1
|
Huang H, Mu Y, Huang Y, Ji B, Wang Y, Chen CY, Chen Y, Luo Z, Li S, Zhang Z, Wang L, Conway JF, Yang D, Wang J, Sun J, Li S. Rational development of gemcitabine-based nanoplatform for targeting SERPINB9/Granzyme B axis to overcome chemo-immune-resistance. Nat Commun 2025; 16:4176. [PMID: 40325025 PMCID: PMC12053578 DOI: 10.1038/s41467-025-59490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
SERPINB9, an endogenous inhibitor of granzyme B (GzmB), has emerged as a critical factor in the resistance to immunotherapy by protecting cancer cells from GzmB-induced cytotoxicity. However, its role in chemosensitivity remains unknown. In this study, we show that gemcitabine (GEM) treatment upregulates SERPINB9 through transcription factor ATF-3. Interestingly, GEM also induces the expression of GzmB and knockout or knockdown of SERPINB9 results in enhanced response of tumor cells to GEM, suggesting a role of GzmB/SERPINB9 axis in regulating chemosensitivity. To facilitate the therapeutic translation of these findings, we engineer POEM nanocarrier (consisting of lipid-derivatized polylysine (PEG-PLL-Oleic acid, PPO), and GEM-conjugated polylysine (PEG-PLL-OA-GEM, PPOGEM), PPO/PPOGEM (POEM)) that is highly effective in codelivery of built-in GEM and loaded SERPINB9 short interfering RNA (siSPB9). GEM conjugation introduces an additional mechanism of carrier/siRNA interaction in addition to charge-mediated interaction and enables efficient i.v. delivery at lower N/P ratios. Here, we show that co-delivery of GEM and siSPB9 significantly improves antitumor efficacy and remodels the tumor immune microenvironment in pancreatic cancer models, supporting a promising therapeutic strategy.
Collapse
Affiliation(s)
- Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yiqing Mu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Yu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luxuan Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Shi Y, McKenery A, Dolan M, Mastri M, Hill JW, Dommer A, Benzekry S, Long M, Abrams SI, Puzanov I, Ebos JML. Acquired resistance to PD-L1 inhibition enhances a type I IFN-regulated secretory program in tumors. EMBO Rep 2025; 26:521-559. [PMID: 39663510 PMCID: PMC11772817 DOI: 10.1038/s44319-024-00333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Therapeutic inhibition of programmed cell death ligand (PD-L1) is linked to alterations in interferon (IFN) signaling. Since IFN-regulated intracellular signaling can control extracellular secretory programs in tumors to modulate immunity, we examined IFN-related secretory changes in tumor cells following resistance to PD-L1 inhibition. Here we report an anti-PD-L1 treatment-induced secretome (PTIS) in tumor models of acquired resistance that is regulated by type I IFNs. These secretory changes can suppress activation of T cells ex vivo while diminishing tumor cell cytotoxicity, revealing that tumor-intrinsic treatment adaptations can exert broad tumor-extrinsic effects. When reimplanted in vivo, resistant tumor growth can slow or stop when PTIS components are disrupted individually, or when type I IFN signaling machinery is blocked. Interestingly, genetic and therapeutic disruption of PD-L1 in vitro can only partially recapitulate the PTIS phenotype highlighting the importance of developing in vivo-based resistance models to more faithfully mimic clinically-relevant treatment failure. Together, this study shows acquired resistance to immune-checkpoint inhibitors 'rewires' tumor secretory programs controlled by type I IFNs that, in turn, can protect from immune cell attack.
Collapse
Affiliation(s)
- Yuhao Shi
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Amber McKenery
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Melissa Dolan
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - James W Hill
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, USA
| | - Adam Dommer
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sebastien Benzekry
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis-Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Faculté de Pharmacie, Aix-Marseille University, Marseille, France
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - John M L Ebos
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
3
|
Fang Y, Yue Y, Hao S, Zhang Y, Liu N, Wang S, Li Y, Wang H. Serpin B9 is Highly Expressed in Lung Adenocarcinoma and is Associated with Progression-Free Survival. J Inflamm Res 2024; 17:8881-8890. [PMID: 39559399 PMCID: PMC11572047 DOI: 10.2147/jir.s472199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Background Serpin B9 is highly expressed in breast cancer, melanoma, and various malignant cells and inhibits NK cell killing through the Serpin B9-GrB axle. However, the current studies have only validated the role of Serpin B9 in vivo and vitro, and lack of systematic studies on the expression of Serpin B9 in patients' tumor tissues and its prognostic implications. In this study, we propose to further validate the role of Serpin B9 by comparing its expression level in tissues of lung adenocarcinoma patients and its correlation with the efficacy of immunotherapy. Methods This study included 200 patients with LUAD between Feb 2022 and Feb 2023. IHC scoring assessed Serpin B9 expression in the tumor and adjacent tissues, with an H-score of 2 as the cutoff value. Patients were divided into high- and low-expression groups. T-tests were used to compare Serpin B9 expression and treatment efficacy between the tumor and adjacent tissues in both groups. Baseline characteristics were compared using X2 tests. Prognostic risk factors were identified using Cox regression and Kaplan-Meier survival curves. Results The expression level of Serpin B9 in LUAD tumor tissues are higher than adjacent tissues and positively correlated with the TNM stage and negative correlated with PFS in patients with LUAD. Additionally, immunotherapy efficacy was inversely correlated with Serpin B9 expression. Conclusion The increased expression of Serpin B9 in LUAD tumor tissues is negatively linked to prognosis and immunotherapy efficacy. This underscores their potential as prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Yue Fang
- Galactophore Oncology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei City, Anhui Province, People’s Republic of China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei City, Anhui Province, People’s Republic of China
| | - Yi Yue
- The Second Clinical College, Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Sensen Hao
- Galactophore Oncology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei City, Anhui Province, People’s Republic of China
| | - Ying Zhang
- Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Nan Liu
- Galactophore Oncology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei City, Anhui Province, People’s Republic of China
| | - Shengling Wang
- Galactophore Oncology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei City, Anhui Province, People’s Republic of China
| | - Yan Li
- Galactophore Oncology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei City, Anhui Province, People’s Republic of China
| | - Hongzhi Wang
- Galactophore Oncology Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei City, Anhui Province, People’s Republic of China
| |
Collapse
|
4
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Mastrogeorgiou M, Chatzikalil E, Theocharis S, Papoudou-Bai A, Péoc'h M, Mobarki M, Karpathiou G. The immune microenvironment of cancer of the uterine cervix. Histol Histopathol 2024; 39:1245-1271. [PMID: 38483012 DOI: 10.14670/hh-18-727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
While several treatment choices exist for cervical cancer, such as surgical therapy, chemotherapy, and radiotherapy, some patients will still show poor prognosis. HPV infection is a principal factor for cervical cancer development, from early inflammation to proliferation, angiogenesis, and neoplastic growth. While HPV T-cell responses exist, the tumor seems to evade the immune system upon its tolerance. The latter suggests the existence of a confluent tumor microenvironment responsible for the evasion tactics employed by the neoplasm. Therefore, novel biomarkers governing prognosis and treatment planning must be developed, with several studies tackling the significance of the tumor microenvironment in the genesis, development, proliferation, and overall response of cervical cancer during neoplastic processes. This review aims to analyze and contemplate the characteristics of the tumor microenvironment and its role in prognosis, progression, evasion, and invasion, including therapeutic outcome and overall survival.
Collapse
Affiliation(s)
- Michail Mastrogeorgiou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michel Péoc'h
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Mousa Mobarki
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Georgia Karpathiou
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
6
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
7
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
8
|
Huang H, Mu Y, Li S. The biological function of Serpinb9 and Serpinb9-based therapy. Front Immunol 2024; 15:1422113. [PMID: 38966643 PMCID: PMC11222584 DOI: 10.3389/fimmu.2024.1422113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Recent breakthroughs in discovering novel immune signaling pathways have revolutionized different disease treatments. SERPINB9 (Sb9), also known as Proteinase Inhibitor 9 (PI-9), is a well-known endogenous inhibitor of Granzyme B (GzmB). GzmB is a potent cytotoxic molecule secreted by cytotoxic T lymphocytes and natural killer cells, which plays a crucial role in inducing apoptosis in target cells during immune responses. Sb9 acts as a protective mechanism against the potentially harmful effects of GzmB within the cells of the immune system itself. On the other hand, overexpression of Sb9 is an important mechanism of immune evasion in diseases like cancers and viral infections. The intricate functions of Sb9 in different cell types represent a fine-tuned regulatory mechanism for preventing immunopathology, protection against autoimmune diseases, and the regulation of cell death, all of which are essential for maintaining health and responding effectively to disease challenges. Dysregulation of the Sb9 will disrupt human normal physiological condition, potentially leading to a range of diseases, including cancers, inflammatory conditions, viral infections or other pathological disorders. Deepening our understanding of the role of Sb9 will aid in the discovery of innovative and effective treatments for various medical conditions. Therefore, the objective of this review is to consolidate current knowledge regarding the biological role of Sb9. It aims to offer insights into its discovery, structure, functions, distribution, its association with various diseases, and the potential of nanoparticle-based therapies targeting Sb9.
