki M, Leitner A. Cross-linking and mass spectrometry as a tool for studying the structural biology of ribonucleoproteins. Structure 2022; 30:441-461. [PMID: 35366400 DOI: 10.1016/j.str.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Cross-linking and mass spectrometry (XL-MS) workflows represent an increasingly popular technique for low-resolution structural studies of macromolecular complexes. Cross-linking reactions take place in the solution state, capturing contact sites between components of a complex that represent the native, functionally relevant structure. Protein-protein XL-MS protocols are widely adopted, providing precise localization of cross-linking sites to single amino acid positions within a pair of cross-linked peptides. In contrast, protein-RNA XL-MS workflows are evolving rapidly and differ in their ability to localize interaction regions within the RNA sequence. Here, we review protein-protein and protein-RNA XL-MS workflows, and discuss their applications in studies of protein-RNA complexes. The examples highlight the complementary value of XL-MS in structural studies of protein-RNA complexes, where more established high-resolution techniques might be unable to produce conclusive data.
Collapse
Affiliation(s)
- Chris P Sarnowski
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland; Systems Biology PhD Program, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland.
| |
Collapse
|
30
|
Venigalla S, Straub J, Idigo O, Rinderle C, Stephens JM, Newman JJ. MED12 Regulates Human Adipose-Derived Stem Cell Adipogenesis and Mediator Kinase Subunit Expression in Murine Adipose Depots. Stem Cells Dev 2022; 31:119-131. [PMID: 35018809 PMCID: PMC9206493 DOI: 10.1089/scd.2021.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mediator kinase module plays a critical role in the regulation of transcription during metabolic processes. Here we demonstrate that in human adipose-derived stem cells (hASCs), kinase module subunits have distinct mRNA and protein expression profiles during different stages of adipogenesis. In addition, siRNA-mediated loss of MED12 results in decreased adipogenesis as evident through decreased lipid accumulation and decreased expression of PPARγ, a master regulator of adipogenesis. Moreover, the decrease in adipogenesis and reduced PPARγ expression are observed only during the early stages of MED12 knockdown. At later stages, knockdown of MED12 did not have any significant effects on adipogenesis or PPARγ expression. We also observed that MED12 was present in a protein complex with PPARγ and C/EBPα during all stages of adipogenesis in hASCs. In 3T3-L1 preadipocytes and adipocytes, MED12 is present in protein complexes with PPARγ1, C/EBPα, and STAT5A. CDK8, another member of the kinase module, was only found to interact with C/EBPα. We found that the expression of all kinase module subunits decreased in inguinal, gonadal, and retroperitoneal white adipose tissue (WAT) depots in the fed state after an overnight fast, whereas the expression of kinase module subunits remained consistent in mesenteric WAT (mWAT) and brown adipose tissue. These data demonstrate that the kinase module undergoes physiologic regulation during fasting and feeding in specific mouse adipose tissue depots, and that MED12 likely plays a specific role in initiating and maintaining adipogenesis.
Collapse
Affiliation(s)
- Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Onyekachi Idigo
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Caroline Rinderle
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | | | - Jamie J. Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA.,Address correspondence to: Dr. Jamie J. Newman, School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
31
|
Gonzalez C, Akula S, Burleson M. The role of mediator subunit 12 in tumorigenesis and cancer therapeutics (Review). Oncol Lett 2022; 23:74. [PMID: 35111243 PMCID: PMC8771631 DOI: 10.3892/ol.2022.13194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Mediator complex subunit 12 (MED12) is a subunit of Mediator, a large multi-subunit protein complex that acts an important regulator of transcription. Specifically, MED12 is an integral part of the kinase module of Mediator along with MED13, CyclinC (CycC) and CDK8. Structural studies have indicated that MED12 makes a direct connection to CycC through a specific interface and thereby functions to create a link between MED13 and CycC-CDK8. Disruption of the MED12-CycC interface often leads to dysregulated CDK8 kinase activity, which has important physiological implications. For example, a number of studies have indicated that mutations within MED12 can lead to the formation of benign or malignant tumors, either as a result of MED12-CycC disruption or through distinct independent mechanisms. Furthermore, recent studies have indicated that the N-terminal portion of MED12 forms a direct connection to CDK8. Mutations within MED12 do not appear to disrupt the physical connection to CDK8, but rather abrogate CDK8 kinase activity. Thus, mutations in MED12 can cause disruption of CDK8 kinase activity through two separate mechanisms. The aim of the present review article was to discuss the MED12 mutational landscape in a variety of benign and malignant tumors, as well as the mechanistic basis behind tumorigenesis. Furthermore, the link between MED12 and drug resistance has also been discussed, as well as potential cancer therapeutics related to MED12-altered tumors.
