1
|
Cao C, Nipu N, Johnston W, Adil S, Wei L, Mennigen JA. Chronic hypoxia induces alternative splicing of transcripts in the goldfish brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:92. [PMID: 40332630 DOI: 10.1007/s10695-025-01505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
Several species evolved mechanisms to tolerate periods of severe environmental hypoxia and anoxia. Among them, goldfish are unique as they do not enter a comatose state under such conditions. Taking advantage of the recently published and annotated goldfish genome, we had previously profiled the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation, N) and hypoxic conditions (2.1 kPa oxygen saturation) after 1 and 4 weeks (1WH, 4WH). Using the RNA-Seq data, we report the occurrence of alternative mRNA splicing (skipped exon, retained intron, alternative 3' or 5' splice sites, and mutually exclusive exons). At 1WH/N, 1004 significant alternative splicing events on 769 gene loci were identified, increasing to 1187 on 963 loci at 4WH/N. There were 305 loci with alternatively spliced transcripts common to both 1WH/N and 4WH/N, 221 of which exhibited the same precise location and splicing mechanism. Specific gene transcripts affected by alternative splicing events were almost entirely different from previously identified differentially expressed genes under chronic hypoxia. GO-term enrichment analyses of gene loci of alternatively spliced transcripts, however, did include similar pathways as previously identified for DEGs. These include epigenetic machinery, ion channel activity (1WH/N), glutamate signaling (4WH/N), endothelial cell function, and ATP hydrolyzation pathways (1WH/N + 4WH/N). We describe selected examples of alternatively spliced transcripts to discuss possible functional relevance in the goldfish brain response to chronic hypoxia. Together, our data identified an additional layer of regulation in brain pathways relevant to hypoxia tolerance in goldfish, which complement previously reported gene expression changes.
Collapse
Affiliation(s)
- Catherine Cao
- Department of Biology, University of Ottawa, K1 N6 N5 20 Marie Curie, Ottawa, ON, Canada
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, K1 N6 N5 20 Marie Curie, Ottawa, ON, Canada
| | - William Johnston
- Department of Biology, University of Ottawa, K1 N6 N5 20 Marie Curie, Ottawa, ON, Canada
| | - Sally Adil
- Department of Biology, University of Ottawa, K1 N6 N5 20 Marie Curie, Ottawa, ON, Canada
| | - Lai Wei
- Department of Biology, University of Ottawa, K1 N6 N5 20 Marie Curie, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, K1 N6 N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Li H, Liu L, Wang X, Zhang R, Zhu H. Enhancing genome editing efficiency in goldfish (Carassius auratus) through utilization of CRISPR-Cas12a (Cpf1) temperature dependency. Int J Biol Macromol 2025; 305:141142. [PMID: 39971060 DOI: 10.1016/j.ijbiomac.2025.141142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
The CRISPR/Cas technology has demonstrated revolutionary potential across various fields, including agriculture, medicine, and food safety detection. However, the utility of CRISPR/Cas12a, a particularly promising gene-editing tool, is constrained by its temperature sensitivity, limiting its application in low-temperature environments. In this study, we developed a gene-editing technique based on the CRISPR/Cas12a system in the poikilothermic species goldfish Carassius auratus. We systematically evaluated the editing efficiencies of LbCas12a and AsCas12a on the tyrosinase (tyr) gene under varying temperature conditions. Our results revealed a pronounced temperature dependence of Cas12a, with elevated temperatures markedly enhancing its editing activity, particularly for AsCas12a. A brief one-hour high-temperature treatment was sufficient to achieve effective gene disruption, underscoring CRISPR/Cas12a as a rapid and efficient gene-editing tool. Temperature was utilized as a conditional trigger for Cas12a-mediated gene knockout, enabling precise modulation of gene disruption at specific embryonic developmental stages. Whole-genome resequencing of the mutants confirmed the absence of off-target effects, further emphasizing the precision of this editing process. These findings indicated that CRISPR/Cas12a represented a viable alternative to the widely utilized CRISPR/Cas9 system and could be applied in conjunction, thereby expanding the potential applications of gene-editing technologies.
Collapse
Affiliation(s)
- Huijuan Li
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lili Liu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaowen Wang
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
3
|
Johnston W, Adil S, Cao C, Nipu N, Mennigen JA. Fish models to explore epigenetic determinants of hypoxia-tolerance. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111811. [PMID: 39778711 DOI: 10.1016/j.cbpa.2025.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The occurrence of environmental hypoxia in freshwater and marine aquatic systems has increased over the last century and is predicted to further increase with climate change. As members of the largest extant vertebrate group, freshwater fishes, and to a much lesser extent marine fishes, are vulnerable to increased occurrence of hypoxia. This is important as fishes render important ecosystem services and have important cultural and economic roles. Evolutionarily successful, fishes have adapted to diverse aquatic freshwater and marine habitats with different oxygen conditions. While some fishes exhibit genetic adaptions to tolerate hypoxia and even anoxia, others are limited to oxygen-rich habitats. Recent advances in molecular epigenetics have shown that some epigenetic machinery, especially histone- and DNA demethylases, is directly dependent on oxygen and modulates important transcription-regulating epigenetic marks in the process. At the post-transcriptional level, hypoxia has been shown to affect non-coding microRNA abundance. Together, this evidence adds a new molecular epigenetic basis to study hypoxia tolerance in fishes. Here, we review the documented and predicted changes in environmental hypoxia in aquatic systems and discuss the diversity and comparative physiology of hypoxia tolerance in fishes, including molecular and physiological adaptations. We then discuss how recent mechanistic advances in environmental epigenetics can inform future work probing the role of oxygen-dependent epigenetic marks in shaping organismal hypoxia-tolerance in fishes with a focus on within- and between-species variation, acclimation, inter- and multigenerational plasticity, and multiple climate-change stressors. We conclude by describing the translational potential of this approach for conservation physiology, ecotoxicology, and aquaculture.
Collapse
Affiliation(s)
- William Johnston
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Sally Adil
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Catherine Cao
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Ren L, Luo M, Cui J, Gao X, Zhang H, Wu P, Wei Z, Tai Y, Li M, Luo K, Liu S. Variation and Interaction of Distinct Subgenomes Contribute to Growth Diversity in Intergeneric Hybrid Fish. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae055. [PMID: 39042151 PMCID: PMC11810642 DOI: 10.1093/gpbjnl/qzae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Intergeneric hybridization greatly reshapes regulatory interactions among allelic and non-allelic genes. However, their effects on growth diversity remain poorly understood in animals. In this study, we conducted whole-genome sequencing and RNA sequencing analyses in diverse hybrid varieties resulting from the intergeneric hybridization of goldfish (Carassius auratus red var.) and common carp (Cyprinus carpio). These hybrid individuals were characterized by distinct mitochondrial genomes and copy number variations. Through a weighted gene correlation network analysis, we identified 3693 genes as candidate growth-regulating genes. Among them, the expression of 3672 genes in subgenome R (originating from goldfish) displayed negative correlations with body weight, whereas 20 genes in subgenome C (originating from common carp) exhibited positive correlations. Notably, we observed intriguing expression patterns of solute carrier family 2 member 12 (slc2a12) in subgenome C, showing opposite correlations with body weight that changed with water temperatures, suggesting differential interactions between feeding activity and weight gain in response to seasonal changes for hybrid animals. In 40.30% of alleles, we observed dominant trans-regulatory effects in the regulatory interactions between distinct alleles from subgenomes R and C. Integrating analyses of allele-specific expression and DNA methylation data revealed that DNA methylation on both subgenomes shaped the relative contribution of allelic expression to the growth rate. These findings provide novel insights into the interactions of distinct subgenomes that underlie heterosis in growth traits and contribute to a better understanding of multiple allelic traits in animals.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mengxue Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Ping Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zehong Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yakui Tai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mengdan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Wang Y, Yang T, Mo H, Yao M, Song Q, Yu H, Du Y, Li Y, Yu J, Wang L. Identification and functional analysis of six melanocortin-4-receptor-like (MC4R-like) mutations in goldfish (Carassius auratus). Gen Comp Endocrinol 2025; 360:114639. [PMID: 39536983 DOI: 10.1016/j.ygcen.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Melanocortin receptor-4 (MC4R) belongs to the G protein-coupled receptor family, characterized by a classical structure of seven transmembrane domains (7TMD). They play an important role in food intake and weight regulation. In the present study, we identified melanocortin-4-receptor-like (caMC4RL) mutants of goldfish from the Qian River in the Qin Ling region and characterized their functional properties, including the constitutive activities of the mutants, ligand-induced cAMP and ERK1/2 accumulation, and AMPK activation. The results show that six caMC4RL mutants were identified in goldfish from the Qian River in the Qin Ling region, and are located in the conserved position of the Cyprinidae MC4Rs. The mutations (E57K, P296S, and R302T/K) result in the loss of Gs signaling function. The mutations (P296 and R302T/K) exhibited biased signaling in response to ACTH stimulation in the MAPK/ERK pathway. In addition, the E57K mutant may play a role in weight regulation and could serve as molecular markers for molecular breeding. These data will provide fundamental information for functional studies of teleost GPCR mutants and MC4R isoforms.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianze Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingchuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyou Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Le Verger K, Küng LC, Fabre AC, Schmelzle T, Wegmann A, Sánchez-Villagra MR. Goldfish phenomics reveals commonalities and a lack of universality in the domestication process for ornamentation. Evol Lett 2024; 8:774-786. [PMID: 39677575 PMCID: PMC11637523 DOI: 10.1093/evlett/qrae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 12/17/2024] Open
Abstract
Domestication process effects are manifold, affecting genotype and phenotype, and assumed to be universal in animals by part of the scientific community. While mammals and birds have been thoroughly investigated, from taming to intensive selective breeding, fish domestication remains comparatively unstudied. The most widely bred and traded ornamental fish species worldwide, the goldfish, underwent the effect of long-term artificial selection on differing skeletal and soft tissue modules through ornamental domestication. Here, we provide a global morphological analysis in this emblematic ornamental domesticated fish. We demonstrate that goldfish exhibit unique morphological innovations in whole-body, cranial, and sensory (Weberian ossicles and brain) anatomy compared to their evolutionary clade, highlighting a remarkable morphological disparity within a single species comparable to that of a macroevolutionary radiation. In goldfish, as in the case of dogs and pigeons in their respective evolutionary contexts, the most ornamented varieties are extremes in the occupied morphological space, emphasizing the power of artificial selection for nonadaptive traits. Using 21st century tools on a dataset comprising the 16 main goldfish breeds, 23 wild close relatives, and 39 cypriniform species, we show that Charles Darwin's expressed wonder at the goldfish is justified. There is a commonality of overall pattern in the morphological differentiation of domesticated forms selected for ornamental purposes, but the singularity of goldfish occupation and extension within (phylo)morphospaces, speaks against a universality in the domestication process.
