1
|
Ito K, Islam J, Sakurai K, Koyama S, Matsuo A, Okano K, Hirakawa R, Furukawa M, Nochi T. Breast milk stabilizes bacterial communities in the large intestine even after weaning. Biochem Biophys Res Commun 2025; 756:151585. [PMID: 40068432 DOI: 10.1016/j.bbrc.2025.151585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The development and maintenance of a balanced microbiota is crucial for human health. Milk contains immune factors that not only protect offspring from infectious diseases but also play an important role in promoting the development and maintenance of the microbiota. However, the persisting effects of milk-derived immune factors on the maintenance of the microbiota after weaning have not been carefully examined. In this study, a cross-fostering model was employed using immunocompetent (IC) and immunodeficient (ID) mice in which one-half of the pups born from two dams were replaced. As a result, breast milk from the IC dam (IC milk) affected the development of the microbiota during lactation and maintained it even after weaning in the large intestine of the ID pups. The large intestinal microbiota of ID pups raised on IC milk remained similar to that of normal IC pups. Under normal conditions, the genus Mucispirillum was closely associated with other bacteria, forming a diverse bacterial community in the large intestine. In the small intestine, there were no differences in the microbiota before weaning, regardless of whether IC or ID milk was consumed. By contrast, significant differences were observed in the small intestinal microbiota between IC and ID mice after weaning; however, this was dependent on the immune-related characteristics of offspring (rather than milk-derived immune factors). These results indicate that breast milk plays an important role in the large (not small) intestine of offspring to create and maintain a diverse microbiota with a balanced bacterial network even after weaning.
Collapse
Affiliation(s)
- Kaori Ito
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Jahidul Islam
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Kota Sakurai
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Saeka Koyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Graduate Program in Food Science, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | | | - Kunihiro Okano
- GENODAS Co., Ltd. Miyagi, 980-8572, Japan; Department of Biological Environment, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Ryota Hirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Graduate Program in Food Science, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Animal Bioscience, University of Guelph, Ontario, N1G 2W1, Canada; Center for Professional Development, Institute for Excellence in Higher Education, Tohoku University, Miyagi, 980-8576, Japan.
| |
Collapse
|
2
|
Yang Z, Lin Z, You Y, Zhang M, Gao N, Wang X, Peng J, Wei H. Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412071. [PMID: 39737849 PMCID: PMC11905087 DOI: 10.1002/advs.202412071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/18/2024] [Indexed: 01/01/2025]
Abstract
This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels. Furthermore, reducing oxygen levels in the intestine increased the abundance of Limosilactobacillus reuteri, a bacterium encoding BSH, and promoted intestinal type 3 immunity. However, inhibition of BSH blocked the L. reuteri-induced development of intestinal type 3 immunity. Mechanistically, HCA promoted the development of gamma-delta T cells and type 3 innate lymphoid cells by stabilizing the mRNA expression of RAR-related orphan receptor C via the farnesoid X receptor-WT1-associated protein-N6-methyl-adenosine axis. These results reveal that gut microbiota-derived HCA plays a crucial role in promoting the development of intestinal type 3 immunity in neonates. This discovery introduces potential therapeutic avenues for strengthening intestinal immunity in early life or treating bacterial infections by targeting microbial metabolites.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Zhiyuan Lin
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Yaojie You
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Mei Zhang
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Ning Gao
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xinru Wang
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jian Peng
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- The Cooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- The Cooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| |
Collapse
|
3
|
Zhao C, Bao L, Shan R, Zhao Y, Wu K, Shang S, Li H, Liu Y, Chen K, Zhang N, Ye C, Hu X, Fu Y. Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411985. [PMID: 39808540 PMCID: PMC11884527 DOI: 10.1002/advs.202411985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands. MGI-induced changes in the gut microbiota of suckling pups lasted into adulthood, resulting in the exacerbation of acute liver failure (ALF) caused by acetaminophen (APAP) in offspring. Specifically, MGI reduced the abundance of Lactobacillus reuteri (L. reuteri) and its metabolite indole-3-acetic acid (IAA) level in adult offspring. L. reuteri and IAA alleviated ALF in mice by promoting intestinal IL-22 production. Mechanistically, IL-22 limits APAP-induced excessive oxidative stress and ferroptosis by activating STAT3. The intestinal abundances of L. reuteri and IAA are inversely associated with the progression of patients with ALF. Overall, the study reveals the role of MGI in mother-to-infant microbial transmission and disease development in offspring, highlighting potential strategies for intervention in ALF based on the IAA-IL-22-STAT3 axis.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Lijuan Bao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Ruping Shan
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yihong Zhao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Keyi Wu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Shan Shang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Haiqi Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Yi Liu
- Department of Orthopedic CenterThe First Hospital of Jilin UniversityChangchun130012China
| | - Ke Chen
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Cong Ye
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| |
Collapse
|
4
|
Kennedy EA, Weagley JS, Kim AH, Antia A, DeVeaux AL, Baldridge MT. Bacterial community assembly of specific pathogen-free neonatal mice. MICROBIOME 2025; 13:46. [PMID: 39920864 PMCID: PMC11804086 DOI: 10.1186/s40168-025-02043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Neonatal mice are frequently used to model diseases that affect human infants. Microbial community composition has been shown to impact disease progression in these models. Despite this, the maturation of the early-life murine microbiome has not been well-characterized. We address this gap by characterizing the assembly of the bacterial microbiota of C57BL/6 and BALB/c litters from birth to adulthood across multiple independent litters. RESULTS The fecal microbiome of young pups is dominated by only a few pioneering bacterial taxa. These taxa are present at low levels in the microbiota of multiple maternal body sites, precluding a clear identification of maternal source. The pup microbiota begins diversifying after 14 days, coinciding with the beginning of coprophagy and the consumption of solid foods. Pup stool bacterial community composition and diversity are not significantly different from dams from day 21 onwards. Short-read shotgun sequencing-based metagenomic profiling of young pups enabled the assembly of metagenome-assembled genomes for strain-level analysis of these pioneer Ligilactobacillus, Streptococcus, and Proteus species. CONCLUSIONS Assembly of the murine microbiome occurs over the first weeks of postnatal life and is largely complete by day 21. This detailed view of bacterial community development across multiple commonly employed mouse strains informs experimental design, allowing researchers to better target interventions before, during, or after the maturation of the bacterial microbiota. The source of pioneer bacterial strains appears heterogeneous, as the most abundant taxa identified in young pup stool were found at low levels across multiple maternal body sites, suggesting diverse routes for seeding of the murine microbiome. Video Abstract.