Collapse
Affiliation(s)
- Cristian Gonzalez
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Shivani Akula
- Department of Chemistry, University of The Incarnate Word, San Antonio, TX 78209, USA
| | - Marieke Burleson
- Department of Biology, University of The Incarnate Word, San Antonio, TX 78209, USA
| |
Collapse
|
32
|
Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022; 22:5-24. [PMID: 34675395 DOI: 10.1038/s41568-021-00411-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer R Devlin
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingxing Teng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Horvath R, Hawe N, Lam C, Mestnikov K, Eji-Lasisi M, Rohde J, Sadowski I. TORC1 signaling modulates Cdk8-dependent GAL gene expression in Saccharomyces cerevisiae. Genetics 2021; 219:6381581. [PMID: 34849833 PMCID: PMC8664586 DOI: 10.1093/genetics/iyab168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
Cdk8 of the RNA polymerase II mediator kinase complex regulates gene expression by phosphorylating sequence-specific transcription factors. This function is conserved amongst eukaryotes, but the signals and mechanisms regulating Cdk8 activity and phosphorylation of its substrates are unknown. Full induction of the GAL genes in yeast requires phosphorylation of the transcriptional activator Gal4 by Cdk8. We used a screen to identify regulators of the Cdk8-dependent phosphorylation on Gal4, from which we identified multiple mutants with defects in TORC1 signaling. One mutant, designated gal four throttle 1 (gft1) was identified as a recessive allele of hom3, encoding aspartokinase, and mutations in hom3 caused effects typical of inhibition of TORC1, including rapamycin sensitivity and enhanced nuclear localization of the TORC1-responsive transcription factor Gat1. Mutations in hom3 also inhibit phosphorylation of Gal4 in vivo at the Cdk8-dependent site on Gal4, as did mutations of tor1, but these mutations did not affect activity of Cdk8 assayed in vitro. Disruption of cdc55, encoding a regulatory subunit of the TORC1-regulated protein phosphatase PP2A, suppressed the effect of hom3 and tor1 mutations on GAL expression, and also restored phosphorylation of Gal4 at the Cdk8-dependent site in vivo. These observations demonstrate that TORC1 signaling regulates GAL induction through the activity of PP2A/Cdc55 and suggest that Cdk8-dependent phosphorylation of Gal4 is opposed by PP2A/Cdc55 dephosphorylation. These results provide insight into how induction of transcription by a specific inducer can be modulated by global nutritional signals through regulation of Cdk8-dependent phosphorylation.
