1
|
Zhu Y, Raza A, Bai Q, Zou C, Niu J, Guo Z, Wu Q. In-depth analysis of 17,115 rice transcriptomes reveals extensive viral diversity in rice plants. Nat Commun 2025; 16:1559. [PMID: 39939599 PMCID: PMC11822035 DOI: 10.1038/s41467-025-56769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Rice viruses seriously threaten rice cultivation and cause significant economic losses, but they have not yet been systematically identified, with only 20 rice-infecting viruses reported. Here, we perform a large-scale analysis of 17,115 RNA-seq libraries spanning 24 Oryza species across 51 countries. Using de novo assembly and homology-based methods, we identify 810 complete or near-complete viruses, including 276 known viruses and 534 novel viruses. Given the high divergence and atypical genome organizations of novel viruses, more than a half of them are tentatively assigned to 1 new order, 61 new families, and at least 104 new genera. Utilizing homology-independent approaches, we additionally identify 49 divergent RNA-dependent RNA polymerases (RdRPs), which are confirmed by protein structural alignment. Furthermore, we analyze the metadata of related Sequence Read Archive (SRA) libraries and estimated viral abundance in each library, leading to the screening of 427 viruses closely associated with rice plants. Overall, our study vastly expands the viral diversity in rice plants, providing insights for the prevention and control of viral disease.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Ali Raza
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Qing Bai
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiangshuai Niu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
2
|
Koonin E, Lee B. Diversity and evolution of viroids and viroid-like agents with circular RNA genomes revealed by metatranscriptome mining. Nucleic Acids Res 2025; 53:gkae1278. [PMID: 39727156 PMCID: PMC11797063 DOI: 10.1093/nar/gkae1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Viroids, the agents of several plant diseases, are the smallest and simplest known replicators that consist of covalently closed circular (ccc) RNA molecules between 200 and 400 nucleotides in size. Viroids encode no proteins and rely on host RNA polymerases for replication, but some contain ribozymes involved in replication intermediate processing. Although other viroid-like agents with cccRNAs genomes, such as satellite RNAs, ribozyviruses and retrozymes, have been discovered, until recently, the spread of these agents in the biosphere appeared narrow, and their actual diversity and evolution remained poorly understood. Extensive, targeted metatranscriptome mining dramatically expanded the known diversity of cccRNAs genomes. These searches identified numerous, diverse viroid-like cccRNAs, many found in environments devoid of plant and animal material, suggesting replication in unicellular eukaryotic and/or prokaryotic hosts. Several cccRNAs are targeted by CRISPR systems, supporting their association with bacteria. In addition to small cccRNAs in the viroid size range, a broad variety of ribozyviruses and novel viruses with cccRNAs genomes, with genomes reaching nearly 5 kilobases, were discovered. Thus, metatranscriptome mining shows that the diversity of viroid-like cccRNAs genomes is far greater than previously suspected, prompting reassessment of the relevance of these replicators for understanding the primordial RNA world.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Benjamin D Lee
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. Cell 2024; 187:6521-6536.e18. [PMID: 39481381 PMCID: PMC11949080 DOI: 10.1016/j.cell.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/03/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
Here, we describe "obelisks," a class of heritable RNA elements sharing several properties: (1) apparently circular RNA ∼1 kb genome assemblies, (2) predicted rod-like genome-wide secondary structures, and (3) open reading frames encoding a novel "Oblin" protein superfamily. A subset of obelisks includes a variant hammerhead self-cleaving ribozyme. Obelisks form their own phylogenetic group without detectable similarity to known biological agents. Surveying globally, we identified 29,959 distinct obelisks (clustered at 90% sequence identity) from diverse ecological niches. Obelisks are prevalent in human microbiomes, with detection in ∼7% (29/440) and ∼50% (17/32) of queried stool and oral metatranscriptomes, respectively. We establish Streptococcus sanguinis as a cellular host of a specific obelisk and find that this obelisk's maintenance is not essential for bacterial growth. Our observations identify obelisks as a class of diverse RNAs of yet-to-be-determined impact that have colonized and gone unnoticed in human and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA.
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada; University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Pathology, Stanford, CA, USA.
| |
Collapse
|
4
|
Denis Z, Khalfi P, Majzoub K. [Comparative analysis of human, rodent and snake deltavirus replication]. Med Sci (Paris) 2024; 40:601-603. [PMID: 39303107 DOI: 10.1051/medsci/2024085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Affiliation(s)
- Zoé Denis
- Institut de génétique moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Pierre Khalfi
- Institut de génétique moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Karim Majzoub
- Institut de génétique moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
5
|
Ding Y, Guo H, Hong X, Li Q, Miao Z, Pan Q, Zheng K, Wang W. The distinct spatiotemporal evolutionary landscape of HBV and HDV largely determines the unique epidemic features of HDV globally. Mol Phylogenet Evol 2024; 197:108114. [PMID: 38825156 DOI: 10.1016/j.ympev.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
Chronic infection of hepatitis B virus (HBV) and hepatitis D virus (HDV) causes the most severe form of viral hepatitis. Due to the dependence on HBV, HDV was deemed to co-evolve and co-migrate with HBV. However, we previously found that the naturally occurred HDV/HBV combinations do not always reflect the most efficient virological adaptation (Wang et al., 2021). Moreover, regions with heavy HBV burden do not always correlate with high HDV prevalence (e.g., East Asia), and vice versa (e.g., Central Asia). Herein, we systematically elucidated the spatiotemporal evolutionary landscape of HDV to understand the unique epidemic features of HDV. We found that the MRCA of HDV was from South America around the late 13th century, was globally dispersed mainly via Central Asia, and evolved into eight genotypes from the 19th to 20th century. In contrast, the MRCA of HBV was from Europe ∼23.7 thousand years ago (Kya), globally dispersed mainly via Africa and East Asia, and evolved into eight genotypes ∼1100 years ago. When HDV stepped in, all present-day HBV genotypes had already formed and its global genotypic distribution had stayed stable geographically. Nevertheless, regionalized HDV adapted to local HBV genotypes and human lineages, contributing to the global geographical separation of HDV genotypes. Additionally, a sharp increase in HDV infections was observed after the 20th century. In conclusion, HDV exhibited a distinct spatiotemporal distribution path compared with HBV. This unique evolutionary relationship largely fostered the unique epidemic features we observe nowadays. Moreover, HDV infections may continue to ramp up globally, thus more efforts are urgently needed to combat this disease.
