1
|
Giamundo G, Intartaglia D, Del Prete E, Polishchuk E, Andreone F, Ognibene M, Buonocore S, Hay Mele B, Salierno FG, Monfregola J, Antonini D, Grumati P, Eva A, De Cegli R, Conte I. Ezrin defines TSC complex activation at endosomal compartments through EGFR-AKT signaling. eLife 2025; 13:RP98523. [PMID: 39937579 PMCID: PMC11820125 DOI: 10.7554/elife.98523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Endosomes have emerged as major signaling hubs where different internalized ligand-receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane-actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.
Collapse
Affiliation(s)
| | | | | | | | | | - Marzia Ognibene
- U.O.C. Genetica Medica, IRCCS Istituto Giannina GasliniGenovaItaly
| | - Sara Buonocore
- Department of Biology, University of Naples Federico IINaplesItaly
| | - Bruno Hay Mele
- Department of Biology, University of Naples Federico IINaplesItaly
| | | | | | - Dario Antonini
- Department of Biology, University of Naples Federico IINaplesItaly
| | - Paolo Grumati
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Clinical Medicine and Surgery, University of Naples Federico IINaplesItaly
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina GasliniGenovaItaly
| | | | - Ivan Conte
- Department of Biology, University of Naples Federico IINaplesItaly
| |
Collapse
|
2
|
Malik S, Ali SA, Mehdi AM, Raza A, Bashir S, Baig DN. A pilot study: Examining cytoskeleton gene expression profiles in Pakistani children with autism spectrum disorder. Int J Dev Neurosci 2024; 84:769-778. [PMID: 39285780 DOI: 10.1002/jdn.10372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Finding effective pharmacological interventions to address the complex array of neurodevelopmental disorders is currently an urgent imperative within the scientific community as these conditions present significant challenges for patients and their families, often impacting cognitive, emotional, and social development. In this study, we aimed to explore non-invasive method to diagnose autism spectrum disorders (ASD) within Pakistan children population and to identify clinical drugs for its treatment. AIMS The current report outlines a comprehensive bidirectional investigation showcasing the successful utilization of saliva samples to quantify the expression patterns of profilins (PFN1, 2, and 3); and ERM (ezrin, radixin, and moesin) proteins; and additionally moesin pseudogene 1 and moesin pseudogene 1 antisense (MSNP1AS). Subsequently, these expression profiles were employed to forecast interactions between drugs and genes in children diagnosed with ASD. METHODS This study sought to delve into the intricate gene expression profiles using qualitative polymerase chain reaction of profilin isoforms (PFN1, 2, and 3) and ERM genes extracted from saliva samples obtained from children diagnosed with ASD. Through this analysis, we aimed to elucidate potential molecular mechanisms underlying ASD pathogenesis, shedding light on novel biomarkers and therapeutic targets for this complex neurological condition. (n = 22). Subsequently, we implemented a diagnostic model utilizing sparse partial least squares discriminant analysis (sPLS-DA) to predict drugs against our genes of interest. Furthermore, connectivity maps were developed to illustrate the predicted associations of 24 drugs with the genes expression. RESULTS Our study results showed varied expression profile of cytoskeleton linked genes. Similarly, sPLS-DA model precisely predicted drug to genes response. Sixteen of the examined drugs had significant positive correlations with the expression of the targeted genes whereas eight of the predicted drugs had shown negative correlations. CONCLUSION Here we report the role of cytoskeleton linked genes (PFN and ERM) in co-relation to ASD. Furthermore, variable yet significant quantitative expression of these genes successfully predicted drug-gene interactions as shown with the help of connectivity maps that can be used to support the clinical use of these drugs to treat individuals with ASD in future studies.
Collapse
Affiliation(s)
- Sana Malik
- Kauser Abdullah Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Lahore, Pakistan
| | - Syed Aoun Ali
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ahmed Murtaza Mehdi
- Diamantina Institute, Faculty of Medicine, Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Amir Raza
- Department of Biotechnology, Knowledge Unit of Science, University of Management and Technology (Sialkot Campus), Sialkot, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Deeba Noreen Baig
- Kauser Abdullah Malik School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Lahore, Pakistan
- University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Senju Y, Hibino E. Moesin-ezrin-radixin-like protein merlin: Its conserved and distinct functions from those of ERM proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184076. [PMID: 36302494 DOI: 10.1016/j.bbamem.2022.184076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.
| | - Emi Hibino
- Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| |
Collapse
|
4
|
Hartmann C, Thüring EM, Greune L, Michels BE, Pajonczyk D, Leußink S, Brinkmann F, Glaesner-Ebnet M, Wardelmann E, Zobel T, Schmidt MA, Janssen KP, Gerke V, Ebnet K. Intestinal brush border formation requires a TMIGD1-based intermicrovillar adhesion complex. Sci Signal 2022; 15:eabm2449. [PMID: 36099341 DOI: 10.1126/scisignal.abm2449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Intestinal epithelial cells absorb nutrients through the brush border, composed of dense arrays of highly ordered microvilli at their apical membranes. A protocadherin-based intermicrovillar adhesion complex localized at microvilli tips mediates microvilli packing and organization. Here, we identified a second adhesion complex localized at the proximal base region of microvilli. This complex contained the immunoglobulin superfamily member TMIGD1, which directly interacted with the microvillar scaffolding proteins EBP50 and E3KARP. Complex formation with EBP50 required the activation of EBP50 by the actin-binding protein ezrin and was enhanced by the dephosphorylation of Ser162 in the PDZ2 domain of EBP50 by the phosphatase PP1α. Binding of the EBP50-ezrin complex to TMIGD1 enhanced the dynamic turnover of EBP50 at microvilli. Enterocyte-specific inactivation of Tmigd1 in mice resulted in microvillar blebbing, loss of intermicrovillar adhesion, and perturbed brush border formation. Thus, we identified a second adhesion complex in microvilli and propose a mechanism that promotes microvillar formation and dynamics.
Collapse
Affiliation(s)
- Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Birgitta E Michels
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Denise Pajonczyk
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Sophia Leußink
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Mark Glaesner-Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, D-48149 Münster, Germany
| | - Thomas Zobel
- Imaging Network Microscopy, University of Münster, D-48149 Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, ZMBE, University of Münster, D-48149 Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany.,Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, D-48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", ZMBE, University of Münster, D-48149 Münster, Germany.,Institute of Medical Biochemistry, ZMBE, University of Münster, D-48149 Münster, Germany.,Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, D-48419 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
5
|
Korkmazhan E, Dunn AR. The membrane-actin linker ezrin acts as a sliding anchor. SCIENCE ADVANCES 2022; 8:eabo2779. [PMID: 35930643 PMCID: PMC9355349 DOI: 10.1126/sciadv.abo2779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein linkages to filamentous (F)-actin provide the cell membrane with mechanical stability and support intricate membrane architectures. However, the actin cytoskeleton is highly dynamic and undergoes rapid changes in shape during cell motility and other processes. The molecular mechanisms that generate a mechanically robust yet fluid connection between the membrane and actin cytoskeleton remain poorly understood. Here, we adapted a single-molecule optical trap assay to examine how the prototypical membrane-actin linker ezrin acts to anchor F-actin to the cell membrane. We find that ezrin forms a complex that slides along F-actin over micrometer distances while resisting detachment by forces oriented perpendicular to the filament axis. The ubiquity of ezrin and analogous proteins suggests that sliding anchors such as ezrin may constitute an important but overlooked element in the construction of the actin cytoskeleton.
