1
|
Zhang S, Cheung J, Kostal J, Voutchkova‐Kostal A, Schuler M. Re-Evaluating Acceptable Intake: A Comparative Study of N-Nitrosomorpholine and N-Nitroso Reboxetine Potency. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:80-98. [PMID: 40119631 PMCID: PMC11986803 DOI: 10.1002/em.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/24/2025]
Abstract
Establishing regulatory limits for Drug Substance-Related Impurities (NDSRIs) is challenging due to the limited genotoxicity and carcinogenicity data available for many of these impurities, often leading to conservative approaches. In this study, we evaluated the genotoxic potential of two structurally related nitrosamines: N-nitrosomorpholine (NMOR) and N-nitroso reboxetine. Compared to the well-studied NMOR, there is little toxicological information available for N-nitroso reboxetine. Currently, both compounds have an acceptable intake value of 127 ng/day, based on a read-across using the available carcinogenicity data of NMOR. While both compounds tested positive in a series of in vitro and in vivo assays, we found that the mutagenic potential of N-nitroso reboxetine was significantly lower than that of NMOR. The benchmark dose (BMD) analysis of in vivo mutagenicity data supports an acceptable intake of 24,000 ng/day for N-nitroso reboxetine. Computational studies, carried out using the quantum-mechanical CADRE program, were consistent with in vitro and in vivo outcomes, suggesting an acceptable intake at or above 1500 ng/day for N-nitroso reboxetine. In comparison to NMOR, this prediction is supported by lower computed reactivity in the hydroxylation step, greater steric hindrance of the alpha carbons, and more facile proton transfer in the heterolysis toward the aldehyde metabolite. The data presented in this work can be used to refine and improve the Carcinogenic Potency Categorization Approach (CPCA). It also underscores the importance of collaboration between regulatory authorities, the pharmaceutical industry, and scientific researchers to address potential risks while avoiding overestimation of the acceptable intake limits for certain NDSRIs.
Collapse
Affiliation(s)
- Shaofei Zhang
- Pfizer Research, Development, and MedicalGrotonConnecticutUSA
| | - Jennifer Cheung
- Pfizer Research, Development, and MedicalGrotonConnecticutUSA
| | - Jakub Kostal
- DOT Consulting LLCAlexandriaVirginiaUSA
- The George Washington UniversityWashingtonDCUSA
| | | | - Maik Schuler
- Pfizer Research, Development, and MedicalGrotonConnecticutUSA
| |
Collapse
|
2
|
Luzadder MM, Minko IG, Vartanian VL, Davenport M, Fedorov LM, McCullough AK, Stephen Lloyd R. The Distinct Roles of NEIL1 and XPA in Limiting Aflatoxin B1-Induced Mutagenesis in Mice. Mol Cancer Res 2025; 23:46-58. [PMID: 39387543 PMCID: PMC11695181 DOI: 10.1158/1541-7786.mcr-24-0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is a risk factor for the development of hepatocellular carcinomas. Following metabolic activation, AFB1 reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single-base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer database. Deficiencies in either base excision repair due to the absence of Nei-like DNA glycosylase 1 (NEIL1) or nucleotide excision repair due to the absence of xeroderma complementation group A protein (XPA) contribute to hepatocellular carcinomas in murine models. In the current study, ultra-low error duplex sequencing was used to characterize mutational profiles in liver DNAs of NEIL1-deficient, XPA-deficient, and DNA repair-proficient mice following neonatal injection of 1 mg/kg AFB1. Analyses of AFB1-induced mutations showed high cosine similarity to SBS24 regardless of repair proficiency status. The absence of NEIL1 resulted in an approximately 30% increase in the frequency of mutations, with the distribution suggesting preferential NEIL1-dependent repair of AFB1 lesions in open chromatin regions. A trend of increased mutagenesis was also observed in the absence of XPA. Consistent with the role of XPA in transcription-coupled repair, mutational profiles in XPA-deficient mice showed disruption of the transcriptional bias in mutations associated with SBS24. Implications: Our findings define the roles of DNA repair pathways in AFB1-induced mutagenesis and carcinogenesis in murine models, with these findings having implications in human health for those with base excision repair and nucleotide excision repair deficiencies.
Collapse
Affiliation(s)
- Michael M. Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Irina G. Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Vladimir L. Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Marten Davenport
- Transgenic Mouse Models Shared Resource, Oregon Health & Science University, Portland, Oregon, USA
| | - Lev M. Fedorov
- Transgenic Mouse Models Shared Resource, Oregon Health & Science University, Portland, Oregon, USA
| | - Amanda K. McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - R. Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Göpfert A, Schuster DM, Rülker C, Eichenlaub M, Tokovenko B, Dammann M, Funk-Weyer D, Honarvar N, Landsiedel R. The transgenic MutaMouse hepatocyte mutation assay in vitro: Mutagenicity and mutation spectra of six substances with different mutagenic mechanisms. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 901:503836. [PMID: 39855819 DOI: 10.1016/j.mrgentox.2024.503836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
Mutagenicity testing is a component of the hazard assessment of industrial chemicals, biocides, and pesticides. Mutations induced by test substances can be detected by in vitro and in vivo methods that have been adopted as OECD Test Guidelines. One of these in vivo methods is the Transgenic Rodent Assay (TGRA), OECD test guideline no. 488. An analogous in vitro TGRA has been described, but experience with this test method is limited. In this study, six in vivo TGRA positive mutagens were tested in the in vitro TGRA based on primary MutaMouse hepatocytes. In addition to the functional read-out of the lacZ reporter gene, induced mutations were analysed by next-generation sequencing (NGS). Five of the six in vivo TGRA positive mutagens (N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate (EMS), mitomycin C (MMC), benzo[a]pyrene (B[a]P), and azathioprine (AZA), but not cyproterone acetate) mutated the lacZ gene in vitro. NGS identified mutations which matched the mutagenic mechanisms described in the literature. The alkylating agent ENU induced a greater proportion of A:T to T:A transversions than did the other alkylating agent, EMS, whereas EMS increased smaller deletions (1-4 bp). G:C to T:A transversions accounted for the majority of mutations identified after treatments with MMC and B[a]P, both of which form monoadducts at the guanine N2 position. AZA induced mainly G:C to A:T transitions, explained by the structural similarity of one of its metabolites to guanine. An increased proportion of mid-size changes (0.3-2.5 kb) was detected only for the crosslinking mutagen MMC. The in vitro TGRA based on primary MutaMouse hepatocytes is a promising in vitro assay for the assessment of mutation induction, reflecting many aspects of the corresponding in vivo TGRA and allowing for mutation spectra analysis to evaluate the induced mutations.
Collapse
Affiliation(s)
- Alina Göpfert
- Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | | | - Claudia Rülker
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | | | - Bogdan Tokovenko
- BASF SE, Digitalization of Research & Development, Ludwigshafen am Rhein, Germany
| | - Martina Dammann
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.
| | - Robert Landsiedel
- Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| |
Collapse
|
4
|
Schuster D, LeBlanc DPM, Zhou G, Meier MJ, Dodge AE, White PA, Long AS, Williams A, Hobbs C, Diesing A, Smith-Roe SL, Salk JJ, Marchetti F, Yauk CL. Dose-Related Mutagenic and Clastogenic Effects of Benzo[ b]fluoranthene in Mouse Somatic Tissues Detected by Duplex Sequencing and the Micronucleus Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21450-21463. [PMID: 39602390 PMCID: PMC11636207 DOI: 10.1021/acs.est.4c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that originate from the incomplete combustion of organic materials. We investigated the clastogenicity and mutagenicity of benzo[b]fluoranthene (BbF), one of 16 priority PAHs, in MutaMouse males after a 28 day oral exposure. BbF causes robust dose-dependent increases in micronucleus frequency in peripheral blood, indicative of chromosome damage. Duplex sequencing (DS), an error-corrected sequencing technology, reveals that BbF induces dose-dependent increases in mutation frequencies in bone marrow (BM) and liver. Mutagenicity is increased in intergenic relative to genic regions, suggesting a role for transcription-coupled repair of BbF-induced DNA damage. At higher doses, the maximum mutagenic response to BbF is higher in liver, which has a lower mitotic index but higher metabolic capacity than BM; however, mutagenic potency is comparable between the two tissues. BbF induces primarily C:G > A:T mutations, followed by C:G > T:A and C:G > G:C, indicating that BbF metabolites mainly target guanines and cytosines. The mutation spectrum of BbF correlates with cancer mutational signatures associated with tobacco exposure, supporting its contribution to the carcinogenicity of combustion-derived PAHs in humans. Overall, BbF's mutagenic effects are similar to benzo[a]pyrene, a well-studied mutagenic PAH. Our work showcases the utility of DS for effective mutagenicity assessment of environmental pollutants.
Collapse
Affiliation(s)
| | | | - Gu Zhou
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Matthew J. Meier
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Annette E. Dodge
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Paul A. White
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Alexandra S. Long
- Existing
Substances Risk Assessment Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Cheryl Hobbs
- Integrated
Laboratory Systems, LLC, an Inotiv Company, Research Triangle Park 27560, North Carolina, United States
| | - Alex Diesing
- Integrated
Laboratory Systems, LLC, an Inotiv Company, Research Triangle Park 27560, North Carolina, United States
| | - Stephanie L. Smith-Roe
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park 27709, North Carolina, United States
| | - Jesse J. Salk
- Department
of Medicine, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle 98195, Washington, United
States
| | - Francesco Marchetti
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
- Department
of Biology, Carleton University, Ottawa K1N6N5, Canada
| | - Carole L. Yauk
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
5
|
Nishigaki K. Discoveries by the genome profiling, symbolic powers of non-next generation sequencing methods. Brief Funct Genomics 2024; 23:775-797. [PMID: 39602495 DOI: 10.1093/bfgp/elae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Next-generation sequencing and other sequencing approaches have made significant progress in DNA analysis. However, there are indispensable advantages in the nonsequencing methods. They have their justifications such as being speedy, cost-effective, multi-applicable, and straightforward. Among the nonsequencing methods, the genome profiling method is worthy of reviewing because of its high potential. This article first reviews its basic properties, highlights the key concept of species identification dots (spiddos), and then summarizes its various applications.
Collapse
Affiliation(s)
- Koichi Nishigaki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-City, Saitama 338-8570, Japan
| |
Collapse
|
6
|
Miranda JA, Revollo JR. Assessment of in vivo chemical mutagenesis by long-read sequencing. Toxicol Sci 2024; 202:96-102. [PMID: 39141500 DOI: 10.1093/toxsci/kfae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Evaluating the mutagenic properties of chemicals is crucial for understanding their potential cancer risks. Recent Illumina-based error-corrected sequencing techniques have enabled the direct detection of mutations induced de novo by mutagens. However, as the Illumina platform lacks intrinsic error-correction capabilities, complex library preparations and bioinformatic processes are necessary to identify these rare mutations. In this study, we evaluated whether long-read PacBio-based HiFi sequencing (HiFi seq), which has integrated error-correction, can detect de novo mutations induced by mutagens in C57BL/6 mouse tissues. Using HiFi seq, dose-dependent increases in mutation frequencies were found in tissues from mice exposed to 7,12-dimethylbenz[a]anthracene, procarbazine, and N-propyl-N-nitrosourea. Furthermore, the mutational signatures derived from these exposures were consistent with those previously reported for these mutagens. This study demonstrates that HiFi seq can complement established mutation detection assays to facilitate the identification of hazardous compounds.