Collapse
Affiliation(s)
- Yibo Ding
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Hongbo Guo
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Xinfang Hong
- Second Medical Center of PLA General Hospital, Beijing, China
| | - Qiudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Zhijiang Miao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Gnouamozi GE, Zhang Z, Prasad V, Lauber C, Seitz S, Urban S. Analysis of Replication, Cell Division-Mediated Spread, and HBV Envelope Protein-Dependent Pseudotyping of Three Mammalian Delta-like Agents. Viruses 2024; 16:859. [PMID: 38932152 PMCID: PMC11209313 DOI: 10.3390/v16060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The human hepatitis delta virus (HDV) is a satellite RNA virus that depends on hepatitis B virus (HBV) surface proteins (HBsAg) to assemble into infectious virions targeting the same organ (liver) as HBV. Until recently, the evolutionary origin of HDV remained largely unknown. The application of bioinformatics on whole sequence databases lead to discoveries of HDV-like agents (DLA) and shed light on HDV's evolution, expanding our understanding of HDV biology. DLA were identified in heterogeneous groups of vertebrates and invertebrates, highlighting that the evolution of HDV, represented by eight distinct genotypes, is broader and more complex than previously foreseen. In this study, we focused on the characterization of three mammalian DLA discovered in woodchuck (Marmota monax), white-tailed deer (Odocoileus virginianus), and lesser dog-like bat (Peropteryx macrotis) in terms of replication, cell-type permissiveness, and spreading pathways. We generated replication-competent constructs expressing 1.1-fold over-length antigenomic RNA of each DLA. Replication was initiated by transfecting the cDNAs into human (HuH7, HeLa, HEK293T, A549) and non-human (Vero E6, CHO, PaKi, LMH) cell lines. Upon transfection and replication establishment, none of the DLA expressed a large delta antigen. A cell division-mediated viral amplification assay demonstrated the capability of non-human DLA to replicate and propagate in hepatic and non-hepatic tissues, without the requirement of envelope proteins from a helper virus. Remarkably L-HDAg but not S-HDAg from HDV can artificially mediate envelopment of WoDV and DeDV ribonucleoproteins (RNPs) by HBsAg to form infectious particles, as demonstrated by co-transfection of HuH7 cells with the respective DLA expression constructs and a plasmid encoding HBV envelope proteins. These chimeric viruses are sensitive to HDV entry inhibitors and allow synchronized infections for comparative replication studies. Our results provide a more detailed understanding of the molecular biology, evolution, and virus-host interaction of this unique group of animal viroid-like agents in relation to HDV.
Collapse
Affiliation(s)
- Gnimah Eva Gnouamozi
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.E.G.); (Z.Z.); (V.P.)
| | - Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.E.G.); (Z.Z.); (V.P.)
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.E.G.); (Z.Z.); (V.P.)
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany;
- German Center for Infection Research (DZIF), Hannover Partner Site, 38124 Hannover, Germany
- Cluster of Excellence 2155 RESIST, 30625 Hannover, Germany
| | - Stefan Seitz
- German Center for Infection Research (DZIF), Heidelberg Partner Site, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), Division of Virus-Associated Carcinogenesis, 69120 Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (G.E.G.); (Z.Z.); (V.P.)
- German Center for Infection Research (DZIF), Heidelberg Partner Site, 69120 Heidelberg, Germany;
| |
Collapse
|
7
|
Khalfi P, Denis Z, McKellar J, Merolla G, Chavey C, Ursic-Bedoya J, Soppa L, Szirovicza L, Hetzel U, Dufourt J, Leyrat C, Goldmann N, Goto K, Verrier E, Baumert TF, Glebe D, Courgnaud V, Gregoire D, Hepojoki J, Majzoub K. Comparative analysis of human, rodent and snake deltavirus replication. PLoS Pathog 2024; 20:e1012060. [PMID: 38442126 PMCID: PMC10942263 DOI: 10.1371/journal.ppat.1012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Zoé Denis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Joe McKellar
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Giovanni Merolla
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - José Ursic-Bedoya
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Department of hepato-gastroenterology, Hepatology and Liver Transplantation Unit, Saint Eloi University Hospital, Montpellier, France
| | - Lena Soppa
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR9004, Montpellier, France
| | - Cedric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Kaku Goto
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, Giessen, Germany
| | - Valérie Courgnaud
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Damien Gregoire
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
8
|
Kuhn JH, Babaian A, Bergner LM, Dény P, Glebe D, Horie (堀江真行) M, Koonin EV, Krupovic M, Paraskevopoulou (Σοφία Παρασκευοπούλου) S, de la Peña M, Smura T, Hepojoki J. ICTV Virus Taxonomy Profile: Kolmioviridae 2024. J Gen Virol 2024; 105:001963. [PMID: 38421275 PMCID: PMC11145878 DOI: 10.1099/jgv.0.001963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Kolmioviridae is a family for negative-sense RNA viruses with circular, viroid-like genomes of about 1.5-1.7 kb that are maintained in mammals, amphibians, birds, fish, insects and reptiles. Deltaviruses, for instance, can cause severe hepatitis in humans. Kolmiovirids encode delta antigen (DAg) and replicate using host-cell DNA-directed RNA polymerase II and ribozymes encoded in their genome and antigenome. They require evolutionary unrelated helper viruses to provide envelopes and incorporate helper virus proteins for infectious particle formation. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Kolmioviridae, which is available at ictv.global/report/kolmioviridae.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Frederick, Maryland, USA
| | | | - Laura M. Bergner
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Paul Dény
- University Sorbonne Paris Nord, Bobigny, France
| | | | | | - Eugene V. Koonin
- National Center for Biotechnology Information, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576352. [PMID: 38293115 PMCID: PMC10827157 DOI: 10.1101/2024.01.20.576352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Here, we describe the "Obelisks," a previously unrecognised class of viroid-like elements that we first identified in human gut metatranscriptomic data. "Obelisks" share several properties: (i) apparently circular RNA ~1kb genome assemblies, (ii) predicted rod-like secondary structures encompassing the entire genome, and (iii) open reading frames coding for a novel protein superfamily, which we call the "Oblins". We find that Obelisks form their own distinct phylogenetic group with no detectable sequence or structural similarity to known biological agents. Further, Obelisks are prevalent in tested human microbiome metatranscriptomes with representatives detected in ~7% of analysed stool metatranscriptomes (29/440) and in ~50% of analysed oral metatranscriptomes (17/32). Obelisk compositions appear to differ between the anatomic sites and are capable of persisting in individuals, with continued presence over >300 days observed in one case. Large scale searches identified 29,959 Obelisks (clustered at 90% nucleotide identity), with examples from all seven continents and in diverse ecological niches. From this search, a subset of Obelisks are identified to code for Obelisk-specific variants of the hammerhead type-III self-cleaving ribozyme. Lastly, we identified one case of a bacterial species (Streptococcus sanguinis) in which a subset of defined laboratory strains harboured a specific Obelisk RNA population. As such, Obelisks comprise a class of diverse RNAs that have colonised, and gone unnoticed in, human, and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Ontario, Canada
- University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Ontario, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA
- Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA
- Stanford University, Department of Pathology, Stanford, CA, USA
| |
Collapse
|
10
|