Collapse
Affiliation(s)
- Kévin Le Verger
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Laurelle C Küng
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Anne-Claire Fabre
- Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland
- Naturhistorisches Museum der Burgergemeinde Bern, Bern, Switzerland
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Thomas Schmelzle
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Alexandra Wegmann
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
7
|
Liu H, Cui T, Liu H, Zhang J, Luo Q, Fei S, Chen K, Zhu X, Zhu C, Li B, Fang L, Zhao J, Ou M. Chromosome-level genome assembly of the mud carp (Cirrhinus molitorella) using PacBio HiFi and Hi-C sequencing. Sci Data 2024; 11:1249. [PMID: 39562583 PMCID: PMC11577095 DOI: 10.1038/s41597-024-04075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
The mud carp (Cirrhinus molitorella) is an important economic farmed fish, mainly distributed in South China and Southeast Asia due to its strong adaptability and high yield. Despite its economic importance, the paucity of genomic information has constrained detailed genetic research and breeding efforts. In this study, we utilized PacBio HiFi long-read sequencing and Hi-C technologies to generate a meticulously assembled chromosome-level genome of the mud carp. This assembly spans 1,033.41 Mb, with an impressive 99.82% distributed across 25 chromosomes. The contig N50 and scaffold N50 are 33.29 Mb and 39.86 Mb, respectively. The completeness of the mud carp genome assembly is highlighted by a BUSCO score of 98.05%. We predict 25,865 protein-coding genes, with a BUSCO score of 96.54%, and functional annotations for 91.83% of these genes. Approximately 52.21% of the genome consists of repeat elements. This high-fidelity genome assembly is a vital resource for advancing molecular breeding, comparative genomics, and evolutionary studies of the mud carp and related species.
Collapse
Affiliation(s)
- Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Tongxin Cui
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Huijuan Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jin Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Chunkun Zhu
- School of Life science, Huaiyin Normal University, Huai'an, 223300, China
| | - Bingjie Li
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
8
|
Zhang F, Qu Z, Zeng J, Yu L, Zeng L, Li X. A novel goldfish orthotopic xenograft model of hepatocellular carcinoma developed to evaluate antitumor drug efficacy. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109998. [PMID: 39537120 DOI: 10.1016/j.fsi.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Tumor xenograft animal models play a crucial role in hepatocellular carcinoma (HCC) research. Mice xenograft models are time consuming, laborious and expensive while zebrafish tumor xenograft models are cost-effective and effortless. However, the development of orthotopic xenograft models for HCC in zebrafish embryos has been challenging due to the small size of zebrafish livers. In this study, we utilized 7-day-old goldfish embryos as hosts and successfully established an orthotopic xenograft model of HCC in goldfish livers. Through injecting fluorescence labeled HCC cells into the liver of goldfish, we could visualize the proliferation and migration of tumor cells in vivo. In addition, we found that the temperature of 36 °C was better for tumor cell survival in goldfish larvae compared to 28 °C, assessed by EdU and TUNEL assays. Moreover, macrophage infiltration in the goldfish liver could be evaluated by neutral red staining. Finally, we evaluated the efficacy of the targeted therapy drug Sorafenib and the traditional Chinese medicine, Huaier granules, alone or in combination in the goldfish HCC orthotopic xenograft model. We found that the combination therapy showed the best efficacy against HCC cells in terms of macrophage infiltration, polarization as well as tumor cells proliferation, metastasis and apoptosis. In conclusion, the proposed goldfish HCC orthotopic xenograft model opens new avenues for HCC related research, including evaluation of tumor progression, cell interactions in the immune microenvironment, drug efficacy, and screening of anti-tumor drugs.
Collapse
Affiliation(s)
- Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China.
| | - Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Jing Zeng
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Lanxin Yu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China.
| |
Collapse
|
9
|
Sun Z, Huang J, Zhang X, Chang Y, Hu G. The Identification of Proteomic Signatures Associated with Alkaline Tolerance in the Skin Mucus of Crucian Carp ( Carassius auratus). Int J Mol Sci 2024; 25:11618. [PMID: 39519168 PMCID: PMC11546964 DOI: 10.3390/ijms252111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The skin is covered by a protective mucus layer, which is essential to the innate defense mechanism of fish. Investigating the response of skin mucus to various toxic stresses is crucial for enhancing its ability to tackle environmental challenges and developing strategies to mitigate toxic effects. Alkalinity stress assays (50 mmol/L NaHCO3) were conducted on crucian carp (Carassius auratus) from Lake Dali Nur (pH = 9.6) and Ping Xiang red crucian carp from freshwater (pH = 7) over 7 days. The expression of skin mucous proteins was analyzed using the liquid chromatography (LC)-spectrometry (MS)/MS Analysis-Data-independent acquisition (DIA) mode. A total of 12,537 proteins were identified across 20 samples from four groups, with 12,025 quantified. In the alkaline water population, high alkali stress resulted in the up-regulation of 139 proteins and the down-regulation of 500 proteins. In contrast, the freshwater population showed an increase in 112 proteins and a decrease in 120; both populations had a total of 23 genes up-regulated and 21 down-regulated. The protein regulatory network for the alkaline water group included 3146 pairwise interactions among 464 nodes, with only 20 being differentially expressed proteins. Conversely, the freshwater group's network comprised just 1027 specific interactions across 337 nodes, with 6 corresponding to differentially expressed proteins. A common protein regulatory network responding to high alkali stress was extracted and visualized for both populations. Based on their regulatory relationships and expression levels, these proteins are hypothesized to play similar roles under high alkali stress. Notably, the alpha-globin fragment and keratin type I cytoskeletal 13-like proteins showed markedly up-regulated expression, with the alpha-globin fragment increasing nearly a thousandfold from an extremely low level. This suggests it could serve as a potential biomarker for alkali tolerance, warranting further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Guo Hu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding of Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Harbin 150070, China; (Z.S.); (J.H.); (X.Z.); (Y.C.)
| |
Collapse
|
10
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Session AM. Allopolyploid subgenome identification and implications for evolutionary analysis. Trends Genet 2024; 40:621-631. [PMID: 38637269 DOI: 10.1016/j.tig.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Whole-genome duplications (WGDs) are widespread genomic events in eukaryotes that are hypothesized to contribute to the evolutionary success of many lineages, including flowering plants, Saccharomyces yeast, and vertebrates. WGDs generally can be classified into autopolyploids (ploidy increase descended from one species) or allopolyploids (ploidy increase descended from multiple species). Assignment of allopolyploid progenitor species (called subgenomes in the polyploid) is important to understanding the biology and evolution of polyploids, including the asymmetric subgenome evolution following hybridization (biased fractionation). Here, I review the different methodologies used to identify the ancestors of allopolyploid subgenomes, discuss the advantages and disadvantages of these methods, and outline the implications of how these methods affect the subsequent evolutionary analysis of these genomes.