Collapse
Affiliation(s)
- Jaime A Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| |
Collapse
|
7
|
Oshima MU, Higgins J, Jenkins I, Randolph T, Smith T, Valentine C, Salk J, Yeung C, Beppu L, Campbell J, Carpenter PA, Lee SJ, Flowers ME, Radich JP, Storb R. Characterization of clonal dynamics using duplex sequencing in donor-recipient pairs decades after hematopoietic cell transplantation. Sci Transl Med 2024; 16:eado5108. [PMID: 39441907 PMCID: PMC11813252 DOI: 10.1126/scitranslmed.ado5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
After allogeneic hematopoietic cell transplantation (HCT), a very small number of donor stem cells reconstitute the recipient hematopoietic system, whereas the donor is left with a near-normal pool of stem cells. We hypothesized that the increased replicative stress on transplanted donor cells in the recipient could lead to the disproportionate proliferation of clonal hematopoiesis (CH) variants. We obtained blood samples from 16 related donor-recipient pairs at a median of 33.8 years (range: 6.6 to 45.7) after HCT, including the longest surviving HCT recipients in the world. For 11 of 16 pairs, a donor sample from the time of HCT was available for comparison. We performed ultrasensitive duplex sequencing of genes recurrently mutated in myeloid malignancies and CH, as well as a set of functionally neutral genomic regions representative of human genomic content at large. CH variants were observed in all donors, even those as young as 12 years old. Where donor pre-HCT sample was available, the average mutation rate in donors compared to recipients post-HCT was similar (2.0% versus 2.6% per year, respectively) within genes recurrently mutated in myeloid malignancies. Twenty-two (5.6%) of the 393 variants shared between paired donors and recipients post-HCT showed ≥10-fold higher variant allele frequency (VAF) in the recipient. A longer time since HCT was positively associated with the expansion of shared variant VAFs in the recipient. In conclusion, even decades after HCT, there does not appear to be widespread accelerated clonal expansion in the transplanted cells, highlighting the immense regenerative capacity of the human hematopoietic system.
Collapse
Affiliation(s)
- Masumi Ueda Oshima
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
- Division of Hematology & Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195
| | | | - Isaac Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
| | - Timothy Randolph
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
| | | | | | - Jesse Salk
- Division of Hematology & Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195
- TwinStrand Biosciences, Seattle, WA, 98121
| | - Cecilia Yeung
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
| | - Lan Beppu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
| | - Judy Campbell
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
| | - Paul A. Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195
| | - Stephanie J. Lee
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
- Division of Hematology & Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195
| | - Mary E. Flowers
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
- Division of Hematology & Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195
| | - Jerald P. Radich
- Division of Hematology & Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
| | - Rainer Storb
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109
- Division of Hematology & Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195
| |
Collapse
|
8
|
Axelsson J, LeBlanc D, Shojaeisaadi H, Meier MJ, Fitzgerald DM, Nachmanson D, Carlson J, Golubeva A, Higgins J, Smith T, Lo FY, Pilsner R, Williams A, Salk J, Marchetti F, Yauk C. Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses. Sci Rep 2024; 14:23134. [PMID: 39379474 PMCID: PMC11461794 DOI: 10.1038/s41598-024-73587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Richard Pilsner
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Jesse Salk
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
9
|
Esina E, Dodge AE, Williams A, Schuster DM, LeBlanc DPM, Marchetti F, Yauk CL. Power analyses to inform Duplex Sequencing study designs for MutaMouse liver and bone marrow. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:234-242. [PMID: 39267335 DOI: 10.1002/em.22619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/17/2024]
Abstract
Regulatory genetic toxicology testing is essential for identifying potentially mutagenic hazards. Duplex Sequencing (DS) is an error-corrected next-generation sequencing technology that provides substantial advantages for mutation analysis over conventional mutagenicity assays including: improved accuracy of mutation detection, ability to measure changes in mutation spectrum, and applicability across diverse biological models. To apply DS for regulatory toxicology testing, power analyses are required to determine suitable sample sizes and study designs. In this study, we explored study designs to achieve sufficient power for various effect sizes in chemical mutagenicity assessment. We collected data from MutaMouse bone marrow and liver samples that were analyzed by DS using TwinStrand's Mouse Mutagenesis Panel. Average duplex reads achieved in two separates studies on liver and bone marrow were 8.4 × 108 (± 7.4 × 107) and 9.5 × 108 (± 1.0 × 108), respectively. Baseline mean mutation frequencies (MF) were 4.6 × 10-8 (± 6.7 × 10-9) and 4.6 × 10-8 (± 1.1 × 10-8), with estimated standard deviations for the animal-to-animal random effect of 0.15 and 0.20, for liver and bone marrow, respectively. We conducted simulation analyses based on these empirically derived parameters. We found that a sample size of four animals per group is sufficient to obtain over 80% power to detect a two-fold change in MF relative to baseline. In addition, we estimated the minimal total number of informative duplex bases sequenced with different sample sizes required to retain power for various effect sizes. Our work provides foundational data for establishing suitable study designs for mutagenicity testing using DS.
Collapse
Affiliation(s)
- Elena Esina
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Annette E Dodge
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - David M Schuster
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Danielle P M LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Menon V, García-Ruiz A, Neveu S, Cartmel B, Ferrucci LM, Palmatier M, Ko C, Tsai KY, Nakamura M, Kim SR, Girardi M, Kornacker K, Brash DE. Pervasive Induction of Regulatory Mutation Microclones in Sun-exposed Skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612526. [PMID: 39345638 PMCID: PMC11429607 DOI: 10.1101/2024.09.12.612526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Carcinogen-induced mutations are thought near-random, with rare cancer-driver mutations underlying clonal expansion. Using high-fidelity Duplex Sequencing to reach a mutation frequency sensitivity of 4×10 -9 per nt, we report that sun exposure creates pervasive mutations at sites with ∼100-fold UV-sensitivity in RNA-processing gene promoters - cyclobutane pyrimidine dimer (CPD) hyperhotspots - and these mutations have a mini-driver clonal expansion phenotype. Numerically, human skin harbored 10-fold more genuine mutations than previously reported, with neonatal skin containing 90,000 per cell; UV signature mutations increased 8,000-fold in sun-exposed skin, averaging 3×10 -5 per nt. Clonal expansion by neutral drift or passenger formation was nil. Tumor suppressor gene hotspots reached variant allele frequency 0.1-10% via 30-3,000 fold clonal expansion, in occasional biopsies. CPD hyperhotspots reached those frequencies in every biopsy, with modest clonal expansion. In vitro, tumor hotspot mutations arose occasionally over weeks of chronic low-dose exposure, whereas CPD hyperhotspot mutations arose in days at 1000-fold higher frequencies, growing exponentially. UV targeted mini-drivers in every skin cell.
Collapse
|
11
|
Urwin DJ, Tran E, Alexandrova AN. Relative genotoxicity of polycyclic aromatic hydrocarbons inferred from free energy perturbation approaches. Proc Natl Acad Sci U S A 2024; 121:e2322155121. [PMID: 39226345 PMCID: PMC11406254 DOI: 10.1073/pnas.2322155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/27/2024] [Indexed: 09/05/2024] Open
Abstract
Utilizing molecular dynamics and free energy perturbation, we examine the relative binding affinity of several covalent polycyclic aromatic hydrocarbon - DNA (PAH-DNA) adducts at the central adenine of NRAS codon-61, a mutational hotspot implicated in cancer risk. Several PAHs classified by the International Agency for Research on Cancer as probable, possible, or unclassifiable as to carcinogenicity are found to have greater binding affinity than the known carcinogen, benzo[a]pyrene (B[a]P). van der Waals interactions between the intercalated PAH and neighboring nucleobases, and minimal disruption of the DNA duplex drive increases in binding affinity. PAH-DNA adducts may be repaired by global genomic nucleotide excision repair (GG-NER), hence we also compute relative free energies of complexation of PAH-DNA adducts with RAD4-RAD23 (the yeast ortholog of human XPC-RAD23) which constitutes the recognition step in GG-NER. PAH-DNA adducts exhibiting the greatest DNA binding affinity also exhibit the least RAD4-RAD23 complexation affinity and are thus predicted to resist the GG-NER machinery, contributing to their genotoxic potential. In particular, the fjord region PAHs dibenzo[a,l]pyrene, benzo[g]chrysene, and benzo[c]phenanthrene are found to have greater binding affinity while having weaker RAD4-RAD23 complexation affinity than their respective bay region analogs B[a]P, chrysene, and phenanthrene. We also find that the bay region PAHs dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, and dibenzo[a,h]anthracene exhibit greater binding affinity and weaker RAD4-RAD23 complexation affinity than B[a]P. Thus, the study of PAH genotoxicity likely needs to be substantially broadened, with implications for public policy and the health sciences. This approach can be broadly applied to assess factors contributing to the genotoxicity of other unclassified compounds.
Collapse
Affiliation(s)
- Derek J. Urwin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| | - Elise Tran
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
12
|
Jolly RA, Cornwell PD, Noteboom J, Sayyed FB, Thapa B, Buckley LA. Estimation of acceptable daily intake values based on modeling and in vivo mutagenicity of NDSRIs of fluoxetine, duloxetine and atomoxetine. Regul Toxicol Pharmacol 2024; 152:105672. [PMID: 38968965 DOI: 10.1016/j.yrtph.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Nitrosamine drug substance related impurities or NDSRIs can be formed if an active pharmaceutical ingredient (API) has an intrinsic secondary amine that can undergo nitrosation. This is a concern as 1) nitrosamines are potentially highly potent carcinogens, 2) secondary amines in API are common, and 3) NDSRIs that might form from such secondary amines will be of unknown carcinogenic potency. Approaches for evaluating NDSRIs include read across, quantum mechanical modeling of reactivity, in vitro mutation data, and transgenic in vivo mutation data. These approaches were used here to assess NDSRIs that could potentially form from the drugs fluoxetine, duloxetine and atomoxetine. Based on a read across informed by modeling of physicochemical properties and mechanistic activation from quantum mechanical modeling, NDSRIs of fluoxetine, duloxetine, and atomoxetine were 10-100-fold less potent compared with highly potent nitrosamines such as NDMA or NDEA. While the NDSRIs were all confirmed to be mutagenic in vitro (Ames assay) and in vivo (TGR) studies, the latter data indicated that the potency of the mutation response was ≥4400 ng/day for all compounds-an order of magnitude higher than published regulatory limits for these NDSRIs. The approaches described herein can be used qualitatively to better categorize NDSRIs with respect to potency and inform whether they are in the ICH M7 (R2) designated Cohort of Concern.