Koonin EV, Kuhn JH, Dolja VV, Krupovic M. Megataxonomy and global ecology of the virosphere. THE ISME JOURNAL 2024; 18:wrad042. [PMID: 38365236 PMCID: PMC10848233 DOI: 10.1093/ismejo/wrad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Nearly all organisms are hosts to multiple viruses that collectively appear to be the most abundant biological entities in the biosphere. With recent advances in metagenomics and metatranscriptomics, the known diversity of viruses substantially expanded. Comparative analysis of these viruses using advanced computational methods culminated in the reconstruction of the evolution of major groups of viruses and enabled the construction of a virus megataxonomy, which has been formally adopted by the International Committee on Taxonomy of Viruses. This comprehensive taxonomy consists of six virus realms, which are aspired to be monophyletic and assembled based on the conservation of hallmark proteins involved in capsid structure formation or genome replication. The viruses in different major taxa substantially differ in host range and accordingly in ecological niches. In this review article, we outline the latest developments in virus megataxonomy and the recent discoveries that will likely lead to reassessment of some major taxa, in particular, split of three of the current six realms into two or more independent realms. We then discuss the correspondence between virus taxonomy and the distribution of viruses among hosts and ecological niches, as well as the abundance of viruses versus cells in different habitats. The distribution of viruses across environments appears to be primarily determined by the host ranges, i.e. the virome is shaped by the composition of the biome in a given habitat, which itself is affected by abiotic factors.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, United States
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 75015 Paris, France
| |
Collapse
|
11
|
Harvey E, Mifsud JCO, Holmes EC, Mahar JE. Divergent hepaciviruses, delta-like viruses, and a chu-like virus in Australian marsupial carnivores (dasyurids). Virus Evol 2023; 9:vead061. [PMID: 37941997 PMCID: PMC10630069 DOI: 10.1093/ve/vead061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Although Australian marsupials are characterised by unique biology and geographic isolation, little is known about the viruses present in these iconic wildlife species. The Dasyuromorphia are an order of marsupial carnivores found only in Australia that include both the extinct Tasmanian tiger (thylacine) and the highly threatened Tasmanian devil. Several other members of the order are similarly under threat of extinction due to habitat loss, hunting, disease, and competition and predation by introduced species such as feral cats. We utilised publicly available RNA-seq data from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database to document the viral diversity within four Dasyuromorph species. Accordingly, we identified fifteen novel virus sequences from five DNA virus families (Adenoviridae, Anelloviridae, Gammaherpesvirinae, Papillomaviridae, and Polyomaviridae) and three RNA virus taxa: the order Jingchuvirales, the genus Hepacivirus, and the delta-like virus group. Of particular note was the identification of a marsupial-specific clade of delta-like viruses that may indicate an association of deltaviruses with marsupial species. In addition, we identified a highly divergent hepacivirus in a numbat liver transcriptome that falls outside of the larger mammalian clade. We also detect what may be the first Jingchuvirales virus in a mammalian host-a chu-like virus in Tasmanian devils-thereby expanding the host range beyond invertebrates and ectothermic vertebrates. As many of these Dasyuromorphia species are currently being used in translocation efforts to reseed populations across Australia, understanding their virome is of key importance to prevent the spread of viruses to naive populations.
Collapse
Affiliation(s)
- Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Abdul Majeed N, Zehnder B, Koh C, Heller T, Urban S. Hepatitis delta: Epidemiology to recent advances in therapeutic agents. Hepatology 2023; 78:1306-1321. [PMID: 36738087 DOI: 10.1097/hep.0000000000000331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Hepatitis D virus (HDV) was first described in 1977 and is dependent on the presence of hepatitis B surface antigen (HBsAg) for its entry into cells and on the human host for replication. Due to the envelopment with the hepatitis B virus (HBV) envelope, early phases of HDV entry resemble HBV infection. Unlike HBV, HDV activates innate immune responses. The global prevalence of HDV is estimated to be about 5% of HBsAg positive individuals. However, recent studies have described a wide range of prevalence between 12 to 72 million individuals. Infection can occur as super-infection or co-infection. The diagnosis of active HDV infection involves screening with anti HDV antibodies followed by quantitative PCR testing for HDV RNA in those who are HBsAg positive. The diagnostic studies have evolved over the years improving the validity and reliability of the tests performed. HDV infection is considered the most severe form of viral hepatitis and the HDV genotype may influence the disease course. There are eight major HDV genotypes with prevalence varying by geographic region. HDV treatment has been challenging as HDV strongly depends on the host cell for replication and provides few, if any viral targets. Better understanding of HDV virology has led to the development of several therapeutic agents currently being studied in different phase II and III clinical trials. There is increasing promise of effective therapies that will ameliorate the course of this devastating disease.
Collapse
Affiliation(s)
- Nehna Abdul Majeed
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF) - Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
13
|
Thiyagarajah K, Basic M, Hildt E. Cellular Factors Involved in the Hepatitis D Virus Life Cycle. Viruses 2023; 15:1687. [PMID: 37632029 PMCID: PMC10459925 DOI: 10.3390/v15081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective RNA virus with a negative-strand RNA genome encompassing less than 1700 nucleotides. The HDV genome encodes only for one protein, the hepatitis delta antigen (HDAg), which exists in two forms acting as nucleoproteins. HDV depends on the envelope proteins of the hepatitis B virus as a helper virus for packaging its ribonucleoprotein complex (RNP). HDV is considered the causative agent for the most severe form of viral hepatitis leading to liver fibrosis/cirrhosis and hepatocellular carcinoma. Many steps of the life cycle of HDV are still enigmatic. This review gives an overview of the complete life cycle of HDV and identifies gaps in knowledge. The focus is on the description of cellular factors being involved in the life cycle of HDV and the deregulation of cellular pathways by HDV with respect to their relevance for viral replication, morphogenesis and HDV-associated pathogenesis. Moreover, recent progress in antiviral strategies targeting cellular structures is summarized in this article.
Collapse
Affiliation(s)
| | | | - Eberhard Hildt
- Paul-Ehrlich-Institute, Department of Virology, D-63225 Langen, Germany; (K.T.); (M.B.)
| |
Collapse
|
14
|
Brown N, Escobar LE. A review of the diet of the common vampire bat ( Desmodus rotundus) in the context of anthropogenic change. Mamm Biol 2023; 103:1-21. [PMID: 37363038 PMCID: PMC10258787 DOI: 10.1007/s42991-023-00358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/30/2023] [Indexed: 06/28/2023]
Abstract
The common vampire bat (Desmodus rotundus) maintains a diverse, sanguivorous diet, utilizing a broad range of prey taxa. As anthropogenic change alters the distribution of this species, shifts in predator-prey interactions are expected. Understanding prey richness and patterns of prey selection is, thus, increasingly informative from ecological, epidemiological, and economic perspectives. We reviewed D. rotundus diet and assessed the geographical, taxonomical, and behavioral features to find 63 vertebrate species within 21 orders and 45 families constitute prey, including suitable host species in regions of invasion outside D. rotundus' range. Rodentia contained the largest number of species utilized by D. rotundus, though cattle were the most commonly reported prey source, likely linked to the high availability of livestock and visibility of bite wounds compared to wildlife. Additionally, there was tendency to predate upon species with diurnal activity and social behavior, potentially facilitating convenient and nocturnal predation. Our review highlights the dietary heterogeneity of D. rotundus across its distribution. We define D. rotundus as a generalist predator, or parasite, depending on the ecological definition of its symbiont roles in an ecosystem (i.e., lethal vs. non-lethal blood consumption). In view of the eminent role of D. rotundus in rabies virus transmission and its range expansion, an understanding of its ecology would benefit public health, wildlife management, and agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s42991-023-00358-3.
