1
|
Wang TT, Zhou MY, Gong XN, Huang Y, Li FL, Gu SL, Zhang MY, Li LL, Xu ZS, Li R, Cai L. Eupalinolide B alleviates corticosterone-induced PC12 cell injury and improves depression-like behaviors in CUMS rats by regulating the GSK-3β/β-catenin pathway. Biochem Pharmacol 2025; 235:116831. [PMID: 40021022 DOI: 10.1016/j.bcp.2025.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Eupalinolide B (EB), a primary bioactive compound isolated from Eupatorium lindleyanum DC., has exhibited various pharmacological properties, such as antitumor, anti-inflammatory, and notably, neuroprotective effects in neurodegenerative diseases. However, the in-depth studies on the antidepressant potential of EB and its underlying mechanisms are still lacking. Herein, we investigated the therapeutic effects of EB on corticosterone (CORT)-induced neurotoxicity in PC12 cells and its antidepressant-like effects in rats subjected to chronic unpredictable mild stress (CUMS). In particular, we focused on the molecular mechanisms related to modulating the GSK-3β/β-catenin pathway. Our findings revealed that EB promoted cell proliferation while decreasing apoptosis and oxidative stress in CORT-induced PC12 cells. In vivo, EB alleviated the depressive-like behaviors in CUMS rats, as assayed by the sucrose preference test, open field test, and forced swim test. Additionally, EB attenuated the hippocampal pathological damage and increased Ki67- and doublecortin-positive cell numbers in hippocampal dentate gyrus, thus restoring hippocampal neurogenesis in CUMS rats. The binding of EB to GSK-3β was confirmed using molecular docking and cellular thermal shift assays. Overexpression of GSK-3β diminished the therapeutic effects of EB on CORT-induced PC12 cells, further indicating that GSK-3β is the target of EB. Mechanistically, EB hindered GSK-3β activity and thus activated β-catenin signaling in both CORT-induced PC12 cells and CUMS rat hippocampus, as demonstrated by increased p-GSK-3β (Ser9), reduced p-β-catenin, and elevated β-catenin expression. Collectively, this study offers new insights into the antidepressant mechanisms of EB, highlighting its potential as a candidate for depression treatment.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui Province, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Xue-Na Gong
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Fei-Long Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Man-Yu Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026 Anhui Province, PR China.
| | - Li Cai
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui Province, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China.
| |
Collapse
|
2
|
Li R, Zhang Y, Zhang H, Wang C, Duan H, Sun S, Xiang D, Liu Z. CRMP2 in the hippocampus alleviates chronic stress-induced depressive-like behaviours in mice by affecting synaptic function. Behav Brain Res 2025; 484:115495. [PMID: 40020760 DOI: 10.1016/j.bbr.2025.115495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric illness and a significant contributor to the global burden of disease. However, the molecular mechanisms underlying depression are complex and have yet to be fully elucidated. Previous studies demonstrated that collapsin response mediator protein 2 (CRMP2) involved in the onset of depression, but its role is unclear yet. To explore the mechanism of CRMP2 in depression and whether it ameliorates depressive-like behaviours by modulating synaptic functions, we manipulate the expression of CRMP2 by adeno-associated virus (AAV) injected into the hippocampal CA1 region and then induced depressive-like behaviour by subjecting the mice to chronic unpredictable mild stress (CUMS). Sucrose preference test (SPT), open field test (OFT), elevated plus maze test (EPM), forced swimming test (FST), and tail suspension test (TST) are utilized to detect behavioral changes. Golgi-Cox staining and electron microscopy were applied to examine alterations in the structure and morphology of neural synapses. Synaptophysin (SYP), synaptophysin 1 (SYN1), growth-associated protein 43 (GAP43), glutamate receptor 2 (GLUR2) and postsynaptic density protein 95 (PSD95) is tested for synaptic function. The proteins interacting with CRMP2 were comprehensively investigated utilizing Immunoprecipitation-Mass Spectrometry (IP-MS) analysis and the direct binding between CRMP2 and PSD95 was validated. In our study, we observed CRMP2 in the hippocampal CA1 region was downregulated following CUMS. Knockdown of CRMP2 resulted in impaired synaptic structure and decreased expression of synapse-associated proteins, accompanied by increased depressive-like behaviour, like anhedonia and hopelessness. Conversely, overexpression of CRMP2 significantly ameliorated behavioural deficits associated with depression and restore the compromised synaptic structure and function. Our findings suggest that CRMP2 exerts a crucial function in modulating depressive-like behaviours by influencing the synaptic structure and function, and it can directly interact with PSD95.
Collapse
Affiliation(s)
- Ruiling Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yuhui Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Honghan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chao Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Hao Duan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, PR China.
| |
Collapse
|
3
|
Chen G, Luo M, Chen W, Zhang Y, Gu Z, Xu M, Zhang Y, Bian J. The primary somatosensory sensory cortex-basolateral amygdala pathway contributes to comorbid depression in spared nerve injury-induced neuropathic pain. Sci Rep 2025; 15:13678. [PMID: 40258918 PMCID: PMC12012082 DOI: 10.1038/s41598-025-97164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Comorbid depression in chronic pain is a prevalent health problem, yet the underlying neural mechanisms remain largely unexplored. This study identified a dedicated neural circuit connecting the hind limb region of the primary somatosensory cortex (S1HL) to the basolateral amygdala (BLA) that mediated neuropathic pain-induced depression. We demonstrated that depressive-like behaviors in the chronic phase of a mouse neuropathic pain model were associated with heightened activity in the S1HL and BLA. Using viral tracing and RNAscope in situ hybridization, we characterized the circuit architecture of S1HL glutamatergic projections to BLA cholecystokinin (CCK) neurons (S1HLGlu → BLACCK). In vivo fiber photometry calcium imaging revealed that both the S1HL BLA-projecting afferents and the BLA S1HL-innervating neurons exhibited hyperactivity in neuropathic pain-induced depressive states. Chemogenetic inhibition of the S1HL → BLA circuit could block neuropathic pain-induced depressive-like behaviors. In addition, specific knockdown of CCK expression in BLA S1HL-innervating neurons alleviated these depressive-like behaviors. Our findings demonstrated that the cortical-amygdala circuit S1HLGlu → BLACCK drove the transition from chronic pain to depression, thus suggesting a potential neural circuit basis for treating chronic pain-related depressive disorders.
Collapse
Affiliation(s)
- Guo Chen
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, 563000, Guizhou, China
| | - Wentao Chen
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Yu Zhang
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Zuchao Gu
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Miaomiao Xu
- Department of Orthopaedic, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jiang Bian
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, 637000, Sichuan, China.
| |
Collapse
|
4
|
Kim J, Michael S, Pokharel K, Kim CS. Hyperpolarization-activated channel 1 modulates resilience and susceptibility to social avoidance induced by witnessing social defeat stress. Biol Psychiatry 2025:S0006-3223(25)01113-8. [PMID: 40210080 DOI: 10.1016/j.biopsych.2025.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Physical social defeat stress models are widely used to study chronic stress. In contrast, witnessing social defeat, observing aggression without direct involvement, is less studied but has growing relevance to disorders such as post-traumatic stress disorder (PTSD). The role of hyperpolarization-activated cation channel 1 (HCN1) in stress responses to witnessing social defeat is unclear, and the effects of prolonged exposure (PE) therapy, commonly used in PTSD treatment, have not been tested in this context. METHODS Male mice were either subjected to chronic physical or witnessing social defeat stress. Behavioral assessments included measures of social avoidance, stress reactivity, fear memory, and spatial working memory. Neuronal excitability, h current (Ih), and synaptic transmission in dorsal hippocampal CA1 neurons were measured using whole-cell patch-clamp recordings. Conditional overexpression or deletion of HCN1 was employed to further examine its role. Witnessing-defeated mice underwent 12 days of PE treatment. RESULTS Mice that witnessed social defeat exhibited behavioral impairments like physically defeated mice, showing changes in social behavior, fear memory, spatial working memory, and stress responses. These impairments were linked to increased HCN1 expression, elevated Ih, and reduced neuronal excitability. Overexpression of HCN1 induced susceptibility-like behaviors, while HCN1 deletion promoted resilience-like behaviors. Impaired AMPA receptor transmission at distal dendrites in witness-susceptible mice was replicated by HCN1 overexpression and reversed by ZD7288, an HCN channel blocker. PE-resistant mice displayed reduced excitability, while PE-responsive mice exhibited normal-like excitability. CONCLUSIONS HCN1 channels play a key role in regulating stress responses and contribute to resilience or susceptibility following social defeat.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sandali Michael
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kritika Pokharel
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chung Sub Kim
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
5
|
Yin Y, Liu Y, Du L, Wu S. Compromised B-cell homeostasis: Unraveling the link between major depression, infection and autoimmune disorders. J Affect Disord 2025; 374:565-578. [PMID: 39842671 DOI: 10.1016/j.jad.2025.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Major depression can increase susceptibility to viral infections and autoimmune diseases. B cell responses are crucial for immune defense against infections but can trigger autoimmunity when deregulated. However, it remains unclear whether compromised B-cell homeostasis in major depression contributes to an increased risk of infection and autoimmunity. METHODS Chronic unpredictable mild stress (CUMS) procedure was applied to adult C57BL/6 J mice to generate a reliable depression model. Mice were immunized with (4-hydroxy-3-nitrophenyl) acetyl (NP) keyhole limpet hemocyanin (NP-KLH) to elicit B-cell-mediated humoral immune responses. CUMS mice were subjected to a collagen-induced arthritis model or a Bm12-induced systemic lupus erythematosus model to assess the contribution of major depression to autoimmunity. RNA sequencing was performed to understand the effects of CUMS on B-cell homeostasis at the transcriptomic level. RESULTS CUMS mice exhibited an impaired humoral immune response, as evidenced by reduced germinal centers (GCs), plasma cells, and antigen-specific antibodies. Unimmunized CUMS mice displayed aberrant spontaneous expansion of GC B cells, plasma cells, age-associated B cells and autoantibody production. CUMS mice also demonstrated a greater exacerbation of autoimmune manifestations. RNA sequencing revealed that genes involved in B-cell-mediated immune response were downregulated in B cells from CUMS mice, while the pathways related to autoimmunity seem to be upregulated. LIMITATIONS Further research is needed to understand the specific targets, mechanisms, and role of B cell dysfunction in major depression. CONCLUSIONS Our results provide novel insights into B-cell-dependent mechanisms that involve the association of increased susceptibility to infections and autoimmunity in major depression.
Collapse
Affiliation(s)
- Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
6
|
Lai C, Chen K, Huang HZ, Huang X, Zhang J, Wang YB, Chen Z, Hu F, Guo Z, Man HY, Du HY, Lu YM, Shu K, Liu D, Zhu LQ. Historical loss weakens competitive behavior by remodeling ventral hippocampal dynamics. Cell Discov 2025; 11:16. [PMID: 39994206 PMCID: PMC11850767 DOI: 10.1038/s41421-024-00751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/01/2024] [Indexed: 02/26/2025] Open
Abstract
Competitive interactions are pervasive within biological populations, where individuals engage in fierce disputes over vital resources for survival. Before the establishment of a social hierarchy within the population, this competition becomes even more intense. Historical experiences of competition significantly influence the competitive performance; individuals with a history of persistent loss are less likely to initiate attacks or win escalated contests. However, it remains unclear how historical loss directly affects the evolution of mental processes during competition and alters responses to ongoing competitive events. Here, we utilized a naturalistic food competition paradigm to track the competitive patterns of mutually unfamiliar competitors and found that a history of loss leads to reduced competitive performance. By tracking the activity of ventral hippocampal neuron ensembles, we identified clusters of neurons that responded differently to behavioral events during the competition, with their reactivity modulated by previous losses. Using a Recurrent Switch Linear Dynamical System (rSLDS), we revealed rotational dynamics in the ventral hippocampus (vHPC) during food competition, where different discrete internal states corresponded to different behavioral strategies. Moreover, historical loss modulates competitive behavior by remodeling the characteristic attributes of this rotational dynamic system. Finally, we found that an evolutionarily conserved glutamate receptor-associated protein, glutamate receptor-associated protein 1 (Grina), plays an important role in this process. By continuously monitoring the association between the attributes of the dynamic system and competitiveness, we found that restoring Grina expression effectively reversed the impact of historical loss on competitive performance. Together, our study reveals the rotational dynamics in the ventral hippocampus during competition and elucidates the underlying mechanisms through which historical loss shapes these processes.