Collapse
Affiliation(s)
- Riley Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nicole Hawe
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cindy Lam
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Konstantin Mestnikov
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Mariam Eji-Lasisi
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
34
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
35
|
Wang N, Wang Y, Wang H, Luo N, Yang W, Zhao Z. Knockout of Calcyclin Binding Protein Impedes the Growth of Breast Cancer Cells by Regulating Cell Apoptosis and β-Catenin Signaling. DNA Cell Biol 2021; 40:1317-1324. [PMID: 34591648 DOI: 10.1089/dna.2021.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breast invasive carcinoma (BRCA) is becoming the most common malignant disease worldwide, and there is intense interest in identifying diagnostic biomarkers that can be targeted for treatment of BRCA. Recent evidence has shown that calcyclin binding protein (CacyBP) can function as either a tumor promoter or suppressor during carcinogenesis. Data in The Cancer Genome Atlas (TCGA) database show that CacyBP is overexpressed in human BRCA tissues, and high levels of CacyBP are associated with shorter overall survival. Immunohistochemical staining has shown that CacyBP levels are high in cancer tissue samples and associated with a higher likelihood of disease progression. We, therefore, conducted a knockout assay to determine the role of CacyBP in the development of BRCA. Knockout of CacyBP significantly inhibited MCF7 cell proliferation and colony formation. Apoptosis was higher in CacyBP knockout cells compared with control cells. Microarray analysis showed that the CacyBP knockout caused dysregulation of numerous genes closely related to β-catenin signaling, whereas quantitative reverse-transcription PCR and immunoblotting showed that it to be inactivated. In summary, we conclude that when overexpressed, CacyBP acts as a potential oncogene for BRCA by regulating β-catenin signaling.
Collapse
Affiliation(s)
- Ningju Wang
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yan Wang
- The First Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Huifeng Wang
- The First Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Na Luo
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenjing Yang
- The Second Department of Medicine Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhijun Zhao
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
36
|
Molecular and Cellular Insights into the Development of Uterine Fibroids. Int J Mol Sci 2021; 22:ijms22168483. [PMID: 34445194 PMCID: PMC8395213 DOI: 10.3390/ijms22168483] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Uterine leiomyomas represent the most common benign gynecologic tumor. These hormone-dependent smooth-muscle formations occur with an estimated prevalence of ~70% among women of reproductive age and cause symptoms including pain, abnormal uterine bleeding, infertility, and recurrent abortion. Despite the prevalence and public health impact of uterine leiomyomas, available treatments remain limited. Among the potential causes of leiomyomas, early hormonal exposure during periods of development may result in developmental reprogramming via epigenetic changes that persist in adulthood, leading to disease onset or progression. Recent developments in unbiased high-throughput sequencing technology enable powerful approaches to detect driver mutations, yielding new insights into the genomic instability of leiomyomas. Current data also suggest that each leiomyoma originates from the clonal expansion of a single transformed somatic stem cell of the myometrium. In this review, we propose an integrated cellular and molecular view of the origins of leiomyomas, as well as paradigm-shifting studies that will lead to better understanding and the future development of non-surgical treatments for these highly frequent tumors.
Collapse
|
37
|
Srivastava P, Takii R, Okada M, Fujimoto M, Nakai A. MED12 interacts with the heat-shock transcription factor HSF1 and recruits CDK8 to promote the heat-shock response in mammalian cells. FEBS Lett 2021; 595:1933-1948. [PMID: 34056708 DOI: 10.1002/1873-3468.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022]
Abstract
Activated and promoter-bound heat-shock transcription factor 1 (HSF1) induces RNA polymerase II recruitment upon heat shock, and this is facilitated by the core Mediator in Drosophila and yeast. Another Mediator module, CDK8 kinase module (CKM), consisting of four subunits including MED12 and CDK8, plays a negative or positive role in the regulation of transcription; however, its involvement in HSF1-mediated transcription remains unclear. We herein demonstrated that HSF1 interacted with MED12 and recruited MED12 and CDK8 to the HSP70 promoter during heat shock in mammalian cells. The kinase activity of CDK8 (and its paralog CDK19) promoted HSP70 expression partly by phosphorylating HSF1-S326 and maintained proteostasis capacity. These results indicate an important role for CKM in the protection of cells against proteotoxic stress.
Collapse
Affiliation(s)
- Pratibha Srivastava
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Mariko Okada
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
38
|
van de Plassche SR, de Brouwer APM. MED12-Related (Neuro)Developmental Disorders: A Question of Causality. Genes (Basel) 2021; 12:663. [PMID: 33925166 PMCID: PMC8146938 DOI: 10.3390/genes12050663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants.