Collapse
Affiliation(s)
- Haozhe Huang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiqing Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Song Li
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Dolan M, Shi Y, Mastri M, Long MD, McKenery A, Hill JW, Vaghi C, Benzekry S, Barbi J, Ebos JM. A senescence-mimicking (senomimetic) VEGFR TKI side-effect primes tumor immune responses via IFN/STING signaling. Mol Cancer Ther 2024; 23:745113. [PMID: 38690835 PMCID: PMC11527799 DOI: 10.1158/1535-7163.mct-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) disrupt tumor angiogenesis but also have many unexpected side-effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence-markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance. Here we show that these same senescence-mimicking ('senomimetic') VEGFR TKI effects drive an enhanced immunogenic signaling that, in turn, can alter tumor response to immunotherapy. Using a live-cell sorting method to detect beta-galactosidase, a commonly used SM, we found that subpopulations of SM-expressing (SM+) tumor cells have heightened interferon (IFN) signaling and increased expression of IFN-stimulated genes (ISGs). These ISG increases were under the control of the STimulator of INterferon Gene (STING) signaling pathway, which we found could be directly activated by several VEGFR TKIs. TKI-induced SM+ cells could stimulate or suppress CD8 T-cell activation depending on host:tumor cell contact while tumors grown from SM+ cells were more sensitive to PD-L1 inhibition in vivo, suggesting that offsetting immune-suppressive functions of SM+ cells can improve TKI efficacy overall. Our findings may explain why some (but not all) VEGFR TKIs improve outcomes when combined with immunotherapy and suggest that exploiting senomimetic drug side-effects may help identify TKIs that uniquely 'prime' tumors for enhanced sensitivity to PD-L1 targeted agents.
Collapse
Affiliation(s)
- Melissa Dolan
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Yuhao Shi
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - Mark D. Long
- Department of Bioinformatics and Statistics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Amber McKenery
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - James W. Hill
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York, 14263. USA
| | - Cristina Vaghi
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Sebastien Benzekry
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - John M.L. Ebos
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Lead Contact
| |
Collapse
|
10
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
11
|
Anami T, Ibe Y, Li L, Komohara Y, Hirao H, Harada M, Yano H, Fujiwara Y, Motoshima T, Yatsuda J, Hibi T, Kamba T. Overexpression of SerpinB9 in non-seminomatous germ cell tumors. Med Mol Morphol 2024; 57:68-75. [PMID: 37991604 DOI: 10.1007/s00795-023-00374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
Serpinb9 is an inhibitor of granzyme B and is potentially involved in the immune escape of tumor cells. In the present study, bioinformatics analysis using open databases suggested that SerpinB9 is overexpressed in testicular embryonal carcinoma. Immunohistological analysis was performed on 28 cases of testicular germ cell tumors to investigate the relationship between SerpinB9 expression in testicular germ cell tumors and the tumor immune environment. SerpinB9 was significantly upregulated in the non-seminoma group and inversely correlated with the number of tumor-infiltrating CD8-positive cells. In addition, yolk sac tumors were characterized by the loss of human leukocyte antigen-class I expression. These findings suggest that SerpinB9 contributes to the immune escape of testicular germ cell tumors. Targeting therapy for SerpinB9 might therefore be useful in immunotherapy for testicular germ cell tumors resistant to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Toshiki Anami
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan.
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Yuki Ibe
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lianbo Li
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Hiroki Hirao
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Montalvo MJ, Bandey IN, Rezvan A, Wu KL, Saeedi A, Kulkarni R, Li Y, An X, Sefat KMSR, Varadarajan N. Decoding the mechanisms of chimeric antigen receptor (CAR) T cell-mediated killing of tumors: insights from granzyme and Fas inhibition. Cell Death Dis 2024; 15:109. [PMID: 38307835 PMCID: PMC10837176 DOI: 10.1038/s41419-024-06461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Chimeric antigen receptor (CAR) T cell show promise in cancer treatments, but their mechanism of action is not well understood. Decoding the mechanisms used by individual T cells can help improve the efficacy of T cells while also identifying mechanisms of T cell failure leading to tumor escape. Here, we used a suite of assays including dynamic single-cell imaging of cell-cell interactions, dynamic imaging of fluorescent reporters to directly track cytotoxin activity in tumor cells, and scRNA-seq on patient infusion products to investigate the cytotoxic mechanisms used by individual CAR T cells in killing tumor cells. We show that surprisingly, overexpression of the Granzyme B (GZMB) inhibitor, protease inhibitor-9 (PI9), does not alter the cytotoxicity mediated by CD19-specific CAR T cells against either the leukemic cell line, NALM6; or the ovarian cancer cell line, SkOV3-CD19. We designed and validated reporters to directly assay T cell delivered GZMB activity in tumor cells and confirmed that while PI9 overexpression inhibits GZMB activity at the molecular level, this is not sufficient to impact the kinetics or magnitude of killing mediated by the CAR T cells. Altering cytotoxicity mediated by CAR T cells required combined inhibition of multiple pathways that are tumor cell specific: (a) B-cell lines like NALM6, Raji and Daudi were sensitive to combined GZMB and granzyme A (GZMA) inhibition; whereas (b) solid tumor targets like SkOV3-CD19 and A375-CD19 (melanoma) were sensitive to combined GZMB and Fas ligand inhibition. We realized the translational relevance of these findings by examining the scRNA-seq profiles of Tisa-cel and Axi-cel infusion products and show a significant correlation between GZMB and GZMA expression at the single-cell level in a T cell subset-dependent manner. Our findings highlight the importance of the redundancy in killing mechanisms of CAR T cells and how this redundancy is important for efficacious T cells.
Collapse
Affiliation(s)
- Melisa J Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Irfan N Bandey
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kwan-Ling Wu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Yongshuai Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Xingyue An
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - K M Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
13
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
14
|
Moisand A, Madéry M, Boyer T, Domblides C, Blaye C, Larmonier N. Hormone Receptor Signaling and Breast Cancer Resistance to Anti-Tumor Immunity. Int J Mol Sci 2023; 24:15048. [PMID: 37894728 PMCID: PMC10606577 DOI: 10.3390/ijms242015048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancers regroup many heterogeneous diseases unevenly responding to currently available therapies. Approximately 70-80% of breast cancers express hormone (estrogen or progesterone) receptors. Patients with these hormone-dependent breast malignancies benefit from therapies targeting endocrine pathways. Nevertheless, metastatic disease remains a major challenge despite available treatments, and relapses frequently ensue. By improving patient survival and quality of life, cancer immunotherapies have sparked considerable enthusiasm and hope in the last decade but have led to only limited success in breast cancers. In addition, only patients with hormone-independent breast cancers seem to benefit from these immune-based approaches. The present review examines and discusses the current literature related to the role of hormone receptor signaling (specifically, an estrogen receptor) and the impact of its modulation on the sensitivity of breast cancer cells to the effector mechanisms of anti-tumor immune responses and on the capability of breast cancers to escape from protective anti-cancer immunity. Future research prospects related to the possibility of promoting the efficacy of immune-based interventions using hormone therapy agents are considered.
Collapse
Affiliation(s)
- Alexandra Moisand
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Mathilde Madéry
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Thomas Boyer
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Céline Blaye
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
| | - Nicolas Larmonier
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
15
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Johan MF. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review. Diagnostics (Basel) 2023; 13:2328. [PMID: 37510072 PMCID: PMC10378430 DOI: 10.3390/diagnostics13142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
16
|
Xu M, Zhang C, He S, Xu C, Wei X, Pu K. Activatable Immunoprotease Nanorestimulator for Second Near-Infrared Photothermal Immunotherapy of Cancer. ACS NANO 2023; 17:8183-8194. [PMID: 37122103 DOI: 10.1021/acsnano.2c12066] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photothermal immunotherapy is a combinational cancer therapy modality, wherein the photothermal process can noninvasively ablate cancer and efficiently trigger cancer immunogenic cell death to ignite antitumor immunity. However, cancer cells can resist the cytotoxic lymphocyte-mediated antitumor effect via expressing serine protease inhibitory proteins (serpins) to deactivate proteolytic immunoproteases. Herein, we report a smart polymer nanoagonist (SPND) with second near-infrared (NIR-II) phototherapeutic ablation and tumor-specific immunoprotease granzyme B (GrB) restimulation for cancer photothermal immunotherapy. SPND has a semiconducting polymer backbone grafted with a small-molecule inhibitor of serpinB9 (Sb9i) via a glutathione (GSH)-cleavable linker. Once in the tumor, Sb9i can be specifically liberated from SPND to inhibit serpinB9, restimulating the activity of GrB to enhance cancer immunotherapy. Moreover, SPND induces photothermal therapy for direct tumor ablation and immunogenic cancer cell death (ICD) under NIR-II photoirradiation. Therefore, such a smart nanoagonist represents a way toward combination photothermal immunotherapy (PTI).