Collapse
Affiliation(s)
- Robert A Jolly
- Eli Lilly and Company, Inc. Indianapolis, IN, 46285, USA.
| | | | | | | | - Bishnu Thapa
- Eli Lilly and Company, Inc. Indianapolis, IN, 46285, USA
| | | |
Collapse
|
13
|
Schuster DM, LeBlanc DPM, Zhou G, Meier MJ, Dodge AE, White PA, Long AS, Williams A, Hobbs C, Diesing A, Smith-Roe SL, Salk JJ, Marchetti F, Yauk CL. Dose-related Mutagenic and Clastogenic Effects of Benzo[b]fluoranthene in Mouse Somatic Tissues Detected by Duplex Sequencing and the Micronucleus Assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605228. [PMID: 39211269 PMCID: PMC11360995 DOI: 10.1101/2024.07.26.605228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that originate from the incomplete combustion of organic materials. We investigated the clastogenicity and mutagenicity of benzo[ b ]fluoranthene (BbF), one of 16 priority PAHs, in MutaMouse males after a 28-day oral exposure. BbF causes robust dose-dependent increases in micronucleus frequency in peripheral blood, indicative of chromosome damage. Duplex Sequencing (DS), an error-corrected sequencing technology, reveals that BbF induces dose-dependent increases in mutation frequencies in bone marrow (BM) and liver. Mutagenicity is increased in intergenic relative to genic regions, suggesting a role for transcription-coupled repair of BbF-induced DNA damage. At higher doses, the maximum mutagenic response to BbF is higher in liver, which has a lower mitotic index but higher metabolic capacity than BM; however, mutagenic potency is comparable between the two tissues. BbF induces primarily C:G>A:T mutations, followed by C:G>T:A and C:G>G:C, indicating that BbF metabolites mainly target guanines and cytosines. The mutation spectrum of BbF correlates with cancer mutational signatures associated with tobacco exposure, supporting its contribution to the carcinogenicity of combustion-derived PAHs in humans. Overall, BbF's mutagenic effects are similar to benzo[ a ]pyrene, a well-studied mutagenic PAH. Our work showcases the utility of DS for effective mutagenicity assessment of environmental pollutants. Synopsis We used Duplex Sequencing to study the mutagenicity of benzo[ b ]fluoranthene across the mouse genome. Dose-dependent changes in mutation frequency and spectrum quantify its role in PAH-induced carcinogenicity.
Collapse
|
14
|
Wang Y, Le Y, Harris KL, Chen Y, Li X, Faske J, Wynne RA, Mittelstaedt RA, Cao X, Miranda-Colon J, Elkins L, Muskhelishvili L, Davis K, Mei N, Sun W, Robison TW, Heflich RH, Parsons BL. Repeat treatment of organotypic airway cultures with ethyl methanesulfonate causes accumulation of somatic cell mutations without expansion of bronchial-carcinoma-specific cancer driver mutations. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503786. [PMID: 39054009 DOI: 10.1016/j.mrgentox.2024.503786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The human in vitro organotypic air-liquid-interface (ALI) airway tissue model is structurally and functionally similar to the human large airway epithelium and, as a result, is being used increasingly for studying the toxicity of inhaled substances. Our previous research demonstrated that DNA damage and mutagenesis can be detected in human airway tissue models under conditions used to assess general and respiratory toxicity endpoints. Expanding upon our previous proof-of-principle study, human airway epithelial tissue models were treated with 6.25-100 µg/mL ethyl methanesulfonate (EMS) for 28 days, followed by a 28-day recovery period. Mutagenesis was evaluated by Duplex Sequencing (DS), and clonal expansion of bronchial-cancer-specific cancer-driver mutations (CDMs) was investigated by CarcSeq to determine if both mutation-based endpoints can be assessed in the same system. Additionally, DNA damage and tissue-specific responses were analyzed during the treatment and following the recovery period. EMS exposure led to time-dependent increases in mutagenesis over the 28-day treatment period, without expansion of clones containing CDMs; the mutation frequencies remained elevated following the recovery. EMS also produced an increase in DNA damage measured by the CometChip and MultiFlow assays and the elevated levels of DNA damage were reduced (but not eliminated) following the recovery period. Cytotoxicity and most tissue-function changes induced by EMS treatment recovered to control levels, the exception being reduced proliferating cell frequency. Our results indicate that general, respiratory-tissue-specific and genotoxicity endpoints increased with repeat EMS dosing; expansion of CDM clones, however, was not detected using this repeat treatment protocol. DISCLAIMER: This article reflects the views of its authors and does not necessarily reflect those of the U.S. Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kelly L Harris
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jennifer Faske
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Rebecca A Wynne
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lana Elkins
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Wei Sun
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Timothy W Robison
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
15
|
Zhang S, Coffing SL, Gunther WC, Homiski ML, Spellman RA, Van P, Schuler M. Assessing the genotoxicity of N-nitrosodiethylamine with three in vivo endpoints in male Big Blue® transgenic and wild-type C57BL/6N mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:190-202. [PMID: 39012003 DOI: 10.1002/em.22615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
The detection of N-nitrosamines in drug products has raised global regulatory interest in recent years due to the carcinogenic potential of some nitrosamines in animals and a need to identify a testing strategy has emerged. Ideally, methods used would allow for the use of quantitative analysis of dose-response data from in vivo genotoxicity assays to determine a compound-specific acceptable intake for novel nitrosamines without sufficient carcinogenicity data. In a previous study we compared the dose-response relationships of N-nitrosodiethylamine (NDEA) in three in vivo genotoxicity endpoints in rats. Here we report a comparison of NDEA's genotoxicity profile in mice. Big Blue® mice were administered NDEA at doses of 0.001, 0.01, 0.1, 1 and 3 mg/kg/day by oral gavage for 28 days followed by 3 days of expression. Statistically significant increases in the NDEA induced mutations were detected by both the transgenic rodent mutation assay (TGR) using the cII endpoint and by duplex sequencing in the liver but not bone marrow of mice. In addition, administration of NDEA for two consecutive days in male C57BL/6N mice caused elevated DNA damage levels in the liver as measured by % tail DNA in comet assay. The benchmark dose (BMD) analysis shows a BMDL50 of 0.03, 0.04 and 0.72 mg/kg/day for TGR, duplex sequencing and comet endpoints, respectively. Overall, this study demonstrated a similar genotoxicity profile of NDEA between mice and rats and provides a reference that can be used to compare the potential potency of other novel nitrosamines for the induction of gene mutations.
Collapse
Affiliation(s)
- Shaofei Zhang
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | | | | | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, Washington, USA
| | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| |
Collapse
|
16
|
Parsons BL. Clonal expansion of cancer driver gene mutants investigated using advanced sequencing technologies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108514. [PMID: 39369952 DOI: 10.1016/j.mrrev.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Advanced sequencing technologies (ASTs) have revolutionized the quantitation of cancer driver mutations (CDMs) as rare events, which has utility in clinical oncology, cancer research, and cancer risk assessment. This review focuses on studies that have used ASTs to characterize clonal expansion (CE) of cells carrying CDMs and to explicate the selective pressures that shape CE. Importantly, high-sensitivity ASTs have made possible the characterization of mutant clones and CE in histologically normal tissue samples, providing the means to investigate nascent tumor development. Some ASTs can identify mutant clones in a spatially defined context; others enable integration of mutant data with analyses of gene expression, thereby elaborating immune, inflammatory, metabolic, and/or stromal microenvironmental impacts on CE. As a whole, these studies make it clear that a startlingly large fraction of cells in histologically normal tissues carry CDMs, CDMs may confer a context-specific selective advantage leading to CE, and only a small fraction of cells carrying CDMs eventually result in neoplasia. These observations were integrated with available literature regarding the mechanisms underlying clonal selection to interpret how measurements of CDMs and CE can be interpreted as biomarkers of cancer risk. Given the stochastic nature of carcinogenesis, the potential functional latency of driver mutations, the complexity of potential mutational and microenvironmental interactions, and involvement of other types of genetic and epigenetic changes, it is concluded that CDM-based measurements should be viewed as probabilistic rather than deterministic biomarkers. Increasing inter-sample variability in CDM levels (as a consequence of CE) may be interpretable as a shift away from normal tissue homeostasis and an indication of increased future cancer risk, a process that may reflect normal aging or carcinogen exposure. Consequently, analyses of variability in levels of CDMs have the potential to bolster existing approaches for carcinogenicity testing.
Collapse
Affiliation(s)
- Barbara L Parsons
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson AR 72079, USA.
| |
Collapse
|
17
|
Chavanel B, Virard F, Cahais V, Renard C, Sirand C, Smits KM, Schouten LJ, Fervers B, Charbotel B, Abedi-Ardekani B, Korenjak M, Zavadil J. Genome-scale mutational signature analysis in archived fixed tissues. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108512. [PMID: 39216514 DOI: 10.1016/j.mrrev.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Mutation spectra and mutational signatures in cancerous and non-cancerous tissues can be identified by various established techniques of massively parallel sequencing (or next-generation sequencing) including whole-exome or whole-genome sequencing, and more recently by error-corrected/duplex sequencing. One rather underexplored area has been the genome-scale analysis of mutational signatures as markers of mutagenic exposures, and their impact on cancer driver events applied to formalin-fixed or alcohol-fixed paraffin embedded archived biospecimens. This review showcases successful applications of the next-generation sequencing methodologies in archived fixed tissues, including the delineation of the specific tissue fixation-related DNA damage manifesting as artifactual signatures, distinguishable from the true signatures that arise from biological mutagenic processes. Overall, we discuss and demonstrate how next-generation sequencing techniques applied to archived fixed biospecimens can enhance our understanding of cancer causes including mutagenic effects of extrinsic cancer risk agents, and the implications for prevention efforts aimed at reducing avoidable cancer-causing exposures.
Collapse
Affiliation(s)
- Bérénice Chavanel
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - François Virard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France; University Claude Bernard Lyon 1 INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Vincent Cahais
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Claire Renard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Cécilia Sirand
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Kim M Smits
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Pathology, Maastricht, the Netherlands
| | - Leo J Schouten
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Epidemiology, Maastricht, the Netherlands
| | - Béatrice Fervers
- Centre Léon Bérard, Department Cancer and Environment, Lyon, France
| | - Barbara Charbotel
- University Claude Bernard Lyon 1, UMRESTTE, Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment, Lyon, France
| | | | - Michael Korenjak
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France.
| |
Collapse
|
18
|
Cheung J, Dobo K, Zhang S, Nudelman R, Schmidt F, Wenzel J, Czich A, Schuler M. Evaluation of the nitrosamine impurities of ACE inhibitors using computational, in vitro, and in vivo methods demonstrate no genotoxic potential. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:203-221. [PMID: 39180320 DOI: 10.1002/em.22618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
Evaluation and mitigation of the potential carcinogenic risks associated with nitrosamines in marketed pharmaceutical products are areas of interest for pharmaceutical companies and health authorities alike. Significant progress has been made to establish acceptable intake (AI) levels for N-nitrosamine drug substance-related impurities (NDSRIs) using SAR, however some compounds require experimental data to support derivation of a recommended AI. Many angiotensin-converting enzyme inhibitors, identified by the suffix "pril," have secondary amines that can potentially react to form nitrosamines. Here we consider a structural assessment and metabolism data, coupled with comprehensive in vitro and in vivo (mouse) genotoxicity testing to evaluate this particular class of nitrosamines. N-nitroso ramipril and N-nitroso quinapril, both of which are predicted to have inhibited nitrosamine bioactivation due to steric hinderance and branching at the α-position were non-genotoxic in the in vivo liver comet assay and non-mutagenic in the in vivo Big Blue® mutation and duplex sequencing assays. Predicted metabolism along with in vitro metabolism data and quantum chemical calculations related to DNA interactions offer a molecular basis for the negative results observed in both in vitro and in vivo testing. These nitrosamines are concluded to be non-mutagenic and non-carcinogenic; therefore, they should be controlled according to ICH Q3B guidance. Furthermore, these results for N-nitroso ramipril and N-nitroso quinapril should be considered when evaluating the appropriate AI and control strategy for other structurally similar "pril" NDSRIs.