Collapse
Affiliation(s)
- Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - He-Zhou Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Zhang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Bo Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Hui-Yun Du
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - You-Ming Lu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dan Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Kamsrijai U, Charoensup R, Jaidee W, Hawiset T, Thaweethee-Sukjai B, Praman S. Cannabidiol/cannabidiolic acid-rich hemp (Cannabis sativa L.) extract attenuates cognitive impairments and glial activations in rats exposed to chronic stress. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119113. [PMID: 39551282 DOI: 10.1016/j.jep.2024.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemp (Cannabis sativa L.) is increasingly being recognized for its medicinal properties beside utilizing it for food, oil, and textile fibers. The high level of cannabidiol (CBD) content in hemp's flowers shows promising neuroprotective properties without causing psychotomimetic or addictive effects. Recently, products containing CBD and its precursor, cannabidiolic acid (CBDA), have been used to treat stress-related cognitive impairment. However, the therapeutic potential of hemp extract remains inadequately explored. AIM OF THE STUDY To investigate the effect of CBD/CBDA-rich hemp extract on learning and memory, neuroendocrine alterations, and hippocampal neuropathological changes in the chronic restraint stress model. MATERIALS AND METHODS Chronic restraint stress (CRS) was induced in male Wistar rats by immobilizing them in a restrainer for 6 h per day for 21 consecutive days. CBD/CBDA-rich hemp extract (10 and 30 mg/kg, intraperitoneal injection) was administered daily, 1 h before restraint. After the last day of CRS, behavioral tests for cognition were conducted using the Y-maze and object recognition tests. Serum corticosterone (CORT) levels were measured by ELISA. Histopathological changes, neuronal density, and the activation of microglia and astrocytes were visualized using cresyl violet and immunohistochemical staining. RESULTS A high dose of CBD/CBDA-rich hemp extract effectively ameliorated CRS-induced cognitive impairment and reversed HPA axis hyperactivity in CRS rats by reducing CORT levels and adrenal gland weight. Additionally, CBD/CBDA-rich hemp extract protected CRS-induced damage to hippocampal neurons. Further analysis showed that CBD/CBDA-rich hemp extract reduced specific markers of microglial activation (ionized calcium-binding adaptor molecule-1, Iba-1) and astrocytic structural protein (glial fibrillary acidic protein, GFAP) in CRS rats. CONCLUSION CBD/CBDA-rich hemp extracts remarkably reversed the stress-induced behavioral perturbations and hippocampal damage, suggesting its ameliorative effect on stress response.
Collapse
Affiliation(s)
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Integrative Medicine, Major of Applied Thai Traditional Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Thaneeya Hawiset
- School of Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
8
|
Cheng Z, Zhao F, Piao J, Yang W, Cui R, Li B. Rasd2 regulates depression-like behaviors via DRD2 neurons in the prelimbic cortex afferent to nucleus accumbens core circuit. Mol Psychiatry 2025; 30:435-449. [PMID: 39097664 PMCID: PMC11746134 DOI: 10.1038/s41380-024-02684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Depressive symptoms, such as anhedonia, decreased social interaction, and lack of motivation, implicate brain reward systems in the pathophysiology of depression. Exposure to chronic stress impairs the function of brain reward circuits and is well-known to be involved in the etiology of depression. A transcriptomic analysis found that stress alters the expression of Rasd2 in mice prefrontal cortex (PFC). Similarly, in our previous study, acute fasting decreased Rasd2 expression in mice PFC, and RASD2 modulated dopamine D2 receptor (DRD2)-mediated antidepressant-like effects in ovariectomized mice. This research suggests the role of RASD2 in stress-induced depression and its underlying neural mechanisms that require further investigation. Here, we show that 5-day unpredictable mild stress (5-d UMS) exposure reduces RASD2 expression in both the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) of mice, while overexpression (but not knock-down) of Rasd2 in the NAc core (NAcc) alleviates 5-d UMS-induced depression-like behaviors and activates the DRD2-cAMP-PKA-DARPP-32 signaling pathway. Further studies investigated neuronal projections between the mPFC (Cg1, PrL, and IL) and NAcc, labeled by the retrograde tracer Fluorogold. Depression-like behaviors induced by 5-d UMS were only related to inhibition of the PrL-NAcc circuit. DREADD (Designer receptors exclusively activated by designer drug) analysis found that the activation of PrL-NAcc glutaminergic projection alleviated depression-like behaviors and increased DRD2- and RASD2-positive neurons in the NAcc. Using Drd2-cre transgenic mice, we constructed mice with Rasd2 overexpression in DRD2PrL-NAcc neurons, finding that Rasd2 overexpression ameliorated 5-d UMS-induced depression-like behaviors. These findings demonstrate a critical role for RASD2 modulation of DRD2PrL-NAcc neurons in 5-d UMS-induced depression-like behaviors. In addition, the study identifies a new potential strategy for precision medical treatment of depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, 130041, PR China.
| |
Collapse
|
9
|
Zhang S, Wang X, Gao X, Chen X, Li L, Li G, Liu C, Miao Y, Wang R, Hu K. Radiopharmaceuticals and their applications in medicine. Signal Transduct Target Ther 2025; 10:1. [PMID: 39747850 PMCID: PMC11697352 DOI: 10.1038/s41392-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025] Open
Abstract
Radiopharmaceuticals involve the local delivery of radionuclides to targeted lesions for the diagnosis and treatment of multiple diseases. Radiopharmaceutical therapy, which directly causes systematic and irreparable damage to targeted cells, has attracted increasing attention in the treatment of refractory diseases that are not sensitive to current therapies. As the Food and Drug Administration (FDA) approvals of [177Lu]Lu-DOTA-TATE, [177Lu]Lu-PSMA-617 and their complementary diagnostic agents, namely, [68Ga]Ga-DOTA-TATE and [68Ga]Ga-PSMA-11, targeted radiopharmaceutical-based theranostics (radiotheranostics) are being increasingly implemented in clinical practice in oncology, which lead to a new era of radiopharmaceuticals. The new generation of radiopharmaceuticals utilizes a targeting vector to achieve the accurate delivery of radionuclides to lesions and avoid off-target deposition, making it possible to improve the efficiency and biosafety of tumour diagnosis and therapy. Numerous studies have focused on developing novel radiopharmaceuticals targeting a broader range of disease targets, demonstrating remarkable in vivo performance. These include high tumor uptake, prolonged retention time, and favorable pharmacokinetic properties that align with clinical standards. While radiotheranostics have been widely applied in tumor diagnosis and therapy, their applications are now expanding to neurodegenerative diseases, cardiovascular diseases, and inflammation. Furthermore, radiotheranostic-empowered precision medicine is revolutionizing the cancer treatment paradigm. Diagnostic radiopharmaceuticals play a pivotal role in patient stratification and treatment planning, leading to improved therapeutic outcomes in targeted radionuclide therapy. This review offers a comprehensive overview of the evolution of radiopharmaceuticals, including both FDA-approved and clinically investigated agents, and explores the mechanisms of cell death induced by radiopharmaceuticals. It emphasizes the significance and future prospects of theranostic-based radiopharmaceuticals in advancing precision medicine.
Collapse
Grants
- 82372002 National Natural Science Foundation of China (National Science Foundation of China)
- 0104002 Beijing Nova Program
- L248087; L234044 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Nonprofit Central Research Institute Fund of the Chinese Academy of Medical Sciences (No. 2022-RC350-04), the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001), the National Key Research and Development Program of China (No. 2022YFE0111700),the Fundamental Research Funds for the Central Universities (Nos. 3332023044 and 3332023151), the CIRP Open Fund of Radiation Protection Laboratories (No. ZHYLYB2021005), and the China National Nuclear Corporation Young Talent Program.
- Fundamental Research Funds for the Central Universities,Nos. 3332023044
- Fundamental Research Funds for the Central Universities,Nos. 3332023151
- he Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,No. 2022-RC350-04;the CAMS Innovation Fund for Medical Sciences,Nos. 2021-I2M-1-026, 2022-I2M-2-002-2, and 2021-I2M-3-001;the National Key Research and Development Program of China,No. 2022YFE0111700
Collapse
Affiliation(s)
- Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xingkai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xueyao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Linger Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Guoqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Can Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Yuan Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Rui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, 2019RU066, 730000, Lanzhou, China.
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| |
Collapse
|
10
|
Xia F, Fascianelli V, Vishwakarma N, Ghinger FG, Kwon A, Gergues MM, Lalani LK, Fusi S, Kheirbek MA. Understanding the neural code of stress to control anhedonia. Nature 2025; 637:654-662. [PMID: 39633053 PMCID: PMC11735319 DOI: 10.1038/s41586-024-08241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
Anhedonia, the diminished drive to seek, value, and learn about rewards, is a core feature of major depressive disorder1-3. The neural underpinnings of anhedonia and how this emotional state drives behaviour remain unclear. Here we investigated the neural code of anhedonia by taking advantage of the fact that when mice are exposed to traumatic social stress, susceptible animals become socially withdrawn and anhedonic, whereas others remain resilient. By performing high-density electrophysiology to record neural activity patterns in the basolateral amygdala (BLA) and ventral CA1 (vCA1), we identified neural signatures of susceptibility and resilience. When mice actively sought rewards, BLA activity in resilient mice showed robust discrimination between reward choices. By contrast, susceptible mice exhibited a rumination-like signature, in which BLA neurons encoded the intention to switch or stay on a previously chosen reward. Manipulation of vCA1 inputs to the BLA in susceptible mice rescued dysfunctional neural dynamics, amplified dynamics associated with resilience, and reversed anhedonic behaviour. Finally, when animals were at rest, the spontaneous BLA activity of susceptible mice showed a greater number of distinct neural population states. This spontaneous activity allowed us to decode group identity and to infer whether a mouse had a history of stress better than behavioural outcomes alone. This work reveals population-level neural dynamics that explain individual differences in responses to traumatic stress, and suggests that modulating vCA1-BLA inputs can enhance resilience by regulating these dynamics.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Valeria Fascianelli
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nina Vishwakarma
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Frances Grace Ghinger
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Kwon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mark M Gergues
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lahin K Lalani
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, New York, NY, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Singh P, Vasundhara B, Das N, Sharma R, Kumar A, Datusalia AK. Metabolomics in Depression: What We Learn from Preclinical and Clinical Evidences. Mol Neurobiol 2025; 62:718-741. [PMID: 38898199 DOI: 10.1007/s12035-024-04302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Depression is one of the predominant common mental illnesses that affects millions of people of all ages worldwide. Random mood changes, loss of interest in routine activities, and prevalent unpleasant senses often characterize this common depreciated mental illness. Subjects with depressive disorders have a likelihood of developing cardiovascular complications, diabesity, and stroke. The exact genesis and pathogenesis of this disease are still questionable. A significant proportion of subjects with clinical depression display inadequate response to antidepressant therapies. Hence, clinicians often face challenges in predicting the treatment response. Emerging reports have indicated the association of depression with metabolic alterations. Metabolomics is one of the promising approaches that can offer fresh perspectives into the diagnosis, treatment, and prognosis of depression at the metabolic level. Despite numerous studies exploring metabolite profiles post-pharmacological interventions, a quantitative understanding of consistently altered metabolites is not yet established. The article gives a brief discussion on different biomarkers in depression and the degree to which biomarkers can improve treatment outcomes. In this review article, we have systemically reviewed the role of metabolomics in depression along with current challenges and future perspectives.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Boosani Vasundhara
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Nabanita Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Centre, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
| |
Collapse
|
12
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Gore IR, Brown CJ, Waters RC, Gould E. Social and nonsocial environmental loss have differential effects on ventral hippocampus-dependent behavior and inhibitory synaptic markers in adult male mice. Learn Mem 2024; 31:a053968. [PMID: 39681456 DOI: 10.1101/lm.053968.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/01/2024] [Indexed: 12/18/2024]
Abstract
In humans, psychological loss, whether social or nonsocial, can lead to clinical depression, anxiety disorders, and social memory impairments. Researchers have modeled combined social and nonsocial loss in rodents by transitioning them from social, enriched environments (EE) to individual housing, affecting behaviors related to avoidance, stress coping, and cognitive function. However, it remains unclear if these effects are driven by social or nonsocial loss. We examined the effects of nonsocial loss by housing adult male mice in EE before moving them to standard cages, where they were pair-housed, and compared this to mice experiencing complete social loss. Continuous EE reduced social investigation time while leaving social memory intact, also decreasing avoidance behavior. Nonsocial loss restored social investigation and avoidance behavior to control levels, while social loss impaired social memory and increased avoidance. In rodents, social memory and avoidance require ventral hippocampus (vHIP) neuronal oscillations, which involve parvalbumin-positive (PV+) inhibitory interneurons. We found decreased vHIP PV intensity in the social loss group, with no differences in the nonsocial loss group. Most PV+ cells are surrounded by perineuronal nets (PNNs) concentrating GABAA receptors in their lattice-like holes. Social loss decreased GABAA-δ expression, a subunit associated with extrasynaptic receptors, across PNN+ soma and in PNN holes, while nonsocial loss reduced gephyrin in these regions. These findings suggest social and nonsocial losses differentially affect vHIP function and behavior, with social loss having a more pronounced impact through mechanisms involving PV+ interneurons, PNN structure, and neurotransmitter receptor expression.