Collapse
Affiliation(s)
- Adam M Session
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
12
|
Cortes S, Farhat E, Talarico G, Mennigen JA. The dynamic transcriptomic response of the goldfish brain under chronic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101233. [PMID: 38608489 DOI: 10.1016/j.cbd.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.
Collapse
Affiliation(s)
- S Cortes
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - E Farhat
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ggm Talarico
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Chen L, Li C, Li B, Zhou X, Bai Y, Zou X, Zhou Z, He Q, Chen B, Wang M, Xue Y, Jiang Z, Feng J, Zhou T, Liu Z, Xu P. Evolutionary divergence of subgenomes in common carp provides insights into speciation and allopolyploid success. FUNDAMENTAL RESEARCH 2024; 4:589-602. [PMID: 38933191 PMCID: PMC11197550 DOI: 10.1016/j.fmre.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 06/28/2024] Open
Abstract
Hybridization and polyploidization have made great contributions to speciation, heterosis, and agricultural production within plants, but there is still limited understanding and utilization in animals. Subgenome structure and expression reorganization and cooperation post hybridization and polyploidization are essential for speciation and allopolyploid success. However, the mechanisms have not yet been comprehensively assessed in animals. Here, we produced a high-fidelity reference genome sequence for common carp, a typical allotetraploid fish species cultured worldwide. This genome enabled in-depth analysis of the evolution of subgenome architecture and expression responses. Most genes were expressed with subgenome biases, with a trend of transition from the expression of subgenome A during the early stages to that of subgenome B during the late stages of embryonic development. While subgenome A evolved more rapidly, subgenome B contributed to a greater level of expression during development and under stressful conditions. Stable dominant patterns for homoeologous gene pairs both during development and under thermal stress suggest a potential fixed heterosis in the allotetraploid genome. Preferentially expressing either copy of a homoeologous gene at higher levels to confer development and response to stress indicates the dominant effect of heterosis. The plasticity of subgenomes and their shifting of dominant expression during early development, and in response to stressful conditions, provide novel insights into the molecular basis of the successful speciation, evolution, and heterosis of the allotetraploid common carp.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyu Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bijun Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoqing Zou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhixiong Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Baohua Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mei Wang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yaguo Xue
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhou Jiang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou 450044, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse 13244, USA
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Lee SH, Wang CY, Li IJ, Abe G, Ota KG. Exploring the origin of a unique mutant allele in twin-tail goldfish using CRISPR/Cas9 mutants. Sci Rep 2024; 14:8716. [PMID: 38622170 PMCID: PMC11018756 DOI: 10.1038/s41598-024-58448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Artificial selection has been widely applied to genetically fix rare phenotypic features in ornamental domesticated animals. For many of these animals, the mutated loci and alleles underlying rare phenotypes are known. However, few studies have explored whether these rare genetic mutations might have been fixed due to competition among related mutated alleles or if the fixation occurred due to contingent stochastic events. Here, we performed genetic crossing with twin-tail ornamental goldfish and CRISPR/Cas9-mutated goldfish to investigate why only a single mutated allele-chdS with a E127X stop codon (also called chdAE127X)-gives rise to the twin-tail phenotype in the modern domesticated goldfish population. Two closely related chdS mutants were generated with CRISPR/Cas9 and compared with the E127X allele in F2 and F3 generations. Both of the CRISPR/Cas9-generated alleles were equivalent to the E127X allele in terms of penetrance/expressivity of the twin-tail phenotype and viability of carriers. These findings indicate that multiple truncating mutations could have produced viable twin-tail goldfish. Therefore, the absence of polymorphic alleles for the twin-tail phenotype in modern goldfish likely stems from stochastic elimination or a lack of competing alleles in the common ancestor. Our study is the first experimental comparison of a singular domestication-derived allele with CRISPR/Cas9-generated alleles to understand how genetic fixation of a unique genotype and phenotype may have occurred. Thus, our work may provide a conceptual framework for future investigations of rare evolutionary events in domesticated animals.
Collapse
Affiliation(s)
- Shu-Hua Lee
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Chen-Yi Wang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
- Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life Science, Tottori University, Nishi-cho 86, Yonago, 683-8503, Japan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan.
| |
Collapse
|
15
|
Lu M, Zhou L, Gui JF. Evolutionary mechanisms and practical significance of reproductive success and clonal diversity in unisexual vertebrate polyploids. SCIENCE CHINA. LIFE SCIENCES 2024; 67:449-459. [PMID: 38198030 DOI: 10.1007/s11427-023-2486-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024]
Abstract
Unisexual reproduction is generally relevant to polyploidy, and unisexual vertebrates are often considered an evolutionary "dead end" due to the accumulation of deleterious mutations and absence of genetic diversity. However, some unisexual polyploids have developed strategies to avoid genomic decay, and thus provide ideal models to unveil unexplored evolutionary mechanisms, from the reproductive success to clonal diversity creation. This article reviews the evolutionary mechanisms for overcoming meiotic barrier and generating genetic diversity in unisexual vertebrates, and summarizes recent research advancements in the polyploid Carassius complex. Gynogenetic gibel carp (Carassius gibelio) is a unique amphitriploid that has undergone a recurrent autotriploidy and has overcome the bottleneck of triploid sterility via gynogenesis. Recently, an efficient strategy in which ploidy changes, including from amphitriploid to amphitetraploid, then from amphitetraploid to novel amphitriploid, drive unisexual-sexual-unisexual reproduction transition and clonal diversity has been revealed. Based on this new discovery, multigenomic reconstruction biotechnology has been used to breed a novel strain with superior growth and stronger disease resistance. Moreover, a unique reproduction mode that combines both abilities of ameiotic oogenesis and sperm-egg fusion, termed as ameio-fusiongensis, has been discovered, and it provides an efficient approach to synthesize sterile allopolyploids. In order to avoid ecological risks upon escape and protect the sustainable property rights of the aquaculture seed industry, a controllable fertility biotechnology approach for precise breeding is being developed by integrating sterile allopolyploid synthesis and gene-editing techniques. This review provides novel insights into the origin and evolution of unisexual vertebrates and into the attempts being made to exploit new breeding biotechnologies in aquaculture.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Gao K, He Z, Xiong J, Chen Q, Lai B, Liu F, Chen P, Chen M, Luo W, Huang J, Ding W, Wang H, Pu Y, Zheng L, Jiao Y, Zhang M, Tang Z, Yue Q, Yang D, Yan T. Population structure and adaptability analysis of Schizothorax o'connori based on whole-genome resequencing. BMC Genomics 2024; 25:145. [PMID: 38321406 PMCID: PMC10845765 DOI: 10.1186/s12864-024-09975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Schizothorax o'connori is an endemic fish distributed in the upper and lower reaches of the Yarlung Zangbo River in China. It has experienced a fourth round of whole gene replication events and is a good model for exploring the genetic differentiation and environmental adaptability of fish in the Qinghai-Tibet Plateau. The uplift of the Qinghai-Tibet Plateau has led to changes in the river system, thereby affecting gene exchange and population differentiation between fish populations. With the release of fish whole genome data, whole genome resequencing has been widely used in genetic evolutionary analysis and screening of selected genes in fish, which can better elucidate the genetic basis and molecular environmental adaptation mechanisms of fish. Therefore, our purpose of this study was to understand the population structure and adaptive characteristics of S. o'connori using the whole-genome resequencing method. RESULTS The results showed that 23,602,746 SNPs were identified from seven populations, mostly distributed on chromosomes 2 and 23. There was no significant genetic differentiation between the populations, and the genetic diversity was relatively low. However, the Zangga population could be separated from the Bomi, Linzhi, and Milin populations in the cluster analysis. Based on historical dynamics analysis of the population, the size of the ancestral population of S. o'connori was affected by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Glacial Age. The selected sites were mostly enriched in pathways related to DNA repair and energy metabolism. CONCLUSION Overall, the whole-genome resequencing analysis provides valuable insights into the population structure and adaptive characteristics of S. o'connori. There was no obvious genetic differentiation at the genome level between the S. o'connori populations upstream and downstream of the Yarlung Zangbo River. The current distribution pattern and genetic diversity are influenced by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Ice Age. The selected sites of S. o'connori are enriched in the energy metabolism and DNA repair pathways to adapt to the low temperature and strong ultraviolet radiation environment at high altitude.