Collapse
Affiliation(s)
- Jennifer Cheung
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | - Krista Dobo
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | - Shaofei Zhang
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | | | | | - Jan Wenzel
- Sanofi, R&D Preclinical Safety, Frankfurt, Germany
| | | | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| |
Collapse
|
19
|
Korenjak M, Temiz NA, Keita S, Chavanel B, Renard C, Sirand C, Cahais V, Mayel T, Vevang KR, Jacobs FC, Guo J, Smith WE, Oram MK, Tăbăran FA, Ahlat O, Cornax I, O'Sullivan MG, Das S, Nandi SP, Cheng Y, Alexandrov LB, Balbo S, Hecht SS, Senkin S, Virard F, Peterson LA, Zavadil J. Human cancer genomes harbor the mutational signature of tobacco-specific nitrosamines NNN and NNK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.600253. [PMID: 38979250 PMCID: PMC11230374 DOI: 10.1101/2024.06.28.600253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tobacco usage is linked to multiple cancer types and accounts for a quarter of all cancer-related deaths. Tobacco smoke contains various carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAH), though the mutagenic potential of many tobacco-related chemicals remains largely unexplored. In particular, the highly carcinogenic tobacco-specific nitrosamines NNN and NNK form pre-mutagenic pyridyloxobutyl (POB) DNA adducts. In the study presented here, we identified genome-scale POB-induced mutational signatures in cell lines and rat tumors, while also investigating their role in human cancer. These signatures are characterized by T>N and C>T mutations forming from specific POB adducts damaging dT and dC residues. Analysis of 2,780 cancer genomes uncovered POB signatures in ∼180 tumors; from cancer types distinct from the ones linked to smoking-related signatures SBS4 and SBS92. This suggests that, unlike PAH compounds, the POB pathway may contribute uniquely to the mutational landscapes of certain hematological malignancies and cancers of the kidney, breast, prostate and pancreas.
Collapse
|
20
|
Parsons BL, Beal MA, Dearfield KL, Douglas GR, Gi M, Gollapudi BB, Heflich RH, Horibata K, Kenyon M, Long AS, Lovell DP, Lynch AM, Myers MB, Pfuhler S, Vespa A, Zeller A, Johnson GE, White PA. Severity of effect considerations regarding the use of mutation as a toxicological endpoint for risk assessment: A report from the 8th International Workshop on Genotoxicity Testing (IWGT). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 38828778 DOI: 10.1002/em.22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kerry L Dearfield
- U.S. Environmental Protection Agency and U.S. Department of Agriculture, Washington, DC, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Michelle Kenyon
- Portfolio and Regulatory Strategy, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- Population Health Research Institute, St George's Medical School, University of London, London, UK
| | | | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Sánchez-Guixé M, Muiños F, Pinheiro-Santin M, González-Huici V, Rodriguez-Hernandez CJ, Avgustinova A, Lavarino C, González-Pérez A, Mora J, López-Bigas N. Origins of Second Malignancies in Children and Mutational Footprint of Chemotherapy in Normal Tissues. Cancer Discov 2024; 14:953-964. [PMID: 38501975 PMCID: PMC11145171 DOI: 10.1158/2159-8290.cd-23-1186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Pediatric cancers are rare diseases, and children without known germline predisposing conditions who develop a second malignancy during developmental ages are extremely rare. We present four such clinical cases and, through whole-genome and error-correcting ultra-deep duplex sequencing of tumor and normal samples, we explored the origin of the second malignancy in four children, uncovering different routes of development. The exposure to cytotoxic therapies was linked to the emergence of a secondary acute myeloid leukemia. A common somatic mutation acquired early during embryonic development was the driver of two solid malignancies in another child. In two cases, the two tumors developed from completely independent clones diverging during embryogenesis. Importantly, we demonstrate that platinum-based therapies contributed at least one order of magnitude more mutations per day of exposure than aging to normal tissues in these children. SIGNIFICANCE Using whole-genome and error-correcting ultra-deep duplex sequencing, we uncover different origins for second neoplasms in four children. We also uncover the presence of platinum-related mutations across 10 normal tissues of exposed individuals, highlighting the impact that the use of cytotoxic therapies may have on cancer survivors. See related commentary by Pacyna and Nangalia, p. 900. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Mònica Sánchez-Guixé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Morena Pinheiro-Santin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Víctor González-Huici
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cinzia Lavarino
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Mora
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
22
|
Johnson MTJ, Arif I, Marchetti F, Munshi-South J, Ness RW, Szulkin M, Verrelli BC, Yauk CL, Anstett DN, Booth W, Caizergues AE, Carlen EJ, Dant A, González J, Lagos CG, Oman M, Phifer-Rixey M, Rennison DJ, Rosenberg MS, Winchell KM. Effects of urban-induced mutations on ecology, evolution and health. Nat Ecol Evol 2024; 8:1074-1086. [PMID: 38641700 DOI: 10.1038/s41559-024-02401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.
Collapse
Affiliation(s)
- Marc T J Johnson
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada.
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Irtaqa Arif
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jason Munshi-South
- Department of Biology and Louis Calder Center, Fordham University, Armonk, NY, USA
| | - Rob W Ness
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Marta Szulkin
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel N Anstett
- Department of Plant Biology, Department of Entomology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Warren Booth
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Aude E Caizergues
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elizabeth J Carlen
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO, USA
| | - Anthony Dant
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - César González Lagos
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Madeleine Oman
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Diana J Rennison
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael S Rosenberg
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
23
|
Vahle JL, Dybowski J, Graziano M, Hisada S, Lebron J, Nolte T, Steigerwalt R, Tsubota K, Sistare FD. ICH S1 prospective evaluation study and weight of evidence assessments: commentary from industry representatives. FRONTIERS IN TOXICOLOGY 2024; 6:1377990. [PMID: 38845817 PMCID: PMC11153695 DOI: 10.3389/ftox.2024.1377990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Industry representatives on the ICH S1B(R1) Expert Working Group (EWG) worked closely with colleagues from the Drug Regulatory Authorities to develop an addendum to the ICH S1B guideline on carcinogenicity studies that allows for a weight-of-evidence (WoE) carcinogenicity assessment in some cases, rather than conducting a 2-year rat carcinogenicity study. A subgroup of the EWG composed of regulators have published in this issue a detailed analysis of the Prospective Evaluation Study (PES) conducted under the auspices of the ICH S1B(R1) EWG. Based on the experience gained through the Prospective Evaluation Study (PES) process, industry members of the EWG have prepared the following commentary to aid sponsors in assessing the standard WoE factors, considering how novel investigative approaches may be used to support a WoE assessment, and preparing appropriate documentation of the WoE assessment for presentation to regulatory authorities. The commentary also reviews some of the implementation challenges sponsors must consider in developing a carcinogenicity assessment strategy. Finally, case examples drawn from previously marketed products are provided as a supplement to this commentary to provide additional examples of how WoE criteria may be applied. The information and opinions expressed in this commentary are aimed at increasing the quality of WoE assessments to ensure the successful implementation of this approach.
Collapse
Affiliation(s)
- John L. Vahle
- Lilly Research Laboratories, Indianapolis, IN, United States
| | - Joe Dybowski
- Alnylam Pharmaceuticals, Cambridge, MA, United States
| | | | - Shigeru Hisada
- Formerly ASKA Pharmaceutical Co., Ltd., Fujisawa-shi, Kanagawa, Japan
| | - Jose Lebron
- Merck & Co., Inc., Rahway, NJ, United States
| | - Thomas Nolte
- Development NCE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | | |
Collapse
|
24
|
Kopp B, Khawam A, Di Perna K, Lenart D, Vinette M, Silva R, Zanoni TB, Rore C, Guenigault G, Richardson E, Kostrzewski T, Boswell A, Van P, Valentine Iii C, Salk J, Hamel A. Liver-on-chip model and application in predictive genotoxicity and mutagenicity of drugs. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503762. [PMID: 38821675 DOI: 10.1016/j.mrgentox.2024.503762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/02/2024]
Abstract
Currently, there is no test system, whether in vitro or in vivo, capable of examining all endpoints required for genotoxicity evaluation used in pre-clinical drug safety assessment. The objective of this study was to develop a model which could assess all the required endpoints and possesses robust human metabolic activity, that could be used in a streamlined, animal-free manner. Liver-on-chip (LOC) models have intrinsic human metabolic activity that mimics the in vivo environment, making it a preferred test system. For our assay, the LOC was assembled using primary human hepatocytes or HepaRG cells, in a MPS-T12 plate, maintained under microfluidic flow conditions using the PhysioMimix® Microphysiological System (MPS), and co-cultured with human lymphoblastoid (TK6) cells in transwells. This system allows for interaction between two compartments and for the analysis of three different genotoxic endpoints, i.e. DNA strand breaks (comet assay) in hepatocytes, chromosome loss or damage (micronucleus assay) and mutation (Duplex Sequencing) in TK6 cells. Both compartments were treated at 0, 24 and 45 h with two direct genotoxicants: methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), and two genotoxicants requiring metabolic activation: benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). Assessment of cytochrome activity, RNA expression, albumin, urea and lactate dehydrogenase production, demonstrated functional metabolic capacities. Genotoxicity responses were observed for all endpoints with MMS and EMS. Increases in the micronucleus and mutations (MF) frequencies were also observed with CP, and %Tail DNA with B[a]P, indicating the metabolic competency of the test system. CP did not exhibit an increase in the %Tail DNA, which is in line with in vivo data. However, B[a]P did not exhibit an increase in the % micronucleus and MF, which might require an optimization of the test system. In conclusion, this proof-of-principle experiment suggests that LOC-MPS technology is a promising tool for in vitro hazard identification genotoxicants.
Collapse
Affiliation(s)
- B Kopp
- Charles River Laboratories Montreal ULC, Canada
| | - A Khawam
- Charles River Laboratories Montreal ULC, Canada
| | - K Di Perna
- Charles River Laboratories Montreal ULC, Canada
| | - D Lenart
- Charles River Laboratories Montreal ULC, Canada
| | - M Vinette
- Charles River Laboratories Montreal ULC, Canada
| | - R Silva
- CN Bio Innovations, Cambridge, United Kingdom
| | - T B Zanoni
- TwinStrand Biosciences, Seattle, United States
| | - C Rore
- CN Bio Innovations, Cambridge, United Kingdom
| | | | | | | | - A Boswell
- TwinStrand Biosciences, Seattle, United States
| | - P Van
- TwinStrand Biosciences, Seattle, United States
| | | | - J Salk
- TwinStrand Biosciences, Seattle, United States
| | - A Hamel
- Charles River Laboratories Montreal ULC, Canada.
| |
Collapse
|
25
|
Andersson D, Kebede FT, Escobar M, Österlund T, Ståhlberg A. Principles of digital sequencing using unique molecular identifiers. Mol Aspects Med 2024; 96:101253. [PMID: 38367531 DOI: 10.1016/j.mam.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Massively parallel sequencing technologies have long been used in both basic research and clinical routine. The recent introduction of digital sequencing has made previously challenging applications possible by significantly improving sensitivity and specificity to now allow detection of rare sequence variants, even at single molecule level. Digital sequencing utilizes unique molecular identifiers (UMIs) to minimize sequencing-induced errors and quantification biases. Here, we discuss the principles of UMIs and how they are used in digital sequencing. We outline the properties of different UMI types and the consequences of various UMI approaches in relation to experimental protocols and bioinformatics. Finally, we describe how digital sequencing can be applied in specific research fields, focusing on cancer management where it can be used in screening of asymptomatic individuals, diagnosis, treatment prediction, prognostication, monitoring treatment efficacy and early detection of treatment resistance as well as relapse.