Collapse
Affiliation(s)
- Elizabeth A Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - James S Weagley
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew H Kim
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna L DeVeaux
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Kennedy EA, Weagley JS, Kim AH, Antia A, DeVeaux AL, Baldridge MT. Microbiota assembly of specific pathogen-free neonatal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633035. [PMID: 39868118 PMCID: PMC11761686 DOI: 10.1101/2025.01.14.633035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Neonatal mice are frequently used to model diseases that affect human infants. Microbial community composition has been shown to impact disease progression in these models. Despite this, the maturation of the early-life murine microbiome has not been well-characterized. We address this gap by characterizing the assembly of the bacterial microbiota of C57BL/6 and BALB/c litters from birth to adulthood across multiple independent litters. Results The fecal microbiome of young pups is simple, dominated by only a few pioneering bacterial taxa. These taxa are present at low levels in the microbiota of multiple maternal body sites, precluding a clear identification of maternal source. The pup microbiota begins diversifying after fourteen days, coinciding with the beginning of coprophagy and the consumption of solid foods. Pup stool bacterial community composition and diversity are not significantly different from dams from day 21 onwards. Short-read shotgun sequencing-based metagenomic profiling of young pups enabled the assembly of metagenome-assembled genomes for strain-level analysis of these pioneer Ligilactobacillus, Streptococcus, and Proteus species. Conclusions Assembly of the murine microbiome occurs over the first weeks of postnatal life and is largely complete by day 21. This detailed view of bacterial community development across multiple commonly employed mouse strains informs experimental design, allowing researchers to better target interventions before, during, or after the maturation of the bacterial microbiota. The source of pioneer bacterial strains appears heterogeneous, as the most abundant taxa identified in young pup stool were found at low levels across multiple maternal body sites, suggesting diverse routes for seeding of the murine microbiome.
Collapse
Affiliation(s)
- Elizabeth A. Kennedy
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James S. Weagley
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew H. Kim
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anna L. DeVeaux
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Liu T, Yuan Y, Wei J, Chen J, Zhang F, Chen J, Zhang J. Association of breast milk microbiota and metabolites with neonatal jaundice. Front Pediatr 2025; 12:1500069. [PMID: 39834492 PMCID: PMC11743730 DOI: 10.3389/fped.2024.1500069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Background Breast milk is the primary source of nutrition during early life, and existing research indicates that the development of jaundice in breastfed newborns may be linked to specific nutrients or bioactive substances present in breast milk. However, the association between the microbiota and small-molecule metabolites in breast milk and the development of neonatal jaundice remains unproven. This study aimed to investigate the development of jaundice in breastfed neonates in relation to breast milk microbiota and metabolites. Methods Based on the conditions of exclusive breastfeeding, we selected healthy newborns without significant jaundice and their mothers on day 4 (96-120 h after birth) as the healthy control group, and jaundiced newborns and their mothers as the jaundice group. Breast milk samples were collected from mothers in both groups on postnatal day 4 and analyzed for microbiota and small-molecule metabolites using 16S rRNA gene sequencing and an liquid chromatography-tandem mass spectrometry techniques. Results A total of 104 mother-child pairs were included in the study, of which 51 pairs were in the healthy control group and the other 53 pairs were in the jaundice group. Our results demonstrated that there was no significant difference between the species composition and diversity of the breast milk flora in the healthy control and jaundice groups. At the genus level, the abundance of Lactobacillus, Ackermannia, and Bifidobacterium was significantly higher in the breast milk of the healthy control group than in the jaundice group. Metabolomics analysis revealed a total of 27 significantly different metabolites between the two groups. Notably, breast milk from the healthy control group had elevated levels of 24 metabolites, predominantly lipids family, including sphingolipids, phospholipids, and fatty acid derivatives. Conclusion This study suggests that there is a link between the development of neonatal jaundice and breast milk microbiota and metabolites. Breast milk from mothers of healthy newborns contains higher levels of beneficial bacteria and lipid family compared to mothers of newborns with jaundice. This study offers new insights into the relationship between breastfeeding and neonatal jaundice.
Collapse
Affiliation(s)
- TianYu Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Pediatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhan Yuan
- Department of Pediatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinying Wei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Pediatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Chen
- Department of Pediatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Pediatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Chen
- Department of Pediatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinping Zhang
- Department of Pediatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Díez-Sánchez A, Lindholm HT, Vornewald PM, Ostrop J, Yao R, Single AB, Marstad A, Parmar N, Shaw TN, Martín-Alonso M, Oudhoff MJ. LSD1 drives intestinal epithelial maturation and controls small intestinal immune cell composition independent of microbiota in a murine model. Nat Commun 2024; 15:3412. [PMID: 38649356 PMCID: PMC11035651 DOI: 10.1038/s41467-024-47815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Postnatal development of the gastrointestinal tract involves the establishment of the commensal microbiota, the acquisition of immune tolerance via a balanced immune cell composition, and maturation of the intestinal epithelium. While studies have uncovered an interplay between the first two, less is known about the role of the maturing epithelium. Here we show that intestinal-epithelial intrinsic expression of lysine-specific demethylase 1A (LSD1) is necessary for the postnatal maturation of intestinal epithelium and maintenance of this developed state during adulthood. Using microbiota-depleted mice, we find plasma cells, innate lymphoid cells (ILCs), and a specific myeloid population to depend on LSD1-controlled epithelial maturation. We propose that LSD1 controls the expression of epithelial-derived chemokines, such as Cxcl16, and that this is a mode of action for this epithelial-immune cell interplay in local ILC2s but not ILC3s. Together, our findings suggest that the maturing epithelium plays a dominant role in regulating the local immune cell composition, thereby contributing to gut homeostasis.