Collapse
Affiliation(s)
| | - Arjan P. M. de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
39
|
Osman S, Mohammad E, Lidschreiber M, Stuetzer A, Bazsó FL, Maier KC, Urlaub H, Cramer P. The Cdk8 kinase module regulates interaction of the mediator complex with RNA polymerase II. J Biol Chem 2021; 296:100734. [PMID: 33933450 PMCID: PMC8191332 DOI: 10.1016/j.jbc.2021.100734] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The Cdk8 kinase module (CKM) is a dissociable part of the coactivator complex mediator, which regulates gene transcription by RNA polymerase II. The CKM has both negative and positive functions in gene transcription that remain poorly understood at the mechanistic level. In order to reconstitute the role of the CKM in transcription initiation, we prepared recombinant CKM from the yeast Saccharomyces cerevisiae. We showed that CKM bound to the core mediator (cMed) complex, sterically inhibiting cMed from binding to the polymerase II preinitiation complex (PIC) in vitro. We further showed that the Cdk8 kinase activity of the CKM weakened CKM-cMed interaction, thereby facilitating dissociation of the CKM and enabling mediator to bind the PIC in order to stimulate transcription initiation. Finally, we report that the kinase activity of Cdk8 is required for gene activation during the stressful condition of heat shock in vivo but not under steady-state growth conditions. Based on these results, we propose a model in which the CKM negatively regulates mediator function at upstream-activating sequences by preventing mediator binding to the PIC at the gene promoter. However, during gene activation in response to stress, the Cdk8 kinase activity of the CKM may release mediator and allow its binding to the PIC, thereby accounting for the positive function of CKM. This may impart improved adaptability to stress by allowing a rapid transcriptional response to environmental changes, and we speculate that a similar mechanism in metazoans may allow the precise timing of developmental transcription programs.
Collapse
Affiliation(s)
- Sara Osman
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eusra Mohammad
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexandra Stuetzer
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Fanni Laura Bazsó
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Kerstin C Maier
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics Research Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
40
|
Li YC, Chao TC, Kim HJ, Cholko T, Chen SF, Li G, Snyder L, Nakanishi K, Chang CE, Murakami K, Garcia BA, Boyer TG, Tsai KL. Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. SCIENCE ADVANCES 2021; 7:eabd4484. [PMID: 33523904 PMCID: PMC7810384 DOI: 10.1126/sciadv.abd4484] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 05/02/2023]
Abstract
The Cdk8 kinase module (CKM) in Mediator, comprising Med13, Med12, CycC, and Cdk8, regulates RNA polymerase II transcription through kinase-dependent and -independent functions. Numerous pathogenic mutations causative for neurodevelopmental disorders and cancer congregate in CKM subunits. However, the structure of the intact CKM and the mechanism by which Cdk8 is non-canonically activated and functionally affected by oncogenic CKM alterations are poorly understood. Here, we report a cryo-electron microscopy structure of Saccharomyces cerevisiae CKM that redefines prior CKM structural models and explains the mechanism of Med12-dependent Cdk8 activation. Med12 interacts extensively with CycC and activates Cdk8 by stabilizing its activation (T-)loop through conserved Med12 residues recurrently mutated in human tumors. Unexpectedly, Med13 has a characteristic Argonaute-like bi-lobal architecture. These findings not only provide a structural basis for understanding CKM function and pathological dysfunction, but also further impute a previously unknown regulatory mechanism of Mediator in transcriptional modulation through its Med13 Argonaute-like features.