Collapse
Affiliation(s)
- Natalie Brown
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA USA
- Global Change Center, Virginia Tech, Blacksburg, VA USA
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA USA
- Doctorado en Agrociencias, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Carrera 7 No. 179-03, Bogotá, Colombia
| |
Collapse
|
15
|
Taylor E, Aguilar-Ancori EG, Banyard AC, Abel I, Mantini-Briggs C, Briggs CL, Carrillo C, Gavidia CM, Castillo-Neyra R, Parola AD, Villena FE, Prada JM, Petersen BW, Falcon Perez N, Cabezas Sanchez C, Sihuincha M, Streicker DG, Maguina Vargas C, Navarro Vela AM, Vigilato MAN, Wen Fan H, Willoughby R, Horton DL, Recuenco SE. The Amazonian Tropical Bites Research Initiative, a hope for resolving zoonotic neglected tropical diseases in the One Health era. Int Health 2023; 15:216-223. [PMID: 35896028 PMCID: PMC9384559 DOI: 10.1093/inthealth/ihac048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Neglected tropical diseases (NTDs) disproportionately affect populations living in resource-limited settings. In the Amazon basin, substantial numbers of NTDs are zoonotic, transmitted by vertebrate (dogs, bats, snakes) and invertebrate species (sand flies and triatomine insects). However, no dedicated consortia exist to find commonalities in the risk factors for or mitigations against bite-associated NTDs such as rabies, snake envenoming, Chagas disease and leishmaniasis in the region. The rapid expansion of COVID-19 has further reduced resources for NTDs, exacerbated health inequality and reiterated the need to raise awareness of NTDs related to bites. METHODS The nine countries that make up the Amazon basin have been considered (Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru, Surinam and Venezuela) in the formation of a new network. RESULTS The Amazonian Tropical Bites Research Initiative (ATBRI) has been created, with the aim of creating transdisciplinary solutions to the problem of animal bites leading to disease in Amazonian communities. The ATBRI seeks to unify the currently disjointed approach to the control of bite-related neglected zoonoses across Latin America. CONCLUSIONS The coordination of different sectors and inclusion of all stakeholders will advance this field and generate evidence for policy-making, promoting governance and linkage across a One Health arena.
Collapse
Affiliation(s)
- Emma Taylor
- University of Surrey, School of Veterinary Medicine, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - Elsa Gladys Aguilar-Ancori
- Instituto Universitario de Enfermedades Tropicales y Biomedicina de Cusco - Universidad Nacional de San Antonio Abad del Cusco, Cusco, 08003, Peru
| | - Ashley C Banyard
- Animal and PlantHealth Agency, WoodhamLane, New Haw, Weybridge, Surrey, KT15 3NB, United Kingdom
| | - Isis Abel
- Laboratório de Epidemiologia e Geoprocessamento, Instituto de MedicinaVeterinária, Universidade Federal do Pará, Castanhal, Pará, 68743-970, Brasil
| | - Clara Mantini-Briggs
- Berkeley Center for Social Medicine and the Institute for the Study of Societal Issues, University of California, Berkeley, 94720-5670, USA
| | - Charles L Briggs
- Berkeley Center for Social Medicine and the Department of Anthropology, University of California, Berkeley, 94720-5670, USA
| | - Carolina Carrillo
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará - ConsejoNacional de InvestigacionesCientíficas y Técnicas, Saladillo 2468 (C1440FFX) Ciudad de Buenos Aires, Argentina
| | - Cesar M Gavidia
- Facultad de MedicinaVeterinaria, Universidad Nacional Mayor de San Marcos, Lima, 15021, Perú
| | - Ricardo Castillo-Neyra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, 19104-6021, USA
- One Health Unit, School of Public Health and Administration, Universidad PeruanaCayetano Heredia, Lima, 15102, Peru
| | - Alejandro D Parola
- Fundación Pablo Cassará. Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Saladillo 2468 (C1440FFX) Ciudad de Buenos Aires, Argentina
| | - Fredy E Villena
- Asociaciónpara el Empleo y Bienestar Animal en Investigación y Docencia (ASOPEBAID), Lima, 15072, Peru
| | - Joaquin M Prada
- University of Surrey, School of Veterinary Medicine, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - Brett W Petersen
- Poxvirus and Rabies Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, 30333, USA
| | - Nestor Falcon Perez
- Facultad de MedicinaVeterinaria y Zootecnia, Universidad Peruana Cayetano Heredia, Lima, 15102, Perú
| | - Cesar Cabezas Sanchez
- Centro de InvestigacionesTecnologicas, Biomedicas y Medioambientales-CITBM, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| | | | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Ciro Maguina Vargas
- Instituto de Medicina Tropical Alexander Von Humbolt, Universidad Peruana Cayetano Heredia, Lima, 15102, Perú
| | | | - Marco A N Vigilato
- Pan American Center for Foot and Mouth Disease and Veterinary Public Health, Department of Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization, Rio de Janeiro, 25040-004, Brazil
| | - Hui Wen Fan
- Bioindustrial Center, InstitutoButantan, São Paulo, 05503-900, Brazil
| | | | - Daniel L Horton
- University of Surrey, School of Veterinary Medicine, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - Sergio E Recuenco
- Centro de InvestigacionesTecnologicas, Biomedicas y Medioambientales-CITBM, Universidad Nacional Mayor de San Marcos, Lima, 15081, Peru
| |
Collapse
|
16
|
Lee BD, Neri U, Roux S, Wolf YI, Camargo AP, Krupovic M, Simmonds P, Kyrpides N, Gophna U, Dolja VV, Koonin EV. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell 2023; 186:646-661.e4. [PMID: 36696902 PMCID: PMC9911046 DOI: 10.1016/j.cell.2022.12.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
Viroids and viroid-like covalently closed circular (ccc) RNAs are minimal replicators that typically encode no proteins and hijack cellular enzymes for replication. The extent and diversity of viroid-like agents are poorly understood. We developed a computational pipeline to identify viroid-like cccRNAs and applied it to 5,131 metatranscriptomes and 1,344 plant transcriptomes. The search yielded 11,378 viroid-like cccRNAs spanning 4,409 species-level clusters, a 5-fold increase compared to the previously identified viroid-like elements. Within this diverse collection, we discovered numerous putative viroids, satellite RNAs, retrozymes, and ribozy-like viruses. Diverse ribozyme combinations and unusual ribozymes within the cccRNAs were identified. Self-cleaving ribozymes were identified in ambiviruses, some mito-like viruses and capsid-encoding satellite virus-like cccRNAs. The broad presence of viroid-like cccRNAs in diverse transcriptomes and ecosystems implies that their host range is far broader than currently known, and matches to CRISPR spacers suggest that some cccRNAs replicate in prokaryotes.