Collapse
Affiliation(s)
- Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Håvard T Lindholm
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Pia M Vornewald
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenny Ostrop
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rouan Yao
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew B Single
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Marstad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mara Martín-Alonso
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Health Sciences, Carleton University, Ottawa, Ontario, ON, Canada.
| |
Collapse
|
9
|
Alajoleen RM, Oakland DN, Estaleen R, Shakeri A, Lu R, Appiah M, Sun S, Neumann J, Kawauchi S, Cecere TE, McMillan RP, Reilly CM, Luo XM. Tlr5 deficiency exacerbates lupus-like disease in the MRL/ lpr mouse model. Front Immunol 2024; 15:1359534. [PMID: 38352866 PMCID: PMC10862078 DOI: 10.3389/fimmu.2024.1359534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.
Collapse
Affiliation(s)
- Razan M. Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - David N. Oakland
- Graduate Program of Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Rana Estaleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Aida Shakeri
- Department of Biological Sciences, College of Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michael Appiah
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sha Sun
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Jonathan Neumann
- Transgenic Mouse Facility, University of California, Irvine, Irvine, CA, United States
| | - Shimako Kawauchi
- Transgenic Mouse Facility, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ryan P. McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christopher M. Reilly
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
10
|
Świrkosz G, Szczygieł A, Logoń K, Wrześniewska M, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Ulcerative Colitis-A Literature Review. Biomedicines 2023; 11:3144. [PMID: 38137365 PMCID: PMC10740415 DOI: 10.3390/biomedicines11123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the colon and rectum. UC's pathogenesis involves colonic epithelial cell abnormalities and mucosal barrier dysfunction, leading to recurrent mucosal inflammation. The purpose of the article is to show the complex interplay between ulcerative colitis and the microbiome. The literature search was conducted using the PubMed database. After a screening process of studies published before October 2023, a total of 136 articles were selected. It has been discovered that there is a fundamental correlation of a robust intestinal microbiota and the preservation of gastrointestinal health. Dysbiosis poses a grave risk to the host organism. It renders the host susceptible to infections and has been linked to the pathogenesis of chronic diseases, with particular relevance to conditions such as ulcerative colitis. Current therapeutic strategies for UC involve medications such as aminosalicylic acids, glucocorticoids, and immunosuppressive agents, although recent breakthroughs in monoclonal antibody therapies have significantly improved UC treatment. Furthermore, modulating the gut microbiome with specific compounds and probiotics holds potential for inflammation reduction, while fecal microbiota transplantation shows promise for alleviating UC symptoms. This review provides an overview of the gut microbiome's role in UC pathogenesis and treatment, emphasizing areas for further research.
Collapse
Affiliation(s)
- Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland;
| |
Collapse
|
11
|
Yang J, Yang H, Li Y. The triple interactions between gut microbiota, mycobiota and host immunity. Crit Rev Food Sci Nutr 2023; 63:11604-11624. [PMID: 35776086 DOI: 10.1080/10408398.2022.2094888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiome is mainly composed of microbiota and mycobiota, both of which play important roles in the development of the host immune system, metabolic regulation, and maintenance of intestinal homeostasis. With the increasing awareness of the pathogenic essence of infectious, immunodeficiency, and tumor-related diseases, the interactions between gut bacteria, fungi, and host immunity have been shown to directly influence the disease process or final therapeutic outcome, and collaborative and antagonistic relationships are commonly found between bacteria and fungi. Interventions represented by probiotics, prebiotics, engineered probiotics, fecal microbiota transplantation (FMT), and drugs can effectively modulate the triple interactions. In particular, traditional probiotics represented by Bifidobacterium and Lactobacillus and next-generation probiotics represented by Akkermansia muciniphila and Faecalibacterium prausnitzii showed a high enrichment trend in the gut of patients with a high response to inflammation remission and tumor immunotherapy, which predicts the potential medicinal value of these beneficial microbial formulations. However, there are bottlenecks in all these interventions that need to be broken. Meanwhile, further unraveling the underlying mechanisms of the "triple interactions" model can guide precise interventions and ultimately improve the efficiency of interventions on the host gut microbiome and immune modulation, thus directly or indirectly improving anti-inflammatory and tumor immunotherapy effects.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hong Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
12
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
13
|
Luan T, Muralidharan HS, Alshehri M, Mittra I, Pop M. SCRAPT: an iterative algorithm for clustering large 16S rRNA gene data sets. Nucleic Acids Res 2023; 51:e46. [PMID: 36912074 PMCID: PMC10164572 DOI: 10.1093/nar/gkad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
16S rRNA gene sequence clustering is an important tool in characterizing the diversity of microbial communities. As 16S rRNA gene data sets are growing in size, existing sequence clustering algorithms increasingly become an analytical bottleneck. Part of this bottleneck is due to the substantial computational cost expended on small clusters and singleton sequences. We propose an iterative sampling-based 16S rRNA gene sequence clustering approach that targets the largest clusters in the data set, allowing users to stop the clustering process when sufficient clusters are available for the specific analysis being targeted. We describe a probabilistic analysis of the iterative clustering process that supports the intuition that the clustering process identifies the larger clusters in the data set first. Using real data sets of 16S rRNA gene sequences, we show that the iterative algorithm, coupled with an adaptive sampling process and a mode-shifting strategy for identifying cluster representatives, substantially speeds up the clustering process while being effective at capturing the large clusters in the data set. The experiments also show that SCRAPT (Sample, Cluster, Recruit, AdaPt and iTerate) is able to produce operational taxonomic units that are less fragmented than popular tools: UCLUST, CD-HIT and DNACLUST. The algorithm is implemented in the open-source package SCRAPT. The source code used to generate the results presented in this paper is available at https://github.com/hsmurali/SCRAPT.