Collapse
Affiliation(s)
- Elgin Korkmazhan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Graduate Program in Biophysics, Stanford University, Stanford, CA 94305 USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Corresponding author.
| |
Collapse
|
6
|
Sepers JJ, Ramalho JJ, Kroll JR, Schmidt R, Boxem M. ERM-1 Phosphorylation and NRFL-1 Redundantly Control Lumen Formation in the C. elegans Intestine. Front Cell Dev Biol 2022; 10:769862. [PMID: 35198555 PMCID: PMC8860247 DOI: 10.3389/fcell.2022.769862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Reorganization of the plasma membrane and underlying actin cytoskeleton into specialized domains is essential for the functioning of most polarized cells in animals. Proteins of the ezrin-radixin-moesin (ERM) and Na+/H+ exchanger 3 regulating factor (NHERF) family are conserved regulators of cortical specialization. ERM proteins function as membrane-actin linkers and as molecular scaffolds that organize the distribution of proteins at the membrane. NHERF proteins are PDZ-domain containing adapters that can bind to ERM proteins and extend their scaffolding capability. Here, we investigate how ERM and NHERF proteins function in regulating intestinal lumen formation in the nematode Caenorhabditis elegans. C. elegans has single ERM and NHERF family proteins, termed ERM-1 and NRFL-1, and ERM-1 was previously shown to be critical for intestinal lumen formation. Using CRISPR/Cas9-generated nrfl-1 alleles we demonstrate that NRFL-1 localizes at the intestinal microvilli, and that this localization is depended on an interaction with ERM-1. However, nrfl-1 loss of function mutants are viable and do not show defects in intestinal development. Interestingly, combining nrfl-1 loss with erm-1 mutants that either block or mimic phosphorylation of a regulatory C-terminal threonine causes severe defects in intestinal lumen formation. These defects are not observed in the phosphorylation mutants alone, and resemble the effects of strong erm-1 loss of function. The loss of NRFL-1 did not affect the localization or activity of ERM-1. Together, these data indicate that ERM-1 and NRFL-1 function together in intestinal lumen formation in C. elegans. We postulate that the functioning of ERM-1 in this tissue involves actin-binding activities that are regulated by the C-terminal threonine residue and the organization of apical domain composition through NRFL-1.
Collapse
Affiliation(s)
- Jorian J Sepers
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - João J Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands.,Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
A biophysical perspective of the regulatory mechanisms of ezrin/radixin/moesin proteins. Biophys Rev 2022; 14:199-208. [PMID: 35340609 PMCID: PMC8921360 DOI: 10.1007/s12551-021-00928-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Many signal transductions resulting from ligand-receptor interactions occur at the cell surface. These signaling pathways play essential roles in cell polarization, membrane morphogenesis, and the modulation of membrane tension at the cell surface. However, due to the large number of membrane-binding proteins, including actin-membrane linkers, and transmembrane proteins present at the cell surface, the molecular mechanisms underlying the regulation at the cell surface are yet unclear. Here, we describe the molecular functions of one of the key players at the cell surface, ezrin/radixin/moesin (ERM) proteins from a biophysical point of view. We focus our discussion on biophysical properties of ERM proteins revealed by using biophysical tools in live cells and in vitro reconstitution systems. We first describe the structural properties of ERM proteins and then discuss the interactions of ERM proteins with PI(4,5)P2 and the actin cytoskeleton. These properties of ERM proteins revealed by using biophysical approaches have led to a better understanding of their physiological functions in cells and tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00928-0.
Collapse
|
8
|
Shiomi A, Nagao K, Yokota N, Tsuchiya M, Kato U, Juni N, Hara Y, Mori MX, Mori Y, Ui-Tei K, Murate M, Kobayashi T, Nishino Y, Miyazawa A, Yamamoto A, Suzuki R, Kaufmann S, Tanaka M, Tatsumi K, Nakabe K, Shintaku H, Yesylevsky S, Bogdanov M, Umeda M. Extreme deformability of insect cell membranes is governed by phospholipid scrambling. Cell Rep 2021; 35:109219. [PMID: 34107250 DOI: 10.1016/j.celrep.2021.109219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active. We also demonstrate that XKR-facilitated phospholipid scrambling promotes the deformability of cell membranes by regulating both actin cortex dynamics and mechanical properties of the phospholipid bilayer. Moreover, XKR-mediated construction of elastic cell membranes is essential for hemocyte circulation in the Drosophila cardiovascular system. Deformation of mammalian cells is also enhanced by the expression of Aedes XKR, and thus phospholipid scrambling may contribute to formation of highly deformable cell membranes in a variety of living eukaryotic cells.
Collapse
Affiliation(s)
- Akifumi Shiomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
| | - Nobuhiro Yokota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Utako Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motohide Murate
- UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Toshihide Kobayashi
- UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Yuri Nishino
- Graduate School of Life Science, University of Hyogo, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Atsuo Miyazawa
- Graduate School of Life Science, University of Hyogo, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Suzuki
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kazuya Tatsumi
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Kyoto 615-8540, Japan
| | - Kazuyoshi Nakabe
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Kyoto 615-8540, Japan
| | - Hirofumi Shintaku
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Semen Yesylevsky
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03680 Kyiv, Ukraine
| | - Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
| |
Collapse
|
9
|
Molecular basis of functional exchangeability between ezrin and other actin-membrane associated proteins during cytokinesis. Exp Cell Res 2021; 403:112600. [PMID: 33862101 DOI: 10.1016/j.yexcr.2021.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023]
Abstract
The mechanism that mediates the interaction between the contractile ring and the plasma membrane during cytokinesis remains elusive. We previously found that ERM (Ezrin/Radixin/Moesin) proteins, which usually mediate cellular pole contraction, become over-accumulated at the cell equator and support furrow ingression upon the loss of other actin-membrane associated proteins, anillin and supervillin. In this study, we addressed the molecular basis of the exchangeability between ezrin and other actin-membrane associated proteins in mediating cortical contraction during cytokinesis. We found that depletion of anillin and supervillin caused over-accumulation of the membrane-associated FERM domain and actin-binding C-terminal domain (C-term) of ezrin at the cleavage furrow, respectively. This finding suggests that ezrin differentially shares its binding sites with these proteins on the actin cytoskeleton or inner membrane surface. Using chimeric mutants, we found that ezrin C-term, but not the FERM domain, can substitute for the corresponding anillin domains in cytokinesis and cell proliferation. On the other hand, either the membrane-associated or the actin/myosin-binding domains of anillin could not substitute for the corresponding ezrin domains in controlling cortical blebbing at the cell poles. Our results highlight specific designs of actin- or membrane-associated moieties of different actin-membrane associated proteins with limited exchangeability, which enables them to support diverse cortical activities on the shared actin-membrane interface during cytokinesis.
Collapse
|
10
|
Leguay K, Decelle B, He YY, Pagniez A, Hogue M, Kobayashi H, Le Gouill C, Bouvier M, Carréno S. Development of conformational BRET biosensors that monitor ezrin, radixin and moesin activation in real time. J Cell Sci 2021; 134:237806. [PMID: 33712451 DOI: 10.1242/jcs.255307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Ezrin, radixin and moesin compose the family of ERM proteins. They link actin filaments and microtubules to the plasma membrane to control signaling and cell morphogenesis. Importantly, their activity promotes invasive properties of metastatic cells from different cancer origins. Therefore, a precise understanding of how these proteins are regulated is important for the understanding of the mechanism controlling cell shape, as well as providing new opportunities for the development of innovative cancer therapies. Here, we developed and characterized novel bioluminescence resonance energy transfer (BRET)-based conformational biosensors, compatible with high-throughput screening, that monitor individual ezrin, radixin or moesin activation in living cells. We showed that these biosensors faithfully monitor ERM activation and can be used to quantify the impact of small molecules, mutation of regulatory amino acids or depletion of upstream regulators on their activity. The use of these biosensors allowed us to characterize the activation process of ERMs that involves a pool of closed-inactive ERMs stably associated with the plasma membrane. Upon stimulation, we discovered that this pool serves as a cortical reserve that is rapidly activated before the recruitment of cytoplasmic ERMs.
Collapse
Affiliation(s)
- Kévin Leguay
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Barbara Decelle
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Yu Yan He
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Anthony Pagniez
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Mireille Hogue
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Hiroyuki Kobayashi
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Christian Le Gouill
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Michel Bouvier
- Molecular pharmacology lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Sébastien Carréno
- Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
11
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dongni Han
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Bertrand Goudeau
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
| | - Dragan Manojlovic
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| |
Collapse
|
12
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021; 60:7686-7690. [PMID: 33410245 DOI: 10.1002/anie.202015030] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The effects of photobleaching on electrochemiluminescence (ECL) was investigated for the first time. The plasma membrane of Chinese Hamster Ovary (CHO) cells was labeled with a [Ru(bpy)3 ]2+ derivative. Selected regions of the fixed cells were photobleached using the confocal mode with sequential stepwise illumination or cumulatively and they were imaged by both ECL and photoluminescence (PL). ECL was generated with a model sacrificial coreactant, tri-n-propylamine. ECL microscopy of the photobleached regions shows lower ECL emission. We demonstrate a linear correlation between the ECL decrease and the PL loss due to the photobleaching of the labels immobilized on the CHO membranes. The presented strategy provides valuable information on the fundamentals of the ECL excited state and opens new opportunities for exploring cellular membranes by combining ECL microscopy with photobleaching techniques such as fluorescence recovery after photobleaching (FRAP) or fluorescence loss in photobleaching (FLIP) methods.