Collapse
Affiliation(s)
- Benjamin D Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015 Paris, France
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
17
|
Fallon BS, Cooke EM, Hesterman MC, Norseth JS, Akhundjanov SB, Weller ML. A changing landscape: Tracking and analysis of the international HDV epidemiology 1999-2020. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0000790. [PMID: 37098008 PMCID: PMC10129014 DOI: 10.1371/journal.pgph.0000790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023]
Abstract
The international epidemiology of Hepatitis Delta Virus (HDV) is challenging to accurately estimate due to limited active surveillance for this rare infectious disease. Prior HDV epidemiological studies have relied on meta-analysis of aggregated and static datasets. These limitations restrict the capacity to actively detect low-level and/or geographically dispersed changes in the incidence of HDV diagnoses. This study was designed to provide a resource to track and analyze the international HDV epidemiology. Datasets analyzed collectively consisted of >700,000 HBV and >9,000 HDV reported cases ranging between 1999-2020. Datasets mined from government publications were identified for Argentina, Australia, Austria, Brazil, Bulgaria, Canada, Finland, Germany, Macao, Netherlands, New Zealand, Norway, Sweden, Taiwan, Thailand, United Kingdom, and United States. Time series analyses, including Mann-Kendall (MK) trend test, Bayesian Information Criterion (BIC), and hierarchal clustering, were performed to characterize trends in the HDV timelines. An aggregated prevalence of 2,560 HDV/HBV100,000 cases (95% CI 180-4940) or 2.56% HDV/HBV cases was identified, ranging from 0.26% in Canada to 20% in the United States. Structural breaks in the timeline of HDV incidence were identified in 2002, 2012, and 2017, with a significant increase occurring between 2013-2017. Significant increasing trends in reported HDV and HBV cases were observed in 47% and 24% of datasets, respectively. Analyses of the HDV incidence timeline identified four distinct temporal clusters, including Cluster I (Macao, Taiwan), Cluster II (Argentina, Brazil, Germany, Thailand), Cluster III (Bulgaria, Netherlands, New Zealand, United Kingdom, United States) and Cluster IV (Australia, Austria, Canada, Finland, Norway, Sweden). Tracking of HDV and HBV cases on an international scale is essential in defining the global impact of viral hepatitis. Significant disruptions of HDV and HBV epidemiology have been identified. Increased surveillance of HDV is warranted to further define the etiology of the recent breakpoints in the international HDV incidence.
Collapse
Affiliation(s)
- Braden S Fallon
- School of Dentistry, University of Utah, Salt Lake City, UT, United States of America
| | - Elaine M Cooke
- School of Dentistry, University of Utah, Salt Lake City, UT, United States of America
| | - Matthew C Hesterman
- School of Dentistry, University of Utah, Salt Lake City, UT, United States of America
| | - Jared S Norseth
- School of Dentistry, University of Utah, Salt Lake City, UT, United States of America
| | - Sherzod B Akhundjanov
- Department of Applied Economics, Utah State University, Logan, UT, United States of America
| | - Melodie L Weller
- School of Dentistry, University of Utah, Salt Lake City, UT, United States of America
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
18
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
19
|
Caviglia GP, Ciancio A, Rizzetto M. A Review of HDV Infection. Viruses 2022; 14:1749. [PMID: 36016371 PMCID: PMC9414459 DOI: 10.3390/v14081749] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 01/04/2023] Open
Abstract
Hepatitis D is the most severe viral hepatitis. Hepatitis D virus (HDV) has a very small RNA genome with unique biological properties. It requires for infection the presence of hepatitis B virus (HBV) and is transmitted parenterally, mainly by superinfection of HBsAg carriers who then develop chronic hepatitis D. HDV has been brought under control in high-income countries by the implementation of HBV vaccination, and the clinical pattern has changed to a chronic hepatitis D seen in ageing patients with advanced fibrotic disease; the disease remains a major health concern in developing countries of Africa and Asia. Every HBsAg-positive subject should be tested for HDV serum markers by reflex testing, independently of clinical status. Vaccination against HBV provides the best prophylaxis against hepatitis D. The only therapy available so far has been the poorly performing Interferon alfa; however, several new and promising therapeutic approaches are under study.
Collapse
Affiliation(s)
| | - Alessia Ciancio
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, “Città della Salute e della Scienza di Torino” Molinette Hospital, 10126 Turin, Italy
| | - Mario Rizzetto
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
20
|
Lauber C, Seitz S. Opportunities and Challenges of Data-Driven Virus Discovery. Biomolecules 2022; 12:biom12081073. [PMID: 36008967 PMCID: PMC9406072 DOI: 10.3390/biom12081073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023] Open
Abstract
Virus discovery has been fueled by new technologies ever since the first viruses were discovered at the end of the 19th century. Starting with mechanical devices that provided evidence for virus presence in sick hosts, virus discovery gradually transitioned into a sequence-based scientific discipline, which, nowadays, can characterize virus identity and explore viral diversity at an unprecedented resolution and depth. Sequencing technologies are now being used routinely and at ever-increasing scales, producing an avalanche of novel viral sequences found in a multitude of organisms and environments. In this perspective article, we argue that virus discovery has started to undergo another transformation prompted by the emergence of new approaches that are sequence data-centered and primarily computational, setting them apart from previous technology-driven innovations. The data-driven virus discovery approach is largely uncoupled from the collection and processing of biological samples, and exploits the availability of massive amounts of publicly and freely accessible data from sequencing archives. We discuss open challenges to be solved in order to unlock the full potential of data-driven virus discovery, and we highlight the benefits it can bring to classical (mostly molecular) virology and molecular biology in general.
Collapse
Affiliation(s)
- Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
- Correspondence:
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a profound impact on human health, economic well-being, and societal function. It is essential that we use this generational experience to better understand the processes that underpin the emergence of COVID-19 and other zoonotic diseases. Herein, I review the mechanisms that determine why and how viruses emerge in new hosts, as well as the barriers to this process. I show that traditional studies of virus emergence have an inherent anthropocentric bias, with disease in humans considered the inevitable outcome of virus emergence, when in reality viruses are integral components of a global ecosystem characterized by continual host jumping with humans also transmitting their viruses to other animals. I illustrate these points using coronaviruses, including severe acute respiratory syndrome coronavirus 2, as a case study. I also outline the potential steps that can be followed to help mitigate and prevent future pandemics, with combating climate change a central component. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
22
|
Zi J, Gao X, Du J, Xu H, Niu J, Chi X. Multiple Regions Drive Hepatitis Delta Virus Proliferation and Are Therapeutic Targets. Front Microbiol 2022; 13:838382. [PMID: 35464929 PMCID: PMC9022428 DOI: 10.3389/fmicb.2022.838382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatitis Delta Virus (HDV) is the smallest mammalian single-stranded RNA virus. It requires host cells and hepatitis B virus (HBV) to complete its unique life cycle. The present review summarizes the specific regions on hepatitis D antigen (HDAg) and hepatitis B surface antigen (HBsAg) that drive HDV to utilize host cell machinery system to produce three types of RNA and two forms of HDAg, and hijack HBsAg for its secretion and de novo entry. Previously, interferon-α was the only recommended therapy for HDV infection. In recent years, some new therapies targeting these regions, such as Bulevirtide, Lonafarnib, Nucleic acid polymers have appeared, with better curative effects and fewer adverse reactions.