Collapse
Affiliation(s)
- Tu Luan
- Department of Computer Science, University of Maryland, College Park, 20742 MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Harihara Subrahmaniam Muralidharan
- Department of Computer Science, University of Maryland, College Park, 20742 MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Marwan Alshehri
- Department of Computer Science, University of Maryland, College Park, 20742 MD, USA
| | - Ipsa Mittra
- Department of Computer Science, University of Maryland, College Park, 20742 MD, USA
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, 20742 MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Cabana-Puig X, Lu R, Geng S, Michaelis JS, Oakes V, Armstrong C, Testerman JC, Liao X, Alajoleen R, Appiah M, Zhang Y, Reilly CM, Li L, Luo XM. CX 3CR1 modulates SLE-associated glomerulonephritis and cardiovascular disease in MRL/lpr mice. Inflamm Res 2023; 72:1083-1097. [PMID: 37060359 PMCID: PMC10748465 DOI: 10.1007/s00011-023-01731-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) often develop multi-organ damages including heart and kidney complications. We sought to better define the underlying mechanisms with a focus on the chemokine receptor CX3CR1. METHODS We generated Cx3cr1-deficient MRL/lpr lupus-prone mice through backcrossing. We then employed heterozygous intercross to generate MRL/lpr littermates that were either sufficient or deficient of CX3CR1. The mice were also treated with either Lactobacillus spp. or a high-fat diet (HFD) followed by assessments of the kidney and heart, respectively. RESULTS Cx3cr1-/- MRL/lpr mice exhibited a distinct phenotype of exacerbated glomerulonephritis compared to Cx3cr1+/+ littermates, which was associated with a decrease of spleen tolerogenic marginal zone macrophages and an increase of double-negative T cells. Interestingly, upon correction of the gut microbiota with Lactobacillus administration, the phenotype of exacerbated glomerulonephritis was reversed, suggesting that CX3CR1 controls glomerulonephritis in MRL/lpr mice through a gut microbiota-dependent mechanism. Upon treatment with HFD, Cx3cr1-/- MRL/lpr mice developed significantly more atherosclerotic plaques that were promoted by Ly6C+ monocytes. Activated monocytes expressed ICOS-L that interacted with ICOS-expressing follicular T-helper cells, which in turn facilitated a germinal center reaction to produce more autoantibodies. Through a positive feedback mechanism, the increased circulatory autoantibodies further promoted the activation of Ly6C+ monocytes and their display of ICOS-L. CONCLUSIONS We uncovered novel, Cx3cr1 deficiency-mediated pathogenic mechanisms contributing to SLE-associated glomerulonephritis and cardiovascular disease.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jacquelyn S Michaelis
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Vanessa Oakes
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Caitlin Armstrong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - James C Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Razan Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Michael Appiah
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Zhu J, Naughton S, Bowman N, LeRoith T, Luo X, Leeth C. Maternal antibody repertoire restriction modulates the development of lupus-like disease in BXSB offspring. Int Immunol 2023; 35:95-104. [PMID: 36190342 DOI: 10.1093/intimm/dxac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that has a strong preference for women of child-bearing age. Maternal factors play an essential role in shaping the immune system of the newborn, yet it is unknown whether maternal factors could modulate the development of SLE in the offspring. Activation-induced cytidine deaminase (AID) is an enzyme required for somatic hypermutation and class switch recombination. Given that IgG and IgA isotypes account for the vast majority of passive immunity in rodents, our previously established AID-deficient BXSB mice provide a model in which maternal antibodies that can be transferred to the offspring are greatly diminished and have restricted repertoire. In this study, we compared genotypically identical mice born to either AID-sufficient dams or AID-deficient dams and evaluated the effects of maternal antibodies in disease progression. Offspring from knockout dams developed disease at a faster rate, as shown by more severe nephritis and elevated pathogenic autoantibodies compared to their counterparts born to wild-type dams. When immune competent pups were cross fostered onto AID-deficient dams, these mice exhibited more severe disease characteristics, including exacerbated lupus nephritis, increased levels of circulating antinuclear antibodies, and more activated T cells. These results suggest that a protective antibody effect contributes to the modulation of SLE progression in postnatal period. Overall, these findings highlight the importance of maternal antibodies in programming the immune system and altering SLE development in offspring.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Animal and Poultry Sciences, Virginia Tech, 175 West Campus Drive, 3280 Litton Reaves Hall, Blacksburg, VA 24061, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Samantha Naughton
- Department of Animal and Poultry Sciences, Virginia Tech, 175 West Campus Drive, 3280 Litton Reaves Hall, Blacksburg, VA 24061, USA
| | - Nina Bowman
- Department of Animal and Poultry Sciences, Virginia Tech, 175 West Campus Drive, 3280 Litton Reaves Hall, Blacksburg, VA 24061, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xin Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Caroline Leeth
- Department of Animal and Poultry Sciences, Virginia Tech, 175 West Campus Drive, 3280 Litton Reaves Hall, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Dietary fiber and SCFAs in the regulation of mucosal immunity. J Allergy Clin Immunol 2023; 151:361-370. [PMID: 36543697 DOI: 10.1016/j.jaci.2022.11.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
Gut bacterial metabolites such as short-chain fatty acids (SCFAs) have important effects on immune cells and the gut. SCFAs derive from the fermentation of dietary fiber by gut commensal bacteria. Insufficient fiber intake thus compromises SCFA production and, as a consequence, the host's physiology (particularly immune functions). We propose that many Western diseases, including those associated with impaired mucosal responses such as food allergy and asthma, may be affected by insufficient fiber intake and reduced SCFA levels in the gut and blood. Insufficient fiber intake is 1 alternative, or contributor, on top of the "hygiene hypothesis" to the rise of Western lifestyle diseases, and the 2 ideas need to be reconciled. The mechanisms by which SCFAs influence immunity and gut homeostasis are varied; they include stimulation of G protein-coupled receptors (GPCRs), such as GPR43 or GPR41; inhibition of histone deacetylases (and hence, gene transcription changes); and induction of intracellular metabolic changes. SCFAs modulate at many different levels to alter mucosal homeostasis, including changes to gut epithelial integrity, increases in regulatory T-cell numbers and function, and decreased expression of numerous inflammatory cytokines. There is scope for preventing and/or treating diseases by using diets that alter SCFA levels.