Collapse
Affiliation(s)
- Dongni Han
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Dragan Manojlovic
- Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
13
|
Dirks C, Striewski P, Wirth B, Aalto A, Olguin-Olguin A. A mathematical model for bleb regulation in zebrafish primordial germ cells. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 38:218-254. [PMID: 33601409 DOI: 10.1093/imammb/dqab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 01/02/2023]
Abstract
Blebs are cell protrusions generated by local membrane-cortex detachments followed by expansion of the plasma membrane. Blebs are formed by some migrating cells, e.g. primordial germ cells of the zebrafish. While blebs occur randomly at each part of the membrane in unpolarized cells, a polarization process guarantees the occurrence of blebs at a preferential site and thereby facilitates migration toward a specified direction. Little is known about the factors involved in the controlled and directed bleb generation, yet recent studies revealed the influence of an intracellular flow and the stabilizing role of the membrane-cortex linker molecule Ezrin. Based on this information, we develop and analyse a coupled bulk-surface model describing a potential cellular mechanism by which a bleb could be induced at a controlled site. The model rests upon intracellular Darcy flow and a diffusion-advection-reaction system, describing the temporal evolution from a homogeneous to a strongly anisotropic Ezrin distribution. We prove the well-posedness of the mathematical model and show that simulations qualitatively correspond to experimental observations, suggesting that indeed the interaction of an intracellular flow with membrane proteins can be the cause of the Ezrin redistribution accompanying bleb formation.
Collapse
Affiliation(s)
- Carolin Dirks
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Paul Striewski
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Benedikt Wirth
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Anne Aalto
- WWU Münster FB 13 Biologie, Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Münster, Germany
| | - Adan Olguin-Olguin
- WWU Münster FB 13 Biologie, Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Münster, Germany
| |
Collapse
|
14
|
Welf ES, Miles CE, Huh J, Sapoznik E, Chi J, Driscoll MK, Isogai T, Noh J, Weems AD, Pohlkamp T, Dean K, Fiolka R, Mogilner A, Danuser G. Actin-Membrane Release Initiates Cell Protrusions. Dev Cell 2020; 55:723-736.e8. [PMID: 33308479 DOI: 10.1016/j.devcel.2020.11.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/08/2020] [Accepted: 11/20/2020] [Indexed: 01/04/2023]
Abstract
Despite the well-established role of actin polymerization as a driving mechanism for cell protrusion, upregulated actin polymerization alone does not initiate protrusions. Using a combination of theoretical modeling and quantitative live-cell imaging experiments, we show that local depletion of actin-membrane links is needed for protrusion initiation. Specifically, we show that the actin-membrane linker ezrin is depleted prior to protrusion onset and that perturbation of ezrin's affinity for actin modulates protrusion frequency and efficiency. We also show how actin-membrane release works in concert with actin polymerization, leading to a comprehensive model for actin-driven shape changes. Actin-membrane release plays a similar role in protrusions driven by intracellular pressure. Thus, our findings suggest that protrusion initiation might be governed by a universal regulatory mechanism, whereas the mechanism of force generation determines the shape and expansion properties of the protrusion.
Collapse
Affiliation(s)
- Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Christopher E Miles
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA
| | - Jaewon Huh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph Chi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew D Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Roberts RE, Vervliet T, Bultynck G, Parys JB, Hallett MB. EPIC3, a novel Ca 2+ indicator located at the cell cortex and in microridges, detects high Ca 2+ subdomains during Ca 2+ influx and phagocytosis. Cell Calcium 2020; 92:102291. [PMID: 33099169 DOI: 10.1016/j.ceca.2020.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/15/2022]
Abstract
The construction of a low affinity Ca2+-probe that locates to the cell cortex and cell surface wrinkles, is described called. EPIC3 (ezrin-protein indicator of Ca2+). The novel probe is a fusion of CEPIA3 with ezrin, and is used in combination with a Ca2+-insensitive probe, ezrin-mCherry, both of which locate at the cell cortex. EPIC3 was used to monitor the effect of Ca2+ influx on intra-wrinkle Ca2+ in the macrophage cell line, RAW 264.7. During experimentally-induced Ca2+influx, EPIC3 reported Ca2+ concentrations at the cell cortex in the region of 30-50 μM, with peak locations towards the tips of wrinkles reaching 80 μM. These concentrations were associated with cleavage of ezrin (a substrate for the Ca2+ activated protease calpain-1) and released the C-terminal fluors. The cortical Ca2+ levels, restricted to near the site of phagocytic cup formation and pseudopodia extension during phagocytosis also reached high levels (50-80 μM) during phagocytosis. As phagocytosis was completed, hotspots of Ca2+ near the phagosome were also observed.
Collapse
Affiliation(s)
- Rhiannon E Roberts
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| | - Tim Vervliet
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Maurice B Hallett
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK.
| |
Collapse
|
16
|
Ramalho JJ, Sepers JJ, Nicolle O, Schmidt R, Cravo J, Michaux G, Boxem M. C-terminal phosphorylation modulates ERM-1 localization and dynamics to control cortical actin organization and support lumen formation during Caenorhabditiselegans development. Development 2020; 147:dev188011. [PMID: 32586975 PMCID: PMC10755404 DOI: 10.1242/dev.188011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/13/2020] [Indexed: 12/31/2023]
Abstract
ERM proteins are conserved regulators of cortical membrane specialization that function as membrane-actin linkers and molecular hubs. The activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2 binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single Caenorhabditiselegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo Using CRISPR/Cas9-generated erm-1 mutant alleles, we demonstrate that a PIP2-binding site is crucially required for ERM-1 function. By contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and support lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.
Collapse
Affiliation(s)
- João J Ramalho
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jorian J Sepers
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Ruben Schmidt
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Janine Cravo
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
17
|
Sheremet YE, Olifirov B, Okhrimenko A, Cherkas V, Bagatskaya O, Belan P. Hippocalcin Distribution between the Cytosol and Plasma Membrane of Living Cells. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Naso F, Intartaglia D, Falanga D, Soldati C, Polishchuk E, Giamundo G, Tiberi P, Marrocco E, Scudieri P, Di Malta C, Trapani I, Nusco E, Salierno FG, Surace EM, Galietta LJ, Banfi S, Auricchio A, Ballabio A, Medina DL, Conte I. Light-responsive microRNA miR-211 targets Ezrin to modulate lysosomal biogenesis and retinal cell clearance. EMBO J 2020; 39:e102468. [PMID: 32154600 DOI: 10.15252/embj.2019102468] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate vision relies on the daily phagocytosis and lysosomal degradation of photoreceptor outer segments (POS) within the retinal pigment epithelium (RPE). However, how these events are controlled by light is largely unknown. Here, we show that the light-responsive miR-211 controls lysosomal biogenesis at the beginning of light-dark transitions in the RPE by targeting Ezrin, a cytoskeleton-associated protein essential for the regulation of calcium homeostasis. miR-211-mediated down-regulation of Ezrin leads to Ca2+ influx resulting in the activation of calcineurin, which in turn activates TFEB, the master regulator of lysosomal biogenesis. Light-mediated induction of lysosomal biogenesis and function is impaired in the RPE from miR-211-/- mice that show severely compromised vision. Pharmacological restoration of lysosomal biogenesis through Ezrin inhibition rescued the miR-211-/- phenotype, pointing to a new therapeutic target to counteract retinal degeneration associated with lysosomal dysfunction.