Collapse
Affiliation(s)
- Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
17
|
Kimman T, Slomp A, Martens A, Grabherr S, Li S, van Diest E, Meeldijk J, Kuball J, Minnema MC, Eldering E, Bovenschen N, Sebestyén Z, Peperzak V. Serpin B9 controls tumor cell killing by CAR T cells. J Immunother Cancer 2023; 11:jitc-2022-006364. [PMID: 36931661 PMCID: PMC10030924 DOI: 10.1136/jitc-2022-006364] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Initial clinical responses with gene engineered chimeric antigen receptor (CAR) T cells in cancer patients are highly encouraging; however, primary resistance and also relapse may prevent durable remission in a substantial part of the patients. One of the underlying causes is the resistance mechanisms in cancer cells that limit effective killing by CAR T cells. CAR T cells exert their cytotoxic function through secretion of granzymes and perforin. Inhibition of granzyme B (GrB) can underlie resistance to T cell-mediated killing, and it has been shown that serine proteinase inhibitor serpin B9 can effectively inhibit GrB. We aimed to determine whether expression of serpin B9 by cancer cells can lead to resistance toward CAR T cells. METHODS Serpin B9 gene and protein expression were examined by R2 or DepMap database mining and by western blot or flow cytometric analysis, respectively. Coculture killing experiments were performed with melanoma cell line MeWo, diffuse large B cell lymphoma (DLBCL) cell line OCI-Ly7 or primary chronic lymphocytic leukemia (CLL) cells as target cells and natural killer cell line YT-Indy, CD20 CAR T cells or CD19 CAR T cells as effector cells and analyzed by flow cytometry. RESULTS Serpin B9 protein expression was previously shown to be associated with clinical outcome in melanoma patients and in line with these observations we demonstrate that enforced serpin B9 expression in melanoma cells reduces sensitivity to GrB-mediated killing. Next, we examined serpin B9 expression in a wide array of primary tumor tissues and human cell lines to find that serpin B9 is uniformly expressed in B-cell lymphomas and most prominently in DLBCL and CLL. Subsequently, using small interfering RNA, we silenced serpin B9 expression in DLBCL cells, which increased their sensitivity to CD20 CAR T cell-mediated killing. In addition, we showed that co-ulture of primary CLL cells with CD20 CAR T cells results in selection of serpin B9-high CLL cells, suggesting these cells resist CAR T-cell killing. CONCLUSIONS Overall, the data indicate that serpin B9 is a resistance mediator for CAR T cell-mediated tumor cell killing that should be inhibited or bypassed to improve CAR T-cell responses.
Collapse
Affiliation(s)
- Thomas Kimman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands
| | - Anne Slomp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands
| | - Anne Martens
- Department of Experimental Immunology, Amsterdam University Medical Centres, Duivendrecht, Netherlands
| | - Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Shuang Li
- Department of Pathology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Eline van Diest
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology and Department of Pathology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jurgen Kuball
- Center for Translational Immunology and Department of Hematology, University Medical Centre Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| | - Monique C Minnema
- Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Centres, Duivendrecht, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Niels Bovenschen
- Center for Translational Immunology and Department of Pathology, University Medical Centre Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
McKenzie B, Valitutti S. Resisting T cell attack: tumor-cell-intrinsic defense and reparation mechanisms. Trends Cancer 2023; 9:198-211. [PMID: 36593148 DOI: 10.1016/j.trecan.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 01/02/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are antigen-specific killer cells equipped to identify and eliminate host cells that have been altered through infection or transformation. Both chimeric antigen-receptor (CAR) T cell therapies and immune checkpoint blockade (ICB) therapies are based on successful elimination of tumor cells by cytotoxic effectors. In this opinion article, we outline cell-intrinsic mechanisms by which tumor cells defend against CTLs, highlighting pathways that confer resistance and proposing opportunities for combination therapies. We discuss how exogenous killing entities [e.g., supramolecular attack particles (SMAPs)] offer a novel strategy to circumvent cellular resistance mechanisms. Our opinion article highlights the importance of identifying, quantifying, and targeting tumor defense mechanisms at the interface between tumor cells and CTLs as a critical consideration in the development of immunotherapy approaches.
Collapse
Affiliation(s)
- Brienne McKenzie
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France.
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France; Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France.
| |
Collapse
|
19
|
Mehranzadeh E, Crende O, Badiola I, Garcia-Gallastegi P. What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors? Biomedicines 2022; 10:biomedicines10123292. [PMID: 36552048 PMCID: PMC9776400 DOI: 10.3390/biomedicines10123292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Protein convertases (PCs) play a significant role in post-translational procedures by transforming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular homeostasis because they are involved in cell signaling. They have also been described in many diseases such as Alzheimer's and cancer. Cancer cells are secretory cells that send signals to the tumor microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most important components of the TME is the immune system of the tumor. In this review, we describe recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is implicated in the regulation of macrophage activity that contributes to the increased impairment of DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells. The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1 expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in tumor immune escape is a promising topic for further consideration.
Collapse
Affiliation(s)
- Elham Mehranzadeh
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Iker Badiola
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Nanokide Therapeutics SL, Ed. ZITEK, Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Correspondence:
| |
Collapse
|
20
|
Abstract
The increasing prevalence of degenerative cartilage disorders in young patients is a growing public concern worldwide. Cartilage's poor innate regenerative capacity has inspired the exploration and development of cartilage replacement treatments such as tissue-engineered cartilages and osteochondral implants as potential solutions to cartilage loss. The clinical application of tissue-engineered implants is hindered by the lack of long-term follow-up demonstrating efficacy, biocompatibility, and bio-integration. The historically reported immunological privilege of cartilage tissue was based on histomorphological observations pointing out the lack of vascularity and the presence of a tight extracellular matrix. However, clinical studies in humans and animals do not unequivocally support the immune-privilege theory. More in-depth studies on cartilage immunology are needed to make clinical advances such as tissue engineering more applicable. This review analyzes the literature that supports and opposes the concept that cartilage is an immune-privileged tissue and provides insight into mechanisms conferring various degrees of immune privilege to other, more in-depth studied tissues such as testis, eyes, brain, and cancer.
Collapse
Affiliation(s)
- Carissa Garrity
- Department of Pathology, Microbiology
and Immunology, University of California, Davis, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological
Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA,
USA
| | - Brian Haus
- Department of Orthopaedic Surgery,
University of California Davis Medical Center, Sacramento, CA, USA
| | - Cassandra A. Lee
- Department of Orthopaedic Surgery,
University of California Davis Medical Center, Sacramento, CA, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology
and Immunology, University of California, Davis, Davis, CA, USA,Natalia Vapniarsky, Department of
Pathology, Microbiology and Immunology, University of California, Davis, One
Shields Avenue, Davis, CA 95616-5270, USA.
| |
Collapse
|
21
|
Ibáñez-Molero S, van Vliet A, Pozniak J, Hummelink K, Terry AM, Monkhorst K, Sanders J, Hofland I, Landeloos E, Van Herck Y, Bechter O, Kuilman T, Zhong W, Marine JC, Wessels L, Peeper DS. SERPINB9 is commonly amplified and high expression in cancer cells correlates with poor immune checkpoint blockade response. Oncoimmunology 2022; 11:2139074. [PMID: 36465485 PMCID: PMC9710519 DOI: 10.1080/2162402x.2022.2139074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Immunotherapies, in particular immune checkpoint blockade (ICB), have improved the clinical outcome of cancer patients, although many fail to mount a durable response. Several resistance mechanisms have been identified, but our understanding of the requirements for a robust ICB response is incomplete. We have engineered an MHC I/antigen: TCR-matched panel of human NSCLC cancer and T cells to identify tumor cell-intrinsic T cell resistance mechanisms. The top differentially expressed gene in resistant tumor cells was SERPINB9. This serine protease inhibitor of the effector T cell-derived molecule granzyme B prevents caspase-mediated tumor apoptosis. Concordantly, we show that genetic ablation of SERPINB9 reverts T cell resistance of NSCLC cell lines, whereas its overexpression reduces T cell sensitivity. SERPINB9 expression in NSCLC strongly correlates with a mesenchymal phenotype. We also find that SERPINB9 is commonly amplified in cancer, particularly melanoma in which it is indicative of poor prognosis. Single-cell RNA sequencing of ICB-treated melanomas revealed that SERPINB9 expression is elevated not only in cells from post- versus pre-treatment cancers, but also in ICB-refractory cancers. In NSCLC we commonly observed rare SERPINB9-positive cancer cells, possibly accounting for reservoirs of ICB-resistant cells. While underscoring SERPINB9 as a potential target to combat immunotherapy resistance, these results suggest its potential to serve as a prognostic and predictive biomarker.