Collapse
|
17
|
Xie A, Chen A, Chen Y, Luo Z, Jiang S, Chen D, Yu R. Lactobacillus for the treatment and prevention of atopic dermatitis: Clinical and experimental evidence. Front Cell Infect Microbiol 2023; 13:1137275. [PMID: 36875529 PMCID: PMC9978199 DOI: 10.3389/fcimb.2023.1137275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease, accompanied by itching and swelling. The main pathological mechanism of AD is related to the imbalance between Type 2 helper cells (Th2 cells) and Type 1 helper cells (Th1 cells). Currently, no safe and effective means to treat and prevent AD are available; moreover, some treatments have side effects. Probiotics, such as some strains of Lactobacillus, can address these concerns via various pathways: i) facilitating high patient compliance; ii) regulating Th1/Th2 balance, increasing IL-10 secretion, and reducing inflammatory cytokines; iii) accelerating the maturation of the immune system, maintaining intestinal homeostasis, and improving gut microbiota; and iv) improving the symptoms of AD. This review describes the treatment and prevention of AD using 13 species of Lactobacillus. AD is commonly observed in children. Therefore, the review includes a higher proportion of studies on AD in children and fewer in adolescents and adults. However, there are also some strains that do not improve the symptoms of AD and even worsen allergies in children. In addition, a subset of the genus Lactobacillus that can prevent and relieve AD has been identified in vitro. Therefore, future studies should include more in vivo studies and randomized controlled clinical trials. Given the advantages and disadvantages mentioned above, further research in this area is urgently required.
Collapse
Affiliation(s)
- Anni Xie
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuqing Chen
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| |
Collapse
|
18
|
Tian M, Li Q, Zheng T, Yang S, Chen F, Guan W, Zhang S. Maternal microbe-specific modulation of the offspring microbiome and development during pregnancy and lactation. Gut Microbes 2023; 15:2206505. [PMID: 37184203 DOI: 10.1080/19490976.2023.2206505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The maternal microbiome is essential for the healthy growth and development of offspring and has long-term effects later in life. Recent advances indicate that the maternal microbiome begins to regulate fetal health and development during pregnancy. Furthermore, the maternal microbiome continues to affect early microbial colonization via birth and breastfeeding. Compelling evidence indicates that the maternal microbiome is involved in the regulation of immune and brain development and affects the risk of related diseases. Modulating offspring development by maternal diet and probiotic intervention during pregnancy and breastfeeding could be a promising therapy in the future. In this review, we summarize and discuss the current understanding of maternal microbiota development, perinatal microbial metabolite transfer, mother-to-infant microbial transmission during/after birth and its association with immune and brain development as well as corresponding diseases.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Antibiotic Treatment during Gestation Enhances Susceptibility to Mycobacterium tuberculosis in Offspring. Microbiol Spectr 2022; 10:e0249122. [PMID: 36314979 PMCID: PMC9769670 DOI: 10.1128/spectrum.02491-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whether antibiotic treatment during gestation impacts T cell immunity to vaccination in offspring is unexplored. Dams treated with polymyxin B (PMB) during gestation (Mg) displayed altered microbial communities prior to delivery compared to control dams (Mc). Differences in microbiota were also evident in pups born to polymyxin B-treated dams (Pg) compared to control pups (Pc). When pups were immunized with Bacille Calmette-Guerin (BCG), we observed no difference in TB10.4-specific T cells between Pc and Pg 4 weeks postimmunization. Significantly fewer splenic CD4 T cells from BCG-vaccinated Pg produced interleukin-2 (IL-2) upon stimulation, suggesting a possible functional deficiency. There was no difference in purified protein derivative (PPD)-specific IgG between Pc and Pg at this time point. However, when infected with Mycobacterium tuberculosis, Pg displayed significantly higher bacterial burden in the lung than Pc. Our results show that maternal PMB treatment during gestation may not impact splenic antigen-specific T cell responses following BCG vaccination but alters susceptibility to M. tuberculosis in offspring. IMPORTANCE The composition of the pioneer microbiota that colonize the infant gut are determined by the mother. Polymyxin B-induced changes in the maternal microbiota during pregnancy impact the offspring gut microbiota but not vaccine-specific CD4 T cell response. However, when infected with Mycobacterium tuberculosis, offspring born to mothers with an altered gut microbiota are susceptible to infection compared to those born to mothers not exposed to antibiotics.