Collapse
Affiliation(s)
- Federica Naso
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | - Danila Falanga
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Giuliana Giamundo
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Paola Tiberi
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | - Enrico Maria Surace
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Luis Jv Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy.,Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy.,Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Roberts RE, Martin M, Marion S, Elumalai GL, Lewis K, Hallett MB. Ca 2+-activated cleavage of ezrin visualised dynamically in living myeloid cells during cell surface area expansion. J Cell Sci 2020; 133:jcs236968. [PMID: 31932511 DOI: 10.1242/jcs.236968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
The intracellular events underlying phagocytosis, a crucial event for innate immunity, are still unresolved. In order to test whether the reservoir of membrane required for the formation of the phagocytic pseudopodia is maintained by cortical ezrin, and that its cleavage is a key step in releasing this membrane, the cleavage of cortical ezrin was monitored within living phagocytes (the phagocytically competent cell line RAW264.7) through expressing two ezrin constructs with fluorescent protein tags located either inside the FERM or at the actin-binding domains. When ezrin is cleaved in the linker region by the Ca2+-activated protease calpain, separation of the two fluorophores would result. Experimentally induced Ca2+ influx triggered cleavage of peripherally located ezrin, which was temporally associated with cell expansion. Ezrin cleavage was also observed in the phagocytic pseudopodia during phagocytosis. Thus, our data demonstrates that peripheral ezrin is cleaved during Ca2+-influx-induced membrane expansion and locally within the extending pseudopodia during phagocytosis. This is consistent with a role for intact ezrin in maintaining folded membrane on the cell surface, which then becomes available for cell spreading and phagocytosis.
Collapse
Affiliation(s)
- Rhiannon E Roberts
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| | - Marianne Martin
- University of Montpellier, Laboratory of Pathogen Host Interactions, CNRS, UMR 5235, 34059 Montpellier CEDEX 05, France
| | - Sabrina Marion
- University of Lille, CNRS UMR 8204, Institut Pasteur Lille, Centre for Infection and Immunity Lille, 59016 Lille CEDEX, France
| | - Geetha L Elumalai
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| | - Kimberly Lewis
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| | - Maurice B Hallett
- Neutrophil Signalling Group, Cardiff University Medical School, Cardiff, CF14 4XN, UK
| |
Collapse
|
20
|
Zhang X, Flores LR, Keeling MC, Sliogeryte K, Gavara N. Ezrin Phosphorylation at T567 Modulates Cell Migration, Mechanical Properties, and Cytoskeletal Organization. Int J Mol Sci 2020; 21:ijms21020435. [PMID: 31936668 PMCID: PMC7013973 DOI: 10.3390/ijms21020435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Ezrin, a member of the ERM (ezrin/radixin/moesin) family of proteins, serves as a crosslinker between the plasma membrane and the actin cytoskeleton. By doing so, it provides structural links to strengthen the connection between the cell cortex and the plasma membrane, acting also as a signal transducer in multiple pathways during migration, proliferation, and endocytosis. In this study, we investigated the role of ezrin phosphorylation and its intracellular localization on cell motility, cytoskeleton organization, and cell stiffness, using fluorescence live-cell imaging, image quantification, and atomic force microscopy (AFM). Our results show that cells expressing constitutively active ezrin T567D (phosphomimetic) migrate faster and in a more directional manner, especially when ezrin accumulates at the cell rear. Similarly, image quantification results reveal that transfection with ezrin T567D alters the cell’s gross morphology and decreases cortical stiffness. In contrast, constitutively inactive ezrin T567A accumulates around the nucleus, and although it does not impair cell migration, it leads to a significant buildup of actin fibers, a decrease in nuclear volume, and an increase in cytoskeletal stiffness. Finally, cell transfection with the dominant negative ezrin FERM domain induces significant morphological and nuclear changes and affects actin, microtubules, and the intermediate filament vimentin, resulting in cytoskeletal fibers that are longer, thicker, and more aligned. Collectively, our results suggest that ezrin’s phosphorylation state and its intracellular localization plays a pivotal role in cell migration, modulating also biophysical properties, such as membrane–cortex linkage, cytoskeletal and nuclear organization, and the mechanical properties of cells.
Collapse
|
21
|
Roberts RE, Dewitt S, Hallett MB. Membrane Tension and the Role of Ezrin During Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:83-102. [PMID: 32399827 DOI: 10.1007/978-3-030-40406-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
During phagocytosis, there is an apparent expansion of the plasma membrane to accommodate the target within a phagosome. This is accompanied (or driven by) a change in membrane tension. It is proposed that the wrinkled topography of the phagocyte surface, by un-wrinkling, provides the additional available membrane and that this explains the changes in membrane tension. There is no agreement as to the mechanism by which unfolding of cell surface wrinkles occurs during phagocytosis, but there is a good case building for the involvement of the actin-plasma membrane crosslinking protein ezrin. Not only have direct measurements of membrane tension strongly implicated ezrin as the key component in establishing membrane tension, but the cortical location of ezrin changes at the phagocytic cup, suggesting that it is locally signalled. This chapter therefore attempts to synthesise our current state of knowledge about ezrin and membrane tension with phagocytosis to provide a coherent hypothesis.
Collapse
Affiliation(s)
| | - Sharon Dewitt
- School of Dentistry, Cardiff University, Cardiff, UK
| | | |
Collapse
|
22
|
Plutoni C, Keil S, Zeledon C, Delsin LEA, Decelle B, Roux PP, Carréno S, Emery G. Misshapen coordinates protrusion restriction and actomyosin contractility during collective cell migration. Nat Commun 2019; 10:3940. [PMID: 31477736 PMCID: PMC6718686 DOI: 10.1038/s41467-019-11963-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2019] [Indexed: 11/09/2022] Open
Abstract
Collective cell migration is involved in development, wound healing and metastasis. In the Drosophila ovary, border cells (BC) form a small cluster that migrates collectively through the egg chamber. To achieve directed motility, the BC cluster coordinates the formation of protrusions in its leader cell and contractility at the rear. Restricting protrusions to leader cells requires the actin and plasma membrane linker Moesin. Herein, we show that the Ste20-like kinase Misshapen phosphorylates Moesin in vitro and in BC. Depletion of Misshapen disrupts protrusion restriction, thereby allowing other cells within the cluster to protrude. In addition, we show that Misshapen is critical to generate contractile forces both at the rear of the cluster and at the base of protrusions. Together, our results indicate that Misshapen is a key regulator of BC migration as it coordinates two independent pathways that restrict protrusion formation to the leader cells and induces contractile forces.
Collapse
Affiliation(s)
- Cédric Plutoni
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Sarah Keil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Carlos Zeledon
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Lara Elis Alberici Delsin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
23
|
Abstract
The shape of most animal cells is controlled by the actin cortex, a thin network of dynamic actin filaments (F-actin) situated just beneath the plasma membrane. The cortex is held far from equilibrium by both active stresses and polymer turnover: Molecular motors drive deformations required for cell morphogenesis, while actin-filament disassembly dynamics relax stress and facilitate cortical remodeling. While many aspects of actin-cortex mechanics are well characterized, a mechanistic understanding of how nonequilibrium actin turnover contributes to stress relaxation is still lacking. To address this, we developed a reconstituted in vitro system of entangled F-actin, wherein the steady-state length and turnover rate of F-actin are controlled by the actin regulatory proteins cofilin, profilin, and formin, which sever, recycle, and assemble filaments, respectively. Cofilin-mediated severing accelerates the turnover and spatial reorganization of F-actin, without significant changes to filament length. We demonstrate that cofilin-mediated severing is a single-timescale mode of stress relaxation that tunes the low-frequency viscosity over two orders of magnitude. These findings serve as the foundation for understanding the mechanics of more physiological F-actin networks with turnover and inform an updated microscopic model of single-filament turnover. They also demonstrate that polymer activity, in the form of ATP hydrolysis on F-actin coupled to nucleotide-dependent cofilin binding, is sufficient to generate a form of active matter wherein asymmetric filament disassembly preserves filament number despite sustained severing.