Collapse
Affiliation(s)
- Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
| | - Casey J Brown
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
| | - Renée C Waters
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
| |
Collapse
|
14
|
Pei J, Zhang C, Zhang Q, Yu H, Yuan H, Guo Y, Shen H, Liu H, Wang C, Meng F, Yu C, Tie J, Chen X, Wu X, Zhang G, Wang X. Probiotics alleviate chronic ethanol exposure-induced anxiety-like behavior and hippocampal neuroinflammation in male mice through gut microbiota-derived extracellular vesicles. J Nanobiotechnology 2024; 22:730. [PMID: 39578835 PMCID: PMC11585232 DOI: 10.1186/s12951-024-03017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Probiotics can colonize both the human and animal bodies and consist of active microorganisms that are beneficial to health. The use of probiotics has been shown to alleviate certain neurological diseases and disturbances in gut microbiota resulting from chronic ethanol exposure. Research indicates that probiotics can influence the nervous system via the microbial-gut-brain axis, wherein extracellular vesicles secreted by the gut microbiota play a significant role in this process. RESULTS In this study, we first established a 30-day ethanol exposure and probiotic gavage mouse model, both of which influenced behavior and the composition of gut microbiota. We then extracted gut microbiota-derived extracellular vesicles from the feces of these model mice and injected them into new mice via the tail vein to assess the role of each set of extracellular vesicles. The results indicated that the extracellular vesicles derived from the intestinal microbiota in the ethanol group induced anxiety-like behavior and hippocampal neuroinflammation in the recipient mice. In contrast, the extracellular vesicles secreted by the gut microbiota from the probiotic group mitigated the anxiety-like behavior and neuroinflammation induced by ethanol-influenced extracellular vesicles. CONCLUSIONS Our study demonstrates that extracellular vesicles secreted by the gut microbiota can influence the nervous system via the microbial-gut-brain axis. Furthermore, we found that the extracellular vesicles secreted by the gut microbiota from the probiotic group exert a beneficial therapeutic effect on anxiety and hippocampal neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, People's Republic of China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, People's Republic of China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, People's Republic of China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
- Department of Morphology, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China
| | - Xu Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, People's Republic of China.
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
15
|
Li L, Zhang S, Wang H, Zhang F, Dong B, Yang J, Liu X. Multi-scale modeling to investigate the effects of transcranial magnetic stimulation on morphologically-realistic neuron with depression. Cogn Neurodyn 2024; 18:3139-3156. [PMID: 39555260 PMCID: PMC11564609 DOI: 10.1007/s11571-024-10142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/05/2024] [Accepted: 06/05/2024] [Indexed: 11/19/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique to activate or inhibit the activity of neurons, and thereby regulate their excitability. This technique has demonstrated potential in the treatment of neuropsychiatric disorders, such as depression. However, the effect of TMS on neurons with different severity of depression is still unclear, limiting the development of efficient and personalized clinical application parameters. In this study, a multi-scale computational model was developed to investigate and quantify the differences in neuronal responses to TMS with different degrees of depression. The microscale neuronal models we constructed represent the hippocampal CA1 region in rats under normal conditions and with varying severities of depression (mild, moderate, and major depressive disorder). These models were then coupled to a macroscopic TMS-induced E-Fields model of a rat head comprising multiple types of tissue. Our results demonstrate alterations in neuronal membrane potential and calcium concentration across varying levels of depression severity. As depression severity increases, the peak membrane potential and polarization degree of neuronal soma and dendrites gradually decline, while the peak calcium concentration decreases and the peak arrival time prolongs. Concurrently, the electric fields thresholds and amplification coefficient gradually rise, indicating an increasing difficulty in activating neurons with depression. This study offers novel insights into the mechanisms of magnetic stimulation in depression treatment using multi-scale computational models. It underscores the importance of considering depression severity in treatment strategies, promising to optimize TMS therapeutic approaches.
Collapse
Affiliation(s)
- Licong Li
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Shuaiyang Zhang
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Hongbo Wang
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Fukuan Zhang
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Bin Dong
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
- College of Electronic Information Engineering, Hebei University, Baoding, China
- Affiliated Hospital of Hebei University, Baoding, China
| | - Jianli Yang
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
- College of Electronic Information Engineering, Hebei University, Baoding, China
| | - Xiuling Liu
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding, China
- College of Electronic Information Engineering, Hebei University, Baoding, China
| |
Collapse
|
16
|
Machado JPD, de Almeida V, Zuardi AW, Hallak JEC, Crippa JA, Vieira AS. Cannabidiol modulates hippocampal genes involved in mitochondrial function, ribosome biogenesis, synapse organization, and chromatin modifications. Acta Neuropsychiatr 2024; 36:330-336. [PMID: 38528655 DOI: 10.1017/neu.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main cannabinoids present in Cannabis sativa female flowers. Previous investigation has already provided insights into the CBD molecular mechanism; however, there is no transcriptome data for CBD effects on hippocampal subfields. Here, we investigate transcriptomic changes in dorsal and ventral CA1 of adult mice hippocampus after 100 mg/kg of CBD administration (i.p.) for one or seven consecutive days. METHODS C57BL/6JUnib mice were treated with either vehicle or CBD for 1 or 7 days. The collected brains were sectioned, and the hippocampal sub-regions were laser microdissected for RNA-Seq analysis. RESULTS The transcriptome analysis following 7 days of CBD administration indicates the differential expression of 1559 genes in dCA1 and 2924 genes in vCA1. Furthermore, GO/KEGG analysis identified 88 significantly enriched biological process and 26 significantly enriched pathways for dCBD7, whereas vCBD7 revealed 128 enriched BPs and 24 pathways. CONCLUSION This dataset indicates a widespread decrease of electron transport chain and ribosome biogenesis transcripts in CA1, while chromatin modifications and synapse organization transcripts were increased following CBD administration for 7 days.
Collapse
Affiliation(s)
- João P D Machado
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics,, Dept Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinsas, São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute for Science and Technology - Translational Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André S Vieira
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Dept Functional and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Yang M, Zhu H, Peng L, Yin T, Sun S, Du Y, Li J, Liu J, Wang S. Neuronal HIPK2-HDAC3 axis regulates mitochondrial fragmentation to participate in stroke injury and post-stroke anxiety like behavior. Exp Neurol 2024; 380:114906. [PMID: 39079624 DOI: 10.1016/j.expneurol.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Post-stroke anxiety (PSA) seriously affects the prognosis of patients, which is an urgent clinical problem to be addressed. However, the pathological mechanism of PSA is largely unclear. Here, we found that neuronal HIPK2 expression was upregulated in the ischemic lesion after stroke. The upregulation of HIPK2 promotes Drp1 oligomerization through the HDAC3-dependent pathway, leading to excessive mitochondrial damage. This subsequently triggers the release of cellular cytokines such as IL-18 from neurons under ischemic stress. Microglia are capable of responding to IL-18, which promotes their activation and enhances their phagocytosis, ultimately resulting in the loss of synapses and neurons, thereby exacerbating the pathological progression of PSA. HIPK2 knockdown or inhibition suppresses excessive pruning of neuronal synapses by activated microglia in the contralateral vCA1 region to compromise inactivated anxiolytic pBLA-vCA1Calb1+ circuit, relieving anxiety-like behavior after stroke. Furthermore, we discovered that early remimazolam administration can remodel HIPK2-HDAC3 axis, ameliorating the progression of PSA. In conclusion, our study revealed that the neuronal HIPK2-HDAC3 axis in the ischemic focus regulates mitochondrial fragmentation to balance inflammation stress reservoir to participate in anxiety susceptibility after stroke.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Wannan Medical College, Wuhu 241002, China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Tianyue Yin
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Shuaijie Sun
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Wannan Medical College, Wuhu 241002, China
| | - Yuhao Du
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Jun Li
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinya Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
18
|
Zhang Y, Zhang H, Zheng X, Hou Y, Chang X, Zhang L, Wang Y, Chen S. Identification of differentially expressed genes in the medial prefrontal cortex of rats subjected to chronic unpredictable mild stress and treated with electroacupuncture. Genomics 2024; 116:110901. [PMID: 39047876 DOI: 10.1016/j.ygeno.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Major depressive disorder is a chronic mental health condition that seriously impacts afflicted individuals. Although electroacupuncture has proven to be an effective therapy for depression, its underlying biological mechanism remains largely unknown. In this study, we aimed to investigate the effects of electroacupuncture on depression-like behavior and to identify potential target genes related to those effects. To achieve this, we subjected rats to chronic unpredictable mild stress (CUMS) and used sucrose preference, forced swimming, and open-field tests to determine their depression-like behavior in the absence or after receipt of electroacupuncture treatment. RNA sequencing technology was then used to reveal the differentially expressed genes associated with depression and electroacupuncture treatment effects in the medial prefrontal cortex (mPFC). Repeated electroacupuncture treatments at the Baihui (GV20) and Taichong (LR3) acupoints significantly alleviated depression-like behavioral defects in the animals. Genomic RNA sequencing revealed several significant changes in the mPFC transcriptome of rats that received treatment. Through differential gene expression analysis, we found that electroacupuncture reversed the CUMS-induced downregulation of 46 genes and upregulation of 13 genes. Among the differentially expressed genes, Casr, Bdkrb2, Gnb3, and Ccl1 were found to be associated with depression and electroacupuncture treatment effects. In conclusion, we verified that electroacupuncture treatment has an effective antidepressant effect, and the underlying mechanism involves multiple systems and targets.