Collapse
Affiliation(s)
- Yi-Chuan Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hee Jong Kim
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy Cholko
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guojie Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Snyder
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Chia-En Chang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
41
|
Straub J, Venigalla S, Newman JJ. Mediator's Kinase Module: A Modular Regulator of Cell Fate. Stem Cells Dev 2020; 29:1535-1551. [PMID: 33161841 DOI: 10.1089/scd.2020.0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective gene expression is crucial in maintaining the self-renewing and multipotent properties of stem cells. Mediator is a large, evolutionarily conserved, multi-subunit protein complex that modulates gene expression by relaying signals from cell type-specific transcription factors to RNA polymerase II. In humans, this complex consists of 30 subunits arranged in four modules. One critical module of the Mediator complex is the kinase module consisting of four subunits: MED12, MED13, CDK8, and CCNC. The kinase module exists in variable association with the 26-subunit Mediator core and affects transcription through phosphorylation of transcription factors and by controlling Mediator structure and function. Many studies have shown the kinase module to be a key player in the maintenance of stem cells that is distinct from a general role in transcription. Genetic studies have revealed that dysregulation of this kinase subunit contributes to the development of many human diseases. In this review, we discuss the importance of the Mediator kinase module by examining how this module functions with the more recently identified transcriptional super-enhancers, how changes in the kinase module and its activity can lead to the development of human disease, and the role of this unique module in directing and maintaining cell state. As we look to use stem cells to understand human development and treat human disease through both cell-based therapies and tissue engineering, we need to remain aware of the on-going research and address critical gaps in knowledge related to the molecular mechanisms that control cell fate.
Collapse
Affiliation(s)
- Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Jamie J Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| |
Collapse
|
42
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
43
|
Srivastava S, Kulshreshtha R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J Cell Physiol 2020; 236:3163-3177. [PMID: 33174211 DOI: 10.1002/jcp.30099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Transcriptional dysregulation is central to many diseases including cancer. Mutation or deregulated expression of proteins involved in transcriptional machinery leads to aberrant gene expression that disturbs intricate cellular processes of division and differentiation. The subunits of the mediator complex are master regulators of stimuli-derived transcription and are essential for transcription by RNA polymerase II. MED12 is a part of the CDK8 kinase module of the mediator complex and is essential for kinase assembly and function. Other than its function in activation of the kinase activity of CDK8 mediator, it also brings about transcription repression or activation, in response to several signalling pathways, a function that is independent of its role as a part of kinase assembly. Accumulating evidence suggests that MED12 controls complex transcription programs that are defining in cell fate determination, differentiation, and carcinogenesis. Mutations or differential expression of MED12 manifest in several human disorders and diseases. For instance, MED12 mutations are the gold standard for the diagnosis of several X-linked intellectual disability syndromes. Further, certain MED12 mutations are categorised as driver mutations in carcinogenesis as well. This is a timely review that provides for the first time a wholesome view on the critical roles and pathways regulated by MED12, its interactions along with the implications of MED12 alterations/mutations in various cancers and nonneoplastic disorders. Based on the preclinical studies, MED12 indeed emerges as an attractive novel therapeutic target for various diseases and intellectual disorders.
Collapse
Affiliation(s)
- Srishti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
44
|
Bian J, Dannappel M, Wan C, Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells 2020; 9:cells9092125. [PMID: 32961708 PMCID: PMC7564852 DOI: 10.3390/cells9092125] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling pathway exerts integral roles in embryogenesis and adult homeostasis. Aberrant activation of the pathway is implicated in growth-associated diseases and cancers, especially as a key driver in the initiation and progression of colorectal cancer (CRC). Loss or inactivation of Adenomatous polyposis coli (APC) results in constitutive activation of Wnt/β-catenin signaling, which is considered as an initiating event in the development of CRC. Increased Wnt/β-catenin signaling is observed in virtually all CRC patients, underscoring the importance of this pathway for therapeutic intervention. Prior studies have deciphered the regulatory networks required for the cytoplasmic stabilisation or degradation of the Wnt pathway effector, β-catenin. However, the mechanism whereby nuclear β-catenin drives or inhibits expression of Wnt target genes is more diverse and less well characterised. Here, we describe a brief synopsis of the core canonical Wnt pathway components, set the spotlight on nuclear mediators and highlight the emerging role of chromatin regulators as modulators of β-catenin-dependent transcription activity and oncogenic output.