Collapse
Affiliation(s)
- Sofía Ibáñez-Molero
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| | - Joanna Pozniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Karlijn Hummelink
- Department of Thoracic oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands,Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alexandra M. Terry
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands,Current address: Genmab, Utrecht, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ingrid Hofland
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Department of General Medical Oncology, UZ Leuven Laboratory of Experimental Oncology, Leuven, Belgium
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven Laboratory of Experimental Oncology, Leuven, Belgium
| | - Thomas Kuilman
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands,Current address: Neogene Therapeutics, Amsterdam, The Netherlands
| | | | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Lodewyk Wessels
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel S. Peeper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands,CONTACT Daniel S. Peeper Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam1066 CX, the Netherlands
| |
Collapse
|
22
|
Aubert A, Lane M, Jung K, Granville DJ. Granzyme B as a therapeutic target: an update in 2022. Expert Opin Ther Targets 2022; 26:979-993. [PMID: 36542784 DOI: 10.1080/14728222.2022.2161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Granzyme B is a serine protease extensively studied for its implication in cytotoxic lymphocyte-mediated apoptosis. In recent years, the paradigm that the role of granzyme B is restricted to immune cell-mediated killing has been challenged as extracellular roles for the protease have emerged. While mostly absent from healthy tissues, granzyme B levels are elevated in several autoimmune and/or chronic inflammatory conditions. In the skin, its accumulation significantly impairs proper wound healing. AREAS COVERED After an overview of the current knowledge on granzyme B, a description of newly identified functions will be presented, focussing on granzyme B ability to promote cell-cell and dermal-epidermal junction disruption, extracellular matrix degradation, vascular permeabilization, and epithelial barrier dysfunction. Progress in granzyme B inhibition, as well as the use of granzyme B inhibitors for the treatment of tissue damage, will be discussed. EXPERT OPINION The absence of endogenous extracellular inhibitors renders extracellular granzyme B accumulation deleterious for the proper healing of chronic wounds due to sustained proteolytic activity. Consequently, specific granzyme B inhibitors have been developed as new therapeutic approaches. Beyond applications in wound healing, other autoimmune and/or chronic inflammatory conditions related to exacerbated granzyme B activity may also benefit from the development of these inhibitors.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| |
Collapse
|
23
|
Gut commensal bacteria enhance pathogenesis of a tumorigenic murine retrovirus. Cell Rep 2022; 40:111341. [PMID: 36103821 DOI: 10.1016/j.celrep.2022.111341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The influence of the microbiota on viral transmission and replication is well appreciated. However, its impact on retroviral pathogenesis outside of transmission/replication control remains unknown. Using murine leukemia virus (MuLV), we found that some commensal bacteria promoted the development of leukemia induced by this retrovirus. The promotion of leukemia development by commensals is due to suppression of the adaptive immune response through upregulation of several negative regulators of immunity. These negative regulators include Serpinb9b and Rnf128, which are associated with a poor prognosis of some spontaneous human cancers. Upregulation of Serpinb9b is mediated by sensing of bacteria by the NOD1/NOD2/RIPK2 pathway. This work describes a mechanism by which the microbiota enhances tumorigenesis within gut-distant organs and points at potential targets for cancer therapy.
Collapse
|
24
|
Dima D, Jiang D, Singh DJ, Hasipek M, Shah HS, Ullah F, Khouri J, Maciejewski JP, Jha BK. Multiple Myeloma Therapy: Emerging Trends and Challenges. Cancers (Basel) 2022; 14:cancers14174082. [PMID: 36077618 PMCID: PMC9454959 DOI: 10.3390/cancers14174082] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a complex hematologic malignancy characterized by the uncontrolled proliferation of clonal plasma cells in the bone marrow that secrete large amounts of immunoglobulins and other non-functional proteins. Despite decades of progress and several landmark therapeutic advancements, MM remains incurable in most cases. Standard of care frontline therapies have limited durable efficacy, with the majority of patients eventually relapsing, either early or later. Induced drug resistance via up-modulations of signaling cascades that circumvent the effect of drugs and the emergence of genetically heterogeneous sub-clones are the major causes of the relapsed-refractory state of MM. Cytopenias from cumulative treatment toxicity and disease refractoriness limit therapeutic options, hence creating an urgent need for innovative approaches effective against highly heterogeneous myeloma cell populations. Here, we present a comprehensive overview of the current and future treatment paradigm of MM, and highlight the gaps in therapeutic translations of recent advances in targeted therapy and immunotherapy. We also discuss the therapeutic potential of emerging preclinical research in multiple myeloma.
Collapse
Affiliation(s)
- Danai Dima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dongxu Jiang
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Divya Jyoti Singh
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Haikoo S. Shah
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jack Khouri
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Babal K. Jha
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
25
|
Han R, Yu L, Zhao C, Li Y, Ma Y, Zhai Y, Qian Z, Gu Y, Li S. Inhibition of SerpinB9 to enhance granzyme B-based tumor therapy by using a modified biomimetic nanoplatform with a cascade strategy. Biomaterials 2022; 288:121723. [DOI: 10.1016/j.biomaterials.2022.121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
|
26
|
McKenzie B, Khazen R, Valitutti S. Greek Fire, Poison Arrows, and Scorpion Bombs: How Tumor Cells Defend Against the Siege Weapons of Cytotoxic T Lymphocytes. Front Immunol 2022; 13:894306. [PMID: 35592329 PMCID: PMC9110820 DOI: 10.3389/fimmu.2022.894306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) are the main cellular effectors of the adaptive immune response against cancer cells, which in turn have evolved sophisticated cellular defense mechanisms to withstand CTL attack. Herein we provide a critical review of the pertinent literature on early and late attack/defense events taking place at the CTL/target cell lytic synapse. We examine the earliest steps of CTL-mediated cytotoxicity (“the poison arrows”) elicited within seconds of CTL/target cell encounter, which face commensurately rapid synaptic repair mechanisms on the tumor cell side, providing the first formidable barrier to CTL attack. We examine how breach of this first defensive barrier unleashes the inextinguishable “Greek fire” in the form of granzymes whose broad cytotoxic potential is linked to activation of cell death executioners, injury of vital organelles, and destruction of intracellular homeostasis. Herein tumor cells deploy slower but no less sophisticated defensive mechanisms in the form of enhanced autophagy, increased reparative capacity, and dysregulation of cell death pathways. We discuss how the newly discovered supra-molecular attack particles (SMAPs, the “scorpion bombs”), seek to overcome the robust defensive mechanisms that confer tumor cell resistance. Finally, we discuss the implications of the aforementioned attack/defense mechanisms on the induction of regulated cell death (RCD), and how different contemporary RCD modalities (including apoptosis, pyroptosis, and ferroptosis) may have profound implications for immunotherapy. Thus, we propose that understanding and targeting multiple steps of the attack/defense process will be instrumental to enhance the efficacy of CTL anti-tumor activity and meet the outstanding challenges in clinical immunotherapy.
Collapse
Affiliation(s)
- Brienne McKenzie
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Roxana Khazen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Salvatore Valitutti
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
| |
Collapse
|
27
|
Läsche M, Gallwas J, Gründker C. Like Brothers in Arms: How Hormonal Stimuli and Changes in the Metabolism Signaling Cooperate, Leading HPV Infection to Drive the Onset of Cervical Cancer. Int J Mol Sci 2022; 23:5050. [PMID: 35563441 PMCID: PMC9103757 DOI: 10.3390/ijms23095050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all precautionary actions and the possibility of using vaccinations to counteract infections caused by human papillomaviruses (HPVs), HPV-related cancers still account for approximately 5% of all carcinomas. Worldwide, many women are still excluded from adequate health care due to their social position and origin. Therefore, immense efforts in research and therapy are still required to counteract the challenges that this disease entails. The special thing about an HPV infection is that it is not only able to trick the immune system in a sophisticated way, but also, through genetic integration into the host genome, to use all the resources available to the host cells to complete the replication cycle of the virus without activating the alarm mechanisms of immune recognition and elimination. The mechanisms utilized by the virus are the metabolic, immune, and hormonal signaling pathways that it manipulates. Since the virus is dependent on replication enzymes of the host cells, it also intervenes in the cell cycle of the differentiating keratinocytes and shifts their terminal differentiation to the uppermost layers of the squamocolumnar transformation zone (TZ) of the cervix. The individual signaling pathways are closely related and equally important not only for the successful replication of the virus but also for the onset of cervical cancer. We will therefore analyze the effects of HPV infection on metabolic signaling, as well as changes in hormonal and immune signaling in the tumor and its microenvironment to understand how each level of signaling interacts to promote tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, 37075 Göttingen, Germany; (M.L.); (J.G.)