Collapse
Affiliation(s)
- Kuo Gao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinxin Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bolin Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Fei Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingqiang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenjie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junjie Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenxiang Ding
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haochen Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Jiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ziting Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingsong Yue
- Huadian Tibet Hydropower Development Co.,Ltd, Dagu Hydropower Station, Sangri, 856200, Shannan, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
17
|
Yang T, Kasagi S, Takahashi A, Mizusawa K. Effects of Water Temperature on the Body Color and Expression of the Genes Related to Body Color Regulation in the Goldfish. Zoolog Sci 2024; 41:117-123. [PMID: 38587524 DOI: 10.2108/zs230062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/08/2023] [Indexed: 04/09/2024]
Abstract
Melanin-concentrating hormone (MCH), melanocyte-stimulating hormone (MSH), and somatolactin (SL) in the hypothalamus-pituitary axis are associated with body color regulation in teleost fish. Although these hormones' production and secretion respond well to light environments, such as background color, little is known about the effects of different water temperatures. We investigated the effects of water temperature, 10°C, 20°C, and 30°C, on body color and the expression of these genes and corresponding receptor genes in goldfish. The body color in white background (WBG) becomes paler at the higher water temperature, although no difference was observed in black background (BBG). Brain mRNA contents of proMCH genes (pmch1 and pmch2) increased at 30°C and 20°C compared to 10°C in WBG, respectively. Apparent effects of background color and temperature on the pituitary mRNA contents of a POMC gene (pomc) were not observed. The pituitary mRNA contents of the SLα gene were almost double those on a WBG at any temperature, while those of the SLβ gene (slb) at 30°C tended to be higher than those at 10°C and 20°C on WBG and BBG. The scale mRNA contents of the MCH receptor gene (mchr2) in WBG were higher than those in BBG at 30°C. The highest scale mRNA contents of MSH receptor (mc1r and mc5r) on BBG were observed at 20°C, while the lowest respective mRNA levels were observed at 30°C on WBG. These results highlight the importance of temperature for the endocrinological regulation of body color, and darker background color may stabilize those endocrine functions.
Collapse
Affiliation(s)
- Tingshu Yang
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan,
| |
Collapse
|
18
|
Omori Y, Burgess SM. The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. Methods Mol Biol 2024; 2707:335-355. [PMID: 37668923 DOI: 10.1007/978-1-0716-3401-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
19
|
San L, He Z, Liu Y, Zhang Y, Cao W, Ren J, Han T, Li B, Wang G, Wang Y, Hou J. Genetic Diversity and Signatures of Selection in the Roughskin Sculpin ( Trachidermus fasciatus) Revealed by Whole Genome Sequencing. BIOLOGY 2023; 12:1427. [PMID: 37998026 PMCID: PMC10669622 DOI: 10.3390/biology12111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The roughskin sculpin (Trachidermus fasciatus) is an endangered fish species in China. In recent years, artificial breeding technology has made significant progress, and the population of roughskin sculpin has recovered in the natural environment through enhancement programs and the release of juveniles. However, the effects of released roughskin sculpin on the genetic structure and diversity of wild populations remain unclear. Studies on genetic diversity analysis based on different types and numbers of molecular markers have yielded inconsistent results. In this study, we obtained 2,610,157 high-quality SNPs and 494,698 InDels through whole-genome resequencing of two farmed populations and one wild population. Both farmed populations showed consistent levels of genomic polymorphism and a slight increase in linkage compared with wild populations. The population structure of the two farmed populations was distinct from that of the wild population, but the degree of genetic differentiation was low (overall average Fst = 0.015). Selective sweep analysis showed that 523,529 genes were selected in the two farmed populations, and KEGG enrichment analysis showed that the selected genes were related to amino acid metabolism, which might be caused by artificial feeding. The findings of this study provide valuable additions to the existing genomic resources to help conserve roughskin sculpin populations.
Collapse
Affiliation(s)
- Lize San
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Zhongwei He
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yufeng Liu
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yitong Zhang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Wei Cao
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Jiangong Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Tian Han
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
- Ocean College, Hebei Agricultural University, Qinhuangdao 066009, China
| | - Bingbu Li
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Guixing Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yufen Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| |
Collapse
|
20
|
He B, Sridhar A, Streiff C, Deketelaere C, Zhang H, Gao Y, Hu Y, Pirotte S, Delrez N, Davison AJ, Donohoe O, Vanderplasschen AFC. In Vivo Imaging Sheds Light on the Susceptibility and Permissivity of Carassius auratus to Cyprinid Herpesvirus 2 According to Developmental Stage. Viruses 2023; 15:1746. [PMID: 37632088 PMCID: PMC10459324 DOI: 10.3390/v15081746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a virus that causes mass mortality in economically important Carassius spp. However, there have been no comprehensive studies into host susceptibility or permissivity with respect to developmental stage, and the major portal of viral entry into the host is still unclear. To help bridge these knowledge gaps, we developed the first ever recombinant strain of CyHV-2 expressing bioluminescent and fluorescent reporter genes. Infection of Carassius auratus hosts with this recombinant by immersion facilitated the exploitation of various in vivo imaging techniques to establish the spatiotemporal aspects of CyHV-2 replication at larval, juvenile, and adult developmental stages. While less susceptible than later developmental stages, larvae were most permissive to CyHV-2 replication, leading to rapid systemic infection and high mortality. Permissivity to CyHV-2 decreased with advancing development, with adults being the least permissive and, thus, also exhibiting the least mortality. Across all developmental stages, the skin was the most susceptible and permissive organ to infection at the earliest sampling points post-infection, indicating that it represents the major portal of entry into these hosts. Collectively these findings provide important fundamental insights into CyHV-2 pathogenesis and epidemiology in Carassius auratus with high relevance to other related economically important virus-host models.
Collapse
Affiliation(s)
- Bo He
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Cindy Streiff
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Caroline Deketelaere
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Haiyan Zhang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Yunlong Hu
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Sebastien Pirotte
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Natacha Delrez
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Owen Donohoe
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
- Bioscience Research Institute, Technological University of the Shannon, Athlone N37 HD68, Co. Westmeath, Ireland
| | - Alain F. C. Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| |
Collapse
|
21
|
Session AM, Rokhsar DS. Transposon signatures of allopolyploid genome evolution. Nat Commun 2023; 14:3180. [PMID: 37263993 DOI: 10.1038/s41467-023-38560-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
Hybridization brings together chromosome sets from two or more distinct progenitor species. Genome duplication associated with hybridization, or allopolyploidy, allows these chromosome sets to persist as distinct subgenomes during subsequent meioses. Here, we present a general method for identifying the subgenomes of a polyploid based on shared ancestry as revealed by the genomic distribution of repetitive elements that were active in the progenitors. This subgenome-enriched transposable element signal is intrinsic to the polyploid, allowing broader applicability than other approaches that depend on the availability of sequenced diploid relatives. We develop the statistical basis of the method, demonstrate its applicability in the well-studied cases of tobacco, cotton, and Brassica napus, and apply it to several cases: allotetraploid cyprinids, allohexaploid false flax, and allooctoploid strawberry. These analyses provide insight into the origins of these polyploids, revise the subgenome identities of strawberry, and provide perspective on subgenome dominance in higher polyploids.
Collapse
Affiliation(s)
- Adam M Session
- Department of Molecular and Cell, University of California, Berkeley, CA, 94720, USA.