Collapse
|
24
|
Tsai FC, Bertin A, Bousquet H, Manzi J, Senju Y, Tsai MC, Picas L, Miserey-Lenkei S, Lappalainen P, Lemichez E, Coudrier E, Bassereau P. Ezrin enrichment on curved membranes requires a specific conformation or interaction with a curvature-sensitive partner. eLife 2018; 7:37262. [PMID: 30234483 PMCID: PMC6167055 DOI: 10.7554/elife.37262] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/14/2018] [Indexed: 01/12/2023] Open
Abstract
One challenge in cell biology is to decipher the biophysical mechanisms governing protein enrichment on curved membranes and the resulting membrane deformation. The ERM protein ezrin is abundant and associated with cellular membranes that are flat, positively or negatively curved. Using in vitro and cell biology approaches, we assess mechanisms of ezrin’s enrichment on curved membranes. We evidence that wild-type ezrin (ezrinWT) and its phosphomimetic mutant T567D (ezrinTD) do not deform membranes but self-assemble anti-parallelly, zipping adjacent membranes. EzrinTD’s specific conformation reduces intermolecular interactions, allows binding to actin filaments, which reduces membrane tethering, and promotes ezrin binding to positively-curved membranes. While neither ezrinTD nor ezrinWT senses negative curvature alone, we demonstrate that interacting with curvature-sensing I-BAR-domain proteins facilitates ezrin enrichment in negatively-curved membrane protrusions. Overall, our work demonstrates that ezrin can tether membranes, or be targeted to curved membranes, depending on conformations and interactions with actin and curvature-sensing binding partners.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Aurelie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Hugo Bousquet
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - John Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| | - Yosuke Senju
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Meng-Chen Tsai
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, Institut Pasteur, Paris, France
| | - Laura Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR 9004, Montpellier, France
| | - Stephanie Miserey-Lenkei
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Pekka Lappalainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Emmanuel Lemichez
- Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, Institut Pasteur, Paris, France
| | - Evelyne Coudrier
- Sorbonne Université, Paris, France.,Compartimentation et dynamique cellulaire, Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Sorbonne Université, Paris, France
| |
Collapse
|
25
|
Venzac B, Madoun R, Benarab T, Monnier S, Cayrac F, Myram S, Leconte L, Amblard F, Viovy JL, Descroix S, Coscoy S. Engineering small tubes with changes in diameter for the study of kidney cell organization. BIOMICROFLUIDICS 2018; 12:024114. [PMID: 29657657 PMCID: PMC5882411 DOI: 10.1063/1.5025027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 05/08/2023]
Abstract
Multicellular tubes are structures ubiquitously found during development and in adult organisms. Their topologies (diameter, direction or branching), together with their mechanical characteristics, play fundamental roles in organ function and in the emergence of pathologies. In tubes of micrometric range diameters, typically found in the vascular system, renal tubules or excretory ducts, cells are submitted to a strong curvature and confinement effects in addition to flow. Then, small tubes with change in diameter are submitted to a local gradient of shear stress and curvature, which may lead to complex mechanotransduction responses along tubes, and may be involved in the onset or propagation of cystic or obstructive pathologies. We describe here a simple method to build a microfluidic device that integrates cylindrical channels with changes in diameter that mimic in vivo tube geometries. This microfabrication approach is based on molding of etched tungsten wires, which can achieve on a flexible way any change in diameter in a polydimethylsiloxane (PDMS) microdevice. The interest of this biomimetic multitube system has been evidenced by reproducing renal tubules on chip. In particular, renal cell lines were successfully seeded and grown in PDMS circular tubes with a transition between 80 μm and 50 μm diameters. Thanks to this biomimetic platform, the effect of the tube curvature has been investigated especially regarding cell morphology and orientation. The effect of shear stress on confluent cells has also been assessed simultaneously in both parts of tubes. It is thus possible to study interconnected cell response to differential constraints which is of central importance when mimicking tubes present in the organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ludovic Leconte
- Institut Curie, PSL Research University, CNRS UMR 144, 75005 Paris, France
| | | | | | | | - Sylvie Coscoy
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
26
|
Oh YS, Heo K, Kim EK, Jang JH, Bae SS, Park JB, Kim YH, Song M, Kim SR, Ryu SH, Kim IH, Suh PG. Dynamic relocalization of NHERF1 mediates chemotactic migration of ovarian cancer cells toward lysophosphatidic acid stimulation. Exp Mol Med 2017; 49:e351. [PMID: 28684865 PMCID: PMC5565956 DOI: 10.1038/emm.2017.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 01/05/2023] Open
Abstract
NHERF1/EBP50 (Na+/H+ exchanger regulating
factor 1; Ezrin-binding phosphoprotein of 50 kDa) organizes stable
protein complexes beneath the apical membrane of polar epithelial cells. By
contrast, in cancer cells without any fixed polarity, NHERF1 often localizes in
the cytoplasm. The regulation of cytoplasmic NHERF1 and its role in cancer
progression remain unclear. In this study, we found that, upon lysophosphatidic
acid (LPA) stimulation, cytoplasmic NHERF1 rapidly translocated to the plasma
membrane, and subsequently to cortical protrusion structures, of ovarian cancer
cells. This movement depended on direct binding of NHERF1 to C-terminally
phosphorylated ERM proteins (cpERMs). Moreover, NHERF1 depletion downregulated
cpERMs and further impaired cpERM-dependent remodeling of the cell cortex,
suggesting reciprocal regulation between these proteins. The LPA-induced protein
complex was highly enriched in migratory pseudopodia, whose formation was
impaired by overexpression of NHERF1 truncation mutants. Consistent with this,
NHERF1 depletion in various types of cancer cells abolished chemotactic cell
migration toward a LPA gradient. Taken together, our findings suggest that the
high dynamics of cytosolic NHERF1 provide cancer cells with a means of
controlling chemotactic migration. This capacity is likely to be essential for
ovarian cancer progression in tumor microenvironments containing LPA.
Collapse
Affiliation(s)
- Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kyun Heo
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Eung-Kyun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jin-Hyeok Jang
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Yun Hee Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Minseok Song
- Synaptic Circuit Plasticity Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - In-Hoo Kim
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
27
|
Appaduray MA, Masedunskas A, Bryce NS, Lucas CA, Warren SC, Timpson P, Stear JH, Gunning PW, Hardeman EC. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics. PLoS One 2016; 11:e0168203. [PMID: 27977753 PMCID: PMC5158027 DOI: 10.1371/journal.pone.0168203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 11/28/2016] [Indexed: 12/23/2022] Open
Abstract
The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.
Collapse
Affiliation(s)
- Mark A. Appaduray
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Andrius Masedunskas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Nicole S. Bryce
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Christine A. Lucas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Sean C. Warren
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jeffrey H. Stear
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Peter W. Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Edna C. Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
28
|
Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution. Nat Commun 2016; 7:12562. [PMID: 27558844 PMCID: PMC5007294 DOI: 10.1038/ncomms12562] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo.
Collapse
|
29
|
Bajanca F, Gonzalez-Perez V, Gillespie SJ, Beley C, Garcia L, Theveneau E, Sear RP, Hughes SM. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis. eLife 2015; 4. [PMID: 26459831 PMCID: PMC4601390 DOI: 10.7554/elife.06541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/10/2015] [Indexed: 12/30/2022] Open
Abstract
Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmd(ta222a/ta222a) zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)(ct90a) that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics.
Collapse
Affiliation(s)
- Fernanda Bajanca
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,CNRS and Université Paul Sabatier, Toulouse, France
| | | | - Sean J Gillespie
- Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Cyriaque Beley
- Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France.,Laboratoire International Associé-Biologie appliquée aux handicaps neuromusculaires, Centre Scientifique de Monaco, Monaco, Monaco
| | - Luis Garcia
- Université Versailles Saint-Quentin, Montigny-le-Bretonneux, France.,Laboratoire International Associé-Biologie appliquée aux handicaps neuromusculaires, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Richard P Sear
- Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
30
|
Oxygen depletion speeds and simplifies diffusion in HeLa cells. Biophys J 2015; 107:1873-1884. [PMID: 25418168 DOI: 10.1016/j.bpj.2014.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/28/2022] Open
Abstract
Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.