| |
Collapse
|
28
|
Gatenbee CD, Baker AM, Schenck RO, Strobl M, West J, Neves MP, Hasan SY, Lakatos E, Martinez P, Cross WCH, Jansen M, Rodriguez-Justo M, Whelan CJ, Sottoriva A, Leedham S, Robertson-Tessi M, Graham TA, Anderson ARA. Immunosuppressive niche engineering at the onset of human colorectal cancer. Nat Commun 2022; 13:1798. [PMID: 35379804 PMCID: PMC8979971 DOI: 10.1038/s41467-022-29027-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
The evolutionary dynamics of tumor initiation remain undetermined, and the interplay between neoplastic cells and the immune system is hypothesized to be critical in transformation. Colorectal cancer (CRC) presents a unique opportunity to study the transition to malignancy as pre-cancers (adenomas) and early-stage cancers are frequently resected. Here, we examine tumor-immune eco-evolutionary dynamics from pre-cancer to carcinoma using a computational model, ecological analysis of digital pathology data, and neoantigen prediction in 62 patient samples. Modeling predicted recruitment of immunosuppressive cells would be the most common driver of transformation. As predicted, ecological analysis reveals that progressed adenomas co-localized with immunosuppressive cells and cytokines, while benign adenomas co-localized with a mixed immune response. Carcinomas converge to a common immune "cold" ecology, relaxing selection against immunogenicity and high neoantigen burdens, with little evidence for PD-L1 overexpression driving tumor initiation. These findings suggest re-engineering the immunosuppressive niche may prove an effective immunotherapy in CRC.
Collapse
Affiliation(s)
- Chandler D Gatenbee
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA.
| | - Ann-Marie Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ryan O Schenck
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX37BN, UK
| | - Maximilian Strobl
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
| | - Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
| | - Margarida P Neves
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sara Yakub Hasan
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pierre Martinez
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Lyon Cancer Institute, Lyon, France
| | - William C H Cross
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Marnix Jansen
- Department of Pathology, University College London Hospital, London, UK
| | | | - Christopher J Whelan
- Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
- Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA
| | - Andrea Sottoriva
- Center for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Simon Leedham
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX37BN, UK
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA.
| |
Collapse
|
29
|
Tuomela K, Ambrose AR, Davis DM. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:867098. [PMID: 35401556 PMCID: PMC8984481 DOI: 10.3389/fimmu.2022.867098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.
Collapse
Affiliation(s)
| | | | - Daniel M. Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
30
|
Wang H, Shao R, Lu S, Bai S, Fu B, Lai R, Lu Y. Integrative Analysis of a Pyroptosis-Related Signature of Clinical and Biological Value in Multiple Myeloma. Front Oncol 2022; 12:845074. [PMID: 35296025 PMCID: PMC8918477 DOI: 10.3389/fonc.2022.845074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Pyroptosis is an inflammation-based programmed cell death that holds great potential as a novel cancer therapeutic target in patients with multiple myeloma (MM). However, thus far, the function of pyroptosis-related genes (PRGs) in MM and their prognostic relevance remains undetermined. Methods The model was established by the LASSO analysis, based on the Gene Expression Omnibus (GEO) dabatase, and its efficacy was verified using two external datasets. The model’s predictive ability was assessed by the Kaplan-Meier survival and time-dependent receiver operating characteristic (ROC) curves. Finally, a nomogram was established for clinical application. We also confirmed the validity of our model using specimens and in vitro experiments. Results We established an 11-PRG signature profile, and verified its efficacy using two validation cohorts (VCs). In both cohorts, patients were separated into two subpopulations, according to their median risk scores (RS). Our analysis revealed that high-risk (HR) patients experienced considerably lower overall survival (OS), compared to the low-risk (LR) patients. Using functional enrichment and immune infiltration analyses, we demonstrated that the immunologic status was strongly related to RS. Furthermore, using a pyroptosis inhibitor Q-VD-OPh, we revealed that MM cell proliferation and progression was drastically suppressed and the doxorubicin (DOX)-induced apoptosis was reversed. Conclusion Based on our analysis, pyroptosis not only serves as a measure of MM treatment efficiency and patient prognosis, but is also a possible target for anti-MM therapy.
Collapse
Affiliation(s)
- Huizhong Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruonan Shao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shujing Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shenrui Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bibo Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Renchun Lai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Yue Lu, ; Renchun Lai,
| | - Yue Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Yue Lu, ; Renchun Lai,
| |
Collapse
|
31
|
Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:1-57. [PMID: 35165859 DOI: 10.1007/978-3-030-91311-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
32
|
Kusowska A, Kubacz M, Krawczyk M, Slusarczyk A, Winiarska M, Bobrowicz M. Molecular Aspects of Resistance to Immunotherapies-Advances in Understanding and Management of Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2022; 23:ijms23031501. [PMID: 35163421 PMCID: PMC8835809 DOI: 10.3390/ijms23031501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the unquestionable success achieved by rituximab-based regimens in the management of diffuse large B-cell lymphoma (DLBCL), the high incidence of relapsed/refractory disease still remains a challenge. The widespread clinical use of chemo-immunotherapy demonstrated that it invariably leads to the induction of resistance; however, the molecular mechanisms underlying this phenomenon remain unclear. Rituximab-mediated therapeutic effect primarily relies on complement-dependent cytotoxicity and antibody-dependent cell cytotoxicity, and their outcome is often compromised following the development of resistance. Factors involved include inherent genetic characteristics and rituximab-induced changes in effectors cells, the role of ligand/receptor interactions between target and effector cells, and the tumor microenvironment. This review focuses on summarizing the emerging advances in the understanding of the molecular basis responsible for the resistance induced by various forms of immunotherapy used in DLBCL. We outline available models of resistance and delineate solutions that may improve the efficacy of standard therapeutic protocols, which might be essential for the rational design of novel therapeutic regimens.
Collapse
Affiliation(s)
- Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
33
|
Wang E, Shibutani M, Nagahara H, Fukuoka T, Iseki Y, Okazaki Y, Kashiwagi S, Tanaka H, Maeda K. Prognostic value of the density of tumor-infiltrating lymphocytes in colorectal cancer liver metastases. Oncol Lett 2021; 22:837. [PMID: 34712361 PMCID: PMC8548800 DOI: 10.3892/ol.2021.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/24/2021] [Indexed: 01/23/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been reported to reflect the anti-tumor immune status of patients and to be correlated with their prognosis and therapeutic outcomes. However, the characteristics of the local immune status in metastatic tumors is poorly understood, as primary tumors have been the focus in most previous studies. In addition, the local immune status may be influenced by preoperative chemotherapy. The present study aimed therefore to investigate the relationship between the degree of TIL infiltration and the prognosis in patients with curative resection of colorectal cancer liver metastases and to examine the effects of preoperative chemotherapy on the function of immune cells. A total of 108 patients who underwent curative resection of colorectal cancer liver metastases in our department between May 1996 and January 2017 were enrolled in the present study. Peripheral blood samples were obtained within two weeks before surgery. TIL infiltration was evaluated by immunohistochemical staining of surgically resected specimens of liver metastases using anti-CD8/CD3 antibodies. The mean number of TILs in five different fields was calculated, and patients were classified into a high-TIL group and a low-TIL group. Furthermore, patients were divided into three groups as follows: i) A group of patients who did not receive preoperative chemotherapy; ii) a group of patients who received short-term preoperative chemotherapy for <6 months; and iii) a group of patients who received long-term preoperative chemotherapy for ≥6 months. The results demonstrated that the density of TILs in colorectal liver metastases was not correlated with the absolute peripheral lymphocyte count in all patients. Furthermore, the degree of CD8+TIL infiltration in liver metastases was significantly lower in the recurrence group compared with the recurrence-free group following hepatectomy. In all patients with colorectal liver metastases, the degree of CD8+TIL infiltration was significantly associated with the relapse-free and overall survival. In patients without preoperative chemotherapy, the degree of CD8+TIL infiltration was significantly associated with the relapse-free survival, and a high CD8+TIL presence tended to have a better effect on the overall survival than a low CD8+TIL presence. In the short-term chemotherapy group, the degree of CD8+TIL infiltration was significantly associated with the relapse-free and overall survival. In the long-term chemotherapy group, there were no significant differences between the high- and low- CD8+TIL groups in the relapse-free and overall survival. In contrast to CD8+TILs, CD3+TILs showed a poor prognostic ability. In summary, the degree of CD8+TIL infiltration in colorectal cancer liver metastases may be correlated with patient prognosis. However, in patients who received long-term chemotherapy before surgery, the degree of TIL infiltration was not necessarily associated with prognosis as the anti-tumor effects of TILs may decrease. The degree of CD8+TIL infiltration may therefore be considered as a useful prognostic factor in patients with colorectal liver metastases, but the prognostic accuracy may decrease in patients who received long-term chemotherapy.