Collapse
Affiliation(s)
- Yujiao Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Haiyan Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Xinjie Zheng
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Yi Hou
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoli Chang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Lili Zhang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China
| | - Ying Wang
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China.
| | - Shaozong Chen
- Institute of Acupuncture and Moxibustion, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong 250355, China.
| |
Collapse
|
19
|
Chen H, Shi X, Liu N, Jiang Z, Ma C, Luo G, Liu S, Wei X, Liu Y, Ming D. Photobiomodulation therapy mitigates depressive-like behaviors by remodeling synaptic links and mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112998. [PMID: 39096719 DOI: 10.1016/j.jphotobiol.2024.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Depression, a multifactorial mental disorder, characterized by cognitive slowing, anxiety, and impaired cognitive function, imposes a significant burden on public health. Photobiomodulation (PBM), involving exposure to sunlight or artificial light at a specific intensity and wavelength for a determined duration, influences brain activity, functional connectivity, and plasticity. It is recognized for its therapeutic efficacy in treating depression, yet its molecular and cellular underpinnings remain obscure. Here, we investigated the impact of PBM with 468 nm light on depression-like behavior and neuronal damage in the chronic unpredictable mild stress (CUMS) murine model, a commonly employed animal model for studying depression. Our results demonstrate that PBM treatment ameliorated behavioral deficits, inhibited neuroinflammation and apoptosis, and notably rejuvenates the hippocampal synaptic function in depressed mice, which may be mainly attributed to the up-regulation of brain-derived neurotrophic factor signaling pathways. In addition, in vitro experiments with a corticosterone-induced hippocampal neuron injury model demonstrate reduced oxidative stress and improved mitochondrial function, further validating the therapeutic potential of PBM. In summary, these findings suggest PBM as a promising, non-invasive treatment for depression, offering insights into its biological mechanisms and potential for clinical application.
Collapse
Affiliation(s)
- Hongli Chen
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xinyu Shi
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Na Liu
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Zhongdi Jiang
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Chunyan Ma
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Guoshuai Luo
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Biomedical Engineering Department, Peking University, Beijing 100191, China.
| | - Yi Liu
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Shi C, Qi Z, Yang C, Luo S, Huang S, Luo Y. Shikonin ameliorates depressive- and anxiogenic-like behaviors in rats via the suppression of inflammation in the hippocampus. Neurosci Lett 2024; 837:137893. [PMID: 38997082 DOI: 10.1016/j.neulet.2024.137893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Shikonin is an active naphthoquinone with antioxidative, anti-inflammatory, and anticancer properties. In this study, we investigated the effects of shikonin on depressive- and anxiety-like behaviors in lipopolysaccharide- (LPS-) induced depression and chronic unpredictable mild stress (CUMS) rat models and explored the potential mechanism. First, a 14-day intraperitoneal administration of shikonin (10 mg/kg) significantly decreased immobility time in forced swimming test (FST) and increased open arm entries in elevated plus maze (EPM) test, without affecting line crossings in open field test (OFT), indicating that shikonin has anti-depressant- and anxiolytic-like effects. Second, chronic shikonin administration (10 mg/kg) reversed depressive- and anxiety-like behaviors in LPS-induced and CUMS depression models, as shown in the sucrose preference test (SPT), FST, EPM, and novel object recognition test (NORT). Finally, shikonin significantly reduced the levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in hippocampus, indicating that the anti-depressant- and anxiolytic-like effects of shikonin are related to the reduction of neuroinflammation in hippocampus. These findings suggest that shikonin exerts anti-depressant- and anxiolytic-like effects via an anti-inflammatory mechanism of shikonin in the hippocampus.
Collapse
Affiliation(s)
- Cuijie Shi
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Zihan Qi
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Chang Yang
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Shuting Luo
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191 Beijing, China.
| | - Yixiao Luo
- Department of Pharmacology, School of Medicine, Hunan Normal University, Changsha 410013, China; Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
21
|
Yang J, Tang T, Gui Q, Zhang K, Zhang A, Wang T, Yang C, Liu X, Sun N. Status and trends of TMS research in depressive disorder: a bibliometric and visual analysis. Front Psychiatry 2024; 15:1432792. [PMID: 39176225 PMCID: PMC11338766 DOI: 10.3389/fpsyt.2024.1432792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background Depression is a chronic psychiatric condition that places significant burdens on individuals, families, and societies. The rapid evolution of non-invasive brain stimulation techniques has facilitated the extensive clinical use of Transcranial Magnetic Stimulation (TMS) for depression treatment. In light of the substantial recent increase in related research, this study aims to employ bibliometric methods to systematically review the global research status and trends of TMS in depression, providing a reference and guiding future studies in this field. Methods We retrieved literature on TMS and depression published between 1999 and 2023 from the Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) databases within the Web of Science Core Collection (WoSCC). Bibliometric analysis was performed using VOSviewer and CiteSpace software to analyze data on countries, institutions, authors, journals, keywords, citations, and to generate visual maps. Results A total of 5,046 publications were extracted covering the period from 1999 to 2023 in the field of TMS and depression. The publication output exhibited an overall exponential growth trend. These articles were published across 804 different journals, BRAIN STIMULATION is the platform that receives the most articles in this area. The literature involved contributions from over 16,000 authors affiliated with 4,573 institutions across 77 countries. The United States contributed the largest number of publications, with the University of Toronto and Daskalakis ZJ leading as the most prolific institution and author, respectively. Keywords such as "Default Mode Network," "Functional Connectivity," and "Theta Burst" have recently garnered significant attention. Research in this field primarily focuses on TMS stimulation patterns, their therapeutic efficacy and safety, brain region and network mechanisms under combined brain imaging technologies, and the modulation effects of TMS on brain-derived neurotrophic factor (BDNF) and neurotransmitter levels. Conclusion In recent years, TMS therapy has demonstrated extensive potential applications and significant implications for the treatment of depression. Research in the field of TMS for depression has achieved notable progress. Particularly, the development of novel TMS stimulation patterns and the integration of TMS therapy with multimodal techniques and machine learning algorithms for precision treatment and investigation of brain network mechanisms have emerged as current research hotspots.
Collapse
Affiliation(s)
- Jun Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Tingting Tang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Qianqian Gui
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Kun Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Liu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
22
|
Miller CN, Li Y, Beier KT, Aoto J. Acute stress causes sex-dependent changes to ventral subiculum synapses, circuitry, and anxiety-like behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606264. [PMID: 39131353 PMCID: PMC11312572 DOI: 10.1101/2024.08.02.606264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Experiencing a single severe stressor is sufficient to drive sexually dimorphic psychiatric disease development. The ventral subiculum (vSUB) emerges as a site where stress may induce sexually dimorphic adaptations due to its sex-specific organization and pivotal role in stress integration. Using a 1-hr acute restraint stress model, we uncover that stress causes a net decrease in vSUB activity in females that is potent, long-lasting, and driven by adrenergic receptor signaling. By contrast, males exhibit a net increase in vSUB activity that is transient and driven by corticosterone signaling. We further identified sex-dependent changes in vSUB output to the bed nucleus of the stria terminalis and in anxiety-like behavior in response to stress. These findings reveal striking changes in psychiatric disease-relevant brain regions and behavior following stress with sex-, cell-type, and synapse-specificity that contribute to our understanding of sex-dependent adaptations that may shape stress-related psychiatric disease risk.
Collapse
Affiliation(s)
- Carley N Miller
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuan Li
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA 92697
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA 92697
- Department of Biomedical Engineering, University of California, Irvine, CA, USA 92697
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA 92697
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
24
|
Wang J, Yu H, Li X, Li F, Chen H, Zhang X, Wang Y, Xu R, Gao F, Wang J, Liu P, Shi Y, Qin D, Li Y, Liu S, Ding S, Gao XY, Wang ZH. A TrkB cleavage fragment in hippocampus promotes Depressive-Like behavior in mice. Brain Behav Immun 2024; 119:56-83. [PMID: 38555992 DOI: 10.1016/j.bbi.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Decreased hippocampal tropomyosin receptor kinase B (TrkB) level is implicated in the pathophysiology of stress-induced mood disorder and cognitive decline. However, how TrkB is modified and mediates behavioral responses to chronic stress remains largely unknown. Here the effects and mechanisms of TrkB cleavage by asparagine endopeptidase (AEP) were examined on a preclinical murine model of chronic restraint stress (CRS)-induced depression. CRS activated IL-1β-C/EBPβ-AEP pathway in mice hippocampus, accompanied by elevated TrkB 1-486 fragment generated by AEP. Specifi.c overexpression or suppression of AEP-TrkB axis in hippocampal CaMKIIα-positive cells aggravated or relieved depressive-like behaviors, respectively. Mechanistically, in addition to facilitating AMPARs internalization, TrkB 1-486 interacted with peroxisome proliferator-activated receptor-δ (PPAR-δ) and sequestered it in cytoplasm, repressing PPAR-δ-mediated transactivation and mitochondrial function. Moreover, co-administration of 7,8-dihydroxyflavone and a peptide disrupting the binding of TrkB 1-486 with PPAR-δ attenuated depression-like symptoms not only in CRS animals, but also in Alzheimer's disease and aged mice. These findings reveal a novel role for TrkB cleavage in promoting depressive-like phenotype.
Collapse
Affiliation(s)
- Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yamei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruifeng Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yuke Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuai Ding
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin-Ya Gao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China; Laboratory of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
25
|
Wang Z, Hu Q, Tian C, Wang R, Jiao Q, Chen F, Wu T, Wang J, Zhu Y, Liu A, Zhang W, Li J, Shen H. Prophylactic Effects of n-Acethylcysteine on Inflammation-induced Depression-like Behaviors in Mice. Neuroscience 2024; 549:42-54. [PMID: 38729599 DOI: 10.1016/j.neuroscience.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Depression, affecting individuals worldwide, is a prevalent mental disease, with an increasing incidence. Numerous studies have been conducted on depression, yet its pathogenesis remains elusive. Recent advancements in research indicate that disturbances in synaptic transmission, synaptic plasticity, and reduced neurotrophic factor expression significantly contribute to depression's pathogenesis. In our study, we utilized adult male C57BL/6J mice. Lipopolysaccharide (LPS) can induce both chronic and acute depression-like symptoms in mice, a widely used model for studying depression associated with inflammation. N-acetylcysteine (NAC) exhibits anti-inflammatory and ameliorative effects on depressive symptoms. This study sought to determine whether NAC use could mitigate inflammatory depressive behavior through the enhancement of synaptic transmission, synaptic plasticity, and increasing levels of brain-derived neurotrophic factor (BDNF). In this study, we discovered that in mice modeled with depression-like symptoms, the expression levels of dendrites, BDNF, and miniature excitatory postsynaptic potential (mEPSC) in glutamatergic neurons, as well as the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPARs) GluA1 and GluA2 subunits, were significantly decreased. These findings suggest an impairment in the synaptic transmission of glutamatergic neurons. Following treatment with NAC, the previously mentioned levels improved, indicating an enhancement in both synaptic transmission and synaptic plasticity. Our results suggest that NAC exerts a protective effect on mouse models of inflammatory depression, potentially through the enhancement of synaptic transmission and plasticity, as well as the restoration of neurotrophic factor expression. These findings offer vital animal experimental evidence supporting NAC's role in mitigating inflammatory depressive behaviors.
Collapse
Affiliation(s)
- Zhenhuan Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China; Comprehensive Development Service Center, Tianjin Baodi District Health Commission, Tianjin, China
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ruipeng Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Feng Chen
- Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jialiang Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuxuan Zhu
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China.