Collapse
|
20
|
Maciag SS, Bellaver FV, Bombassaro G, Haach V, Morés MAZ, Baron LF, Coldebella A, Bastos AP. On the influence of the source of porcine colostrum in the development of early immune ontogeny in piglets. Sci Rep 2022; 12:15630. [PMID: 36115917 PMCID: PMC9482628 DOI: 10.1038/s41598-022-20082-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
The effects on the ontogeny of serum cytokines and immune cells caused by feeding suckling piglets with sow/gilt colostrum and milk replacer was assessed in the present study. After farrowing, the piglets born were randomized into six groups: GG and SS (n = 10/group): piglets were kept with their dam; GS (n = 10): piglets were changed from gilts to sows; SG (n = 10): piglets were changed from sows to gilts; GMR (n = 6) and SMR (n = 8): piglets from either gilts or sows were isolated from the dams and were bottle-fed ad libitum with commercial formula milk replacer. The piglets remained in the groups during the first 24 h of life and were later returned to their respective mothers. Serum immunoglobulin concentration and lymphocyte proliferation from the blood, spleen, thymus, and mesenteric lymph node of the piglets were assessed at 24 h and at 28 days of age. Serum cytokine concentrations were measured through a cytokine multiplex assay at 24 h. Overall, piglets suckling on sows (SS and GS) had a higher concentration of serum immunoglobulin at 24 h, which was also associated with a rise in plasma cytokine concentration and greater ability of B and T cells from lymphatic organs and blood mononuclear cells to respond to mitogens. We suggest a bias towards Th1-, Th2-, and Th17-cell polarizing and cytokines during the suckling period, which may be influenced by maternal immunological factors in the colostrum, such as dam parity. All findings suggest sow parity having a possible role, which may contribute to exerting a modulating action on immune response development.
Collapse
Affiliation(s)
- Shaiana Salete Maciag
- Universidade Estadual do Centro-Oeste do Paraná - Campus CEDETEG, Guarapuava, PR, Brazil
| | | | | | - Vanessa Haach
- Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | | | | | - Ana Paula Bastos
- Universidade Estadual do Centro-Oeste do Paraná - Campus CEDETEG, Guarapuava, PR, Brazil.
- Embrapa Suínos E Aves, Concórdia, SC, Brazil.
| |
Collapse
|
21
|
Juárez-Castelán CJ, Vélez-Ixta JM, Corona-Cervantes K, Piña-Escobedo A, Cruz-Narváez Y, Hinojosa-Velasco A, Landero-Montes-de-Oca ME, Davila-Gonzalez E, González-del-Olmo E, Bastida-Gonzalez F, Zárate-Segura PB, García-Mena J. The Entero-Mammary Pathway and Perinatal Transmission of Gut Microbiota and SARS-CoV-2. Int J Mol Sci 2022; 23:10306. [PMID: 36142219 PMCID: PMC9499685 DOI: 10.3390/ijms231810306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 is a severe respiratory disease threatening pregnant women, which increases the possibility of adverse pregnancy outcomes. Several recent studies have demonstrated the ability of SARS-CoV-2 to infect the mother enterocytes, disturbing the gut microbiota diversity. The aim of this study was to characterize the entero-mammary microbiota of women in the presence of the virus during delivery. Fifty mother−neonate pairs were included in a transversal descriptive work. The presence of SARS-CoV-2 RNA was detected in nasopharyngeal, mother rectal swabs (MRS) and neonate rectal swabs (NRS) collected from the pairs, and human colostrum (HC) samples collected from mothers. The microbiota diversity was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries prepared from HC, MRS, and NRS. Data were analyzed with QIIME2 and R. Our results indicate that several bacterial taxa are highly abundant in MRS positive for SARS-CoV-2 RNA. These bacteria mostly belong to the Firmicutes phylum; for instance, the families Bifidobacteriaceae, Oscillospiraceae, and Microbacteriaceae have been previously associated with anti-inflammatory effects, which could explain the capability of women to overcome the infection. All samples, both positive and negative for SARS-CoV-2, featured a high abundance of the Firmicutes phylum. Further data analysis showed that nearly 20% of the bacterial diversity found in HC was also identified in MRS. Spearman correlation analysis highlighted that some genera of the Proteobacteria and Actinobacteria phyla were negatively correlated with MRS and NRS (p < 0.005). This study provides new insights into the gut microbiota of pregnant women and their potential association with a better outcome during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Alejandro Hinojosa-Velasco
- División de Neonatología, Hospital de Ginecología y Obstetricia, Instituto Materno Infantil del Estado de México, Toluca de Lerdo 50170, Mexico
| | | | - Eduardo Davila-Gonzalez
- Laboratorio Estatal de Salud Pública del Estado de México, ISEM, Toluca de Lerdo 50180, Mexico
| | - Eduardo González-del-Olmo
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Paola Berenice Zárate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| |
Collapse
|
22
|
Cabana-Puig X, Mu Q, Lu R, Swartwout B, Abdelhamid L, Zhu J, Prakash M, Cecere TE, Wang Z, Callaway S, Sun S, Reilly CM, Ahmed S, Luo XM. Lactobacillus spp. act in synergy to attenuate splenomegaly and lymphadenopathy in lupus-prone MRL/ lpr mice. Front Immunol 2022; 13:923754. [PMID: 35967418 PMCID: PMC9368192 DOI: 10.3389/fimmu.2022.923754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
Commensal bacteria and the immune system have a close and strong relationship that maintains a balance to control inflammation. Alterations of the microbiota, known as dysbiosis, can direct reactivity to self-antigens not only in the intestinal mucosa but also at the systemic level. Our laboratory previously reported gut dysbiosis, particularly lower abundance of bacteria in the family Lactobacillaceae, in lupus-prone MRL/lpr mice, a model of systemic autoimmunity. Restoring the microbiota with a mix of 5 different Lactobacillus species (spp.), L. reuteri, L. oris, L. johnsonii, L. gasseri and L. rhamnosus, attenuated lupus-liked clinical signs, including splenomegaly and lymphadenopathy. However, our understanding of the mechanism was limited. In this study, we first investigated the effects of individual species. Surprisingly, none of the species individually recapitulated the benefits of the mix. Instead, Lactobacillus spp. acted synergistically to attenuate splenomegaly and renal lymphadenopathy through secreted