Collapse
Affiliation(s)
- En Wang
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Masatsune Shibutani
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Hisashi Nagahara
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Tatsunari Fukuoka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Yasuhito Iseki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Yuki Okazaki
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Shinichiro Kashiwagi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka City General Hospital, Miyakojima-ku, Osaka 534-0021, Japan
| |
Collapse
|
34
|
Lubetzky ML, Salinas T, Schwartz JE, Suthanthiran M. Urinary Cell mRNA Profiles Predictive of Human Kidney Allograft Status. Clin J Am Soc Nephrol 2021; 16:1565-1577. [PMID: 33906907 PMCID: PMC8499006 DOI: 10.2215/cjn.14010820] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immune monitoring of kidney allograft recipients and personalized therapeutics may help reach the aspirational goal of "one transplant for life." The invasive kidney biopsy procedure, the diagnostic tool of choice, has become safer and the biopsy classification more refined. Nevertheless, biopsy-associated complications, interobserver variability in biopsy specimen scoring, and costs continue to be significant concerns. The dynamics of the immune repertoire make frequent assessments of allograft status necessary, but repeat biopsies of the kidney are neither practical nor safe. To address the existing challenges, we developed urinary cell mRNA profiling and investigated the diagnostic, prognostic, and predictive accuracy of absolute levels of a hypothesis-based panel of mRNAs encoding immunoregulatory proteins. Enabled by our refinements of the PCR assay and by investigating mechanistic hypotheses, our single-center studies identified urinary cell mRNAs associated with T cell-mediated rejection, antibody-mediated rejection, interstitial fibrosis and tubular atrophy, and BK virus nephropathy. In the multicenter National Institutes of Health Clinical Trials in Organ Transplantation-04, we discovered and validated a urinary cell three-gene signature of T-cell CD3 ε chain mRNA, interferon gamma inducible protein 10 (IP-10) mRNA, and 18s ribosomal RNA that is diagnostic of subclinical acute cellular rejection and acute cellular rejection and prognostic of acute cellular rejection and graft function. The trajectory of the signature score remained flat and below the diagnostic threshold for acute cellular rejection in the patients with no rejection biopsy specimens, whereas a sharp rise was observed during the weeks before the biopsy specimen that showed acute cellular rejection. Our RNA sequencing and bioinformatics identified kidney allograft biopsy specimen gene signatures of acute rejection to be enriched in urinary cells matched to acute rejection biopsy specimens. The urinary cellular landscape was more diverse and more enriched for immune cell types compared with kidney allograft biopsy specimens. Urinary cell mRNA profile-guided clinical trials are needed to evaluate their value compared with current standard of care.
Collapse
Affiliation(s)
- Michelle L. Lubetzky
- Division of Nephrology and Hypertension, Weill Cornell Department of Medicine, New York, New York,Department of Transplantation Medicine, New York–Presbyterian Hospital, New York, New York
| | - Thalia Salinas
- Division of Nephrology and Hypertension, Weill Cornell Department of Medicine, New York, New York,Department of Transplantation Medicine, New York–Presbyterian Hospital, New York, New York
| | - Joseph E. Schwartz
- Division of Nephrology and Hypertension, Weill Cornell Department of Medicine, New York, New York,Department of Transplantation Medicine, New York–Presbyterian Hospital, New York, New York,Department of Psychiatry and Behavioral Sciences, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Weill Cornell Department of Medicine, New York, New York,Department of Transplantation Medicine, New York–Presbyterian Hospital, New York, New York
| |
Collapse
|
35
|
Baysal H, De Pauw I, Zaryouh H, Peeters M, Vermorken JB, Lardon F, De Waele J, Wouters A. The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Front Immunol 2021; 12:737311. [PMID: 34557197 PMCID: PMC8453198 DOI: 10.3389/fimmu.2021.737311] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cetuximab has an established role in the treatment of patients with recurrent/metastatic colorectal cancer and head and neck squamous cell cancer (HNSCC). However, the long-term effectiveness of cetuximab has been limited by the development of acquired resistance, leading to tumor relapse. By contrast, immunotherapies can elicit long-term tumor regression, but the overall response rates are much more limited. In addition to epidermal growth factor (EGFR) inhibition, cetuximab can activate natural killer (NK) cells to induce antibody-dependent cellular cytotoxicity (ADCC). In view of the above, there is an unmet need for the majority of patients that are treated with both monotherapy cetuximab and immunotherapy. Accumulated evidence from (pre-)clinical studies suggests that targeted therapies can have synergistic antitumor effects through combination with immunotherapy. However, further optimizations, aimed towards illuminating the multifaceted interplay, are required to avoid toxicity and to achieve better therapeutic effectiveness. The current review summarizes existing (pre-)clinical evidence to provide a rationale supporting the use of combined cetuximab and immunotherapy approaches in patients with different types of cancer.
Collapse
Affiliation(s)
- Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
36
|
Zheng CY, Kim PS. Mathematical Model for Delayed Responses in Immune Checkpoint Blockades. Bull Math Biol 2021; 83:106. [PMID: 34477976 DOI: 10.1007/s11538-021-00933-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
We introduce a set of ordinary differential equations (ODEs) that qualitatively reproduce delayed responses observed in immune checkpoint blockade therapy (e.g. anti-CTLA-4 ipilimumab). This type of immunotherapy has been at the forefront of novel and promising cancer treatments over the past decade and was recognised by the 2018 Nobel Prize in Medicine. Our model describes the competition between effector T cells and non-effector T cells in a tumour. By calibrating a small subset of parameters that control immune checkpoint expression along with the patient's immune-system cancer readiness, our model is able to simulate either a complete absence of patient response to treatment, a quick anti-tumour T cell response (within days) or a delayed response (within months). Notably, the parameter space that generates a delayed response is thin and must be carefully calibrated, reflecting the observation that a small subset of patients experience such reactions to checkpoint blockade therapies. Finally, simulations predict that the anti-tumour T cell storm that breaks the delay is very short-lived compared to the length of time the cancer is able to stay suppressed. This suggests the tumour may subsist off an environment hostile to effector T cells; however, these cells are-at rare times-able to break through the tumour immunosuppressive defences to neutralise the tumour for a prolonged period. Our simulations aim to qualitatively describe the delayed response phenomenon without making precise fits to particular datasets, which are limited. It is our hope that our foundational model will stimulate further interest within the immunology modelling field.
Collapse
Affiliation(s)
- Collin Y Zheng
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Peter S Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia.
| |
Collapse
|
37
|
Tuscano JM, Poh C, Kaesberg P, Luxardi G, Merleev A, Marusina A, Brunson A, Rosenberg A, Jonas B, Maverakis E. Long-term Follow-up and Correlative Analysis of Two Phase II Trials of Rituximab and Lenalidomide Followed by Continuous Lenalidomide in Untreated and Relapsed/Refractory Indolent Lymphoma. Clin Cancer Res 2021; 27:4726-4736. [PMID: 34088724 PMCID: PMC9262142 DOI: 10.1158/1078-0432.ccr-20-4622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023]
Abstract
PURPOSE Rituximab and lenalidomide are effective for previously untreated and relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). However, long-term survival and predictive biomarkers are not well described. PATIENTS AND METHODS We conducted two phase II open-label trials involving 60 patients with previously untreated and R/R advanced-stage iNHL. Patients received lenalidomide and rituximab induction followed by continuous lenalidomide until disease progression or unacceptable toxicity. The primary endpoint was overall response rate (ORR). Correlative studies included plasma cytokine monitoring, flow cytometry of peripheral blood mononuclear cells (PBMC; days 0, 15, 30, and 60), and RNA sequencing (RNA-seq) of pretreatment tumor biopsies. RESULTS At a median follow-up of 63 months for previously untreated and 100 months for R/R, ORR was 82% for both. The 11 R/R patients who achieved complete remission remained in continuous remission for 16 to 141 months, thereafter. Median overall survival (OS) was not reached in the previously untreated and was 140 months (95% confidence interval, 53.4-140) in the R/R group. A mixed-effects linear regression model identified significant associations between Granzyme B+ (GranB+) CD8+ T cells and long-term complete response (LTCR; P = 5.3e-4). Furthermore, prior to start of therapy, treatment response could be predicted by B-cell and GranB+ CD8+ T-cell levels (% total lymphocytes). CONCLUSIONS Rituximab plus lenalidomide followed by continuous lenalidomide is effective with manageable toxicity in patients with previously untreated and R/R iNHL. This regimen produces durable remissions, even in heavily pretreated patients, with some lasting greater than 10 years. GranB+ CD8+ T cells, B cells, and plasma IFNγ allowed prediction of LTCR but need validation in larger trials.
Collapse
Affiliation(s)
- Joseph M. Tuscano
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA,Veterans Administration Northern California Healthcare System, Sacramento, CA, USA
| | - Christina Poh
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA,University of Washington, Division of Medical Oncology, Seattle, WA USA
| | - Paul Kaesberg
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Guillaume Luxardi
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Alexander Merleev
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Alina Marusina
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| | - Ann Brunson
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Aaron Rosenberg
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Brian Jonas
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Emanual Maverakis
- University of California, Davis, Department of Dermatology, Sacramento, CA USA
| |
Collapse
|
38
|
Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021; 175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.