Collapse
|
31
|
The NHERF2 sequence adjacent and upstream of the ERM-binding domain affects NHERF2-ezrin binding and dexamethasone stimulated NHE3 activity. Biochem J 2015; 470:77-90. [PMID: 26251448 PMCID: PMC4613507 DOI: 10.1042/bj20150238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The microvillar localization of Na+-H+ exchanger regulatory factor (NHERF)1/2 requires not only ezrin, radixin and moesin (ERM)-binding domain (EBD) but also a newly defined ERM-binding regulatory sequence (EBRS) that modulates NHERF1/2–ezrin binding. NHERF2 EBRS is also regulated by phosphorylation, which affects NHE3 (Na+-H+ exchanger 3) stimulation by dexamethasone. In the brush border of intestinal and kidney epithelial cells, scaffolding proteins ezrin, Na+-H+ exchanger regulatory factor (NHERF)1 and NHERF2 play important roles in linking transmembrane proteins to the cytoskeleton and assembling signalling regulatory complexes. The last 30 carboxyl residues of NHERF1 and NHERF2 form the EBDs [ezrin, radixin and moesin (ERM)-binding domain]. The current study found that NHERF1/2 contain an ERM-binding regulatory sequence (EBRS), which facilitates the interaction between the EBD and ezrin. The EBRSs are located within 24 and 19 residues immediately upstream of EBDs for NHERF1 and NHERF2 respectively. In OK (opossum kidney) epithelial cells, EBRSs are necessary along with the EBD to distribute NHERF1 and NHERF2 exclusively to the apical domain. Furthermore, phosphorylation of Ser303 located in the EBRS of NHERF2, decreases the binding affinity for ezrin, dislocates apical NHERF2 into the cytosol and increases the NHERF2 microvillar mobility rate. Moreover, increased phosphorylation of Ser303 was functionally significant preventing acute stimulation of NHE3 (Na+-H+ exchanger 3) activity by dexamethasone.
Collapse
|
32
|
de Beco S, Perney JB, Coscoy S, Amblard F. Mechanosensitive Adaptation of E-Cadherin Turnover across adherens Junctions. PLoS One 2015; 10:e0128281. [PMID: 26046627 PMCID: PMC4457789 DOI: 10.1371/journal.pone.0128281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
In the natural and technological world, multi-agent systems strongly depend on how the interactions are ruled between their individual components, and the proper control of time-scales and synchronization is a key issue. This certainly applies to living tissues when multicellular assemblies such as epithelial cells achieve complex morphogenetic processes. In epithelia, because cells are known to individually generate actomyosin contractile stress, each individual intercellular adhesive junction line is subjected to the opposed stresses independently generated by its two partner cells. Contact lines should thus move unless their two partner cells mechanically match. The geometric homeostasis of mature epithelia observed at short enough time-scale thus raises the problem to understand how cells, if considered as noisy individual actuators, do adapt across individual intercellular contacts to locally balance their time-average contractile stress. Structural components of adherens junctions, cytoskeleton (F-actin) and homophilic bonds (E-cadherin) are quickly renewed at steady-state. These turnovers, if they depend on forces exerted at contacts, may play a key role in the mechanical adaptation of epithelia. Here we focus on E-cadherin as a force transducer, and we study the local regulation and the mechanosensitivity of its turnover in junctions. We show that E-cadherin turnover rates match remarkably well on either side of mature intercellular contacts, despite the fact that they exhibit large fluctuations in time and variations from one junction to another. Using local mechanical and biochemical perturbations, we find faster turnover rates with increased tension, and asymmetric rates at unbalanced junctions. Together, the observations that E-cadherin turnover, and its local symmetry or asymmetry at each side of the junction, are mechanosensitive, support the hypothesis that E-cadherin turnover could be involved in mechanical homeostasis of epithelia.
Collapse
Affiliation(s)
- Simon de Beco
- Laboratoire de Physico-Chimie, Centre de Recherche, Institut Curie, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Jean-Baptiste Perney
- Laboratoire de Physico-Chimie, Centre de Recherche, Institut Curie, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Sylvie Coscoy
- Laboratoire de Physico-Chimie, Centre de Recherche, Institut Curie, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - François Amblard
- Laboratoire de Physico-Chimie, Centre de Recherche, Institut Curie, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168, Paris, France
- Université Pierre et Marie Curie, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Curthoys NM, Parent M, Mlodzianoski M, Nelson AJ, Lilieholm J, Butler MB, Valles M, Hess ST. Dances with Membranes: Breakthroughs from Super-resolution Imaging. CURRENT TOPICS IN MEMBRANES 2015; 75:59-123. [PMID: 26015281 PMCID: PMC5584789 DOI: 10.1016/bs.ctm.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological membrane organization mediates numerous cellular functions and has also been connected with an immense number of human diseases. However, until recently, experimental methodologies have been unable to directly visualize the nanoscale details of biological membranes, particularly in intact living cells. Numerous models explaining membrane organization have been proposed, but testing those models has required indirect methods; the desire to directly image proteins and lipids in living cell membranes is a strong motivation for the advancement of technology. The development of super-resolution microscopy has provided powerful tools for quantification of membrane organization at the level of individual proteins and lipids, and many of these tools are compatible with living cells. Previously inaccessible questions are now being addressed, and the field of membrane biology is developing rapidly. This chapter discusses how the development of super-resolution microscopy has led to fundamental advances in the field of biological membrane organization. We summarize the history and some models explaining how proteins are organized in cell membranes, and give an overview of various super-resolution techniques and methods of quantifying super-resolution data. We discuss the application of super-resolution techniques to membrane biology in general, and also with specific reference to the fields of actin and actin-binding proteins, virus infection, mitochondria, immune cell biology, and phosphoinositide signaling. Finally, we present our hopes and expectations for the future of super-resolution microscopy in the field of membrane biology.
Collapse
Affiliation(s)
- Nikki M. Curthoys
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Matthew Parent
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | | | - Andrew J. Nelson
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Jennifer Lilieholm
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Michael B. Butler
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Matthew Valles
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Samuel T. Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| |
Collapse
|
34
|
Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching. Nat Protoc 2015; 10:660-80. [DOI: 10.1038/nprot.2015.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Rosenegger DG, Tran CHT, LeDue J, Zhou N, Gordon GR. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable. PLoS One 2014; 9:e110475. [PMID: 25333934 PMCID: PMC4204885 DOI: 10.1371/journal.pone.0110475] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/28/2014] [Indexed: 11/17/2022] Open
Abstract
Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.
Collapse
Affiliation(s)
- David G Rosenegger
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Cam Ha T Tran
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Jeffery LeDue
- Department of Psychiatry, University of British Columbia, Brain Research Centre, Vancouver, British Columbia, Canada
| | - Ning Zhou
- Graduate Institute of Clinical Medical Science, China Medical University, Translational Medicine Research Center, Taichung, Taiwan
| | - Grant R Gordon
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Fritzsche M, Thorogate R, Charras G. Quantitative analysis of ezrin turnover dynamics in the actin cortex. Biophys J 2014; 106:343-53. [PMID: 24461009 DOI: 10.1016/j.bpj.2013.11.4499] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022] Open
Abstract
Proteins of the ERM family (ezrin, moesin, radixin) play a fundamental role in tethering the membrane to the cellular actin cortex as well as regulating cortical organization and mechanics. Overexpression of dominant inactive forms of ezrin leads to fragilization of the membrane-cortex link and depletion of moesin results in softer cortices that disrupt spindle orientation during cytokinesis. Therefore, the kinetics of association of ERM proteins with the cortex likely influence the timescale of cortical signaling events and the dynamics of membrane interfacing to the cortex. However, little is known about ERM protein turnover at the membrane-cortex interface. Here, we examined cortical ezrin dynamics using fluorescence recovery after photobleaching experiments and single-molecule imaging. Using multiexponential fitting of fluorescence recovery curves, we showed that ezrin turnover resulted from three molecular mechanisms acting on very different timescales. The fastest turnover process was due to association/dissociation from the F-actin cortex, suggesting that ezrin acts as a link that leads to low friction between the membrane and the cortex. The second turnover process resulted from association/dissociation of ezrin from the membrane and the slowest turnover process resulted from the slow diffusion of ezrin in the plane of the membrane. In summary, ezrin-mediated membrane-cortex tethering resulted from long-lived interactions with the membrane via the FERM domain coupled with shorter-lived interactions with the cortex. The slow diffusion of membranous ezrin and its interaction partners relative to the cortex signified that signals emanating from membrane-associated ezrin may locally act to modulate cortical organization and contractility.
Collapse
Affiliation(s)
- Marco Fritzsche
- Department of Physics and Astronomy, University College London, London, United Kingdom; London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Richard Thorogate
- London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, United Kingdom; Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
37
|
Dynamics of ezrin and EBP50 in regulating microvilli on the apical aspect of epithelial cells. Biochem Soc Trans 2014; 42:189-94. [PMID: 24450650 DOI: 10.1042/bst20130263] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microvilli are found on the apical surface of epithelial cells. Recent studies on the microvillar proteins ezrin and EBP50 (ezrin/radixin/moesin-binding phosphoprotein of 50 kDa) have revealed both the dynamics and the regulation of microvillar components, and how a dynamic ezrin phosphocycle is necessary to confine microvilli to the apical membrane. In the present review, we first summarize the background to allow us to place these advances in context.