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China.
| | - Hui Shen
- Laboratory of Neurobiology, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
26
|
Zhao Y, Chen Y, Guo C, Li P, Cheng Z, Zheng L, Sha B, Xu H, Su X, Wang Y. Chronic stress dysregulates the Hippo/YAP/14-3-3η pathway and induces mitochondrial damage in basolateral amygdala in a mouse model of depression. Theranostics 2024; 14:3653-3673. [PMID: 38948066 PMCID: PMC11209716 DOI: 10.7150/thno.92676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shannxi 710021, China
| | - Chihua Guo
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhao Cheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Lei Zheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Baoyong Sha
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Hao Xu
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Xingli Su
- Department of Basic Medicine Science & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yunpeng Wang
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Lead contact
| |
Collapse
|
27
|
Kong F, Xu Z, Yang G, Jia Q, Mo F, Jing L, Luo J, Jin H, Cai X. Microelectrode Arrays for Detection of Neural Activity in Depressed Rats: Enhanced Theta Activity in the Basolateral Amygdala. CYBORG AND BIONIC SYSTEMS 2024; 5:0125. [PMID: 38841725 PMCID: PMC11151173 DOI: 10.34133/cbsystems.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
Depression is a common and severely debilitating neuropsychiatric disorder. Multiple studies indicate a strong correlation between the occurrence of immunological inflammation and the presence of depression. The basolateral amygdala (BLA) is crucial in the cognitive and physiological processing and control of emotion. However, due to the lack of detection tools, the neural activity of the BLA during depression is not well understood. In this study, a microelectrode array (MEA) based on the shape and anatomical location of the BLA in the brain was designed and manufactured. Rats were injected with lipopolysaccharide (LPS) for 7 consecutive days to induce depressive behavior. We used the MEA to detect neural activity in the BLA before modeling, during modeling, and after LPS administration on 7 consecutive days. The results showed that after LPS treatment, the spike firing of neurons in the BLA region of rats gradually became more intense, and the local field potential power also increased progressively. Further analysis revealed that after LPS administration, the spike firing of BLA neurons was predominantly in the theta rhythm, with obvious periodic firing characteristics appearing after the 7 d of LPS administration, and the relative power of the local field potential in the theta band also significantly increased. In summary, our results suggest that the enhanced activity of BLA neurons in the theta band is related to the depressive state of rats, providing valuable guidance for research into the neural mechanisms of depression.
Collapse
Affiliation(s)
- Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department,
Peking University First Hospital, Beijing 100034, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Wei JQ, Bai J, Zhou CH, Yu H, Zhang W, Xue F, He H. Electroacupuncture intervention alleviates depressive-like behaviors and regulates gut microbiome in a mouse model of depression. Heliyon 2024; 10:e30014. [PMID: 38699009 PMCID: PMC11064442 DOI: 10.1016/j.heliyon.2024.e30014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Electroacupuncture (EA) is a neuroregulatory therapy for depression. Nonetheless, the effects of EA on the gut microbiome in mice models of depression are not well established. Here, using a chronic unpredictable mild stress (CUMS) model in mice, we evaluated the antidepressant effects of EA and changes in gut microbiota with behavioral tests and 16S rRNA gene sequencing. The results found that EA increased the time spent in the center area of the open-field test and the percentage of sucrose preference and reduced the immobility time in the tail suspension test in CUMS-treated mice. Furthermore, the genus Lachnoclostridium, Ruminococcaceae_UCG-002 and Rikenellaceae_RC9_gut_group were enriched in the CUMS group, which was positively correlated with depressive-like behaviors. Whereas phylum Actinobacteria and genus Allobaculum, Bifidobacterium, Dubosiella, Rikenella and Ileibacterium were enriched in the EA and CUMS + EA groups, all of which were negatively correlated with depressive-like behaviors. This study characterizes gut microbiota under EA treatment and provides new insights into the association of anti-depressive-like effects of EA and gut microbiota.
Collapse
Affiliation(s)
- Jia-quan Wei
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Jie Bai
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Cui-hong Zhou
- Department of Psychiatry, Xijing Hospital, Xi'an, 710032, China
| | - Huan Yu
- Department of Psychiatry, Xijing Hospital, Xi'an, 710032, China
| | - Wen Zhang
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Fen Xue
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| | - Hong He
- Department of Psychiatry, Xi'an Gaoxin Hospital, Xi'an, 710077, China
| |
Collapse
|
29
|
Han RW, Zhang ZY, Jiao C, Hu ZY, Pan BX. Synergism between two BLA-to-BNST pathways for appropriate expression of anxiety-like behaviors in male mice. Nat Commun 2024; 15:3455. [PMID: 38658548 PMCID: PMC11043328 DOI: 10.1038/s41467-024-47966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Understanding how distinct functional circuits are coordinated to fine-tune mood and behavior is of fundamental importance. Here, we observe that within the dense projections from basolateral amygdala (BLA) to bed nucleus of stria terminalis (BNST), there are two functionally opposing pathways orchestrated to enable contextually appropriate expression of anxiety-like behaviors in male mice. Specifically, the anterior BLA neurons predominantly innervate the anterodorsal BNST (adBNST), while their posterior counterparts send massive fibers to oval BNST (ovBNST) with moderate to adBNST. Optogenetic activation of the anterior and posterior BLA inputs oppositely regulated the activity of adBNST neurons and anxiety-like behaviors, via disengaging and engaging the inhibitory ovBNST-to-adBNST microcircuit, respectively. Importantly, the two pathways exhibited synchronized but opposite responses to both anxiolytic and anxiogenic stimuli, partially due to their mutual inhibition within BLA and the different inputs they receive. These findings reveal synergistic interactions between two BLA-to-BNST pathways for appropriate anxiety expression with ongoing environmental demands.
Collapse
Affiliation(s)
- Ren-Wen Han
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Zi-Yi Zhang
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chen Jiao
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Ze-Yu Hu
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
30
|
Chang L, Niu F, Li B. Ghrelin/GHSR signaling in the lateral septum ameliorates chronic stress-induced depressive-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110953. [PMID: 38278286 DOI: 10.1016/j.pnpbp.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ghrelin is a gastrointestinal hormone on feeding and metabolism regulation, and acts through its receptor-growth hormone secretagogue receptor (GHSR), which is widely distributed throughout the central nervous system. Recent studies have suggested that ghrelin plays an important role in the regulation of depression, but the underlying mechanisms remain uncertain. Lateral septum (LS) is a critical brain region in modulating depression. Therefore, we investigated the role of ghrelin/GHSR signaling in the LS on the depressive-like behaviors of mice under conditions of chronic stress by using behavioral tests, neuropharmacology, and molecular biology techniques. We found that infusion of ghrelin into the LS produced antidepressant-like responses in mice. Activation of LS GABAergic neurons was involved in the antidepressant effect of ghrelin. Importantly, GHSR was highly expressed and distributed in the LS neurons. Blockade of GHSR in the LS reversed the ghrelin-induced antidepressant-like effects. Molecular knockdown of GHSR in the LS induced depressive-like symptoms in mice. Furthermore, administration of ghrelin into the LS alleviated depressive-like behaviors induced by chronic social defeat stress (CSDS). Consistent with the neuropharmacological results, overexpression of GHSR in the LS reversed CSDS-induced depressive-like behaviors. Our findings clarify a key role for ghrelin/GHSR signaling in the regulation of chronic stress-induced depressive-like behaviors, which could provide new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Leilei Chang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
31
|
Wang C, Wang Q, Xu G, Sun Z, Zhang D, Ma C, Li Y, Wen D, Zhang X, Cong B. Circular RNA expression profiles and functional predication after restraint stress in the amygdala of rats. Front Mol Neurosci 2024; 17:1381098. [PMID: 38685915 PMCID: PMC11056511 DOI: 10.3389/fnmol.2024.1381098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Prolonged or repeated exposure to stress elevates the risk of various psychological diseases, many of which are characterized by central nervous system dysfunction. Recent studies have demonstrated that circular RNAs (circRNAs) are highly abundant in the mammalian brain. Although their precise expression and function remain unknown, they have been hypothesized to regulate transcriptional and post-transcriptional gene expression. In this investigation, we comprehensively analyzed whether restraint stress for 2 days altered the circRNA expression profile in the amygdala of male rats. The impact of restraint stress on behavior was evaluated using an elevated plus maze and open field test. Serum corticosterone levels were measured using an enzyme-linked immunosorbent assay. A total of 10,670 circRNAs were identified using RNA sequencing. Ten circRNAs were validated by reverse transcription and quantitative polymerase chain reaction analysis. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analyzes supported the notion that genes associated with differentially expressed circRNAs are primarily implicated in neuronal activity and neurotransmitter transport. Moreover, the three differentially expressed circRNAs showed high specificity in the amygdala. Overall, these findings indicate that differentially expressed circRNAs are highly enriched in the amygdala and offer a potential direction for further research on restraint stress.
Collapse
Affiliation(s)
- Chuan Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Guangming Xu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- Department of Forensic Medicine, The National Police University for Criminal Justice, Baoding, China
| | - Zhaoling Sun
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Dong Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, China
| |
Collapse
|
32
|
Dinur E, Goldenberg H, Robinson E, Naggan L, Kozela E, Yirmiya R. A Novel Anti-Inflammatory Formulation Comprising Celecoxib and Cannabidiol Exerts Antidepressant and Anxiolytic Effects. Cannabis Cannabinoid Res 2024; 9:561-580. [PMID: 36520610 DOI: 10.1089/can.2022.0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Ample research shows that anti-inflammatory drugs, particularly celecoxib, exert antidepressant effects, especially in patients with microglia activation. However, substantial cardiovascular adverse effects limit celecoxib's usefulness. Given that cannabidiol (CBD) exerts anti-inflammatory, microglia-suppressive, and antidepressant effects, we hypothesized that it may potentiate the therapeutic effects of celecoxib. Methods: The effects of celecoxib, CBD, and their combination were examined in murine models of antidepressant- and anxiolytic-like behavioral responsiveness, including the forced swim test (FST), elevated plus maze (EPM), lipopolysaccharide (LPS)-induced neuroinflammation, and chronic social defeat stress (CSDS), as well as in microglia cell cultures. Results: Acute administration of a combination of celecoxib plus CBD, at doses that had no effects by themselves (10 and 5 mg/kg, respectively), produced significant antidepressant- and anxiolytic-like effects in the FST and EPM, in male and female mice. In the LPS model, combinations of celecoxib (10 or 20 mg/kg) plus CBD (30 mg/kg) reversed the anxiety-like behavior in the open-field test (OFT) and anhedonia in the sucrose preference test (SPT), with minimal effects of celecoxib or CBD by themselves. In the CSDS paradigm, a combination of celecoxib plus CBD (each at 30 mg/kg) reversed the deficits in the OFT, EPM, social exploration, and SPT, whereas celecoxib or CBD by themselves had partial effects. In BV2 microglia cultures stimulated with LPS or α-synuclein, CBD markedly potentiated the suppressive effects of celecoxib over TNFα (tumor necrosis factor-α) and IL (interleukin)-1β secretion. Conclusions: Combinations of celecoxib plus CBD produce efficacious antidepressant- and anxiolytic-like effects, which may depend on their synergistic microglia-suppressive effects.