Collapse
|
39
|
Wang WJ, Wang J, Ouyang C, Chen C, Xu XF, Ye XQ. Overview of serpin B9 and its roles in cancer (Review). Oncol Rep 2021; 46:190. [PMID: 34278491 DOI: 10.3892/or.2021.8141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitor B9 (serpin B9) is a member of the serine protease inhibitor superfamily, which is widely found in animals, plants and microorganisms. Serpin B9 has been reported to protect cells from the immune‑killing effect of granzyme B (GrB) released by lymphocytes. In recent years, an increasing number of studies have indicated that serpin B9 is involved in tumour apoptosis, immune evasion, tumorigenesis, progression, metastasis, drug resistance and even in maintaining the stemness of cancer stem cells (CSCs). Moreover, according to clinical studies, serpin B9 has been demonstrated to be significantly associated with the development of precancerous lesions, a poor prognosis and ineffective therapies, suggesting that serpin B9 may be a potential target for cancer treatment and an indicator of cancer diagnosis; thus, it has begun to attract increased attention from scholars. The present review concisely described the structure and biological functions of the serpin superfamily and serpin B9. In addition, related research on serpins in cancer is discussed in order to provide a comprehensive understanding of the role of serpin B9 in cancer, as well as its clinical significance for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Wang
- Department of Respiratory Diseases, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Chao Ouyang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Feng Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
40
|
van de Donk NWCJ, Themeli M, Usmani SZ. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma. Blood Cancer Discov 2021; 2:302-318. [PMID: 34386775 PMCID: PMC8357299 DOI: 10.1158/2643-3230.bcd-20-0227] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 03/28/2021] [Indexed: 01/17/2023] Open
Abstract
BCMA-specific CAR T-cells have substantial therapeutic potential in multiple myeloma (MM), but most patients eventually relapse. Determinants of response and mechanisms of resistance are most likely multifactorial and include MM-related factors, premanufacturing T-cell characteristics, CAR T-cell-related features, and several components of the immunosuppressive microenvironment. Efforts to improve the potency and safety of CAR T-cell therapy include optimizing CAR design, combinatorial approaches to enhance persistence and activity, treatment of less heavily pretreated patients, and dual-antigen targeting to prevent antigen escape. We expect that these rationally designed strategies will contribute to further improvement in the clinical outcome of MM patients.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Maria Themeli
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Saad Z Usmani
- Levine Cancer Institute, Carolinas Healthcare System, Charlotte, North Carolina
| |
Collapse
|
41
|
Lee J, Kim J, Sin JI. B16 melanomas evade antitumor immunity by the loss of epitope presentation and the acquisition of tumor resistance to granzyme B. Cell Immunol 2021; 367:104394. [PMID: 34198057 DOI: 10.1016/j.cellimm.2021.104394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 12/25/2022]
Abstract
Melanomas exhibit the highest rate of heterogeneity among cancer cell types. In this study, we tested the two types of B16 melanoma cells (B16-S0-1 and B16-S1-1) showing resistance to antitumor immunity. These cells expressed Trp2 protein. Contrary to B16 and B16-S0-1 cells, B16-S1-1 cells failed to stimulate IFN-γ responses in Trp2-specific CD8+ T cells, suggesting that B16-S1-1 cells may have lost the ability to present antigen to Ag-specific CTLs in the context of MHC class I molecules. However, B16-S0-1 cells exhibited active Stat3 and decreased Bcl-2 expression, which were found to be not associated with immune escape. B16-S0-1 cells were more resistant to granzyme B-mediated caspase activation and apoptosis than B16 cells. Thus, these data show that B16 cells escape antitumor immune responses through the loss of epitope presentation to CTLs and the acquisition of tumor cell resistance to granzyme B-mediated caspase activation.
Collapse
Affiliation(s)
- Jaeyeon Lee
- Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, South Korea; Interdisciplinary Graduate Program in BIT Medical Convergence, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, South Korea
| | - Jiyoon Kim
- Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, South Korea
| | - Jeong-Im Sin
- Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, South Korea; Interdisciplinary Graduate Program in BIT Medical Convergence, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, South Korea.
| |
Collapse
|
42
|
Khazen R, Cazaux M, Lemaître F, Corre B, Garcia Z, Bousso P. Functional heterogeneity of cytotoxic T cells and tumor resistance to cytotoxic hits limit anti-tumor activity in vivo. EMBO J 2021; 40:e106658. [PMID: 33855732 PMCID: PMC8167356 DOI: 10.15252/embj.2020106658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 01/17/2023] Open
Abstract
Cytotoxic T cells (CTLs) can eliminate tumor cells through the delivery of lethal hits, but the actual efficiency of this process in the tumor microenvironment is unclear. Here, we visualized the capacity of single CTLs to attack tumor cells in vitro and in vivo using genetically encoded reporters that monitor cell damage and apoptosis. Using two distinct malignant B-cell lines, we found that the majority of cytotoxic hits delivered by CTLs in vitro were sublethal despite proper immunological synapse formation, and associated with reversible calcium elevation and membrane damage in the targets. Through intravital imaging in the bone marrow, we established that the majority of CTL interactions with lymphoma B cells were either unproductive or sublethal. Functional heterogeneity of CTLs contributed to diverse outcomes during CTL-tumor contacts in vivo. In the therapeutic settings of anti-CD19 CAR T cells, the majority of CAR T cell-tumor interactions were also not associated with lethal hit delivery. Thus, differences in CTL lytic potential together with tumor cell resistance to cytotoxic hits represent two important bottlenecks for anti-tumor responses in vivo.
Collapse
Affiliation(s)
- Roxana Khazen
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| | - Marine Cazaux
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
- Université de ParisParisFrance
| | - Fabrice Lemaître
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| | - Beatrice Corre
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| | - Zacarias Garcia
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| | - Philippe Bousso
- Dynamics of Immune Responses UnitInstitut Pasteur, Equipe Labellisée Ligue Contre le CancerINSERM U1223ParisFrance
| |
Collapse
|
43
|
Direct Tumor Killing and Immunotherapy through Anti-SerpinB9 Therapy. Cell 2021; 183:1219-1233.e18. [PMID: 33242418 DOI: 10.1016/j.cell.2020.10.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/03/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.
Collapse
|
44
|
R S J. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol 2021; 11:649815. [PMID: 33996630 PMCID: PMC8120286 DOI: 10.3389/fcimb.2021.649815] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, human papilloma virus (HPV) infection is a common sexually transmitted disease. However, most of the HPV infections eventually resolve aided by the body’s efficient cell-mediated immune responses. In the vast majority of the small group of patients who develop overt disease too, it is the immune response that culminates in regression of lesions. It is therefore a rarity that persistent infection by high-risk genotypes of HPV compounded by other risk factors progresses through precancer (various grades of cervical intraepithelial neoplasia—CIN) to cervical cancer (CxCa). Hence, although CxCa is a rare culmination of HPV infection, the latter is nevertheless causally linked to >90% of cancer. The three ‘Es’ of cancer immunoediting viz. elimination, equilibrium, and escape come into vogue during the gradual evolution of CIN 1 to CxCa. Both cell-intrinsic and extrinsic mechanisms operate to eliminate virally infected cells: cell-extrinsic players are anti-tumor/antiviral effectors like Th1 subset of CD4+ T cells, CD8+ cytotoxic T cells, Natural Killer cells, etc. and pro-tumorigenic/immunosuppressive cells like regulatory T cells (Tregs), Myeloid-Derived Suppressor Cells (MDSCs), type 2 macrophages, etc. And accordingly, when immunosuppressive cells overpower the effectors e.g., in high-grade lesions like CIN 2 or 3, the scale is tilted towards immune escape and the disease progresses to cancer. Estradiol has long been considered as a co-factor in cervical carcinogenesis. In addition to the gonads, the Peyer’s patches in the gut synthesize estradiol. Over and above local production of the hormone in the tissues, estradiol metabolism by the gut microbiome: estrobolome versus tryptophan non-metabolizing microbiome, regulates free estradiol levels in the intestine and extraintestinal mucosal sites. Elevated tissue levels of the hormone serve more than one purpose: besides a direct growth-promoting action on cervical epithelial cells, estradiol acting genomically via Estrogen Receptor-α also boosts the function of the stromal and infiltrating immunosuppressive cells viz. Tregs, MDSCs, and carcinoma-associated fibroblasts. Hence as a corollary, therapeutic repurposing of Selective Estrogen Receptor Disruptors or aromatase inhibitors could be useful for modulating immune function in cervical precancer/cancer. The immunomodulatory role of estradiol in HPV-mediated cervical lesions is reviewed.