Collapse
Affiliation(s)
- Jun Zi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiuzhu Gao
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Hongqin Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xiumei Chi
- Gene Therapy Laboratory, Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Abstract
Hepatitis D virus (HDV) infection causes the most severe form of viral hepatitis with rapid progression to cirrhosis, hepatic decompensation, and hepatocellular carcinoma. Although discovered > 40 years ago, little attention has been paid to this pathogen from both scientific and public communities. However, effectively combating hepatitis D requires advanced scientific knowledge and joint efforts from multi-stakeholders. In this review, we emphasized the recent advances in HDV virology, epidemiology, clinical feature, treatment, and prevention. We not only highlighted the remaining challenges but also the opportunities that can move the field forward.
Collapse
|
24
|
Edgar RC, Taylor B, Lin V, Altman T, Barbera P, Meleshko D, Lohr D, Novakovsky G, Buchfink B, Al-Shayeb B, Banfield JF, de la Peña M, Korobeynikov A, Chikhi R, Babaian A. Petabase-scale sequence alignment catalyses viral discovery. Nature 2022; 602:142-147. [PMID: 35082445 DOI: 10.1038/s41586-021-04332-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/10/2021] [Indexed: 01/20/2023]
Abstract
Public databases contain a planetary collection of nucleic acid sequences, but their systematic exploration has been inhibited by a lack of efficient methods for searching this corpus, which (at the time of writing) exceeds 20 petabases and is growing exponentially1. Here we developed a cloud computing infrastructure, Serratus, to enable ultra-high-throughput sequence alignment at the petabase scale. We searched 5.7 million biologically diverse samples (10.2 petabases) for the hallmark gene RNA-dependent RNA polymerase and identified well over 105 novel RNA viruses, thereby expanding the number of known species by roughly an order of magnitude. We characterized novel viruses related to coronaviruses, hepatitis delta virus and huge phages, respectively, and analysed their environmental reservoirs. To catalyse the ongoing revolution of viral discovery, we established a free and comprehensive database of these data and tools. Expanding the known sequence diversity of viruses can reveal the evolutionary origins of emerging pathogens and improve pathogen surveillance for the anticipation and mitigation of future pandemics.
Collapse
Affiliation(s)
| | - Brie Taylor
- Independent researcher, Vancouver, British Columbia, Canada
| | - Victor Lin
- Independent researcher, Seattle, WA, USA
| | | | - Pierre Barbera
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Dmitry Meleshko
- Center for Algorithmic Biotechnology, St Petersburg State University, St Petersburg, Russia
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Gherman Novakovsky
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin Buchfink
- Computational Biology Group, Max Planck Institute for Biology, Tübingen, Germany
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Anton Korobeynikov
- Center for Algorithmic Biotechnology, St Petersburg State University, St Petersburg, Russia
- Department of Statistical Modelling, St Petersburg State University, St Petersburg, Russia
| | - Rayan Chikhi
- G5 Sequence Bioinformatics, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Artem Babaian
- Independent researcher, Vancouver, British Columbia, Canada.
| |
Collapse
|
25
|
Szirovicza L, Hetzel U, Kipar A, Hepojoki J. Short '1.2× Genome' Infectious Clone Initiates Kolmiovirid Replication in Boa constrictor Cells. Viruses 2022; 14:107. [PMID: 35062311 PMCID: PMC8778117 DOI: 10.3390/v14010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Human hepatitis D virus (HDV) depends on hepatitis B virus co-infection and its glycoproteins for infectious particle formation. HDV was the sole known deltavirus for decades and believed to be a human-only pathogen. However, since 2018, several groups reported finding HDV-like agents from various hosts but without co-infecting hepadnaviruses. In vitro systems enabling helper virus-independent replication are key for studying the newly discovered deltaviruses. Others and we have successfully used constructs containing multimers of the deltavirus genome for the replication of various deltaviruses via transfection in cell culture. Here, we report the establishment of deltavirus infectious clones with 1.2× genome inserts bearing two copies of the genomic and antigenomic ribozymes. We used Swiss snake colony virus 1 as the model to compare the ability of the previously reported "2× genome" and the "1.2× genome" infectious clones to initiate replication in cell culture. Using immunofluorescence, qRT-PCR, immuno- and northern blotting, we found the 2× and 1.2× genome clones to similarly initiate deltavirus replication in vitro and both induced a persistent infection of snake cells. The 1.2× genome constructs enable easier introduction of modifications required for studying deltavirus replication and cellular interactions.
Collapse
Affiliation(s)
- Leonora Szirovicza
- Medicum, Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| | - Udo Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00790 Helsinki, Finland
| | - Jussi Hepojoki
- Medicum, Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (U.H.); (A.K.)
| |
Collapse
|
26
|
Lee BD, Neri U, Oh CJ, Simmonds P, Koonin EV. ViroidDB: a database of viroids and viroid-like circular RNAs. Nucleic Acids Res 2022; 50:D432-D438. [PMID: 34751403 PMCID: PMC8728161 DOI: 10.1093/nar/gkab974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
We introduce ViroidDB, a value-added database that attempts to collect all known viroid and viroid-like circular RNA sequences into a single resource. Spanning about 10 000 unique sequences, ViroidDB includes viroids, retroviroid-like elements, small circular satellite RNAs, ribozyviruses, and retrozymes. Each sequence's secondary structure, ribozyme content, and cluster membership are predicted via a custom pipeline optimized for handling circular RNAs. The data can be explored via a purpose-built user interface that features visualizations, multiple sequence alignments, and a portal for downloading bulk data. Users can browse the data by sequence type, taxon, or typo-tolerant search of metadata fields. The database is freely accessible at https://viroids.org.
Collapse
MESH Headings
- Base Sequence
- Databases, Nucleic Acid
- Internet
- Metadata
- Nucleic Acid Conformation
- Plant Diseases/virology
- Plants/virology
- RNA, Catalytic/chemistry
- RNA, Catalytic/classification
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Circular/chemistry
- RNA, Circular/classification
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Viral/chemistry
- RNA, Viral/classification
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Alignment
- Software
- Viroids/classification
- Viroids/genetics
- Viroids/metabolism
Collapse
Affiliation(s)
- Benjamin D Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes Health, Bethesda, MD 20894, USA
- Nuffield Department of Medicine, University of Oxford, Oxford OX1, UK
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX1, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes Health, Bethesda, MD 20894, USA
| |
Collapse
|
27
|
Zoonotic disease and virome diversity in bats. Curr Opin Virol 2021; 52:192-202. [PMID: 34954661 PMCID: PMC8696223 DOI: 10.1016/j.coviro.2021.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023]
Abstract
The emergence of zoonotic viral diseases in humans commonly reflects exposure to mammalian wildlife. Bats (order Chiroptera) are arguably the most important mammalian reservoir for zoonotic viruses, with notable examples including Severe Acute Respiratory Syndrome coronaviruses 1 and 2, Middle East Respiratory Syndrome coronavirus, henipaviruses and lyssaviruses. Herein, we outline our current knowledge on the diversity of bat viromes, particularly through the lens of metagenomic next-generation sequencing and in the context of disease emergence. A key conclusion is that although bats harbour abundant virus diversity, the vast majority of bat viruses have not emerged to cause disease in new hosts such that bats are better regarded as critical but endangered components of global ecosystems.