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA.
| | - Daniel S Rokhsar
- Department of Molecular and Cell, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Molecular Genetics Unit, Okinawa Institute for Science and Technology Graduate University, Okinawa, Japan
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| |
Collapse
|
22
|
Zhu S, Yue X, Huang K, Li X, Gouife M, Nawaz M, Ma R, Jiang J, Jin S, Xie J. Nigericin treatment activates endoplasmic reticulum apoptosis pathway in goldfish kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108616. [PMID: 36796597 DOI: 10.1016/j.fsi.2023.108616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Nigericin has been reported to induce apoptosis and pyroptosis in mammalian models. However, the effects and mechanism underlying the immune responses of teleost HKLs induced by nigericin remain enigmatic. To decipher the mechanism after nigericin treatment, the transcriptomic profile of goldfish HKLs was analyzed. The results demonstrated that a total of 465 differently expressed genes (DEGs) with 275 up-regulated and 190 down-regulated genes were identified between the control and nigericin treated groups. Among them, the top 20 DEG KEGG enrichment pathways were observed including apoptosis pathways. In addition, the expression level of selected genes (ADP4, ADP5, IRE1, MARCC, ALR1, DDX58) by quantitative real-time PCR showed a significant change after treatment with nigericin, which was generally identical to the expression patterns of the transcriptomic data. Furthermore, the treatment could induce cell death of HKLs, which was confirmed by LDH release and annexin V-FITC/PI assays. Taken together, our results support the idea that nigericin treatment might activate the IRE1-JNK apoptosis pathway in goldfish HKLs, which will provide insights into the mechanisms underlying HKLs immunity towards apoptosis or pyroptosis regulation in teleosts.
Collapse
Affiliation(s)
- Songwei Zhu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Kejing Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Xionglin Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Moussa Gouife
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Mateen Nawaz
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Rongrong Ma
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jianhu Jiang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, 313001, China
| | - Shan Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| |
Collapse
|
23
|
Gan RH, Zhou L, Gui JF. Efficiently Editing Multiple Duplicated Homeologs and Alleles for Recurrent Polyploids. Methods Mol Biol 2023; 2545:491-512. [PMID: 36720830 DOI: 10.1007/978-1-0716-2561-3_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research on the evolutionary fate of duplicated genes in recurrent polyploids is scarce due to the difficulties in disentangling the different homeologs and alleles of duplicated genes. This chapter describes the detailed procedures to identify different homeologs and alleles of duplicated genes, to analyze their molecular characteristics, and to reveal their functional divergence by gene editing with CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9). Using the gene editing approach, we efficiently constructed multiple knockout mutant lines with single or simultaneously disrupted different homeologs or alleles in a recurrent polyploid fish, demonstrating its usability for targeting and mutating multiple divergent homeologs and alleles in recurrent duplicated genomes.
Collapse
Affiliation(s)
- Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Full-Length RNA Sequencing Provides Insights into Goldfish Evolution under Artificial Selection. Int J Mol Sci 2023; 24:ijms24032735. [PMID: 36769054 PMCID: PMC9916754 DOI: 10.3390/ijms24032735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Goldfish Carassius auratus is an ideal model for exploring fish morphology evolution. Although genes underlying several ornamental traits have been identified, little is known about the effects of artificial selection on embryo gene expression. In the present study, hybrid transcriptome sequencing was conducted to reveal gene expression profiles of Celestial-Eye (CE) and Ryukin (RK) goldfish embryos. Full-length transcriptome sequencing on the PacBio platform identified 54,218 and 54,106 transcript isoforms in CE and RK goldfish, respectively. Of particular note was that thousands of alternative splicing (AS) and alternative polyadenylation (APA) events were identified in both goldfish breeds, and most of them were inter-breed specific. RT-PCR and Sanger sequencing showed that most of the predicted AS and APA were correct. Moreover, abundant long non-coding RNA and fusion genes were detected, and again most of them were inter-breed specific. Through RNA-seq, we detected thousands of differentially expressed genes (DEGs) in each embryonic stage between the two goldfish breeds. KEGG enrichment analysis on DEGs showed extensive differences between CE and RK goldfish in gene expression. Taken together, our results demonstrated that artificial selection has led to far-reaching influences on goldfish gene expression, which probably laid the genetic basis for hundreds of goldfish variations.
Collapse
|
25
|
Wang Y, Yu J, Jiang M, Lei W, Zhang X, Tang H. Sequencing and Assembly of Polyploid Genomes. Methods Mol Biol 2023; 2545:429-458. [PMID: 36720827 DOI: 10.1007/978-1-0716-2561-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyploidy has been observed throughout major eukaryotic clades and has played a vital role in the evolution of angiosperms. Recent polyploidizations often result in highly complex genome structures, posing challenges to genome assembly and phasing. Recent advances in sequencing technologies and genome assembly algorithms have enabled high-quality, near-complete chromosome-level assemblies of polyploid genomes. Advances in novel sequencing technologies include highly accurate single-molecule sequencing with HiFi reads, chromosome conformation capture with Hi-C technique, and linked reads sequencing. Additionally, new computational approaches have also significantly improved the precision and reliability of polyploid genome assembly and phasing, such as HiCanu, hifiasm, ALLHiC, and PolyGembler. Herein, we review recently published polyploid genomes and compare the various sequencing, assembly, and phasing approaches that are utilized in these genome studies. Finally, we anticipate that accurate and telomere-to-telomere chromosome-level assembly of polyploid genomes could ultimately become a routine procedure in the near future.
Collapse
Affiliation(s)
- Yibin Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxin Yu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Kon T, Fukuta K, Chen Z, Kon-Nanjo K, Suzuki K, Ishikawa M, Tanaka H, Burgess SM, Noguchi H, Toyoda A, Omori Y. Single-cell transcriptomics of the goldfish retina reveals genetic divergence in the asymmetrically evolved subgenomes after allotetraploidization. Commun Biol 2022; 5:1404. [PMID: 36572749 PMCID: PMC9792465 DOI: 10.1038/s42003-022-04351-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
The recent whole-genome duplication (WGD) in goldfish (Carassius auratus) approximately 14 million years ago makes it a valuable model for studying gene evolution during the early stages after WGD. We analyzed the transcriptome of the goldfish retina at the level of single-cell (scRNA-seq) and open chromatin regions (scATAC-seq). We identified a group of genes that have undergone dosage selection, accounting for 5% of the total 11,444 ohnolog pairs. We also identified 306 putative sub/neo-functionalized ohnolog pairs that are likely to be under cell-type-specific genetic variation at single-cell resolution. Diversification in the expression patterns of several ohnolog pairs was observed in the retinal cell subpopulations. The single-cell level transcriptome analysis in this study uncovered the early stages of evolution in retinal cell of goldfish after WGD. Our results provide clues for understanding the relationship between the early stages of gene evolution after WGD and the evolution of diverse vertebrate retinal functions.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Japan
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Koto Kon-Nanjo
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Kota Suzuki
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Japan
| | | | | | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| |
Collapse
|
27
|
Chen HC, Wang C, Li IJ, Abe G, Ota KG. Pleiotropic functions of chordin gene causing drastic morphological changes in ornamental goldfish. Sci Rep 2022; 12:19961. [PMID: 36402810 PMCID: PMC9675773 DOI: 10.1038/s41598-022-24444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
Breeders and fanciers have established many peculiar morphological phenotypes in ornamental goldfish. Among them, the twin-tail and dorsal-finless phenotypes have particularly intrigued early and recent researchers, as equivalent morphologies are extremely rare in nature. These two mutated phenotypes appeared almost simultaneously within a short time frame and were fixed in several strains. However, little is known about how these two different mutations could have co-occurred during such a short time period. Here, we demonstrate that the chordin gene, a key factor in dorsal-ventral patterning, is responsible not only for the twin-tail phenotype but also for the dorsal-finless phenotype. Our F2 backcrossing and functional analyses revealed that the penetrance/expressivity of the dorsal-finless phenotype can be suppressed by the wild-type allele of chdS. Based on these findings, we propose that chdSwt may have masked the expression of the dorsal-finless phenotype, acting as a capacitor buffering gene to allow accumulation of genetic mutations. Once this gene lost its original function in the twin-tail goldfish lineages, the dorsal-finless phenotype could be highly expressed. Thus, this study experimentally demonstrates that the rapid genetic fixation of morphological mutations during a short domestication time period may be related to the robustness of embryonic developmental mechanisms.