Collapse
Affiliation(s)
- Jayshree R S
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
45
|
Toor SM, Sasidharan Nair V, Saleh R, Taha RZ, Murshed K, Al-Dhaheri M, Khawar M, Ahmed AA, Kurer MA, Abu Nada M, Elkord E. Transcriptome of Tumor-Infiltrating T Cells in Colorectal Cancer Patients Uncovered a Unique Gene Signature in CD4 + T Cells Associated with Poor Disease-Specific Survival. Vaccines (Basel) 2021; 9:vaccines9040334. [PMID: 33916009 PMCID: PMC8065799 DOI: 10.3390/vaccines9040334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is influenced by infiltration of immune cell populations in the tumor microenvironment. While elevated levels of cytotoxic T cells are associated with improved prognosis, limited studies have reported associations between CD4+ T cells and disease outcomes. We recently performed transcriptomic profiling and comparative analyses of sorted CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) from bulk tumors of CRC patients with varying disease stages. In this study, we compared the transcriptomes of CD4+ with CD8+ TILs. Functional annotation pathway analyses revealed the downregulation of inflammatory response-related genes, while T cell activation and angiogenesis-related genes were upregulated in CD4+ TILs. The top 200 deregulated genes in CD4+ TILs were aligned with the cancer genome atlas (TCGA) CRC dataset to identify a unique gene signature associated with poor prognosis. Moreover, 69 upregulated and 20 downregulated genes showed similar trends of up/downregulation in the TCGA dataset and were used to calculate "poor prognosis score" (ppScore), which was significantly associated with disease-specific survival. High ppScore patients showed lower expression of Treg-, Th1-, and Th17-related genes, and higher expression of Th2-related genes. Our data highlight the significance of T cells within the TME and identify a unique candidate prognostic gene signature for CD4+ TILs in CRC patients.
Collapse
Affiliation(s)
- Salman M. Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar; (S.M.T.); (V.S.N.); (R.S.); (R.Z.T.)
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar; (S.M.T.); (V.S.N.); (R.S.); (R.Z.T.)
| | - Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar; (S.M.T.); (V.S.N.); (R.S.); (R.Z.T.)
| | - Rowaida Z. Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110 Doha, Qatar; (S.M.T.); (V.S.N.); (R.S.); (R.Z.T.)
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar;
| | - Mahmood Al-Dhaheri
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mahwish Khawar
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Ayman A. Ahmed
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mohamed A. Kurer
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mohamed Abu Nada
- Department of Surgery, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar; (M.A.-D.); (M.K.); (A.A.A.); (M.A.K.); (M.A.N.)
| | - Eyad Elkord
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: ; Tel.: +44-161-295-5736
| |
Collapse
|
46
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
47
|
Desai R, Coxon AT, Dunn GP. Therapeutic applications of the cancer immunoediting hypothesis. Semin Cancer Biol 2021; 78:63-77. [PMID: 33711414 DOI: 10.1016/j.semcancer.2021.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Since the late 19th century, the immune system has increasingly garnered interest as a novel avenue for cancer therapy, particularly given scientific breakthroughs in recent decades delineating the fundamental role of the immune system in tumorigenesis. The immunoediting hypothesis has articulated this role, describing three phases of the tumor-immune system interaction: Elimination, Equilibrium, and Escape wherein tumors progress from active immunologic surveillance and destruction through dynamic immunologic stasis to unfettered growth. The primary goals of immunotherapy are to restrict and revert progression through these phases, thereby improving the immune system's ability to control tumor growth. In this review, we detail the development and foundation of the cancer immunoediting hypothesis and apply this hypothesis to the dynamic immunotherapy field that includes checkpoint blockade, vaccine therapy, and adoptive cell transfer.
Collapse
Affiliation(s)
- Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew T Coxon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
48
|
Chen Y, Quan L, Jia C, Guo Y, Wang X, Zhang Y, Jin Y, Liu A. Proteomics-Based Approach Reveals the Involvement of SERPINB9 in Recurrent and Relapsed Multiple Myeloma. J Proteome Res 2021; 20:2673-2686. [PMID: 33650432 DOI: 10.1021/acs.jproteome.1c00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a common hematological malignancy with poorly understood recurrence and relapse mechanisms. Notably, bortezomib resistance leading to relapse makes MM treatment significantly challenging. To clarify the drug resistance mechanism, we employed a quantitative proteomics approach to identify differentially expressed protein candidates implicated in bortezomib-resistant recurrent and relapsed MM (RRMM). Bone marrow aspirates from five patients newly diagnosed with MM (NDMM) were compared with those from five patients diagnosed with bortezomib-resistant RRMM using tandem mass tag-mass spectrometry (TMT-MS). Subcellular localization and functional classification of the differentially expressed proteins were determined by gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and hierarchical clustering analyses. The top candidates identified were validated with parallel reaction monitoring (PRM) analysis using tissue samples from 11 NDMM and 8 RRMM patients, followed by comparison with the NCBI Gene Expression Omnibus (GEO) dataset of 10 MM patients and 10 healthy controls (accession no.: GSE80608). Thirty-four differentially expressed proteins in RRMM, including proteinase inhibitor 9 (SERPINB9), were identified by TMT-MS. Subsequent functional enrichment analyses of the identified protein candidates indicated their involvement in regulating cellular metabolism, apoptosis, programmed cell death, lymphocyte-mediated immunity, and defense response pathways in RRMM. The top protein candidate SERPINB9 was confirmed by PRM analysis and western blotting as well as by comparison with an NCBI GEO dataset. We elucidated the proteome landscape of bortezomib-resistant RRMM and identified SERPINB9 as a promising novel therapeutic target. Our results provide a resource for future studies on the mechanism of RRMM.
Collapse
Affiliation(s)
- Yao Chen
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Lina Quan
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Chuiming Jia
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yiwei Guo
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Xinya Wang
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yu Zhang
- Immunology Department, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Aichun Liu
- Hematology Department, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
49
|
Marcucci F, Rumio C. The tumor-promoting effects of the adaptive immune system: a cause of hyperprogressive disease in cancer? Cell Mol Life Sci 2021; 78:853-865. [PMID: 32940721 PMCID: PMC11072297 DOI: 10.1007/s00018-020-03606-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Adaptive antitumor immune responses, either cellular or humoral, aim at eliminating tumor cells expressing the cognate antigens. There are some instances, however, where these same immune responses have tumor-promoting effects. These effects can lead to the expansion of antigen-negative tumor cells, tumor cell proliferation and tumor growth, metastatic dissemination, resistance to antitumor therapy and apoptotic stimuli, acquisition of tumor-initiating potential and activation of various forms of survival mechanisms. We describe the basic mechanisms that underlie tumor-promoting adaptive immune responses and try to identify the variables that induce the switching of a tumor-inhibitory, cellular or humoral immune response, into a tumor-promoting one. We suggest that tumor-promoting adaptive immune responses may be at the origin of at least a fraction of hyperprogressive diseases (HPD) that are observed in cancer patients during therapy with immune checkpoint inhibitors (ICI) and, less frequently, with single-agent chemotherapy. We also propose the use of non-invasive biomarkers allowing to predict which patients may undergo HPD during ICI and other forms of antitumor therapy. Eventually, we suggest possibilities of therapeutic intervention allowing to inhibit tumor-promoting adaptive immune responses.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, Milan, Italy.
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, Milan, Italy
| |
Collapse
|
50
|
Chitadze G, Laqua A, Lettau M, Baldus CD, Brüggemann M. Bispecific antibodies in acute lymphoblastic leukemia therapy. Expert Rev Hematol 2020; 13:1211-1233. [PMID: 33000968 DOI: 10.1080/17474086.2020.1831380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Blinatumomab, first in a class of bispecific T-cell engagers, revolutionized treatment paradigm of B-cell precursor relapsed/refractory or minimal residual disease positive acute lymphoblastic leukemia (ALL) in adults and children, inducing deep remissions in a proportion of patients. However, significant numbers of patients do not respond or eventually relapse. Strategies for improvement of treatment outcomes are required. AREAS COVERED This review discusses the main structural and functional features of blinatumomab, and its place in the treatment of ALL. Furthermore, prospects to increase the efficacy of blinatumomab are addressed. The developments in the field of bispecific antibodies and their possible implications for treatment of ALL are reviewed. EXPERT OPINION Better understanding the mechanisms of response and resistance to blinatumomab might help us to identify the group of patients benefiting most from treatment and to spare potentially toxic subsequent treatment strategies. Data emerging from ongoing clinical trials might change the treatment landscape of ALL and beyond. Early use of blinatumomab in frontline protocols with more advantageous treatment sequences and in combination with other targeted therapies might reduce the failure rates. Exponentially increasing number of novel treatment options and their possible combinations might complicate treatment decision-making without data from randomized trials.
Collapse
Affiliation(s)
- Guranda Chitadze
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| | - Anna Laqua
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| | - Marcus Lettau
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany.,Institute of Immunology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| | - Claudia D Baldus
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| | - Monika Brüggemann
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| |
Collapse
|