Collapse
|
28
|
Koonin EV, Dolja VV, Krupovic M, Kuhn JH. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol Mol Biol Rev 2021; 85:e0019320. [PMID: 34468181 PMCID: PMC8483706 DOI: 10.1128/mmbr.00193-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Originally, viruses were defined as miniscule infectious agents that passed through filters that retain even the smallest cells. Subsequently, viruses were considered obligate intracellular parasites whose reproduction depends on their cellular hosts for energy supply and molecular building blocks. However, these features are insufficient to unambiguously define viruses as they are broadly understood today. We outline possible approaches to define viruses and explore the boundaries of the virosphere within the virtual space of replicators and the relationships between viruses and other types of replicators. Regardless of how, exactly, viruses are defined, viruses clearly have evolved on many occasions from nonviral replicators, such as plasmids, by recruiting host proteins to become virion components. Conversely, other types of replicators have repeatedly evolved from viruses. Thus, the virosphere is a dynamic entity with extensive evolutionary traffic across its boundaries. We argue that the virosphere proper, here termed orthovirosphere, consists of a distinct variety of replicators that encode structural proteins encasing the replicators' genomes, thereby providing protection and facilitating transmission among hosts. Numerous and diverse replicators, such as virus-derived but capsidless RNA and DNA elements, or defective viruses occupy the zone surrounding the orthovirosphere in the virtual replicator space. We define this zone as the perivirosphere. Although intense debates on the nature of certain replicators that adorn the internal and external boundaries of the virosphere will likely continue, we present an operational definition of virus that recently has been accepted by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
29
|
Isaeva OV, Kyuregyan KK, Mikhailov MI. [Animal delta-like viruses (Kolmioviridae: Deltavirus) and the origin of the human hepatitis D virus (HDV)]. Vopr Virusol 2021; 66:340-345. [PMID: 34738449 DOI: 10.36233/0507-4088-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/05/2022]
Abstract
Hepatitis D (delta, δ) virus (HDV) was discovered more than 40 years ago, but the understanding of its origin and evolution is poor. This is mainly due to the lack, until recently, of data on the existence of any viruses similar to HDV. The discovery in recent years of sequences of new delta-like agents in a wide range of vertebrate (Vertebrata) and invertebrate (Invertebrata) species has facilitated a revision of views on the origin of HDV and contributed to understanding the place of this unique virus among other animals' viral agents. The purpose of this review is to analyze the latest published data on new delta-like agents and their biological characteristics.
Collapse
Affiliation(s)
- O V Isaeva
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia
| | - K K Kyuregyan
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia
| | - M I Mikhailov
- FSBSI «I.I. Mechnikov Research Institute of Vaccines and Sera»; FSBEI FPE «Russian Medical Academy of Continuous Professional Education» of the Ministry of Health of Russia
| |
Collapse
|
30
|
Agrawal AA, Zhang X. The evolution of coevolution in the study of species interactions. Evolution 2021; 75:1594-1606. [PMID: 34166533 DOI: 10.1111/evo.14293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 01/05/2023]
Abstract
The study of reciprocal adaptation in interacting species has been an active and inspiring area of evolutionary research for nearly 60 years. Perhaps owing to its great natural history and potential consequences spanning population divergence to species diversification, coevolution continues to capture the imagination of biologists. Here we trace developments following Ehrlich and Raven's classic paper, with a particular focus on the modern influence of two studies by Dr. May Berenbaum in the 1980s. This series of classic work presented a compelling example exhibiting the macroevolutionary patterns predicted by Ehrlich and Raven and also formalized a microevolutionary approach to measuring selection, functional traits, and understanding reciprocal adaptation between plants and their herbivores. Following this breakthrough was a wave of research focusing on diversifying macroevolutionary patterns, mechanistic chemical ecology, and natural selection on populations within and across community types. Accordingly, we breakdown coevolutionary theory into specific hypotheses at different scales: reciprocal adaptation between populations within a community, differential coevolution among communities, lineage divergence, and phylogenetic patterns. We highlight progress as well as persistent gaps, especially the link between reciprocal adaptation and diversification.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Xuening Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
31
|
Pérez-Vargas J, Pereira de Oliveira R, Jacquet S, Pontier D, Cosset FL, Freitas N. HDV-Like Viruses. Viruses 2021; 13:1207. [PMID: 34201626 PMCID: PMC8310214 DOI: 10.3390/v13071207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective human virus that lacks the ability to produce its own envelope proteins and is thus dependent on the presence of a helper virus, which provides its surface proteins to produce infectious particles. Hepatitis B virus (HBV) was so far thought to be the only helper virus described to be associated with HDV. However, recent studies showed that divergent HDV-like viruses could be detected in fishes, birds, amphibians, and invertebrates, without evidence of any HBV-like agent supporting infection. Another recent study demonstrated that HDV can be transmitted and propagated in experimental infections ex vivo and in vivo by different enveloped viruses unrelated to HBV, including hepatitis C virus (HCV) and flaviviruses such as Dengue and West Nile virus. All this new evidence, in addition to the identification of novel virus species within a large range of hosts in absence of HBV, suggests that deltaviruses may take advantage of a large spectrum of helper viruses and raises questions about HDV origins and evolution.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Rémi Pereira de Oliveira
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Stéphanie Jacquet
- LBBE UMR5558 CNRS—Centre National de la Recherche Scientifique, Université de Lyon 1—48 bd du 11 Novembre 1918, 69100 Villeurbanne, France; (S.J.); (D.P.)
| | - Dominique Pontier
- LBBE UMR5558 CNRS—Centre National de la Recherche Scientifique, Université de Lyon 1—48 bd du 11 Novembre 1918, 69100 Villeurbanne, France; (S.J.); (D.P.)
| | - François-Loïc Cosset
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| | - Natalia Freitas
- CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (J.P.-V.); (R.P.d.O.); (N.F.)
| |
Collapse
|
32
|
Netter HJ, Barrios MH, Littlejohn M, Yuen LKW. Hepatitis Delta Virus (HDV) and Delta-Like Agents: Insights Into Their Origin. Front Microbiol 2021; 12:652962. [PMID: 34234753 PMCID: PMC8256844 DOI: 10.3389/fmicb.2021.652962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is a human pathogen, and the only known species in the genus Deltavirus. HDV is a satellite virus and depends on the hepatitis B virus (HBV) for packaging, release, and transmission. Extracellular HDV virions contain the genomic HDV RNA, a single-stranded negative-sense and covalently closed circular RNA molecule, which is associated with the HDV-encoded delta antigen forming a ribonucleoprotein complex, and enveloped by the HBV surface antigens. Replication occurs in the nucleus and is mediated by host enzymes and assisted by cis-acting ribozymes allowing the formation of monomer length molecules which are ligated by host ligases to form unbranched rod-like circles. Recently, meta-transcriptomic studies investigating various vertebrate and invertebrate samples identified RNA species with similarities to HDV RNA. The delta-like agents may be representatives of novel subviral agents or satellite viruses which share with HDV, the self-complementarity of the circular RNA genome, the ability to encode a protein, and the presence of ribozyme sequences. The widespread distribution of delta-like agents across different taxa with considerable phylogenetic distances may be instrumental in comprehending their evolutionary history by elucidating the transition from transcriptome to cellular circular RNAs to infectious subviral agents.