factors and a CX3CR1-dependent mechanism. Interestingly, oral administration of MRS broth exerted the same benefits likely through increasing the relative abundance of endogenous Lactobacillus spp. Mechanistically, we found increased percentages of FOXP3-negative type 1 regulatory T cells with administration of the mix in both spleen and mesenteric lymph nodes. In addition, oral gavage of Lactobacillus spp. decreased the percentage of central memory T cells while increasing that of effector memory T cells in the lymphoid organs. Furthermore, a decreased percentage of double negative T cells was observed in the spleen with the mix. These results suggest that Lactobacillus spp. might act on T cells to attenuate splenomegaly and lymphadenopathy. Together, this study advances our understanding of how Lactobacillus spp. attenuate lupus in MRL/lpr mice. The synergistic action of these bacteria suggests that multiple probiotic bacteria in combination may dampen systemic autoimmunity and benefit lupus patients.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Brianna Swartwout
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jing Zhu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Meeta Prakash
- Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sabrina Callaway
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sha Sun
- Department of Development and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
23
|
León ED, Francino MP. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front Microbiol 2022; 13:880484. [PMID: 35722300 PMCID: PMC9203039 DOI: 10.3389/fmicb.2022.880484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Collapse
Affiliation(s)
- E Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - M Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
24
|
Cabana-Puig X, Bond JM, Wang Z, Dai R, Lu R, Lin A, Oakes V, Rizzo A, Swartwout B, Abdelhamid L, Mao J, Prakash M, Sangmeister C, Cheung N, Cowan C, Reilly CM, Sun S, Ahmed SA, Luo XM. Phenotypic Drift in Lupus-Prone MRL/lpr Mice: Potential Roles of MicroRNAs and Gut Microbiota. Immunohorizons 2022; 6:36-46. [PMID: 35039434 PMCID: PMC10984647 DOI: 10.4049/immunohorizons.2100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
MRL/lpr mice have been extensively used as a murine model of lupus. Disease progression in MRL/lpr mice can differ among animal facilities, suggesting a role for environmental factors. We noted a phenotypic drift of our in-house colony, which was the progeny of mice obtained from The Jackson Laboratory (JAX; stocking number 000485), that involved attenuated glomerulonephritis, increased splenomegaly, and reduced lymphadenopathy. To validate our in-house mice as a model of lupus, we compared these mice with those newly obtained from JAX, which were confirmed to be genetically identical to our in-house mice. Surprisingly, the new JAX mice exhibited a similar phenotypic drift, most notably the attenuation of glomerulonephritis. Interestingly, our in-house colony differed from JAX mice in body weight and kidney size (both sexes), as well as in splenic size, germinal center formation, and level of anti-dsDNA auto-IgG in the circulation (male only). In addition, we noted differential expression of microRNA (miR)-21 and miR-183 that might explain the splenic differences in males. Furthermore, the composition of gut microbiota was different between in-house and new JAX mice at early time points, which might explain some of the renal differences (e.g., kidney size). However, we could not identify the reason for attenuated glomerulonephritis, a shared phenotypic drift between the two colonies. It is likely that this was due to certain changes of environmental factors present in both JAX and our facilities. Taken together, these results suggest a significant phenotypic drift in MRL/lpr mice in both colonies that may require strain recovery from cryopreservation.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jacob M Bond
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA
| | - Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Amy Lin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Vanessa Oakes
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Amy Rizzo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Brianna Swartwout
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jiangdi Mao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Meeta Prakash
- Carilion School of Medicine, Virginia Tech, Roanoke, VA
| | - Constanza Sangmeister
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Nathaniel Cheung
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Catharine Cowan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Sha Sun
- Department of Development and Cell Biology, University of California, Irvine, CA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA;
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA;
| |
Collapse
|
25
|
Zeinali LI, Giuliano S, Lakshminrusimha S, Underwood MA. Intestinal Dysbiosis in the Infant and the Future of Lacto-Engineering to Shape the Developing Intestinal Microbiome. Clin Ther 2021; 44:193-214.e1. [PMID: 34922744 DOI: 10.1016/j.clinthera.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to review the role of human milk in shaping the infant intestinal microbiota and the potential of human milk bioactive molecules to reverse trends of increasing intestinal dysbiosis and dysbiosis-associated diseases. METHODS This narrative review was based on recent and historic literature. FINDINGS Human milk immunoglobulins, oligosaccharides, lactoferrin, lysozyme, milk fat globule membranes, and bile salt-stimulating lipase are complex multifunctional bioactive molecules that, among other important functions, shape the composition of the infant intestinal microbiota. IMPLICATIONS The co-evolution of human milk components and human milk-consuming commensal anaerobes many thousands of years ago resulted in a stable low-diversity infant microbiota. Over the past century, the introduction of antibiotics and modern hygiene practices plus changes in the care of newborns have led to significant alterations in the intestinal microbiota, with associated increases in risk of dysbiosis-associated disease. A better understanding of mechanisms by which human milk shapes the intestinal microbiota of the infant during a vulnerable period of development of the immune system is needed to alter the current trajectory and decrease intestinal dysbiosis and associated diseases.