Collapse
Affiliation(s)
- Daniel Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Firaol Tamiru Kebede
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Mandy Escobar
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Tobias Österlund
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| |
Collapse
|
26
|
Underhill HR, Karsy M, Davidson CJ, Hellwig S, Stevenson S, Goold EA, Vincenti S, Sellers DL, Dean C, Harrison BE, Bronner MP, Colman H, Jensen RL. Subclonal Cancer Driver Mutations Are Prevalent in the Unresected Peritumoral Edema of Adult Diffuse Gliomas. Cancer Res 2024; 84:1149-1164. [PMID: 38270917 PMCID: PMC10982644 DOI: 10.1158/0008-5472.can-23-2557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Adult diffuse gliomas commonly recur regardless of therapy. As recurrence typically arises from the peritumoral edema adjacent to the resected bulk tumor, the profiling of somatic mutations from infiltrative malignant cells within this critical, unresected region could provide important insights into residual disease. A key obstacle has been the inability to distinguish between next-generation sequencing (NGS) noise and the true but weak signal from tumor cells hidden among the noncancerous brain tissue of the peritumoral edema. Here, we developed and validated True2 sequencing to reduce NGS-associated errors to <1 false positive/100 kb panel positions while detecting 97.6% of somatic mutations with an allele frequency ≥0.1%. True2 was then used to study the tumor and peritumoral edema of 22 adult diffuse gliomas including glioblastoma, astrocytoma, oligodendroglioma, and NF1-related low-grade neuroglioma. The tumor and peritumoral edema displayed a similar mutation burden, indicating that surgery debulks these cancers physically but not molecularly. Moreover, variants in the peritumoral edema included unique cancer driver mutations absent in the bulk tumor. Finally, analysis of multiple samples from each patient revealed multiple subclones with unique mutations in the same gene in 17 of 22 patients, supporting the occurrence of convergent evolution in response to patient-specific selective pressures in the tumor microenvironment that may form the molecular foundation of recurrent disease. Collectively, True2 enables the detection of ultralow frequency mutations during molecular analyses of adult diffuse gliomas, which is necessary to understand cancer evolution, recurrence, and individual response to therapy. SIGNIFICANCE True2 is a next-generation sequencing workflow that facilitates unbiased discovery of somatic mutations across the full range of variant allele frequencies, which could help identify residual disease vulnerabilities for targeted adjuvant therapies.
Collapse
Affiliation(s)
- Hunter R. Underhill
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
- Department of Radiology, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Michael Karsy
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah
| | | | | | - Samuel Stevenson
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Eric A. Goold
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | - Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Charlie Dean
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Brion E. Harrison
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Mary P. Bronner
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, Division of Oncology, University of Utah, Salt Lake City, Utah
| | - Randy L. Jensen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
27
|
Minko I, Luzadder M, Vartanian V, Rice SM, Nguyen M, Sanchez-Contreras M, Van P, Kennedy S, McCullough A, Lloyd R. Frequencies and spectra of aflatoxin B 1-induced mutations in liver genomes of NEIL1-deficient mice as revealed by duplex sequencing. NAR MOLECULAR MEDICINE 2024; 1:ugae006. [PMID: 38779538 PMCID: PMC11105970 DOI: 10.1093/narmme/ugae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Increased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B1 (AFB1) to a reactive epoxide generates highly mutagenic AFB1-Fapy-dG adducts. Previously, we demonstrated that repair of AFB1-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male Neil1-/- mice were significantly more susceptible to AFB1-induced HCC relative to wild-type mice. To investigate the mechanisms underlying this enhanced carcinogenesis, WT and Neil1-/- mice were challenged with a single, 4 mg/kg dose of AFB1 and frequencies and spectra of mutations were analyzed in liver DNAs 2.5 months post-injection using duplex sequencing. The analyses of DNAs from AFB1-challenged mice revealed highly elevated mutation frequencies in the nuclear genomes of both males and females, but not the mitochondrial genomes. In both WT and Neil1-/- mice, mutation spectra were highly similar to the AFB1-specific COSMIC signature SBS24. Relative to wild-type, the NEIL1 deficiency increased AFB1-induced mutagenesis with concomitant elevated HCCs in male Neil1-/- mice. Our data establish a critical role of NEIL1 in limiting AFB1-induced mutagenesis and ultimately carcinogenesis.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Michael M Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sean P M Rice
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- School of Public Health, Oregon Health & Science University - Portland State University, Portland, OR, USA
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
28
|
Chancharoen M, Yang Z, Dalvie ED, Gubina N, Ruchirawat M, Croy RG, Fedeles BI, Essigmann JM. 5-Chloro-2'-deoxycytidine Induces a Distinctive High-Resolution Mutational Spectrum of Transition Mutations In Vivo. Chem Res Toxicol 2024; 37:486-496. [PMID: 38394377 PMCID: PMC10952010 DOI: 10.1021/acs.chemrestox.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
The biomarker 5-chlorocytosine (5ClC) appears in the DNA of inflamed tissues. Replication of a site-specific 5ClC in a viral DNA genome results in C → T mutations, which is consistent with 5ClC acting as a thymine mimic in vivo. Direct damage of nucleic acids by immune-cell-derived hypochlorous acid is one mechanism by which 5ClC could appear in the genome. A second, nonmutually exclusive mechanism involves damage of cytosine nucleosides or nucleotides in the DNA precursor pool, with subsequent utilization of the 5ClC deoxynucleotide triphosphate as a precursor for DNA synthesis. The present work characterized the mutagenic properties of 5ClC in the nucleotide pool by exposing cells to the nucleoside 5-chloro-2'-deoxycytidine (5CldC). In both Escherichia coli and mouse embryonic fibroblasts (MEFs), 5CldC in the growth media was potently mutagenic, indicating that 5CldC enters cells and likely is erroneously incorporated into the genome from the nucleotide pool. High-resolution sequencing of DNA from MEFs derived from the gptΔ C57BL/6J mouse allowed qualitative and quantitative characterization of 5CldC-induced mutations; CG → TA transitions in 5'-GC(Y)-3' contexts (Y = a pyrimidine) were dominant, while TA → CG transitions appeared at a much lower frequency. The high-resolution mutational spectrum of 5CldC revealed a notable similarity to the Catalogue of Somatic Mutations in Cancer mutational signatures SBS84 and SBS42, which appear in human lymphoid tumors and in occupationally induced cholangiocarcinomas, respectively. SBS84 is associated with the expression of activation-induced cytidine deaminase (AID), a cytosine deaminase associated with inflammation, as well as immunoglobulin gene diversification during antibody maturation. The similarity between the spectra of AID activation and 5CldC could be coincidental; however, the administration of 5CldC did induce some AID expression in MEFs, which have no inherent expression of its gene. In summary, this work shows that 5CldC induces a distinct pattern of mutations in cells. Moreover, that pattern resembles human mutational signatures induced by inflammatory processes, such as those triggered in certain malignancies.
Collapse
Affiliation(s)
- Marisa Chancharoen
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Zhiyu Yang
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Esha D. Dalvie
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nina Gubina
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Mathuros Ruchirawat
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Robert G. Croy
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Bogdan I. Fedeles
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - John M. Essigmann
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Sahib S, Yan J, Chen T. Application of duplex sequencing to evaluate mutagenicity of aristolochic acid and methapyrilene in Fisher 344 rats. Food Chem Toxicol 2024; 185:114512. [PMID: 38342231 DOI: 10.1016/j.fct.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Duplex sequencing (DS) is an error-corrected next-generation sequencing (NGS) method that can overcome notorious high error rate from the process of NGS and detect ultralow-frequency mutations. In this study, we evaluated the mutagenicity of aristolochic acid, a known genotoxic carcinogen, and methapyrilene, a known nongenotoxic carcinogen using DS. Four male Fisher 344 rats were treated with aristolochic acid, methapyrilene, or the vehicle control for 6 weeks, liver tissues were collected one day after the treatment, and the DNA was isolated for analysis. The mutation frequency for the aristolochic acid-treated group was significantly increased over the vehicle control (44-fold), whereas no significant difference in the mutation frequency was observed between the methapyrilene-treated and the control groups. The primary type of mutation induced by aristolochic acid was A:T > T:A transversion, which occurred frequently at ApT sites, whereas the major type of mutation in the control and methapyrilene-treated groups was G:C > A:T transition, which occurred frequently at CpG sites. These findings are consistent with previously published data obtained with other in vivo mutation assays. Thus, our results suggest that the DS mutation assay is a promising technology for assessing mutagenicity of chemicals in vivo.
Collapse
Affiliation(s)
- Seaab Sahib
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
30
|
Sprason C, Tucker T, Clancy D. MtDNA deletions and aging. FRONTIERS IN AGING 2024; 5:1359638. [PMID: 38425363 PMCID: PMC10902006 DOI: 10.3389/fragi.2024.1359638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Aging is the major risk factor in most of the leading causes of mortality worldwide, yet its fundamental causes mostly remain unclear. One of the clear hallmarks of aging is mitochondrial dysfunction. Mitochondria are best known for their roles in cellular energy generation, but they are also critical biosynthetic and signaling organelles. They also undergo multiple changes with organismal age, including increased genetic errors in their independent, circular genome. A key group of studies looking at mice with increased mtDNA mutations showed that premature aging phenotypes correlated with increased deletions but not point mutations. This generated an interest in mitochondrial deletions as a potential fundamental cause of aging. However, subsequent studies in different models have yielded diverse results. This review summarizes the research on mitochondrial deletions in various organisms to understand their possible roles in causing aging while identifying the key complications in quantifying deletions across all models.
Collapse
Affiliation(s)
| | | | - David Clancy
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
31
|
Dillon LW, Higgins J, Nasif H, Othus M, Beppu L, Smith TH, Schmidt E, Valentine Iii CC, Salk JJ, Wood BL, Erba HP, Radich JP, Hourigan CS. Quantification of measurable residual disease using duplex sequencing in adults with acute myeloid leukemia. Haematologica 2024; 109:401-410. [PMID: 37534515 PMCID: PMC10828764 DOI: 10.3324/haematol.2023.283520] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
The presence of measurable residual disease (MRD) is strongly associated with treatment outcomes in acute myeloid leukemia (AML). Despite the correlation with clinical outcomes, MRD assessment has yet to be standardized or routinely incorporated into clinical trials and discrepancies have been observed between different techniques for MRD assessment. In 62 patients with AML, aged 18-60 years, in first complete remission after intensive induction therapy on the randomized phase III SWOG-S0106 clinical trial (clinicaltrials gov. Identifier: NCT00085709), MRD detection by centralized, high-quality multiparametric flow cytometry was compared with a 29-gene panel utilizing duplex sequencing (DS), an ultrasensitive next-generation sequencing method that generates double-stranded consensus sequences to reduce false positive errors. MRD as defined by DS was observed in 22 (35%) patients and was strongly associated with higher rates of relapse (68% vs. 13%; hazard ratio [HR] =8.8; 95% confidence interval [CI]: 3.2-24.5; P<0.001) and decreased survival (32% vs. 82%; HR=5.6; 95% CI: 2.3-13.8; P<0.001) at 5 years. DS MRD strongly outperformed multiparametric flow cytometry MRD, which was observed in ten (16%) patients and marginally associated with higher rates of relapse (50% vs. 30%; HR=2.4; 95% CI: 0.9-6.7; P=0.087) and decreased survival (40% vs. 68%; HR=2.5; 95% CI: 1.0-6.3; P=0.059) at 5 years. Furthermore, the prognostic significance of DS MRD status at the time of remission for subsequent relapse was similar on both randomized arms of the trial. These findings suggest that next-generation sequencing-based AML MRD testing is a powerful tool that could be developed for use in patient management and for early anti-leukemic treatment assessment in clinical trials.