Collapse
|
38
|
Abstract
The cell cortex is a dynamic and heterogeneous structure that governs cell identity and behavior. The ERM proteins (ezrin, radixin and moesin) are major architects of the cell cortex, and they link plasma membrane phospholipids and proteins to the underlying cortical actin cytoskeleton. Recent studies in several model systems have uncovered surprisingly dynamic and complex molecular activities of the ERM proteins and have provided new mechanistic insight into how they build and maintain cortical domains. Among many well-established and essential functions of ERM proteins, this Cell Science at a Glance article and accompanying poster will focus on the role of ERMs in organizing the cell cortex during cell division and apical morphogenesis. These examples highlight an emerging appreciation that the ERM proteins both locally alter the mechanical properties of the cell cortex, and control the spatial distribution and activity of key membrane complexes, establishing the ERM proteins as a nexus for the physical and functional organization of the cell cortex and making it clear that they are much more than scaffolds. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Andrea I McClatchey
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School Department of Pathology, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
Viswanatha R, Wayt J, Ohouo PY, Smolka MB, Bretscher A. Interactome analysis reveals ezrin can adopt multiple conformational states. J Biol Chem 2013; 288:35437-51. [PMID: 24151071 PMCID: PMC3853291 DOI: 10.1074/jbc.m113.505669] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Indexed: 12/16/2022] Open
Abstract
Ezrin, a member of the ezrin-radixin-moesin family (ERM), is an essential regulator of the structure of microvilli on the apical aspect of epithelial cells. Ezrin provides a linkage between membrane-associated proteins and F-actin, oscillating between active/open and inactive/closed states, and is regulated in part by phosphorylation of a C-terminal threonine. In the open state, ezrin can bind a number of ligands, but in the closed state the ligand-binding sites are inaccessible. In vitro analysis has proposed that there may be a third hyperactivated form of ezrin. To gain a better understanding of ezrin, we conducted an unbiased proteomic analysis of ezrin-binding proteins in an epithelial cell line, Jeg-3. We refined our list of interactors by comparing the interactomes using quantitative mass spectrometry between wild-type ezrin, closed ezrin, open ezrin, and hyperactivated ezrin. The analysis reveals several novel interactors confirmed by their localization to microvilli, as well as a significant class of proteins that bind closed ezrin. Taken together, the data indicate that ezrin can exist in three different conformational states, and different ligands "perceive" ezrin conformational states differently.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- From the Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | - Jessica Wayt
- From the Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | - Patrice Y. Ohouo
- From the Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | - Marcus B. Smolka
- From the Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| | - Anthony Bretscher
- From the Department of Molecular Biology and Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
40
|
Ramanujan VK. Metabolic imaging in multiple time scales. Methods 2013; 66:222-9. [PMID: 24013043 DOI: 10.1016/j.ymeth.2013.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/13/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022] Open
Abstract
We report here a novel combination of time-resolved imaging methods for probing mitochondrial metabolism in multiple time scales at the level of single cells. By exploiting a mitochondrial membrane potential reporter fluorescence we demonstrate the single cell metabolic dynamics in time scales ranging from microseconds to seconds to minutes in response to glucose metabolism and mitochondrial perturbations in real time. Our results show that in comparison with normal human mammary epithelial cells, the breast cancer cells display significant alterations in metabolic responses at all measured time scales by single cell kinetics, fluorescence recovery after photobleaching and by scaling analysis of time-series data obtained from mitochondrial fluorescence fluctuations. Furthermore scaling analysis of time-series data in living cells with distinct mitochondrial dysfunction also revealed significant metabolic differences thereby suggesting the broader applicability (e.g. in mitochondrial myopathies and other metabolic disorders) of the proposed strategies beyond the scope of cancer metabolism. We discuss the scope of these findings in the context of developing portable, real-time metabolic measurement systems that can find applications in preclinical and clinical diagnostics.
Collapse
Affiliation(s)
- V Krishnan Ramanujan
- Metabolic Photonics Laboratory, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Suite D6067, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| |
Collapse
|
41
|
Yang J, Singh V, Cha B, Chen TE, Sarker R, Murtazina R, Jin S, Zachos NC, Patterson GH, Tse CM, Kovbasnjuk O, Li X, Donowitz M. NHERF2 protein mobility rate is determined by a unique C-terminal domain that is also necessary for its regulation of NHE3 protein in OK cells. J Biol Chem 2013; 288:16960-16974. [PMID: 23612977 DOI: 10.1074/jbc.m113.470799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/H(+) exchanger regulatory factor (NHERF) proteins are a family of PSD-95/Discs-large/ZO-1 (PDZ)-scaffolding proteins, three of which (NHERFs 1-3) are localized to the brush border in kidney and intestinal epithelial cells. All NHERF proteins are involved in anchoring membrane proteins that contain PDZ recognition motifs to form multiprotein signaling complexes. In contrast to their predicted immobility, NHERF1, NHERF2, and NHERF3 were all shown by fluorescence recovery after photobleaching/confocal microscopy to be surprisingly mobile in the microvilli of the renal proximal tubule OK cell line. Their diffusion coefficients, although different among the three, were all of the same magnitude as that of the transmembrane proteins, suggesting they are all anchored in the microvilli but to different extents. NHERF3 moves faster than NHERF1, and NHERF2 moves the slowest. Several chimeras and mutants of NHERF1 and NHERF2 were made to determine which part of NHERF2 confers the slower mobility rate. Surprisingly, the slower mobility rate of NHERF2 was determined by a unique C-terminal domain, which includes a nonconserved region along with the ezrin, radixin, moesin (ERM) binding domain. Also, this C-terminal domain of NHERF2 determined its greater detergent insolubility and was necessary for the formation of larger multiprotein NHERF2 complexes. In addition, this NHERF2 domain was functionally significant in NHE3 regulation, being necessary for stimulation by lysophosphatidic acid of activity and increased mobility of NHE3, as well as necessary for inhibition of NHE3 activity by calcium ionophore 4-Br-A23187. Thus, multiple functions of NHERF2 require involvement of an additional domain in this protein.
Collapse
Affiliation(s)
- Jianbo Yang
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Boyoung Cha
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Tian-E Chen
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Rafiquel Sarker
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Rakhilya Murtazina
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Shi Jin
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - George H Patterson
- Biophotonics Section, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland 20892
| | - C Ming Tse
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Xuhang Li
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Baltimore, Maryland 21205; Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
42
|
Viswanatha R, Ohouo PY, Smolka MB, Bretscher A. Local phosphocycling mediated by LOK/SLK restricts ezrin function to the apical aspect of epithelial cells. ACTA ACUST UNITED AC 2012; 199:969-84. [PMID: 23209304 PMCID: PMC3518218 DOI: 10.1083/jcb.201207047] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Local cycling of LOK/SLK-dependent phosphorylation of ezrin is required for its apical localization and for microvillus formation. In this paper, we describe how a dynamic regulatory process is necessary to restrict microvilli to the apical aspect of polarized epithelial cells. We found that local phosphocycling regulation of ezrin, a critical plasma membrane–cytoskeletal linker of microvilli, was required to restrict its function to the apical membrane. Proteomic approaches and ribonucleic acid interference knockdown identified lymphocyte-oriented kinase (LOK) and SLK as the relevant kinases. Using drug-resistant LOK and SLK variants showed that these kinases were sufficient to restrict ezrin function to the apical domain. Both kinases were enriched in microvilli and locally activated there. Unregulated kinase activity caused ezrin mislocalization toward the basolateral domain, whereas expression of the kinase regulatory regions of LOK or SLK resulted in local inhibition of ezrin phosphorylation by the endogenous kinases. Thus, the domain-specific presence of microvilli is a dynamic process requiring a localized kinase driving the phosphocycling of ezrin to continually bias its function to the apical membrane.