Collapse
Affiliation(s)
- Eyal Dinur
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Goldenberg
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Robinson
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Naggan
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ewa Kozela
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Wang M, Wei X, Jia Y, Wang C, Wang X, Zhang X, Li D, Wang Y, Gao Y. Quercetin alleviates chronic unpredictable mild stress-induced depression-like behavior by inhibiting NMDAR1 with α2δ-1 in rats. CNS Neurosci Ther 2024; 30:e14724. [PMID: 38615365 PMCID: PMC11016343 DOI: 10.1111/cns.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Chronic unpredictable mild stress (CUMS) can lead to a significant acceleration of depression development. Quercetin (Que) is a flavonoid compound with a wide range of pharmacological effects. Recent studies have shown that quercetin can improve CUMS-induced depression-like behavior, but the mechanism of its improvement is still unclear. α2δ-1 is a regulatory subunit of voltage-gated calcium channel, which can interact with N-methyl-D-aspartate receptor (NMDAR) to form a complex. OBJECTIVE In this study, we found that Que could inhibit the increase of α2δ-1 and NMDAR expression in rat hypothalamus induced by CUMS. In pain, chronic hypertension and other studies have shown that α2δ-1 interacts with the NMDAR to form a complex, which subsequently affects the expression level of NMDAR. Consequently, the present study aimed to investigate the antidepressant effect of Que in vivo and in vitro and to explore its mechanism of action in terms of the interaction between α2δ-1 and NMDAR. METHODS Rats were randomly exposed to two stressors every day for 4 weeks to establish a CUMS rat model, then sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test (OFT) were performed to detect the behavior of CUMS rats, so as to evaluate whether the CUMS rat model was successfully established and the improvement effect of Que on CUMS-induced depression-like behavior in rats. Experimental techniques such as serum enzyme-linked immunosorbent assay (ELISA), immunofluorescence, Western blot, and co-immunoprecipitation, as well as in vitro experiments, were used to investigate the mechanisms by which Que exerts its antidepressant effects. RESULTS Behavioral and ELISA test results showed that Que could produce a reduction in the excitability of the hypothalamic-pituitary-adrenal (HPA) axis in CUMS rats and lead to significant improvements in their depressive behavior. Western blot, immunofluorescence, and co-immunoprecipitation experiments showed that Que produced a decrease in NMDAR1 and α2δ-1 expression levels and interfered with α2δ-1 and NMDAR1 binding. In addition, the neural regulation mechanism of Que on antidepressant effect in PC12 cells knocked out α2δ-1 gene was further verified. Cellular experiments demonstrated that Que led to a reversal of up-regulation of NMDAR1 and α2δ-1 expression levels in corticosterone-injured PC12 cells, while Que had no effects on NMDAR1 expression in PC12 cells with the α2δ-1 gene knockout. CONCLUSIONS Que has a good antidepressant effect and can significantly improve the depression-like behavior caused by CUMS. It exerts antidepressant effects by inhibiting the expression level of α2δ-1, interfering with the interaction between α2δ-1 and NMDAR, and then reducing the excitability of the HPA axis.
Collapse
Affiliation(s)
- Mingyan Wang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Xin Wei
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Yugai Jia
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Chaonan Wang
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Xinliu Wang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Xin Zhang
- College of Integrative Chinese and Western MedicineHebei University of Chinese MedicineShijiazhuangChina
| | - Depei Li
- Department of MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Yuanyuan Wang
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
| | - Yonggang Gao
- College of Basic Medical SciencesHebei University of Chinese MedicineShijiazhuangChina
- Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese MedicineShijiazhuangChina
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular DiseaseShijiazhuangChina
| |
Collapse
|
34
|
Ma H, Li JF, Qiao X, Zhang Y, Hou XJ, Chang HX, Chen HL, Zhang Y, Li YF. Sigma-1 receptor activation mediates the sustained antidepressant effect of ketamine in mice via increasing BDNF levels. Acta Pharmacol Sin 2024; 45:704-713. [PMID: 38097715 PMCID: PMC10943013 DOI: 10.1038/s41401-023-01201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
Sigma-1 receptor (S1R) is a unique multi-tasking chaperone protein in the endoplasmic reticulum. Since S1R agonists exhibit potent antidepressant-like activity, S1R has become a novel target for antidepression therapy. With a rapid and sustained antidepressant effect, ketamine may also interact with S1R. In this study, we investigated whether the antidepressant action of ketamine was related to S1R activation. Depression state was evaluated in the tail suspension test (TST) and a chronic corticosterone (CORT) procedure was used to induce despair-like behavior in mice. The neuronal activities and structural changes of pyramidal neurons in medial prefrontal cortex (mPFC) were assessed using fiber-optic recording and immunofluorescence staining, respectively. We showed that pharmacological manipulation of S1R modulated ketamine-induced behavioral effect. Furthermore, pretreatment with an S1R antagonist BD1047 (3 mg·kg-1·d-1, i.p., for 3 consecutive days) significantly weakened the structural and functional restoration of pyramidal neuron in mPFC caused by ketamine (10 mg·kg-1, i.p., once). Ketamine indirectly triggered the activation of S1R and subsequently increased the level of BDNF. Pretreatment with an S1R agonist SA4503 (1 mg·kg-1·d-1, i.p., for 3 consecutive days) enhanced the sustained antidepressant effect of ketamine, which was eliminated by knockdown of BDNF in mPFC. These results reveal a critical role of S1R in the sustained antidepressant effect of ketamine, and suggest that a combination of ketamine and S1R agonists may be more beneficial for depression patients.
Collapse
Affiliation(s)
- Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jin-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin Qiao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | | | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong-Lei Chen
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of the People's Republic of China, Beijing, 100083, China.
- IDG/McGovern Institute for Brain Research at Peking University, Beijing, 100083, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
35
|
Liu D, Zheng X, Hui Y, Xu Y, Du J, Du Z, Che Y, Wu F, Yu G, Zhang J, Gong X, Guo G. Lateral hypothalamus orexinergic projection to the medial prefrontal cortex modulates chronic stress-induced anhedonia but not anxiety and despair. Transl Psychiatry 2024; 14:149. [PMID: 38493173 PMCID: PMC10944479 DOI: 10.1038/s41398-024-02860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Chronic stress-induced anxiodepression is a common health problem, however its potential neurocircuitry mechanism remains unclear. We used behavioral, patch-clamp electrophysiology, chemogenetic, and optogenetic approaches to clarify the response of the lateral hypothalamus (LH) and the medial prefrontal cortex (mPFC) to stress, confirmed the structural connections between the LH and mPFC, and investigated the role of the LH-mPFC pathway in chronic stress-induced anxiodepression symptoms. Unpredictable chronic mild stress (UCMS) caused anxiodepression-like behaviors, including anxiety, anhedonia, and despair behaviors. We discovered that the activity of the LH and mPFC was both increased after restraint stress (RS), a stressor of UCMS. Then we found that the orexinergic neurons in the LH predominantly project to the glutamatergic neurons in the mPFC, and the excitability of these neurons were increased after UCMS. In addition, overactivated LH orexinergic terminals in the mPFC induced anhedonia but not anxiety and despair behaviors in naive mice. Moreover, chemogenetically inhibited LH-mPFC orexinergic projection neurons and blocked the orexin receptors in the mPFC alleviated anhedonia but not anxiety and despair behaviors in UCMS-treated mice. Our study identified a new neurocircuit from LH orexinergic neurons to mPFC and revealed its role in regulating anhedonia in response to stress. Overactivation of LHOrx-mPFC pathway selectively mediated chronic stress-induced anhedonia. In normal mice, the LHOrx-mPFC pathway exhibits relatively low activity. However, after chronic stress, the activity of orexinergic neuron in LH is overactivated, leading to an increased release of orexin into the mPFC. This heightened orexin concentration results in increased excitability of the mPFC through OX1R and OX2R, consequently triggering anhedonia.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Yuqing Hui
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Xu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Jinjiang Du
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Zean Du
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Yichen Che
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Guangyin Yu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China.
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
36
|
Wang W, Li Y, Wang L, Chen X, Lan T, Wang C, Chen S, Yu S. FBXL20 promotes synaptic impairment in depression disorder via degrading vesicle-associated proteins. J Affect Disord 2024; 349:132-144. [PMID: 38211741 DOI: 10.1016/j.jad.2024.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Synaptic plasticity changes in presynaptic terminals or postsynaptic membranes play a critical role in cognitive impairments and emotional disorders, but the underlying molecular mechanisms in depression remain largely unknown. METHODS The regulation effects of F-box and leucine-rich repeat protein 20 (FBXL20), vesicular glutamate transporter 1 (VGLUT1) and vesicle-associated membrane protein 1 (VAMP1) on synaptic plasticity and depressive-like behaviors examined by proteomics analysis, viral stereotaxic injection, transmission electron microscope and biochemical methods. The glutamate release detected by fluorescent probe in cultured primary pyramidal neurons. RESULTS We found that chronic unpredictable mild stress (CUMS) induced significant synaptic deficits within hippocampus of depressed rats, accompanied with the decreased expression of VGLUT1 and VAMP1. Moreover, knockdown of VGLUT1 or VAMP1 in hippocampal pyramidal neurons resulted in abnormal glutamatergic neurotransmitter release. In addition, we found that the E3 ubiquitin ligase FBXL20 was increased within hippocampus, which may promote ubiquitination and degradation of VGLUT1 and VAMP1, and thus resulted in the reduction of glutamatergic neurotransmitter release, the disruptions of synaptic transmission and the induction of depression-like behaviors in rats. In contrast, shRNA knockdown of FBXL20 within the hippocampus of depressed rats significantly ameliorated synaptic damage and depression-like behaviors. LIMITATION Only one type of depression model was used in the present study, while other animal models should be used in the future to confirm the underlying mechanisms reported here. CONCLUSIONS This study provides new insights that inhibiting FBXL20 pathway in depressed rats may be an effective strategy to rescue synaptic transmission and depression-like behaviors.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liyan Wang
- Morphological Experimental Center, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, China
| | - Xiao Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Changmin Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan, Shandong 250033, China.