Collapse
Affiliation(s)
- Laura W Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Hassan Nasif
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lan Beppu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | | | | | - Brent L Wood
- Dept. of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | | | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
32
|
Brooks AM, Vornoli A, Kovi RC, Ton TVT, Xu M, Mashal A, Tibaldi E, Gnudi F, Li JL, Sills RC, Bucher JR, Mandrioli D, Belpoggi F, Pandiri AR. Genetic profiling of rat gliomas and cardiac schwannomas from life-time radiofrequency radiation exposure study using a targeted next-generation sequencing gene panel. PLoS One 2024; 19:e0296699. [PMID: 38232086 PMCID: PMC10793937 DOI: 10.1371/journal.pone.0296699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
The cancer hazard associated with lifetime exposure to radiofrequency radiation (RFR) was examined in Sprague Dawley (SD) rats at the Ramazzini Institute (RI), Italy. There were increased incidences of gliomas and cardiac schwannomas. The translational relevance of these rare rat tumors for human disease is poorly understood. We examined the genetic alterations in RFR-derived rat tumors through molecular characterization of important cancer genes relevant for human gliomagenesis. A targeted next-generation sequencing (NGS) panel was designed for rats based on the top 23 orthologous human glioma-related genes. Single-nucleotide variants (SNVs) and small insertion and deletions (indels) were characterized in the rat gliomas and cardiac schwannomas. Translational relevance of these genetic alterations in rat tumors to human disease was determined through comparison with the Catalogue of Somatic Mutations in Cancer (COSMIC) database. These data suggest that rat gliomas resulting from life-time exposure to RFR histologically resemble low grade human gliomas but surprisingly no mutations were detected in rat gliomas that had homology to the human IDH1 p.R132 or IDH2 p.R172 suggesting that rat gliomas are primarily wild-type for IDH hotspot mutations implicated in human gliomas. The rat gliomas appear to share some genetic alterations with IDH1 wildtype human gliomas and rat cardiac schwannomas also harbor mutations in some of the queried cancer genes. These data demonstrate that targeted NGS panels based on tumor specific orthologous human cancer driver genes are an important tool to examine the translational relevance of rodent tumors resulting from chronic/life-time rodent bioassays.
Collapse
Affiliation(s)
- Ashley M. Brooks
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Andrea Vornoli
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Ramesh C. Kovi
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, United States of America
| | - Thai Vu T. Ton
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Miaofei Xu
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Ahmed Mashal
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Eva Tibaldi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Robert C. Sills
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - John R. Bucher
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Arun R. Pandiri
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
33
|
Shumega AR, Pavlov YI, Chirinskaite AV, Rubel AA, Inge-Vechtomov SG, Stepchenkova EI. CRISPR/Cas9 as a Mutagenic Factor. Int J Mol Sci 2024; 25:823. [PMID: 38255897 PMCID: PMC10815272 DOI: 10.3390/ijms25020823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of the CRISPR/Cas9 microbial adaptive immune system has revolutionized the field of genetics, by greatly enhancing the capacity for genome editing. CRISPR/Cas9-based editing starts with DNA breaks (or other lesions) predominantly at target sites and, unfortunately, at off-target genome sites. DNA repair systems differing in accuracy participate in establishing desired genetic changes but also introduce unwanted mutations, that may lead to hereditary, oncological, and other diseases. New approaches to alleviate the risks associated with genome editing include attenuating the off-target activity of editing complex through the use of modified forms of Cas9 nuclease and single guide RNA (sgRNA), improving delivery methods for sgRNA/Cas9 complex, and directing DNA lesions caused by the sgRNA/Cas9 to non-mutagenic repair pathways. Here, we have described CRISPR/Cas9 as a new powerful mutagenic factor, discussed its mutagenic properties, and reviewed factors influencing the mutagenic activity of CRISPR/Cas9.
Collapse
Affiliation(s)
- Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Pathology and Microbiology, Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Sergey G. Inge-Vechtomov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.S.); (S.G.I.-V.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| |
Collapse
|
34
|
Beal MA, Chen G, Dearfield KL, Gi M, Gollapudi B, Heflich RH, Horibata K, Long AS, Lovell DP, Parsons BL, Pfuhler S, Wills J, Zeller A, Johnson G, White PA. Interpretation of in vitro concentration-response data for risk assessment and regulatory decision-making: Report from the 2022 IWGT quantitative analysis expert working group meeting. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023. [PMID: 38115239 DOI: 10.1002/em.22582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Quantitative risk assessments of chemicals are routinely performed using in vivo data from rodents; however, there is growing recognition that non-animal approaches can be human-relevant alternatives. There is an urgent need to build confidence in non-animal alternatives given the international support to reduce the use of animals in toxicity testing where possible. In order for scientists and risk assessors to prepare for this paradigm shift in toxicity assessment, standardization and consensus on in vitro testing strategies and data interpretation will need to be established. To address this issue, an Expert Working Group (EWG) of the 8th International Workshop on Genotoxicity Testing (IWGT) evaluated the utility of quantitative in vitro genotoxicity concentration-response data for risk assessment. The EWG first evaluated available in vitro methodologies and then examined the variability and maximal response of in vitro tests to estimate biologically relevant values for the critical effect sizes considered adverse or unacceptable. Next, the EWG reviewed the approaches and computational models employed to provide human-relevant dose context to in vitro data. Lastly, the EWG evaluated risk assessment applications for which in vitro data are ready for use and applications where further work is required. The EWG concluded that in vitro genotoxicity concentration-response data can be interpreted in a risk assessment context. However, prior to routine use in regulatory settings, further research will be required to address the remaining uncertainties and limitations.
Collapse
Affiliation(s)
- Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Guangchao Chen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Utrecht, the Netherlands
| | - Kerry L Dearfield
- Retired from US Environmental Protection Agency and US Department of Agriculture, Washington, DC, USA
| | - Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | | - Robert H Heflich
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- St George's Medical School, University of London, London, UK
| | - Barbara L Parsons
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Stefan Pfuhler
- Global Product Stewardship - Human Safety, Procter & Gamble, Cincinnati, Ohio, USA
| | - John Wills
- Genetic Toxicology and Photosafety, GSK Research & Development, Stevenage, UK
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George Johnson
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Spencer Chapman M, Cull AH, Ciuculescu MF, Esrick EB, Mitchell E, Jung H, O'Neill L, Roberts K, Fabre MA, Williams N, Nangalia J, Quinton J, Fox JM, Pellin D, Makani J, Armant M, Williams DA, Campbell PJ, Kent DG. Clonal selection of hematopoietic stem cells after gene therapy for sickle cell disease. Nat Med 2023; 29:3175-3183. [PMID: 37973947 PMCID: PMC10719109 DOI: 10.1038/s41591-023-02636-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Gene therapy (GT) provides a potentially curative treatment option for patients with sickle cell disease (SCD); however, the occurrence of myeloid malignancies in GT clinical trials has prompted concern, with several postulated mechanisms. Here, we used whole-genome sequencing to track hematopoietic stem cells (HSCs) from six patients with SCD at pre- and post-GT time points to map the somatic mutation and clonal landscape of gene-modified and unmodified HSCs. Pre-GT, phylogenetic trees were highly polyclonal and mutation burdens per cell were elevated in some, but not all, patients. Post-GT, no clonal expansions were identified among gene-modified or unmodified cells; however, an increased frequency of potential driver mutations associated with myeloid neoplasms or clonal hematopoiesis (DNMT3A- and EZH2-mutated clones in particular) was observed in both genetically modified and unmodified cells, suggesting positive selection of mutant clones during GT. This work sheds light on HSC clonal dynamics and the mutational landscape after GT in SCD, highlighting the enhanced fitness of some HSCs harboring pre-existing driver mutations. Future studies should define the long-term fate of mutant clones, including any contribution to expansions associated with myeloid neoplasms.
Collapse
Affiliation(s)
- Michael Spencer Chapman
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alyssa H Cull
- York Biomedical Research Institute, University of York, York, UK
| | | | - Erica B Esrick
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | | | | | | | - Margarete A Fabre
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Joanne Quinton
- York Biomedical Research Institute, University of York, York, UK
| | - James M Fox
- York Biomedical Research Institute, University of York, York, UK
| | - Danilo Pellin
- Harvard Medical School, Boston, MA, USA
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Julie Makani
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar-es-Salaam, Tanzania
- SickleInAfrica Clinical Coordinating Center, MUHAS, Dar-es-Salaam, Tanzania
- Imperial College London, London, UK
| | - Myriam Armant
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| | - David G Kent
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
36
|
You X, Cao Y, Suzuki T, Shao J, Zhu B, Masumura K, Xi J, Liu W, Zhang X, Luan Y. Genome-wide direct quantification of in vivo mutagenesis using high-accuracy paired-end and complementary consensus sequencing. Nucleic Acids Res 2023; 51:e109. [PMID: 37870450 PMCID: PMC10681716 DOI: 10.1093/nar/gkad909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Error-corrected next-generation sequencing (ecNGS) is an emerging technology for accurately measuring somatic mutations. Here, we report paired-end and complementary consensus sequencing (PECC-Seq), a high-accuracy ecNGS approach for genome-wide somatic mutation detection. We characterize a novel 2-aminoimidazolone lesion besides 7,8-dihydro-8-oxoguanine and the resulting end-repair artifacts originating from NGS library preparation that obscure the sequencing accuracy of NGS. We modify library preparation protocol for the enzymatic removal of end-repair artifacts and improve the accuracy of our previously developed duplex consensus sequencing method. Optimized PECC-Seq shows an error rate of <5 × 10-8 with consensus bases compressed from approximately 25 Gb of raw sequencing data, enabling the accurate detection of low-abundance somatic mutations. We apply PECC-Seq to the quantification of in vivo mutagenesis. Compared with the classic gpt gene mutation assay using gpt delta transgenic mice, PECC-Seq exhibits high sensitivity in quantitatively measuring dose-dependent mutagenesis induced by Aristolochic acid I (AAI). Moreover, PECC-Seq specifically characterizes the distinct genome-wide mutational signatures of AAI, Benzo[a]pyrene, N-Nitroso-N-ethylurea and N-nitrosodiethylamine and reveals the mutational signature of Quinoline in common mouse models. Overall, our findings demonstrate that high-accuracy PECC-Seq is a promising tool for genome-wide somatic mutagenesis quantification and for in vivo mutagenicity testing.
Collapse
Affiliation(s)
- Xinyue You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiyi Cao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Takayoshi Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benzhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenichi Masumura
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Jing Xi
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiying Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Luan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
37
|
Smith-Roe SL, Hobbs CA, Hull V, Todd Auman J, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine Iii CC, Salk JJ, Witt KL. Adopting duplex sequencing technology for genetic toxicity testing: A proof-of-concept mutagenesis experiment with N-ethyl-N-nitrosourea (ENU)-exposed rats. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503669. [PMID: 37770135 PMCID: PMC10539650 DOI: 10.1016/j.mrgentox.2023.503669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays.