Collapse
Affiliation(s)
- Lida I Zeinali
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | | | | | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
26
|
Sánchez-Salguero E, Corona-Cervantes K, Guzmán-Aquino HA, de la Borbolla-Cruz MF, Contreras-Vargas V, Piña-Escobedo A, García-Mena J, Santos-Argumedo L. Maternal IgA2 Recognizes Similar Fractions of Colostrum and Fecal Neonatal Microbiota. Front Immunol 2021; 12:712130. [PMID: 34804008 PMCID: PMC8601722 DOI: 10.3389/fimmu.2021.712130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Microbiota acquired during labor and through the first days of life contributes to the newborn's immune maturation and development. Mother provides probiotics and prebiotics factors through colostrum and maternal milk to shape the first neonatal microbiota. Previous works have reported that immunoglobulin A (IgA) secreted in colostrum is coating a fraction of maternal microbiota. Thus, to better characterize this IgA-microbiota association, we used flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in human colostrum and neonatal feces. We identified IgA bound bacteria (IgA+) and characterized their diversity and composition shared in colostrum fractions and neonatal fecal bacteria. We found that IgA2 is mainly associated with Bifidobacterium, Pseudomonas, Lactobacillus, and Paracoccus, among other genera shared in colostrum and neonatal fecal samples. We found that metabolic pathways related to epithelial adhesion and carbohydrate consumption are enriched within the IgA2+ fecal microbiota. The association of IgA2 with specific bacteria could be explained because these antibodies recognize common antigens expressed on the surface of these bacterial genera. Our data suggest a preferential targeting of commensal bacteria by IgA2, revealing a possible function of maternal IgA2 in the shaping of the fecal microbial composition in the neonate during the first days of life.
Collapse
Affiliation(s)
- Erick Sánchez-Salguero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Karina Corona-Cervantes
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Hector Armando Guzmán-Aquino
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - María Fernanda de la Borbolla-Cruz
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Víctor Contreras-Vargas
- Department of Gynecology Regional Hospital “October 1”, Institute for Security and Social Services of State Workers (ISSSTE), México City, Mexico
| | - Alberto Piña-Escobedo
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Jaime García-Mena
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
27
|
Lindenberg FC, Lützhøft DO, Krych L, Fielden J, Kot W, Frøkiær H, van Galen G, Nielsen DS, Hansen AK. An Oligosaccharide Rich Diet Increases Akkermansia spp. Bacteria in the Equine Microbiota. Front Microbiol 2021; 12:666039. [PMID: 34093482 PMCID: PMC8176217 DOI: 10.3389/fmicb.2021.666039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Some oligosaccharides induce growth of anti-inflammatory bacterial species and induce regulatory immunity in humans as well as animals. We have shown that the equine gut microbiota and the immune-microbial homeostasis largely stabilize within the first 50 days of life. Furthermore, we have previously established that certain bacterial species in the equine gut correlated with regulatory immunity. Accordingly, we hypothesized that an oligosaccharide rich diet fed to foals during the first 50 days would increase the abundance of bacterial species associated with regulatory immunity, and that this would influence immune responses in the foals. Eight pregnant mares and their foals were fed an oligosaccharide rich diet from 4 weeks before expected parturition until 49 days post-partum. Six mares and foals served as control. Fecal microbiota from mares and foals was characterized using 16S rRNA gene amplicon high throughput sequencing. On Day 49 the test foals had significantly higher abundances of Akkermansia spp. Blood sampled from the foals in the test group on Day 7, 28, and 49 showed non-significant increases in IgA, and decreases in IgG on Day 49. In BALB/cBomTac mice inoculated with gut microbiota from test and control foals we found increased species richness, increased relative abundance of several species identified as potentially anti-inflammatory in horses, which were unclassified Clostridiales, Ruminococcaceae, Ruminococcus, Oscilospira, and Coprococcus. We also found increased il10 expression in the ileum if inoculated with test foal microbiota. We conclude that an oligosaccharide diet fed to foals in the "window of opportunity," the first 50 days of life, increases the abundance of anti-inflammatory species in the microbiota with potentially anti-inflammatory effects on regulatory immunity.
Collapse
Affiliation(s)
- Frederikke Christine Lindenberg
- Brogaarden ApS, Lynge, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Olsen Lützhøft
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Witold Kot
- Department of Environmental Sciences, Aarhus University, Aarhus, Denmark
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gaby van Galen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Camacho-Morales A, Caba M, García-Juárez M, Caba-Flores MD, Viveros-Contreras R, Martínez-Valenzuela C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. Front Pediatr 2021; 9:744104. [PMID: 34746058 PMCID: PMC8567139 DOI: 10.3389/fped.2021.744104] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
The first 1,000 days in the life of a human being are a vulnerable stage where early stimuli may program adverse health outcomes in future life. Proper maternal nutrition before and during pregnancy modulates the development of the fetus, a physiological process known as fetal programming. Defective programming promotes non-communicable chronic diseases in the newborn which might be prevented by postnatal interventions such as breastfeeding. Breast milk provides distinct bioactive molecules that contribute to immune maturation, organ development, and healthy microbial gut colonization, and also secures a proper immunological response that protects against infection and inflammation in the newborn. The gut microbiome provides the most critical immune microbial stimulation in the newborn in early life, allowing a well-trained immune system and efficient metabolic settings in healthy subjects. Conversely, negative fetal programming by exposing mothers to diets rich in fat and sugar has profound effects on breast milk composition and alters the immune profiles in the newborn. At this new stage, newborns become vulnerable to immune compromise, favoring susceptibility to defective microbial gut colonization and immune response. This review will focus on the importance of breastfeeding and its immunological biocomponents that allow physiological immune programming in the newborn. We will highlight the importance of immunological settings by breastfeeding, allowing proper microbial gut colonization in the newborn as a window of opportunity to secure effective immunological response.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Martín García-Juárez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | | | | |
Collapse
|