Collapse
Affiliation(s)
- Hsiao-Chian Chen
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Chenyi Wang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Gembu Abe
- Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life Science, Tottori University, Nishi-Cho 86, Yonago, 683-8503, Japan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan.
| |
Collapse
|
28
|
Yu P, Wang Y, Li Z, Jin H, Li LL, Han X, Wang ZW, Yang XL, Li XY, Zhang XJ, Zhou L, Gui JF. Causal gene identification and desirable trait recreation in goldfish. SCIENCE CHINA LIFE SCIENCES 2022; 65:2341-2353. [DOI: 10.1007/s11427-022-2194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
|
29
|
Kuhl H, Du K, Schartl M, Kalous L, Stöck M, Lamatsch DK. Equilibrated evolution of the mixed auto-/allopolyploid haplotype-resolved genome of the invasive hexaploid Prussian carp. Nat Commun 2022; 13:4092. [PMID: 35835759 PMCID: PMC9283417 DOI: 10.1038/s41467-022-31515-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Understanding genome evolution of polyploids requires dissection of their often highly similar subgenomes and haplotypes. Polyploid animal genome assemblies so far restricted homologous chromosomes to a 'collapsed' representation. Here, we sequenced the genome of the asexual Prussian carp, which is a close relative of the goldfish, and present a haplotype-resolved chromosome-scale assembly of a hexaploid animal. Genome-wide comparisons of the 150 chromosomes with those of two ancestral diploid cyprinids and the allotetraploid goldfish and common carp revealed the genomic structure, phylogeny and genome duplication history of its genome. It consists of 25 syntenic, homeologous chromosome groups and evolved by a recent autoploid addition to an allotetraploid ancestor. We show that de-polyploidization of the alloploid subgenomes on the individual gene level occurred in an equilibrated fashion. Analysis of the highly conserved actinopterygian gene set uncovered a subgenome dominance in duplicate gene loss of one ancestral chromosome set.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB (Forschungsverbund Berlin), Müggelseedamm 301, D-12587, Berlin, Germany
| | - Kang Du
- University of Würzburg, Developmental Biochemistry, Biocenter, D-97074, Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Manfred Schartl
- University of Würzburg, Developmental Biochemistry, Biocenter, D-97074, Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Lukáš Kalous
- Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries-IGB (Forschungsverbund Berlin), Müggelseedamm 301, D-12587, Berlin, Germany.
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan.
| | - Dunja K Lamatsch
- Research Department for Limnology, Mondsee, University of Innsbruck, A-5310, Mondsee, Austria.
| |
Collapse
|
30
|
Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat Ecol Evol 2022; 6:1354-1366. [PMID: 35817827 PMCID: PMC9439954 DOI: 10.1038/s41559-022-01813-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/25/2022] [Indexed: 12/21/2022]
Abstract
Triploids are rare in nature because of difficulties in meiotic and gametogenic processes, especially in vertebrates. The Carassius complex of cyprinid teleosts contains sexual tetraploid crucian carp/goldfish (C. auratus) and unisexual hexaploid gibel carp/Prussian carp (C. gibelio) lineages, providing a valuable model for studying the evolution and maintenance mechanism of unisexual polyploids in vertebrates. Here we sequence the genomes of the two species and assemble their haplotypes, which contain two subgenomes (A and B), to the chromosome level. Sequencing coverage analysis reveals that C. gibelio is an amphitriploid (AAABBB) with two triploid sets of chromosomes; each set is derived from a different ancestor. Resequencing data from different strains of C. gibelio show that unisexual reproduction has been maintained for over 0.82 million years. Comparative genomics show intensive expansion and alterations of meiotic cell cycle-related genes and an oocyte-specific histone variant. Cytological assays indicate that C. gibelio produces unreduced oocytes by an alternative ameiotic pathway; however, sporadic homologous recombination and a high rate of gene conversion also exist in C. gibelio. These genomic changes might have facilitated purging deleterious mutations and maintaining genome stability in this unisexual amphitriploid fish. Overall, the current results provide novel insights into the evolutionary mechanisms of the reproductive success in unisexual polyploid vertebrates. Genome sequencing and haplotype assembly of two cyprinid teleosts, a sexual tetraploid and an unisexual hexaploid, reveal insights into the evolutionary mechanisms underpinning the reproductive success of unisexual polyploid vertebrates.
Collapse
|
31
|
Nakagawa M, Okano K, Saratani Y, Shoji Y, Okano T. Midnight/midday-synchronized expression of cryptochrome genes in the eyes of three teleost species, zebrafish, goldfish, and medaka. ZOOLOGICAL LETTERS 2022; 8:8. [PMID: 35672786 PMCID: PMC9172026 DOI: 10.1186/s40851-022-00192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Photoperiodic responses are observed in many organisms living in the temperate zones. The circadian clock is involved in photoperiodic time measurement; however, the underlying molecular mechanism for detection of the day length remains unknown. We previously compared the expression profiles of the Cryptochrome(Cry) genes in the zebrafish eye and reported that Cry1ab has a double peak with variable expression duration depending on the photoperiod. In this study, to understand commonalities and differences in the photoperiodic responses of ocular Cry genes, we identified Cryptochrome genes in two other teleost species, goldfish and medaka, living in temperate zones, and measured ocular Cry mRNA levels in all of the three species, under different photoperiods (long-day [14 h light: 10 h dark] and short-day [10 h light: 14 h dark] and in constant darkness. Cry1ab mRNA levels did not show dual peaks in goldfish or medaka under the examined conditions; however, the mRNA expression profiles of many Crys were altered in all three species, depending on the day length and light condition. Based on their expression profiles, Cry mRNA peaks were classified into three groups that better synchronize to sunrise (light-on), midnight/midday (middle points of the dark/light periods), or sunset (light-off). These results suggest the presence of multiple oscillators that oscillate independently or a complex oscillator in which Cry expression cycles change in a photoperiod-dependent manner in the eye.
Collapse
Affiliation(s)
- Marika Nakagawa
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| | - Keiko Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| | - Yuya Saratani
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| | - Yosuke Shoji
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| | - Toshiyuki Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo, 162-8480 Japan
| |
Collapse
|
32
|
Wang MT, Li Z, Ding M, Yao TZ, Yang S, Zhang XJ, Miao C, Du WX, Shi Q, Li S, Mei J, Wang Y, Wang ZW, Zhou L, Li XY, Gui JF. Two duplicated gsdf homeologs cooperatively regulate male differentiation by inhibiting cyp19a1a transcription in a hexaploid fish. PLoS Genet 2022; 18:e1010288. [PMID: 35767574 PMCID: PMC9275722 DOI: 10.1371/journal.pgen.1010288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Although evolutionary fates and expression patterns of duplicated genes have been extensively investigated, how duplicated genes co-regulate a biological process in polyploids remains largely unknown. Here, we identified two gsdf (gonadal somatic cell-derived factor) homeologous genes (gsdf-A and gsdf-B) in hexaploid gibel carp (Carassius gibelio), wherein each homeolog contained three highly conserved alleles. Interestingly, gsdf-A and gsdf-B transcription were mainly activated by dmrt1-A (dsx- and mab-3-related transcription factor 1) and dmrt1-B, respectively. Loss of either gsdf-A or gsdf-B alone resulted in partial male-to-female sex reversal and loss of both caused complete sex reversal, which could be rescued by a nonsteroidal aromatase inhibitor. Compensatory expression of gsdf-A and gsdf-B was observed in gsdf-B and gsdf-A mutants, respectively. Subsequently, we determined that in tissue culture cells, Gsdf-A and Gsdf-B both interacted with Ncoa5 (nuclear receptor coactivator 5) and blocked Ncoa5 interaction with Rora (retinoic acid-related orphan receptor-alpha) to repress Rora/Ncoa5-induced activation of cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a). These findings illustrate that Gsdf-A and Gsdf-B can regulate male differentiation by inhibiting cyp19a1a transcription in hexaploid gibel carp and also reveal that Gsdf-A and Gsdf-B can interact with Ncoa5 to suppress cyp19a1a transcription in vitro. This study provides a typical case of cooperative mechanism of duplicated genes in polyploids and also sheds light on the conserved evolution of sex differentiation.
Collapse
Affiliation(s)
- Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Zi Yao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Dickey JWE, Arnott G, McGlade CLO, Moore A, Riddell GE, Dick JTA. Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes. NEOBIOTA 2022. [DOI: 10.3897/neobiota.73.80542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species (IAS) are major drivers of global biodiversity loss, and the poorly regulated international pet trade is a source of emerging and future invaders. Predictions of the likely ecological impacts and risks of such IAS have been significantly enhanced in recent years with new metrics, which require application to many more actual and potential IAS. Hence, this study assesses the potential ecological impacts and risks of two readily available pet trade species: goldfish, Carassius auratus, a species with non-native populations worldwide; and white cloud mountain minnow, Tanichthys albonubes, a species with a limited invasion history to date. First, we compared the per capita feeding rates of these non-native species with two European trophically analogous natives – the stone loach, Barbatula barbatula, and the common minnow, Phoxinus phoxinus – using the Comparative Functional Response method. Second, we used foraging experiments in conspecific pairs to determine synergistic, neutral or antagonistic intraspecific interactions. Third, we performed novel object experiments using the two pet trade species to assess boldness, a known “dispersal enhancing trait”. Goldfish had the highest maximum feeding rates of the four species, while white cloud mountain minnows had the lowest. Neutral interactions were observed for all four species in the paired foraging experiments, with goldfish having the highest consumption and white cloud mountain minnows having the lowest. Goldfish demonstrated greater boldness, being more active during the experimental trials and more likely to approach a novel object than white cloud mountain minnows. Further, combining maximum feeding rates, boldness and species availabilities from our survey of pet shops, we assessed the relative invasion risks (RIR) of the two non-natives. This highlighted goldfish as the higher risk and most worthy of management prioritisation, mirroring its more extensive invasion history. We propose that such metrics have potential to direct future IAS policy decisions and management towards the ever-increasing rates of biological invasions worldwide.