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Key Laboratory of Mental Disorders, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
37
|
Asim M, Wang H, Chen X, He J. Potentiated GABAergic neuronal activities in the basolateral amygdala alleviate stress-induced depressive behaviors. CNS Neurosci Ther 2024; 30:e14422. [PMID: 37715582 PMCID: PMC10915993 DOI: 10.1111/cns.14422] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
AIMS Major depressive disorder is a severe psychiatric disorder that afflicts ~17% of the world population. Neuroimaging investigations of depressed patients have consistently reported the dysfunction of the basolateral amygdala in the pathophysiology of depression. However, how the BLA and related circuits are implicated in the pathogenesis of depression is poorly understood. METHODS Here, we combined fiber photometry, immediate early gene expression (c-fos), optogenetics, chemogenetics, behavioral analysis, and viral tracing techniques to provide multiple lines of evidence of how the BLA neurons mediate depressive-like behavior. RESULTS We demonstrated that the aversive stimuli elevated the neuronal activity of the excitatory BLA neurons (BLACAMKII neurons). Optogenetic activation of CAMKII neurons facilitates the induction of depressive-like behavior while inhibition of these neurons alleviates the depressive-like behavior. Next, we found that the chemogenetic inhibition of GABAergic neurons in the BLA (BLAGABA ) increased the firing frequency of CAMKII neurons and mediates the depressive-like phenotypes. Finally, through fiber photometry recording and chemogenetic manipulation, we proved that the activation of BLAGABA neurons inhibits BLACAMKII neuronal activity and alleviates depressive-like behavior in the mice. CONCLUSION Thus, through evaluating BLAGABA and BLACAMKII neurons by distinct interaction, the BLA regulates depressive-like behavior.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of NeuroscienceCity University of Hong KongKowloon TongPeople's Republic of China
- Department of Biomedical ScienceCity University of Hong KongKowloon TongPeople's Republic of China
| | - Huajie Wang
- Department of NeuroscienceCity University of Hong KongKowloon TongPeople's Republic of China
- Department of Biomedical ScienceCity University of Hong KongKowloon TongPeople's Republic of China
| | - Xi Chen
- Department of NeuroscienceCity University of Hong KongKowloon TongPeople's Republic of China
- City University of Hong Kong Shenzhen Research InstituteShenzhenPeople's Republic of China
| | - Jufang He
- Department of NeuroscienceCity University of Hong KongKowloon TongPeople's Republic of China
- City University of Hong Kong Shenzhen Research InstituteShenzhenPeople's Republic of China
| |
Collapse
|
38
|
Zhan Q, Kong F, Shao S, Zhang B, Huang S. Pathogenesis of Depression in Alzheimer's Disease. Neurochem Res 2024; 49:548-556. [PMID: 38015411 DOI: 10.1007/s11064-023-04061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Depression is a prevalent occurrence among Alzheimer's disease (AD) patients, yet its underlying mechanism remains unclear. Recent investigations have revealed that several pathophysiological changes associated with Alzheimer's disease can lead to mood disorders. These alterations include irregularities in monoamine neurotransmitters, disruptions in glutamatergic synaptic transmission, neuro-inflammation, dysfunction within the hypothalamic-pituitary-adrenocortical (HPA) axis, diminished levels of brain-derived neurotrophic factor (BDNF), and hippocampal atrophy. This review consolidates research findings from pertinent fields to elucidate the mechanisms underlying depression in Alzheimer's disease, aiming to provide valuable insights for the study of its mechanisms and clinical treatment.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fanyi Kong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Shao
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Shuming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
39
|
Sun Z, Zhang X, Dong Y, Liu Y, Wang C, Li Y, Ma C, Xu G, Wang S, Yang C, Zhang G, Cong B. Norepinephrine-Activated p38 MAPK Pathway Mediates Stress-Induced Cytotoxic Edema of Basolateral Amygdala Astrocytes. Brain Sci 2024; 14:161. [PMID: 38391735 PMCID: PMC10887202 DOI: 10.3390/brainsci14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its potential mechanisms remain largely unknown. Hence, we performed in vivo and in vitro experiments using a restraint stress (RS) rat model and stress-induced astrocyte culture, respectively. Our data show that norepinephrine (NE) content increased, cytotoxic edema occurred, and aquaporin-4 (AQP4) expression was up-regulated in the basolateral amygdala (BLA) obtained from RS rats. Additionally, the p38 mitogen-activated protein kinase (MAPK) pathway was also observed to be significantly activated in the BLA of rats subjected to RS. The administration of NE to in vitro astrocytes increased the AQP4 level and induced cell edema. Furthermore, p38 MAPK signaling was activated. The NE inhibitor alpha-methyl-p-tyrosine (AMPT) alleviated cytotoxic edema in astrocytes, inhibited AQP4 expression, and inactivated the p38 MAPK pathway in RS rats. Meanwhile, in the in vitro experiment, the p38 MAPK signaling inhibitor SB203580 reversed NE-induced cytotoxic edema and down-regulated the expression of AQP4 in astrocytes. Briefly, NE-induced activation of the p38 MAPK pathway mediated cytotoxic edema in BLA astrocytes from RS rats. Thus, our data provide novel evidence that NE-induced p38 MAPK pathway activation may be one of the mechanisms leading to cytotoxic edema in BLA under stress conditions, which also could enable the development of an effective therapeutic strategy against cytotoxic edema in BLA under stress and provide new ideas for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zhaoling Sun
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiming Dong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yichang Liu
- Department of Forensic Medicine, College of Medicine, Nantong University, Nantong 226000, China
| | - Chuan Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Guangming Xu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Chenteng Yang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Guozhong Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Province Laboratory of Experimental Animal, Shijiazhuang 050017, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou 571199, China
| |
Collapse
|
40
|
Ajayi T, Thomas A, Nikolic M, Henderson L, Zaheri A, Dwyer DS. Evolutionary conservation of putative suicidality-related risk genes that produce diminished motivation corrected by clozapine, lithium and antidepressants. Front Psychiatry 2024; 15:1341735. [PMID: 38362034 PMCID: PMC10867104 DOI: 10.3389/fpsyt.2024.1341735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Background Genome wide association studies (GWAS) and candidate gene analyses have identified genetic variants and genes that may increase the risk for suicidal thoughts and behaviors (STBs). Important unresolved issues surround these tentative risk variants such as the characteristics of the associated genes and how they might elicit STBs. Methods Putative suicidality-related risk genes (PSRGs) were identified by comprehensive literature search and were characterized with respect to evolutionary conservation, participation in gene interaction networks and associated phenotypes. Evolutionary conservation was established with database searches and BLASTP queries, whereas gene-gene interactions were ascertained with GeneMANIA. We then examined whether mutations in risk-gene counterparts in C. elegans produced a diminished motivation phenotype previously connected to suicide risk factors. Results and conclusions From the analysis, 105 risk-gene candidates were identified and found to be: 1) highly conserved during evolution, 2) enriched for essential genes, 3) involved in significant gene-gene interactions, and 4) associated with psychiatric disorders, metabolic disturbances and asthma/allergy. Evaluation of 17 mutant strains with loss-of-function/deletion mutations in PSRG orthologs revealed that 11 mutants showed significant evidence of diminished motivation that manifested as immobility in a foraging assay. Immobility was corrected in some or all of the mutants with clozapine, lithium and tricyclic antidepressant drugs. In addition, 5-HT2 receptor and muscarinic receptor antagonists restored goal-directed behavior in most or all of the mutants. These studies increase confidence in the validity of the PSRGs and provide initial clues about possible mechanisms that mediate STBs.
Collapse
Affiliation(s)
- Titilade Ajayi
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, United States
| | - Alicia Thomas
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, United States
| | - Marko Nikolic
- Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, LA, United States
| | - Lauryn Henderson
- Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, LA, United States
| | - Alexa Zaheri
- Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, LA, United States
| | - Donard S. Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
41
|
Xia F, Fascianelli V, Vishwakarma N, Ghinger FG, Fusi S, Kheirbek MA. Identifying and modulating neural signatures of stress susceptibility and resilience enables control of anhedonia. RESEARCH SQUARE 2024:rs.3.rs-3581329. [PMID: 38343839 PMCID: PMC10854313 DOI: 10.21203/rs.3.rs-3581329/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Anhedonia is a core aspect of major depressive disorder. Traditionally viewed as a blunted emotional state in which individuals are unable to experience joy, anhedonia also diminishes the drive to seek rewards and the ability to value and learn about them 1-4.The neural underpinnings of anhedonia and how this emotional state drives related behavioral changes remain unclear. Here, we investigated these questions by taking advantage of the fact that when mice are exposed to traumatic social stress, susceptible animals become socially withdrawn and anhedonic, where they cease to seek high-value rewards, while others remain resilient. By performing high density electrophysiological recordings and comparing neural activity patterns of these groups in the basolateral amygdala (BLA) and ventral CA1 (vCA1) of awake behaving animals, we identified neural signatures of susceptibility and resilience to anhedonia. When animals actively sought rewards, BLA activity in resilient mice showed stronger discrimination between upcoming reward choices. In contrast, susceptible mice displayed a rumination-like signature, where BLA neurons encoded the intention to switch or stay on a previously chosen reward. When animals were at rest, the spontaneous BLA activity of susceptible mice was higher dimensional than in controls, reflecting a greater number of distinct neural population states. Notably, this spontaneous activity allowed us to decode group identity and to infer if a mouse had a history of stress better than behavioral outcomes alone. Finally, targeted manipulation of vCA1 inputs to the BLA in susceptible mice rescued dysfunctional neural dynamics, amplified dynamics associated with resilience, and reversed their anhedonic behavior. This work reveals population-level neural signatures that explain individual differences in responses to traumatic stress, and suggests that modulating vCA1-BLA inputs can enhance resilience by regulating these dynamics.
Collapse
Affiliation(s)
- Frances Xia
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Valeria Fascianelli
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
| | - Nina Vishwakarma
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
| | - Frances Grace Ghinger
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, NY, USA
- Kavli Institute for Brain Science, Columbia University Irving Medical Center, NY, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
42
|
Koketsu S, Matsubara K, Ueki Y, Shinohara Y, Inoue K, Murakami S, Ueki T. The defects of the hippocampal ripples and theta rhythm in depression, and the effects of physical exercise on their amelioration. Heliyon 2024; 10:e23738. [PMID: 38226277 PMCID: PMC10788462 DOI: 10.1016/j.heliyon.2023.e23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Adverse environmental stress causes depressive symptoms with the impairments of memory formation, cognition, and motivation, however, their underlying neural bases have not been well understood, especially based on the observation of living animals. In the present study, therefore, the mice model of restraint-induced stress was examined electrophysiologically to investigate the alterations of hippocampal sharp wave ripples (SWRs) and theta rhythms. In addition, the therapeutic effects of physical exercise on the amelioration of those hippocampal impairments were examined in combination with a series of behavioral tests. The data demonstrated that chronic restraint stress caused the reductions of occurrence and amplitude of hippocampal SWRs and the decreases of occurrence, duration, and power of theta rhythms, while physical exercise significantly reverted them to the levels of healthy control. Furthermore, hippocampal adult neurogenesis and microglial activation, previously reported to be involved in the etiology of depression, were histologically examined in the mice. The results showed that the impairment of neurogenesis and alleviation of microglial activation were induced in the depressed mice. On the other hand, physical exercise considerably ameliorated those pathological conditions in the affected brain. Consistently, the data of behavioral tests in mice suggested that physical exercise ameliorated the symptomatic defects of motivation, memory formation, and cognition in the depressed mice. The impairments of hippocampal SWRs and theta rhythms in the affected hippocampus are linked with the symptomatic impairments of cognition and motivation, and the defect of memory formation, respectively, in depression. Taken together, this study demonstrated the implications of impairment of the hippocampal SWRs and theta rhythms in the etiology of depression and their usefulness as diagnostic markers of depression.
Collapse
Affiliation(s)
- Shinnosuke Koketsu
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Physical Therapy, Nagoya Women's University Faculty of Medical Science, Nagoya, Aichi, 467-8610, Japan
| | - Kohki Matsubara
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshino Ueki
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshiaki Shinohara
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Yamanashi University Graduate School of Medical Sciences, Chuo, Yamanashi, 409-3898, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Satona Murakami
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
43
|
Ma H, Huang H, Li C, Li S, Gan J, Lian C, Ling Y. The antidepressive mechanism of Longya Lilium combined with Fluoxetine in mice with depression-like behaviors. NPJ Syst Biol Appl 2024; 10:5. [PMID: 38218856 PMCID: PMC10787738 DOI: 10.1038/s41540-024-00329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Traditional Chinese medicine is one of the most commonly used complementary and alternative medicine therapies for depression. Integrated Chinese-western therapies have been extensively applied in numerous diseases due to their superior efficiency in individual treatment. We used the meta-analysis, network pharmacology, and bioinformatics studies to identify the putative role of Longya Lilium combined with Fluoxetine in depression. Depression-like behaviors were mimicked in mice after exposure to the chronic unpredictable mild stress (CUMS). The underlying potential mechanism of this combination therapy was further explored based on in vitro and in vivo experiments to analyze the expression of COX-2, PGE2, and IL-22, activation of microglial cells, and neuron viability and apoptosis in the hippocampus. The antidepressant effect was noted for the combination of Longya Lilium with Fluoxetine in mice compared to a single treatment. COX-2 was mainly expressed in hippocampal CA1 areas. Longya Lilium combined with Fluoxetine reduced the expression of COX-2 and thus alleviated depression-like behavior and neuroinflammation in mice. A decrease of COX-2 curtailed BV-2 microglial cell activation, inflammation, and neuron apoptosis by blunting the PGE2/IL-22 axis. Therefore, a combination of Longya Lilium with Fluoxetine inactivates the COX-2/PGE2/IL-22 axis, consequently relieving the neuroinflammatory response and the resultant depression.