Collapse
Affiliation(s)
| | - Cheryl A Hobbs
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - J Todd Auman
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Michael A Streicker
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Miriam V Rivas
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | | | | | | | | | - Kristine L Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC, USA
| |
Collapse
|
38
|
Dobrovolsky VN, Matsuda T, McKinzie P, Miranda J, Revollo JR. Whole-genome high-fidelity sequencing: A novel approach to detecting and characterization of mutagenicity in vivo. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503691. [PMID: 37770148 DOI: 10.1016/j.mrgentox.2023.503691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Direct DNA sequencing can be used for characterizing mutagenicity in simple and complex biological models. Recently we described a method of whole-genome sequencing for detecting mutations in simple models of cultured bacteria, mammalian cells, and nematode. In the current proof-of-concept study, we expand and improve our method for evaluating a more complex mammalian biological model in outbred mice. We detail the method by applying it to a small set of animals treated with a mutagen with known mutagenicity profiles, N-ethyl-N-nitrosourea (ENU), for consistency with the known data. Whole-genome high-fidelity sequencing (HiFi Sequencing) showed frequencies and spectra of background mutations in tissues of untreated mice that were consistent with normal ageing and characterized by spontaneous or enzymatic deamination of 5-methylcytosine. In mice treated with a single 40 mg/kg dose of ENU, the frequency of mutations in the genomic DNA of solid tissues increased up to 7-fold, with the greatest increase observed in the spleen and the smallest increase in the liver. The most common mutations detected in ENU-treated mice were T > A transitions and T > C transversions, consistent with the types of mutations caused by alkylating agents. The data suggest that HiFi Sequencing may be useful for characterizing mutagenicity of novel compounds in various biological models.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson AR, USA.
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson AR, USA
| | - Jaime Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson AR, USA
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson AR, USA
| |
Collapse
|
39
|
Bercu JP, Zhang S, Sobol Z, Escobar PA, Van P, Schuler M. Comparison of the transgenic rodent mutation assay, error corrected next generation duplex sequencing, and the alkaline comet assay to detect dose-related mutations following exposure to N-nitrosodiethylamine. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503685. [PMID: 37770142 DOI: 10.1016/j.mrgentox.2023.503685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
N-Nitrosodiethylamine (NDEA), a well-studied N-nitrosamine, was tested in rats to compare the dose-response relationship of three genotoxicity endpoints. Mutant / mutation frequencies were determined using the transgenic rodent (TGR) gene mutation assay and error corrected next generation sequencing (ecNGS) (i.e., duplex sequencing (DS)), and genetic damage was detected by the alkaline comet assay. Big Blue® (cII Locus) animals (n = 6 per dose group) were administered doses of 0.001, 0.01, 0.1, 1, 3 mg/kg/day NDEA by oral gavage. Samples were collected for cII mutation and DS analyses following 28-days of exposure and 3 days recovery. In a separate study, male Sprague-Dawley (SD) rats (n = 6 per dose group) were administered the same doses by oral gavage for two consecutive days and then samples collected for the alkaline comet assay. A dose-related increase in mutant / mutation frequencies of the liver but not duodenum was observed using the TGR assay and DS with DS resulting in a slightly more sensitive response, with a lower benchmark dose (BMD). In addition, a dose-related increase in percent tail DNA was observed in the liver using the alkaline comet assay. Therefore, DS and comet assays showed good utility for hazard identification and dose-response analysis of a representative N-nitrosamine comparable to the TGR gene mutation assay.
Collapse
Affiliation(s)
- Joel P Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA 94404, USA.
| | - Shaofei Zhang
- Pfizer Research, Development, and Medical, Groton, CT, USA.
| | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, CT, USA
| |
Collapse
|
40
|
Menz J, Götz ME, Gündel U, Gürtler R, Herrmann K, Hessel-Pras S, Kneuer C, Kolrep F, Nitzsche D, Pabel U, Sachse B, Schmeisser S, Schumacher DM, Schwerdtle T, Tralau T, Zellmer S, Schäfer B. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch Toxicol 2023; 97:2303-2328. [PMID: 37402810 PMCID: PMC10404208 DOI: 10.1007/s00204-023-03553-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.
Collapse
Affiliation(s)
- Jakob Menz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Mario E Götz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Gündel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rainer Gürtler
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kristin Herrmann
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Franziska Kolrep
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dana Nitzsche
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Pabel
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - David M Schumacher
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
41
|
Lynch AM, Zanoni TB, Salk JJ, Martincorena I, Young RR, Kucab J, Valentine CC, Yauk C, Escobar PA, Witt KL, Frötschl R, Reed SH, Ashford A. Next Generation Sequencing Workshop at the Royal Society of Medicine (London, May 2022): how genomics is on the path to modernizing genetic toxicology. Mutagenesis 2023; 38:192-200. [PMID: 37300447 PMCID: PMC10687350 DOI: 10.1093/mutage/gead012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 06/12/2023] Open
Abstract
The use of error-corrected Next Generation Sequencing (ecNG) to determine mutagenicity has been a subject of growing interest and potentially a disruptive technology that could supplement, and in time, replace current testing paradigms in preclinical safety assessment. Considering this, a Next Generation Sequencing Workshop was held at the Royal Society of Medicine in London in May 2022, supported by the United Kingdom Environmental Mutagen Society (UKEMS) and TwinStrand Biosciences (WA, USA), to discuss progress and future applications of this technology. In this meeting report, the invited speakers provide an overview of the Workshop topics covered and identify future directions for research. In the area of somatic mutagenesis, several speakers reviewed recent progress made with correlating ecNGS to classic in vivo transgenic rodent mutation assays as well as exploring the use of this technology directly in humans and animals, and in complex organoid models. Additionally, ecNGS has been used for detecting off-target effects of gene editing tools and emerging data suggest ecNGS potential to measure clonal expansion of cells carrying mutations in cancer driver genes as an early marker of carcinogenic potential and for direct human biomonitoring. As such, the workshop demonstrated the importance of raising awareness and support for advancing the science of ecNGS for mutagenesis, gene editing, and carcinogenesis research. Furthermore, the potential of this new technology to contribute to advances in drug and product development and improve safety assessment was extensively explored.
Collapse
Affiliation(s)
- Anthony M Lynch
- GSK R&D, Stevenage, United Kingdom
- School of Medicine, Swansea University, Swansea, United Kingdom
| | | | - Jesse J Salk
- TwinStrand Biosciences, Seattle, WA, United States
- Division of Medical Oncology, University of Washington, Seattle, WA, United States
- Fred Hutch Cancer Center, Seattle, WA, United States
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Jill Kucab
- Genetic and Environmental Toxicology, King’s College, London, United Kingdom
| | | | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Kristine L Witt
- National Institute of Environmental Health Sciences, Division of Translational Toxicology, Research Triangle Park, NC, United States
| | - Roland Frötschl
- Federal Institute for Drugs and Medical Devices (Bundesinstitiut für Arzneimittel und Medizinprodukte), Bonn, Germany
| | - Simon H Reed
- School of Medicine, Division of Cancer and Genetics, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Anne Ashford
- Safety Innovation, Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
42
|
Liu Z, Samee M. Structural underpinnings of mutation rate variations in the human genome. Nucleic Acids Res 2023; 51:7184-7197. [PMID: 37395403 PMCID: PMC10415140 DOI: 10.1093/nar/gkad551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
Single nucleotide mutation rates have critical implications for human evolution and genetic diseases. Importantly, the rates vary substantially across the genome and the principles underlying such variations remain poorly understood. A recent model explained much of this variation by considering higher-order nucleotide interactions in the 7-mer sequence context around mutated nucleotides. This model's success implicates a connection between DNA shape and mutation rates. DNA shape, i.e. structural properties like helical twist and tilt, is known to capture interactions between nucleotides within a local context. Thus, we hypothesized that changes in DNA shape features at and around mutated positions can explain mutation rate variations in the human genome. Indeed, DNA shape-based models of mutation rates showed similar or improved performance over current nucleotide sequence-based models. These models accurately characterized mutation hotspots in the human genome and revealed the shape features whose interactions underlie mutation rate variations. DNA shape also impacts mutation rates within putative functional regions like transcription factor binding sites where we find a strong association between DNA shape and position-specific mutation rates. This work demonstrates the structural underpinnings of nucleotide mutations in the human genome and lays the groundwork for future models of genetic variations to incorporate DNA shape.
Collapse
Affiliation(s)
- Zian Liu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
43
|
Marchetti F, Cardoso R, Chen CL, Douglas GR, Elloway J, Escobar PA, Harper T, Heflich RH, Kidd D, Lynch AM, Myers MB, Parsons BL, Salk JJ, Settivari RS, Smith-Roe SL, Witt KL, Yauk CL, Young R, Zhang S, Minocherhomji S. Error-corrected next generation sequencing - Promises and challenges for genotoxicity and cancer risk assessment. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108466. [PMID: 37643677 DOI: 10.1016/j.mrrev.2023.108466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.
Collapse
Affiliation(s)
| | | | - Connie L Chen
- Health and Environmental Sciences Institute, Washington, DC, USA.
| | | | - Joanne Elloway
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Tod Harper
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Robert H Heflich
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Darren Kidd
- Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | | | - Meagan B Myers
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Barbara L Parsons
- US Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | | | | | | | - Kristine L Witt
- NIEHS, Division of the National Toxicology Program, Research Triangle Park, NC, USA
| | | | - Robert Young
- MilliporeSigma, Rockville, MD, USA; Current: Consultant, Bethesda, MD, USA
| | | | - Sheroy Minocherhomji
- Amgen Research, Amgen Inc, Thousand Oaks, CA, USA; Current: Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
44
|
Menon V, Brash DE. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can". MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108471. [PMID: 37716438 PMCID: PMC10843083 DOI: 10.1016/j.mrrev.2023.108471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Mutations, the irreversible changes in an organism's DNA sequence, are present in tissues at a variant allele frequency (VAF) ranging from ∼10-8 per bp for a founder mutation to ∼10-3 for a histologically normal tissue sample containing several independent clones - compared to 1%- 50% for a heterozygous tumor mutation or a polymorphism. The rarity of these events poses a challenge for accurate clinical diagnosis and prognosis, toxicology, and discovering new disease etiologies. Standard Next-Generation Sequencing (NGS) technologies report VAFs as low as 0.5% per nt, but reliably observing rarer precursor events requires additional sophistication to measure ultralow-frequency mutations. We detail the challenge; define terms used to characterize the results, which vary between laboratories and sometimes conflict between biologists and bioinformaticists; and describe recent innovations to improve standard NGS methodologies including: single-strand consensus sequence methods such as Safe-SeqS and SiMSen-Seq; tandem-strand consensus sequence methods such as o2n-Seq and SMM-Seq; and ultrasensitive parent-strand consensus sequence methods such as DuplexSeq, PacBio HiFi, SinoDuplex, OPUSeq, EcoSeq, BotSeqS, Hawk-Seq, NanoSeq, SaferSeq, and CODEC. Practical applications are also noted. Several methods quantify VAF down to 10-5 at a nt and mutation frequency (MF) in a target region down to 10-7 per nt. By expanding to > 1 Mb of sites never observed twice, thus forgoing VAF, other methods quantify MF < 10-9 per nt or < 15 errors per haploid genome. Clonal expansion cannot be directly distinguished from independent mutations by sequencing, so it is essential for a paper to report whether its MF counted only different mutations - the minimum independent-mutation frequency MFminI - or all mutations observed including recurrences - the larger maximum independent-mutation frequency MFmaxI which may reflect clonal expansion. Ultrasensitive methods reveal that, without their use, even mutations with VAF 0.5-1% are usually spurious.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA.
| |
Collapse
|
45
|
Martus HJ, Zeller A, Kirkland D. International Workshops on Genotoxicity Testing (IWGT): Origins, achievements and ambitions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108469. [PMID: 37777464 DOI: 10.1016/j.mrrev.2023.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/02/2023]
Abstract
Over the past thirty years, the International Workshops on Genotoxicity Testing (IWGT) became one of the leading groups in the field of regulatory genotoxicology, not only due to the diversity of participants with respect to geography and professional affiliation, but also due to the unique setup of recurring IWGT meetings every four years. The hallmarks of the IWGT process have been diligent initial planning approaches of the working groups, collection of data so as to stimulate data-driven discussions and debate, and striving to reach consensus recommendations. The scientific quality of the Working Groups (WGs) has been exceptional due to the selection of highly regarded experts on each topic. As a result, the IWGT working group reports have become important documents. The deliberations and publications have provided guidance on test systems and testing protocols that have influenced the development or revision of test guidelines of the Organisation for Economic Co-operation and Development (OECD), guidance by the International Council for Harmonisation (ICH), and strategic testing or data analysis approaches in general. This article summarizes the history of the IWGT, identifies some of its major achievements, and provides an outlook for the future.