Collapse
|
34
|
Lactobacillus casei (IBRC-M 10,711) ameliorates the growth retardation, oxidative stress, and immunosuppression induced by malathion toxicity in goldfish ( Carassius auratus). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Probiotics can functionality improve fish wellbeing and are suggested as antioxidative agents to protect fish from xenobiotics toxicity. Herein, dietary Lactobacillus casei (IBRC-M 10,711) was included in the diets of goldfish (Carassius auratus) to protect against malathion toxicity. Fish (12.47 ± 0.06 g) were randomly allocated to six groups (triplicates), as follows: T1) control; T2) fish exposed to 50% of malathion 96 h LC50; T3) L. casei at 106 CFU/g diet; T4) L. casei at 107 CFU/g diet; T5) fish exposed to 50% of malathion 96 h LC50 + L. casei at 106 CFU/g diet; T6) fish exposed to 50% of malathion 96 h LC50 + L. casei at 107 CFU/g diet. After 60 days, goldfish fed T4 had the highest final body weight (FBW), weight gain (WG), and specific growth rate (SGR), and the lowest feed conversion ratio (FCR) among the groups (P < 0.05). However, the T2 group showed lower FBW, WG, and SGR and higher FCR than fish in T1 (P < 0.05). Fish in the T4 group had the highest blood total proteins, albumin, and globulin, while fish in T2 had the lowest levels (P < 0.05). Fish in the group T2 had the highest triglycerides, cholesterol, cortisol, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels in the blood, while fish fed T4 had the lowest values (P < 0.05). The superoxide dismutase (SOD) and catalase (CAT) showed the highest activities in T3 and T4 groups, and the lowest SOD was seen in the T2 group, whereas the lowest CAT was seen in the T2, T5, and T6 groups (P < 0.05). Fish in the T5 and T6 groups had higher glutathione peroxidase (GSH-Px) activities than fish in T1 and T2 groups but T3 and T4 groups showed the highest values (P < 0.05). T2 group had the highest malondialdehyde (MDA) level, while T3 and T4 groups had the lowest MDA level (P < 0.05). Blood immunoglobulin (Ig) and lysozyme activity were significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P < 0.05). The alternative complement pathway (ACH50) was significantly higher in T2, T3, T4, T5, and T6 groups than in the T1 group (P < 0.05). Skin mucus Ig was significantly higher in T3 and T4 groups and lower in the T2 group than in the control (P < 0.05). The highest lysozyme activity, protease, and ACH50 in the skin mucus samples were in the T4 group, while the lowest values were in the T2 group (P < 0.05). In conclusion, dietary L. casei protects goldfish from malathion-induced growth retardation, oxidative stress, and immunosuppression.
Collapse
|
35
|
Kwon YM, Vranken N, Hoge C, Lichak MR, Norovich AL, Francis KX, Camacho-Garcia J, Bista I, Wood J, McCarthy S, Chow W, Tan HH, Howe K, Bandara S, von Lintig J, Rüber L, Durbin R, Svardal H, Bendesky A. Genomic consequences of domestication of the Siamese fighting fish. SCIENCE ADVANCES 2022; 8:eabm4950. [PMID: 35263139 PMCID: PMC8906746 DOI: 10.1126/sciadv.abm4950] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/13/2022] [Indexed: 05/08/2023]
Abstract
Siamese fighting (betta) fish are among the most popular and morphologically diverse pet fish, but the genetic bases of their domestication and phenotypic diversification are largely unknown. We assembled de novo the genome of a wild Betta splendens and whole-genome sequenced 98 individuals across five closely related species. We find evidence of bidirectional hybridization between domesticated ornamental betta and other wild Betta species. We discover dmrt1 as the main sex determination gene in ornamental betta and that it has lower penetrance in wild B. splendens. Furthermore, we find genes with signatures of recent, strong selection that have large effects on color in specific parts of the body or on the shape of individual fins and that most are unlinked. Our results demonstrate how simple genetic architectures paired with anatomical modularity can lead to vast phenotypic diversity generated during animal domestication and launch betta as a powerful new system for evolutionary genetics.
Collapse
Affiliation(s)
- Young Mi Kwon
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nathan Vranken
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Carla Hoge
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Madison R. Lichak
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Amy L. Norovich
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Kerel X. Francis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | | | - Iliana Bista
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Shane McCarthy
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
| | | | - Sepalika Bandara
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Lukas Rüber
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern 3012, Switzerland
- Naturhistorisches Museum Bern, Bern 3005, Switzerland
| | - Richard Durbin
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hannes Svardal
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Naturalis Biodiversity Center, 2333 Leiden, Netherlands
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Alesci A, Pergolizzi S, Fumia A, Calabrò C, Lo Cascio P, Lauriano ER. Mast cells in goldfish (
Carassius auratus
) gut: Immunohistochemical characterization. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
37
|
Lu Y, Shi C, Jin X, He J, Yin Z. Domestication of farmed fish via the attenuation of stress responses mediated by the hypothalamus-pituitary-inter-renal endocrine axis. Front Endocrinol (Lausanne) 2022; 13:923475. [PMID: 35937837 PMCID: PMC9353172 DOI: 10.3389/fendo.2022.923475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Human-directed domestication of terrestrial animals traditionally requires thousands of years for breeding. The most prominent behavioral features of domesticated animals include reduced aggression and enhanced tameness relative to their wild forebears, and such behaviors improve the social tolerance of domestic animals toward both humans and crowds of their own species. These behavioral responses are primarily mediated by the hypothalamic-pituitary-adrenal (inter-renal in fish) (HPA/I) endocrine axis, which is involved in the rapid conversion of neuronal-derived perceptual information into hormonal signals. Over recent decades, growing evidence implicating the attenuation of the HPA/I axis during the domestication of animals have been identified through comprehensive genomic analyses of the paleogenomic datasets of wild progenitors and their domestic congeners. Compared with that of terrestrial animals, domestication of most farmed fish species remains at early stages. The present review focuses on the application of HPI signaling attenuation to accelerate the domestication and genetic breeding of farmed fish. We anticipate that deeper understanding of HPI signaling and its implementation in the domestication of farmed fish will benefit genetic breeding to meet the global demands of the aquaculture industry.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Zhan Yin,
| |
Collapse
|
38
|
Li JT, Wang Q, Huang Yang MD, Li QS, Cui MS, Dong ZJ, Wang HW, Yu JH, Zhao YJ, Yang CR, Wang YX, Sun XQ, Zhang Y, Zhao R, Jia ZY, Wang XY. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat Genet 2021; 53:1493-1503. [PMID: 34594040 PMCID: PMC8492472 DOI: 10.1038/s41588-021-00933-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
How two subgenomes in allo-tetraploids adapt to coexistence and coordinate through structure and expression evolution requires extensive studies. In the present study, we report an improved genome assembly of allo-tetraploid common carp, an updated genome annotation of allo-tetraploid goldfish and the chromosome-scale assemblies of a progenitor-like diploid Puntius tetrazona and an outgroup diploid Paracanthobrama guichenoti. Parallel subgenome structure evolution in the allo-tetraploids was featured with equivalent chromosome components, higher protein identities, similar transposon divergence and contents, homoeologous exchanges, better synteny level, strong sequence compensation and symmetric purifying selection. Furthermore, we observed subgenome expression divergence processes in the allo-tetraploids, including inter-/intrasubgenome trans-splicing events, expression dominance, decreased expression levels, dosage compensation, stronger expression correlation, dynamic functionalization and balancing of differential expression. The potential disorders introduced by different progenitors in the allo-tetraploids were hypothesized to be alleviated by increasing structural homogeneity and performing versatile expression processes. Resequencing three common carp strains revealed two major ecotypes and uncovered candidate genes relevant to growth and survival rate.
Collapse
Affiliation(s)
- Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China.