Collapse
Affiliation(s)
- Huina Ma
- Department of Health, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Hehua Huang
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chenyu Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Shasha Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Juefang Gan
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chunrong Lian
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Yanwu Ling
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China.
| |
Collapse
|
44
|
Lin W, Zhou Y, Liu Y, Liu C, Lin M, Tang Y, Chen A, Wu B, Lin C. Dorsoventral hippocampus distinctly modulates visceral sensitivity and anxiety behaviors in male IBS-like rats. J Neurosci Res 2024; 102. [PMID: 38284854 DOI: 10.1002/jnr.25289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Accumulating evidences suggest dysfunctions in the hippocampus are associated with chronic pain. Nevertheless, the role of hippocampal circuitry in pain memories and emotional responses is not yet fully understood. In this study, we utilized a comprehensive approach that combined electromyography (EMG), photochemical genetic techniques, and anxiety-related behavioral paradigms to investigate the involvement of dorsal hippocampus (DH) and ventral hippocampus (VH) in visceral sensitivity and anxiety behaviors in male rats. Our results demonstrated that IBS-like rats exhibited comorbid visceral hypersensitivity and anxiety, along with the number of activated neurons in the VH was higher than that in the DH. Manipulation of glutamatergic neurons in the hippocampus was identified as a crucial mechanism underlying the mediation of both visceral sensitivity and anxiety behaviors. Specifically, optogenetic activation of the DH induced both visceral hypersensitivity and anxiety, while activation of the VH induced anxiety but did not affect visceral sensitivity. Conversely, chemogenetic inhibition of the DH reduced both visceral hypersensitivity and anxiety, whereas inhibition of the VH alleviated anxiety but did not alleviate visceral hypersensitivity in IBS-like rats. Our study highlights the important role of early life stress in inducing visceral hypersensitivity and anxiety, and further elucidates the distinct functional contributions of the DH and VH to these behavioral changes. These findings provide a theoretical basis for the diagnosis and treatment of IBS, and suggest that targeting specific hippocampal neuron subtypes may represent a promising therapeutic approach.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yifei Zhou
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuan Liu
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Congxu Liu
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mengying Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Tang
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Aiqin Chen
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Bin Wu
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
45
|
Xue SG, He JG, Lu LL, Song SJ, Chen MM, Wang F, Chen JG. Enhanced TARP-γ8-PSD-95 coupling in excitatory neurons contributes to the rapid antidepressant-like action of ketamine in male mice. Nat Commun 2023; 14:7971. [PMID: 38042894 PMCID: PMC10693574 DOI: 10.1038/s41467-023-42780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/20/2023] [Indexed: 12/04/2023] Open
Abstract
Ketamine produces rapid antidepressant effects at sub-anesthetic dosage through early and sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), however, the exact molecular mechanism still remains unclear. Transmembrane AMPAR regulatory protein-γ8 (TARP-γ8) is identified as one of AMPAR auxiliary subunits, which controls assemblies, surface trafficking and gating of AMPARs. Here, we show that ketamine rescues both depressive-like behaviors and the decreased AMPARs-mediated neurotransmission by recruitment of TARP-γ8 at the postsynaptic sites in the ventral hippocampus of stressed male mice. Furthermore, the rapid antidepressant effects of ketamine are abolished by selective blockade of TARP-γ8-containing AMPAR or uncoupling of TARP-γ8 from PSD-95. Overexpression of TARP-γ8 reverses chronic stress-induced depressive-like behaviors and attenuation of AMPARs-mediated neurotransmission. Conversely, knockdown of TARP-γ8 in excitatory neurons prevents the rapid antidepressant effects of ketamine.
Collapse
Affiliation(s)
- Shi-Ge Xue
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Gang He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China
| | - Ling-Li Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Jie Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Mei Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China.
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Jian-Guo Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030, Wuhan, China.
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| |
Collapse
|
46
|
Wang X, Hou X, Huo Y, Wang D, Fan X, Lin X, Yu W, Cui C, Guo J, Li Y. Phosphorylated Ser187-SNAP25-modulated hyperfunction of glutamatergic system in the vmPFC mediates depressive-like behaviors in male mice. Neuropharmacology 2023; 239:109691. [PMID: 37625690 DOI: 10.1016/j.neuropharm.2023.109691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Dysfunctional glutamatergic neurotransmission contributes importantly to the pathophysiology of depression. However, the underlying neural mechanisms of glutamatergic dysfunction remain poorly understood. Here, we employed chronic unpredictable mild stress (CUMS) to induce depression-like behavior in male mice and to assess the alterations of glutamatergic system within the ventromedial prefrontal cortex (vmPFC). Male mice subjected to CUMS showed an increase in levels of glutamate content, synaptosomal GluN2B-NMDA receptors (GluN2B-NMDARs) and phosphorylated synaptosomal associated protein 25 KD of Ser187 (pSer187-SNAP25), which is involved in synaptic vesicular fusion processes in the vmPFC. Downregulation of pSer187-SNAP25 via the TAT-S187 fusion peptide efficiently alleviated CUMS-induced depressive-like behaviors in male mice by reversing the increase of glutamate content and synaptosomal GluN2B-NMDARs. These findings demonstrated a critical role for pSer187-SNAP25-mediated glutamatergic dysfunction in CUMS-induced depressive-like behaviors, suggesting the potential of pS187-SNAP25 inhibitors for further investigation on depression management.
Collapse
Affiliation(s)
- Xinjuan Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xueyu Hou
- Department of Pediatric, Peking University People's Hospital, Beijing 100044, China
| | - Yu Huo
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xiang Fan
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Xiaorui Lin
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Cailian Cui
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing 100044, China.
| | - Yijing Li
- Department of Neurobiology, School of Basic Medical Sciences, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission, Peking University, Beijing 100191, China.
| |
Collapse
|
47
|
Wang H, Yang X, Lai H, Sun Y, Yan X, Ai Q, Lin M, Yang S, Yang Y, Chu S, Wang Z, Chen N. Novel antidepressant mechanism of hypericin: Role of connexin 43-based gap junctions. Biomed Pharmacother 2023; 167:115545. [PMID: 37734259 DOI: 10.1016/j.biopha.2023.115545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Hypericin is widely utilized for its precise antidepressant properties, but its exact antidepressant mechanism remains unclear. Gap junctions, which were predominantly expressed in astrocytes in the central nervous system, are concerned with the pathogenesis of depression. However, the role of hypericin in gap junctional dysfunction in depression has rarely been investigated. Here, we found that gap junctions were ultra-structurally broadened in the chronic unpredictable stress (CUS) rat model of depression, while hypericin repaired the dysfunction of gap junctions. Suppression of gap junctions by bilateral injection of carbenoxolone (CBX) in the prefrontal cortex of rats significantly inhibited the restoration of gap junctional dysfunction in depression by hypericin. Meanwhile, hypericin failed to show antidepressant benefits. Furthermore, in corticosterone (CORT)-stimulated primary astrocytes derived from neonatal rats, hypericin dramatically reversed the phosphorylation of connexin 43 (Cx43), normalizing the expression of Cx43 and thereby ameliorating gap junctional dysfunction. Comparatively, CBX inhibited the remission of hypericin on gap junctional intercellular communication function. Gap junctional function might be a novel therapeutic target for hypericin in the treatment of depression and provide potential novel insights into the antidepressant mechanism of other herbal ingredients.
Collapse
Affiliation(s)
- Huiqin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xueying Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yang Sun
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qidi Ai
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Meiyu Lin
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Songwei Yang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Yantao Yang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
48
|
Rybka KA, Lafrican JJ, Rosinger ZJ, Ariyibi DO, Brooks MR, Jacobskind JS, Zuloaga DG. Sex differences in androgen receptor, estrogen receptor alpha, and c-Fos co-expression with corticotropin releasing factor expressing neurons in restrained adult mice. Horm Behav 2023; 156:105448. [PMID: 38344954 PMCID: PMC10861933 DOI: 10.1016/j.yhbeh.2023.105448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Gonadal hormone actions through androgen receptor (AR) and estrogen receptor alpha (ERα) regulate sex differences in hypothalamic-pituitary-adrenal (HPA) axis responsivity and stress-related behaviors. Here we tested whether corticotropin releasing factor (CRF) expressing neurons, which are widely known to regulate neuroendocrine and behavioral stress responses, co-express AR and ERα as a potential mechanism for gonadal hormone regulation of these responses. Using Crh-IRES-Cre::Ai9 reporter mice we report high co-localization of AR in CRF neurons within the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), and ventromedial hypothalamus (VMH), moderate levels within the central amygdala (CeA) and low levels in the paraventricular hypothalamus (PVN). Sex differences in CRF/AR co-expression were found in the principal nucleus of the BST (BSTmpl), CeA, MeA, and VMH (males>females). CRF co-localization with ERα was generally lower relative to AR co-localization. However, high co-expression was found within the MPOA, AVPV, and VMH, with moderate co-expression in the arcuate nucleus (ARC), BST, and MeA and low levels in the PVN and CeA. Sex differences in CRF/ERα co-localization were found in the BSTmpl and PVN (males>females). Finally, we assessed neural activation of CRF neurons in restraint-stressed mice and found greater CRF/c-Fos co-expression in females in the BSTmpl and periaqueductal gray, while co-expression was higher in males within the ARC and dorsal CA1. Given the known role of CRF in regulating behavioral stress responses and the HPA axis, AR/ERα co-expression and sex-specific activation of CRF cell groups indicate potential mechanisms for modulating sex differences in these functions.
Collapse
Affiliation(s)
- Krystyna A Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jennifer J Lafrican
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Deborah O Ariyibi
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Mecca R Brooks
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
49
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
50
|
Zhou C, Chen Y, Xue S, Shi Q, Guo L, Yu H, Xue F, Cai M, Wang H, Peng Z. rTMS ameliorates depressive-like behaviors and regulates the gut microbiome and medium- and long-chain fatty acids in mice exposed to chronic unpredictable mild stress. CNS Neurosci Ther 2023; 29:3549-3566. [PMID: 37269082 PMCID: PMC10580350 DOI: 10.1111/cns.14287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) is a clinically useful therapy for depression. However, the effects of rTMS on the metabolism of fatty acids (FAs) and the composition of gut microbiota in depression are not well established. METHODS Mice received rTMS (15 Hz, 1.26 T) for seven consecutive days after exposure to chronic unpredictable mild stress (CUMS). The subsequent depressive-like behaviors, the composition of gut microbiota of stool samples, as well as medium- and long-chain fatty acids (MLCFAs) in the plasma, prefrontal cortex (PFC), and hippocampus (HPC) were evaluated. RESULTS CUMS induced remarkable changes in gut microbiotas and fatty acids, specifically in community diversity of gut microbiotas and PUFAs in the brain. 15 Hz rTMS treatment alleviates depressive-like behaviors and partially normalized CUMS induced alterations of microbiotas and MLCFAs, especially the abundance of Cyanobacteria, Actinobacteriota, and levels of polyunsaturated fatty acids (PUFAs) in the hippocampus and PFC. CONCLUSION These findings revealed that the modulation of gut microbiotas and PUFAs metabolism might partly contribute to the antidepressant effect of rTMS.
Collapse
Affiliation(s)
- Cui‐Hong Zhou
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yi‐Huan Chen
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shan‐Shan Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qing‐Qing Shi
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Lin Guo
- Department of PsychiatryChang'an HospitalXi'anChina
| | - Huan Yu
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Min Cai
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Hua‐Ning Wang
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of Psychiatry, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|