Collapse
Affiliation(s)
- Jia Bian
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Marius Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Chunhua Wan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.B.); (M.D.); (C.W.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
45
|
Pyrido[2,3-b][1,5]benzoxazepin-5(6H)-one derivatives as CDK8 inhibitors. Eur J Med Chem 2020; 201:112443. [DOI: 10.1016/j.ejmech.2020.112443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/07/2023]
|
46
|
Lynch CJ, Bernad R, Calvo I, Serrano M. Manipulating the Mediator complex to induce naïve pluripotency. Exp Cell Res 2020; 395:112215. [PMID: 32771524 PMCID: PMC7584500 DOI: 10.1016/j.yexcr.2020.112215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
Abstract
Human naïve pluripotent stem cells (PSCs) represent an optimal homogenous starting point for molecular interventions and differentiation strategies. This is in contrast to the standard primed PSCs which fluctuate in identity and are transcriptionally heterogeneous. However, despite many efforts, the maintenance and expansion of human naïve PSCs remains a challenge. Here, we discuss our recent strategy for the stabilization of human PSC in the naïve state based on the use of a single chemical inhibitor of the related kinases CDK8 and CDK19. These kinases phosphorylate and negatively regulate the multiprotein Mediator complex, which is critical for enhancer-driven recruitment of RNA Pol II. The net effect of CDK8/19 inhibition is a global stimulation of enhancers, which in turn reinforces transcriptional programs including those related to cellular identity. In the case of pluripotent cells, the presence of CDK8/19i efficiently stabilizes the naïve state. Importantly, in contrast to previous chemical methods to induced the naïve state based on the inhibition of the FGF-MEK-ERK pathway, CDK8/19i-naïve human PSCs are chromosomally stable and retain developmental potential after long-term expansion. We suggest this could be related to the fact that CDK8/19 inhibition does not induce DNA demethylation. These principles may apply to other fate decisions.
Collapse
Affiliation(s)
- Cian J Lynch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Raquel Bernad
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Isabel Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
47
|
Chen B, Wen P, Hu G, Gao Y, Qi X, Zhu K, Chen S, Wu L, Xu A, Zhao G. Antagonizing CDK8 Sensitizes Colorectal Cancer to Radiation Through Potentiating the Transcription of e2f1 Target Gene apaf1. Front Cell Dev Biol 2020; 8:408. [PMID: 32596239 PMCID: PMC7304162 DOI: 10.3389/fcell.2020.00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is an essential curative treatment modality for colorectal cancer. Apoptosis is the major mechanism of IR-induced cell death and aberrant apoptotic signaling results in radioresistance, which is a hallmark of most, perhaps all, types of human cancers. Potentiating the induction of apoptosis is an emerging strategy for cancer radiotherapy. Here, we determined that targeting CDK8 selectively radiosensitized colorectal cancer through the mitochondria-dependent intrinsic apoptotic signaling, which was mediated through the induction of the transcription of apaf1 that was e2f1- and not p53-dependent. Importantly, the enhanced transcriptional activity of e2f1 was dependent on the kinase activity of CDK8 itself and not on the assembling of the mediator complex. In addition, clinical inhibitor, and in vivo studies confirmed the radiosensitizing effect of CDK8. Our results provide a new targeting strategy to improve the radiotherapy of CRC.
Collapse
Affiliation(s)
- Bin Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Pengbo Wen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Guanshuo Hu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Yang Gao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Xiaojing Qi
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Kaili Zhu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
48
|
Abstract
RNA polymerase II (Pol II) transcribes all protein-coding genes and many noncoding RNAs in eukaryotic genomes. Although Pol II is a complex, 12-subunit enzyme, it lacks the ability to initiate transcription and cannot consistently transcribe through long DNA sequences. To execute these essential functions, an array of proteins and protein complexes interact with Pol II to regulate its activity. In this review, we detail the structure and mechanism of over a dozen factors that govern Pol II initiation (e.g., TFIID, TFIIH, and Mediator), pausing, and elongation (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis for Pol II transcription regulation has advanced rapidly in the past decade, largely due to technological innovations in cryoelectron microscopy. Here, we summarize a wealth of structural and functional data that have enabled a deeper understanding of Pol II transcription mechanisms; we also highlight mechanistic questions that remain unanswered or controversial.
Collapse
Affiliation(s)
- Allison C Schier
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|