Collapse
Affiliation(s)
- Raghuvir Viswanatha
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
43
|
Garbett D, Bretscher A. PDZ interactions regulate rapid turnover of the scaffolding protein EBP50 in microvilli. ACTA ACUST UNITED AC 2012; 198:195-203. [PMID: 22801783 PMCID: PMC3410424 DOI: 10.1083/jcb.201204008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Scaffolding proteins containing PDZ (postsynaptic density 95/discs large/zonula occludens-1) domains are believed to provide relatively stable linkages between components of macromolecular complexes and in some cases to bridge to the actin cytoskeleton. The microvillar scaffolding protein EBP50 (ERM-binding phosphoprotein of 50 kD), consisting of two PDZ domains and an ezrin-binding site, retains specific proteins in microvilli and is necessary for microvillar biogenesis. Our analysis of the dynamics of microvillar proteins in vivo indicated that ezrin and microvillar membrane proteins had dynamics consistent with actin treadmilling and microvillar lifetimes. However, EBP50 was highly dynamic, turning over within seconds. EBP50 turnover was reduced by mutations that inactivate its PDZ domains and was enhanced by protein kinase C phosphorylation. Using a novel in vitro photoactivation fluorescence assay, the EBP50-ezrin interaction was shown to have a slow off-rate that was dramatically enhanced in a PDZ-regulated manner by addition of cell extract to near in vivo levels. Thus, the linking of relatively stable microvillar components can be mediated by surprisingly dynamic EBP50, a finding that may have important ramifications for other scaffolding proteins.
Collapse
Affiliation(s)
- Damien Garbett
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
44
|
New Insights into the Regulation of E-cadherin Distribution by Endocytosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:63-108. [DOI: 10.1016/b978-0-12-394306-4.00008-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Roubinet C, Decelle B, Chicanne G, Dorn JF, Payrastre B, Payre F, Carreno S. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis. ACTA ACUST UNITED AC 2011; 195:99-112. [PMID: 21969469 PMCID: PMC3187714 DOI: 10.1083/jcb.201106048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During mitosis, cortical Moesin activity is restricted to promote cell elongation and cytokinesis, but localized Moesin recruitment is necessary for polar bleb retraction and cortical relaxation. The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division.
Collapse
Affiliation(s)
- Chantal Roubinet
- Cell Biology of Mitosis laboratory, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Lavialle M, Aumann G, Anlauf E, Pröls F, Arpin M, Derouiche A. Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci U S A 2011; 108:12915-9. [PMID: 21753079 PMCID: PMC3150955 DOI: 10.1073/pnas.1100957108] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The peripheral astrocyte process (PAP) preferentially associates with the synapse. The PAP, which is not found around every synapse, extends to or withdraws from it in an activity-dependent manner. Although the pre- and postsynaptic elements have been described in great molecular detail, relatively little is known about the PAP because of its difficult access for electrophysiology or light microscopy, as they are smaller than microscopic resolution. We investigated possible stimuli and mechanisms of PAP plasticity. Immunocytochemistry on rat brain sections demonstrates that the actin-binding protein ezrin and the metabotropic glutamate receptors (mGluRs) 3 and 5 are compartmentalized to the PAP but not to the GFAP-containing stem process. Further experiments applying ezrin siRNA or dominant-negative ezrin in primary astrocytes indicate that filopodia formation and motility require ezrin in the membrane/cytoskeleton bound (i.e., T567-phosphorylated) form. Glial processes around synapses in situ consistently display this ezrin form. Possible motility stimuli of perisynaptic glial processes were studied in culture, based on their similarity with filopodia. Glutamate and glutamate analogues reveal that rapid (5 min), glutamate-induced filopodia motility is mediated by mGluRs 3 and 5. Ultrastructurally, these mGluR subtypes were also localized in astrocytes in the rat hippocampus, preferentially in their fine PAPs. In vivo, changes in glutamatergic circadian activity in the hamster suprachiasmatic nucleus are accompanied by changes of ezrin immunoreactivity in the suprachiasmatic nucleus, in line with transmitter-induced perisynaptic glial motility. The data suggest that (i) ezrin is required for the structural plasticity of PAPs and (ii) mGluRs can stimulate PAP plasticity.
Collapse
Affiliation(s)
- Monique Lavialle
- Institut National de la Recherche Agronomique, Unité de Nutrition et Régulation Lipidique des Fonctions Cérébrales 909, 78352 Jouy-en-Josas, France
| | - Georg Aumann
- Institute of Anatomy, Technical University of Dresden, 01307 Dresden, Germany
| | - Enrico Anlauf
- Institute of Anatomy, Technical University of Dresden, 01307 Dresden, Germany
| | - Felicitas Pröls
- Institute of Anatomy I: Cellular Neurobiology, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Monique Arpin
- Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris 5, France
| | - Amin Derouiche
- Institute of Anatomy, Technical University of Dresden, 01307 Dresden, Germany
- Institute for Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
- Institute of Cellular Neurosciences, University of Bonn, 53105 Bonn, Germany
- Institute of Anatomy II, University of Frankfurt, 60590 Frankfurt, Germany; and
- Dr. Senckenbergisches, Chronomedizinisches Institut, University of Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
47
|
Sullivan KD, Brown EB. Multiphoton fluorescence recovery after photobleaching in bounded systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051916. [PMID: 21728580 PMCID: PMC3413246 DOI: 10.1103/physreve.83.051916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 01/17/2011] [Indexed: 05/31/2023]
Abstract
Multiphoton fluorescence recovery after photobleaching (MP-FRAP) is a laser microscopy technique used to measure diffusion coefficients of macromolecules in biological systems. The three-dimensional resolution and superior depth penetration within scattering samples offered by MP-FRAP make it an important tool for investigating both in vitro and in vivo systems. However, biological systems frequently confine diffusion within solid barriers, and to date the effect of such barriers on the measurement of absolute diffusion coefficients via MP-FRAP has not been studied. We have used Monte Carlo simulations of diffusion and MP-FRAP to understand the effect of barriers of varying geometries and positions relative to the two-photon focal volume. Furthermore, we supply ranges of barrier positions within which MP-FRAP can confidently be employed to measure accurate diffusion coefficients. Finally, we produce two new MP-FRAP models that can produce accurate diffusion coefficients in the presence of a single plane boundary or parallel infinite plane boundaries positioned parallel to the optical axis, up to the resolution limit of the multiphoton laser scanning microscope.
Collapse
Affiliation(s)
- Kelley D. Sullivan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Edward B. Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
48
|
|
49
|
Orlova DY, Bártová E, Maltsev VP, Kozubek S, Chernyshev AV. A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP. Biophys J 2011; 100:507-16. [PMID: 21244847 DOI: 10.1016/j.bpj.2010.11.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/17/2010] [Accepted: 11/30/2010] [Indexed: 01/13/2023] Open
Abstract
Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains.
Collapse
Affiliation(s)
- Darya Y Orlova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
50
|
Marion S, Hoffmann E, Holzer D, Le Clainche C, Martin M, Sachse M, Ganeva I, Mangeat P, Griffiths G. Ezrin promotes actin assembly at the phagosome membrane and regulates phago-lysosomal fusion. Traffic 2011; 12:421-37. [PMID: 21210911 DOI: 10.1111/j.1600-0854.2011.01158.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phagosome maturation is defined as the process by which phagosomes fuse sequentially with endosomes and lysosomes to acquire an acidic pH and hydrolases that degrade ingested particles. While the essential role of actin cytoskeleton remodeling during particle internalization is well established, its role during the later stages of phagosome maturation remains largely unknown. We have previously shown that purified mature phagosomes assemble F-actin at their membrane, and that the ezrin-radixin-moesin (ERM) proteins ezrin and moesin participate in this process. Moreover, we provided evidence that actin assembly on purified phagosomes stimulates their fusion with late endocytic compartments in vitro. In this study, we further investigated the role of ezrin in phagosome maturation. We engineered a structurally open form of ezrin and demonstrated that ezrin binds directly to the actin assembly promoting factor N-WASP (Neural Wiskott-Aldrich Syndrome Protein) by its FERM domain. Using a cell-free system, we found that ezrin stimulates F-actin assembly on purified phagosomes by recruiting the N-WASP-Arp2/3 machinery. Accordingly, we showed that the down-regulation of ezrin activity in macrophages by a dominant-negative approach caused reduced F-actin accumulation on maturing phagosomes. Furthermore, using fluorescence and electron microscopy, we found that ezrin is required for the efficient fusion between phagosomes and lysosomes. Live-cell imaging analysis supported the notion that ezrin is necessary for the fusogenic process itself, promoting the transfer of the lysosome content into the phagosomal lumen.
Collapse
Affiliation(s)
- Sabrina Marion
- Department of Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|