Collapse
Affiliation(s)
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - David Kirkland
- Kirkland Consulting, P O Box 79, Tadcaster LS24 0AS, United Kingdom
| |
Collapse
|
46
|
Cho E, Swartz CD, Williams A, V Rivas M, Recio L, Witt KL, Schmidt EK, Yaplee J, Smith TH, Van P, Lo FY, Valentine CC, Salk JJ, Marchetti F, Smith-Roe SL, Yauk CL. Error-corrected duplex sequencing enables direct detection and quantification of mutations in human TK6 cells with strong inter-laboratory consistency. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503649. [PMID: 37491114 PMCID: PMC10395007 DOI: 10.1016/j.mrgentox.2023.503649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 07/27/2023]
Abstract
Error-corrected duplex sequencing (DS) enables direct quantification of low-frequency mutations and offers tremendous potential for chemical mutagenicity assessment. We investigated the utility of DS to quantify induced mutation frequency (MF) and spectrum in human lymphoblastoid TK6 cells exposed to a prototypical DNA alkylating agent, N-ethyl-N-nitrosourea (ENU). Furthermore, we explored appropriate experimental parameters for this application, and assessed inter-laboratory reproducibility. In two independent experiments in two laboratories, TK6 cells were exposed to ENU (25-200 µM) and DNA was sequenced 48, 72, and 96 h post-exposure. A DS mutagenicity panel targeting twenty 2.4-kb regions distributed across the genome was used to sample diverse, genome-representative sequence contexts. A significant increase in MF that was unaffected by time was observed in both laboratories. Concentration-response in the MF from the two laboratories was strongly positively correlated (r = 0.97). C:G>T:A, T:A>C:G, T:A>A:T, and T:A>G:C mutations increased in consistent, concentration-dependent manners in both laboratories, with high proportions of C:G>T:A at all time points. The consistent results across the three time points suggest that 48 h may be sufficient for mutation analysis post-exposure. The target sites responded similarly between the two laboratories and revealed a higher average MF in intergenic regions. These results, demonstrating remarkable reproducibility across time and laboratory for both MF and spectrum, support the high value of DS for characterizing chemical mutagenicity in both research and regulatory evaluation.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | | | - Leslie Recio
- Inotiv-RTP, Research Triangle Park, NC, USA; Scitovation, Research Triangle Park, NC, USA
| | - Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Stephanie L Smith-Roe
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biology, Carleton University, Ottawa, ON, Canada; Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
47
|
Wilson TE, Ahmed S, Higgins J, Salk J, Glover T. svCapture: efficient and specific detection of very low frequency structural variant junctions by error-minimized capture sequencing. NAR Genom Bioinform 2023; 5:lqad042. [PMID: 37181851 PMCID: PMC10167630 DOI: 10.1093/nargab/lqad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Error-corrected sequencing of genomic targets enriched by probe-based capture has become a standard approach for detecting single-nucleotide variants (SNVs) and small insertion/deletions (indels) present at very low variant allele frequencies. Less attention has been given to comparable strategies for rare structural variant (SV) junctions, where different error mechanisms must be addressed. Working from samples with known SV properties, we demonstrate that duplex sequencing (DuplexSeq), which demands confirmation of variants on both strands of a source DNA molecule, eliminates false SV junctions arising from chimeric PCR. DuplexSeq could not address frequent intermolecular ligation artifacts that arise during Y-adapter addition prior to strand denaturation without requiring multiple source molecules. In contrast, tagmentation libraries coupled with data filtering based on strand family size greatly reduced both artifact classes and enabled efficient and specific detection of single-molecule SV junctions. The throughput of SV capture sequencing (svCapture) and base-level accuracy of DuplexSeq provided detailed views of the microhomology profile and limited occurrence of de novo SNVs near the junctions of hundreds of newly created SVs, suggesting end joining as a possible formation mechanism. The open source svCapture pipeline enables rare SV detection as a routine addition to SNVs/indels in properly prepared capture sequencing libraries.
Collapse
Affiliation(s)
- Thomas E Wilson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samreen Ahmed
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jake Higgins
- TwinStrand Biosciences Inc., Seattle, WA 98121, USA
| | - Jesse J Salk
- TwinStrand Biosciences Inc., Seattle, WA 98121, USA
| | - Thomas W Glover
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
48
|
Smith-Roe SL, Hobbs CA, Hull V, Auman JT, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine CC, Salk JJ, Witt KL. Adopting Duplex Sequencing™ Technology for Genetic Toxicity Testing: A Proof-of-Concept Mutagenesis Experiment with N-Ethyl-N-Nitrosourea (ENU)-Exposed Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539833. [PMID: 37214853 PMCID: PMC10197591 DOI: 10.1101/2023.05.08.539833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Duplex sequencing (DuplexSeq) is an error-corrected next-generation sequencing (ecNGS) method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors by comparing grouped strand sequencing reads. The resulting background of less than one artifactual mutation per 10 7 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DuplexSeq-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays. HIGHLIGHTS DuplexSeq is an ultra-accurate NGS technology that directly quantifies mutationsENU-dependent mutagenesis was detected 24 h post-exposure in proliferative tissuesMultiple tissues exhibited the canonical ENU mutation spectrum 7 d after exposureResults obtained with DuplexSeq were highly concordant between laboratoriesThe Rat-50 Mutagenesis Assay is promising for applications in genetic toxicology.
Collapse
Affiliation(s)
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - J. Todd Auman
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Michael A. Streicker
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Miriam V. Rivas
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | | | | | | | | | | | | | | | | | - Kristine L. Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC
| |
Collapse
|
49
|
Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, Kuan FC, Marongiu F, Evans EJ, Moore DA, Rodrigues FS, Pich O, Bakker B, Cha H, Myers R, van Maldegem F, Boumelha J, Veeriah S, Rowan A, Naceur-Lombardelli C, Karasaki T, Sivakumar M, De S, Caswell DR, Nagano A, Black JRM, Martínez-Ruiz C, Ryu MH, Huff RD, Li S, Favé MJ, Magness A, Suárez-Bonnet A, Priestnall SL, Lüchtenborg M, Lavelle K, Pethick J, Hardy S, McRonald FE, Lin MH, Troccoli CI, Ghosh M, Miller YE, Merrick DT, Keith RL, Al Bakir M, Bailey C, Hill MS, Saal LH, Chen Y, George AM, Abbosh C, Kanu N, Lee SH, McGranahan N, Berg CD, Sasieni P, Houlston R, Turnbull C, Lam S, Awadalla P, Grönroos E, Downward J, Jacks T, Carlsten C, Malanchi I, Hackshaw A, Litchfield K, DeGregori J, Jamal-Hanjani M, Swanton C. Lung adenocarcinoma promotion by air pollutants. Nature 2023; 616:159-167. [PMID: 37020004 PMCID: PMC7614604 DOI: 10.1038/s41586-023-05874-3] [Citation(s) in RCA: 304] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/21/2023] [Indexed: 04/07/2023]
Abstract
A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1β. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.
Collapse
Affiliation(s)
- William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Marcellus Augustine
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Medicine, University College London, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Kezhong Chen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Thoracic Surgery and Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Fabio Marongiu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Edward J Evans
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Felipe S Rodrigues
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Hongui Cha
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Renelle Myers
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Febe van Maldegem
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jesse Boumelha
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Swapnanil De
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Deborah R Caswell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ai Nagano
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Min Hyung Ryu
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Ryan D Huff
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Shijia Li
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | | | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | - Margreet Lüchtenborg
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
- Centre for Cancer, Society and Public Health, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Katrina Lavelle
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Joanna Pethick
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Steven Hardy
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Fiona E McRonald
- National Disease Registration Service (NDRS), NHS England, Leeds, UK
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Clara I Troccoli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Flagship Biosciences, Boulder, CO, USA
| | - Moumita Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - York E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert L Keith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Lao H Saal
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Yilun Chen
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anthony M George
- SAGA Diagnostics, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christopher Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Peter Sasieni
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Stephen Lam
- BC Cancer Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip Awadalla
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, UBC, Vancouver, British Columbia, Canada
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
50
|
Dillon LW, Higgins J, Nasif H, Othus M, Beppu L, Smith TH, Schmidt E, Valentine CC, Salk JJ, Wood BL, Erba HP, Radich JP, Hourigan CS. Quantification of measurable residual disease using duplex sequencing in adults with acute myeloid leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.26.23287367. [PMID: 37034683 PMCID: PMC10081409 DOI: 10.1101/2023.03.26.23287367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The presence of measurable residual disease (MRD) is strongly associated with treatment outcomes in acute myeloid leukemia (AML). Despite the correlation with clinical outcomes, MRD assessment has yet to be standardized or routinely incorporated into clinical trials. Discrepancies have been observed between different techniques for MRD assessment and there remains a need to compare centralized, high-quality multiparametric flow cytometry (MFC) and ultrasensitive next-generation sequencing (NGS) in AML patients with diverse mutational profiles. In 62 patients with AML, aged 18-60, in first complete remission after intensive induction therapy on the randomized phase 3 SWOG-S0106 clinical trial, MRD detection by MFC was compared with a 29 gene panel utilizing duplex sequencing (DS), an NGS method that generates double-stranded consensus sequences to reduce false positive errors. Using DS, detection of a persistent mutation utilizing defined criteria was seen in 22 (35%) patients and was strongly associated with higher rates of relapse (68% vs 13% at year 5; HR, 8.8; 95% CI, 3.2-24.5; P<0.001) and decreased survival (32% vs 82% at year 5; HR, 5.6; 95% CI, 2.3-13.8; P<0.001). MRD as defined by DS strongly outperformed MFC, which was observed in 10 (16%) patients and marginally associated with higher rates of relapse (50% vs 30% at year 5; HR, 2.4; 95% CI, 0.9-6.7; P=0.087) and decreased survival (40% vs 68% at year 5; HR, 2.5; 95% CI, 1.0-6.3; P=0.059). Furthermore, the prognostic significance of DS MRD status at the time of remission was similar on both randomized arms of the trial, predicting S0106 clinical trial outcomes. These findings suggest that DS is a powerful tool that could be used in patient management and for early treatment assessment in clinical trials.
Collapse
Affiliation(s)
- Laura W. Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Hassan Nasif
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Megan Othus
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lan Beppu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | | | | | - Brent L Wood
- Dept. of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | | | - Jerald P. Radich
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|