Collapse
Affiliation(s)
- Hans J Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Marilou H Barrios
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia.,The Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| | - Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Neely BA, Janech MG, Fenton MB, Simmons NB, Bland AM, Becker DJ. Surveying the Vampire Bat ( Desmodus rotundus) Serum Proteome: A Resource for Identifying Immunological Proteins and Detecting Pathogens. J Proteome Res 2021; 20:2547-2559. [PMID: 33840197 PMCID: PMC9812275 DOI: 10.1021/acs.jproteome.0c00995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bats are increasingly studied as model systems for longevity and as natural hosts for some virulent viruses. Yet the ability to characterize immune mechanisms of viral tolerance and to quantify infection dynamics in wild bats is often limited by small sample volumes and few species-specific reagents. Here, we demonstrate how proteomics can overcome these limitations by using data-independent acquisition-based shotgun proteomics to survey the serum proteome of 17 vampire bats (Desmodus rotundus) from Belize. Using just 2 μL of sample and relatively short separations of undepleted serum digests, we identified 361 proteins across 5 orders of magnitude. Levels of immunological proteins in vampire bat serum were then compared to human plasma via published databases. Of particular interest were antiviral and antibacterial components, circulating 20S proteasome complex and proteins involved in redox activity. Lastly, we used known virus proteomes to putatively identify Rh186 from Macacine herpesvirus 3 and ORF1a from Middle East respiratory syndrome-related coronavirus, indicating that mass spectrometry-based techniques show promise for pathogen detection. Overall, these results can be used to design targeted mass-spectrometry assays to quantify immunological markers and detect pathogens. More broadly, our findings also highlight the application of proteomics in advancing wildlife immunology and pathogen surveillance.
Collapse
Affiliation(s)
- Benjamin A Neely
- Chemical Sciences Division, National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina 29412, United States
| | - Michael G Janech
- Hollings Marine Laboratory, Charleston, South Carolina 29412, United States
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, United States
| | - M Brock Fenton
- Department of Biology, Western University, London, Ontario N6A 3K7, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York 10024, United States
| | - Alison M Bland
- Hollings Marine Laboratory, Charleston, South Carolina 29412, United States
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, United States
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
34
|
de la Peña M, Ceprián R, Casey JL, Cervera A. Hepatitis delta virus-like circular RNAs from diverse metazoans encode conserved hammerhead ribozymes. Virus Evol 2021; 7:veab016. [PMID: 33708415 PMCID: PMC7936874 DOI: 10.1093/ve/veab016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human hepatitis delta virus (HDV) is a unique infectious agent whose genome is composed of a small circular RNA. Recent data, however, have reported the existence of highly divergent HDV-like circRNAs in the transcriptomes of diverse vertebrate and invertebrate species. The HDV-like genomes described in amniotes such as birds and reptiles encode self-cleaving RNA motifs or ribozymes similar to the ones present in the human HDV, whereas no catalytic RNA domains have been reported for the HDV-like genomes detected in metagenomic data from some amphibians, fish, and invertebrates. Herein, we describe the self-cleaving motifs of the HDV-like genomes reported in newts and fish, which belong to the characteristic class of HDV ribozymes. Surprisingly, HDV-like genomes from a toad and a termite show conserved type III hammerhead ribozymes, which belong to an unrelated class of catalytic RNAs characteristic of plant genomes and plant subviral circRNAs, such as some viral satellites and viroids. Sequence analyses revealed the presence of similar HDV-like hammerhead ribozymes encoded in two termite genomes, but also in the genomes of several dipteran species. In vitro transcriptions confirmed the cleaving activity for these motifs, with moderate rates of self-cleavage. These data indicate that all described HDV-like agents contain self-cleaving motifs from either the HDV or the hammerhead class. Autocatalytic ribozymes in HDV-like genomes could be regarded as interchangeable domains and may have arisen from cellular transcriptomes, although we still cannot rule out some other evolutionary explanations.
Collapse
Affiliation(s)
- Marcos de la Peña
- IBMCP (CSIC-UPV), C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Raquel Ceprián
- IBMCP (CSIC-UPV), C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - John L Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Amelia Cervera
- IBMCP (CSIC-UPV), C/Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| |
Collapse
|
35
|
Iwamoto M, Shibata Y, Kawasaki J, Kojima S, Li YT, Iwami S, Muramatsu M, Wu HL, Wada K, Tomonaga K, Watashi K, Horie M. Identification of novel avian and mammalian deltaviruses provides new insights into deltavirus evolution. Virus Evol 2021; 7:veab003. [PMID: 33614159 PMCID: PMC7882216 DOI: 10.1093/ve/veab003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatitis delta virus (HDV) is a satellite virus that requires hepadnavirus envelope proteins for its transmission. Although recent studies identified HDV-related deltaviruses in certain animals, the evolution of deltaviruses, such as the origin of HDV and the mechanism of its coevolution with its helper viruses, is unknown, mainly because of the phylogenetic gaps among deltaviruses. Here, we identified novel deltaviruses of passerine birds, woodchucks, and white-tailed deer by extensive database searches and molecular surveillance. Phylogenetic and molecular epidemiological analyses suggest that HDV originated from mammalian deltaviruses and the past interspecies transmission of mammalian and passerine deltaviruses. Further, metaviromic and experimental analyses suggest that the satellite-helper relationship between HDV and hepadnavirus was established after the divergence of the HDV lineage from non-HDV mammalian deltaviruses. Our findings enhance our understanding of deltavirus evolution, diversity, and transmission, indicating the importance of further surveillance for deltaviruses.
Collapse
Affiliation(s)
- Masashi Iwamoto
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Junna Kawasaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
| | - Shohei Kojima
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences and RIKEN Cluster for Pioneering Research, 1-7-22, Suehiro-Cho, Tsurumi-Ward, Yokohama 230-0045, Japan
| | - Yung-Tsung Li
- Hepatitis Research Center, National Taiwan University Hospital, 7 Chung Shan South Road, Taipei 10002, Taiwan
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hui-Lin Wu
- Hepatitis Research Center, National Taiwan University Hospital, 7 Chung Shan South Road, Taipei 10002, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, 7 Chung Shan South Road, Taipei 10002, Taiwan
| | - Kazuhiro Wada
- Faculty of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Keizo Tomonaga
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Applied Biological Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Masayuki Horie
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|