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Mei-Di Huang Yang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qing-Song Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ming-Shu Cui
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zai-Jie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Hong-Wei Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ju-Hua Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Yu-Jie Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Chen-Ru Yang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ya-Xin Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zhi-Ying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xi-Yin Wang
- North China University of Science and Technology, Tangshan, China
| |
Collapse
|
39
|
Wen J, Xu Y, Su M, Lu L, Wang H. Susceptibility of Goldfish to Cyprinid Herpesvirus 2 (CyHV-2) SH01 Isolated from Cultured Crucian Carp. Viruses 2021; 13:v13091761. [PMID: 34578342 PMCID: PMC8473056 DOI: 10.3390/v13091761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2), a member of the Alloherpesviridae family belonging to the genus Cyprinivirus, is a fatal contagious aquatic pathogen that affects goldfish (Carassius auratus) and crucian carp (Carassius carassius). Although crucian carp and goldfish belong to the genus Carassius, it is unclear whether they are susceptible to the same CyHV-2 isolate. In addition, the origin of the crucian carp-derived CyHV-2 virus isolate remains unclear. CyHV-2 SH01 was isolated during herpesviral hematopoietic necrosis disease (HVHN) outbreaks in crucian carp at a local fish farm near Shanghai. CyHV-2 SH01 was confirmed by PCR and Western blot analysis of kidney, spleen, muscle, and blood tissue from the diseased crucian carp. Moreover, histopathological and ultra-pathological analyses revealed pathological changes characteristic of CyHV-2 SH01 infection in the tissues of the diseased crucian carp. In the present study, goldfish and crucian carp were challenged with CyHV-2 SH01 to elucidate viral virulence. We found that CyHV-2 SH01 could cause rapid and fatal disease progression in goldfish and crucian carp 24 h post-injection at 28 °C. Experimental infection of goldfish by injection indicated that the average virus titer in the kidney of the goldfish was 103.47 to 103.59 copies/mg. In addition, tissues exhibited the most prominent histopathological changes (cellular wrinkling and shrinkage, cytoplasmic vacuolation, fusion of the gill lamellae, and hepatic congestion) in CyHV-2 SH01-infected goldfish and crucian carp. Thus, crucian carp and goldfish showed a high sensitivity, with typical symptoms, to HVHN disease caused by CyHV-2 SH01.
Collapse
Affiliation(s)
- Jinxuan Wen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (J.W.); (Y.X.); (M.S.); (L.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (J.W.); (Y.X.); (M.S.); (L.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Meizhen Su
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (J.W.); (Y.X.); (M.S.); (L.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (J.W.); (Y.X.); (M.S.); (L.L.)
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (J.W.); (Y.X.); (M.S.); (L.L.)
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Pilot National Laboratory for Marine Fisheries Science and Technology, Qingdao 266200, China
- Correspondence: ; Tel.: +86-021-61900453 (ext. 201306)
| |
Collapse
|
40
|
Macher TH, Schütz R, Arle J, Beermann AJ, Koschorreck J, Leese F. Beyond fish eDNA metabarcoding: Field replicates disproportionately improve the detection of stream associated vertebrate species. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.66557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fast, reliable, and comprehensive biodiversity monitoring data are needed for environmental decision making and management. Recent work on fish environmental DNA (eDNA) metabarcoding shows that aquatic diversity can be captured fast, reliably, and non-invasively at moderate costs. Because water in a catchment flows to the lowest point in the landscape, often a stream, it can collect traces of terrestrial species via surface or subsurface runoff along its way or when specimens come into direct contact with water (e.g., when drinking). Thus, fish eDNA metabarcoding data can provide information on fish but also on other vertebrate species that live in riparian habitats. This additional data may offer a much more comprehensive approach for assessing vertebrate diversity at no additional costs. Studies on how the sampling strategy affects species detection especially of stream-associated communities, however, are scarce. We therefore performed an analysis on the effects of biological replication on both fish as well as (semi-)terrestrial species detection. Along a 2 km stretch of the river Mulde (Germany), we collected 18 1-L water samples and analyzed the relation of detected species richness and quantity of biological replicates taken. We detected 58 vertebrate species, of which 25 were fish and lamprey, 18 mammals, and 15 birds, which account for 50%, 22.2%, and 7.4% of all native species to the German federal state of Saxony-Anhalt. However, while increasing the number of biological replicates resulted in only 24.8% more detected fish and lamprey species, mammal, and bird species richness increased disproportionately by 68.9% and 77.3%, respectively. Contrary, PCR replicates showed little stochasticity. We thus emphasize to increase the number of biological replicates when the aim is to improve general species detections. This holds especially true when the focus is on rare aquatic taxa or on (semi-)terrestrial species, the so-called ‘bycatch’. As a clear advantage, this information can be obtained without any additional sampling or laboratory effort when the sampling strategy is chosen carefully. With the increased use of eDNA metabarcoding as part of national fish bioassessment and monitoring programs, the complimentary information provided on bycatch can be used for biodiversity monitoring and conservation on a much broader scale.
Collapse
|
41
|
Dahl HA, Johansen A, Nilsson GE, Lefevre S. The Metabolomic Response of Crucian Carp ( Carassius carassius) to Anoxia and Reoxygenation Differs between Tissues and Hints at Uncharacterized Survival Strategies. Metabolites 2021; 11:435. [PMID: 34357329 PMCID: PMC8304758 DOI: 10.3390/metabo11070435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
The anoxia-tolerant crucian carp (Carassius carassius) has been studied in detail for numerous years, with particular focus on unravelling the underlying physiological mechanisms of anoxia tolerance. However, relatively little work has been focused on what occurs beyond anoxia, and often the focus is a single organ or tissue type. In this study, we quantified more than 100 metabolites by capillary electrophoresis-mass spectrometry (CE-MS) in brain, heart, liver, and blood plasma from four experimental groups, being normoxic (control) fish, anoxia-exposed fish, and two groups that had been exposed to anoxia followed by reoxygenation for either 3 h or 24 h. The heart, which maintains cardiac output during anoxia, unexpectedly, was slower to recover compared to the brain and liver, mainly due to a slower return to control concentrations of the energy-carrying compounds ATP, GTP, and phosphocreatine. Crucian carp accumulated amino acids in most tissues, and also surprisingly high levels of succinate in all tissues investigated during anoxia. Purine catabolism was enhanced, leading to accumulation of uric acid during anoxia and increasing urea formation that continued into 24 h of reoxygenation. These tissue-specific differences in accumulation and distribution of the metabolites may indicate an intricate system of transport between tissues, opening for new avenues of investigation of possible mechanisms aimed at reducing the generation of reactive oxygen species (ROS) and resultant tissue damage during reoxygenation.
Collapse
Affiliation(s)
| | | | | | - Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0371 Oslo, Norway; (H.-A.D.); (A.J.); (G.E.N.)
| |
Collapse
|
42
|
Zhang C, Li Q, Zhu L, He W, Yang C, Zhang H, Sun Y, Zhou L, Sun Y, Zhu S, Wu C, Tao M, Zhou Y, Zhao R, Tang C, Liu S. Abnormal meiosis in fertile and sterile triploid cyprinid fish. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1917-1928. [PMID: 33893980 DOI: 10.1007/s11427-020-1900-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
Meiosis is the key process for producing mature gametes. A natural fertile triploid Carassius auratus population (3nDTCC) and an artificially derived sterile triploid crucian carp (3nCC) have been previously observed, providing suitable model organisms for investigating meiosis characteristics in triploid fish. In the present study, the microstructures and ultrastructures of spermatogenesis were studied in these fishes. TdT-mediated dUTP nick end labeling detection was performed to investigate the apoptosis of spermatocytes. Fluorescence in situ hybridization was employed to trace chromatin pairing. In addition, the mRNA expressions of cell cycle-related genes (i.e., cell division control 2 and cell cycle protein B) were determined by quantitative realtime polymerase chain reaction to illustrate the molecular mechanism of abnormal meiosis in the 3nCC. The results showed that the 3nCC undergoes an irregular prophase I, with the chromosomes distributed in a unipolar radial manner and exhibiting partial pairing, hindered metaphase I, and degenerated cells in the subsequent stages. Meanwhile, the 3nDTCC presented a relatively regular meiotic prophase I with complete conjugate chromosome pairs and chromosomes distributed along the karyotheca, which were presented as a ring structure by slicing. Only the spreads with 130-150 irregular chromosomes can be easily detected in the 3nDTCC, suggesting that it may undergo an abnormal metaphase I. This study provides new insights into the meiosis of fertile and sterile triploid cyprinid fish.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qi Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - La Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Wangchao He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Luojing Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuandong Sun
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shurun Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|